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ABSTRACT 

 

Purpose: The characteristics and the thickness of the carotid wall may represent a parameter 

for the cerebrovascular risk stratification. The purpose of this study was to compare automated 

and semi-automated algorithms for the analysis of carotid artery wall thickness (CAWT) and 

intima-media thickness (IMT) in CT and Ultrasound respectively and studying the co-relation 

between them.  

Material and Methods: Twenty consecutive patients underwent MDCTA and ultrasound 

analysis of carotid arteries (mean age 66 years; age range 59–79 years). The IMT of the 42 

carotids was measured with novel and dedicated automated software analysis (called 

AtheroEdge™, Biomedical Technologies, Denver, CO, USA) and by four observers that 

manually calculated the IMT using ImgTracer™. The CAWT was automatically estimated 

using Athero-CTview™ and also semi-automatically quantified using ImgTracer™. The 

correlation between groups was calculated by using the Pearson rho statistic and the regression 

scatter plots were calculated. We evaluated inter-method agreement using a Bland–Altman 

analysis.  

Results: All the techniques showed a strong correlation between them with the highest values 

obtained by the association between CAWT and IMT analysis (Pearson Rho = 0.9 with 

Confidence Interval from 0.82 to 0.95 and a p-value of 0.0001). The lowest value was obtained 

by the association between semi-automated US-IMT and automated CT-CAWT analysis 

(Pearson Rho = 0.44 with Confidence Interval from 0.15 to 0.66 and a p-value of 0.0047). In 
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the Bland-Altman analysis the better results were obtained by comparing the semi-automated 

and automated algorithm for the study of IMT with an interval from -16.1% to + 43.6%. 

Conclusions: The results of this preliminary study demonstrated that the CAWT (Athero-

CTView™) and IMT (AtheroEdge™) can be studied with this kind of software although the 

CT analysis need to be further improved. 

 

Introduction 

Atherosclerosis of the carotid artery represents a major risk factor in the development of 

stroke
1,2

. Although atherosclerosis can remain below the clinical horizon for a long time, it can 

manifest clinically as acute vascular disease at almost any stage of the disease process. 

Evaluation of atherosclerosis by means of clinical end points-morbidity and mortality-requires 

large study populations and necessitates considerable human and financial resources.  

The use of surrogate markers to measure atherosclerosis burden in vivo has become 

wide spread. Imaging modalities have been developed to assess atherosclerosis in vivo in the 

arterial wall and B-mode ultrasonographic imaging of the carotid arterial walls occupies a 

unique position in atherosclerosis research
3,4

. This method enables sensitive, reproducible and 

non-invasive assessment of intima–media thickness (IMT) as a continuous variable. 

Epidemiological and clinical trial evidence as well as digitization and standardization have 

made carotid IMT a validated and accepted marker for generalized atherosclerosis burden and 

vascular disease risk
5,6,7

.  

Clinically, the IMT is usually measured by using ultrasound imaging. Longitudinal B-

Mode projections of the artery are acquired and sonographers manually measure the IMT value 

by placing two markers on the distal wall, one in correspondence of the lumen-intima (LI) and 



 4 

another in correspondence of the media-adventitia (MA) transitions; the IMT value is then 

computed as the Euclidean distance between the two markers
8,9,10

.  

The potentialities and diagnostic applications of multi-detector row CT angiography 

(MDCTA) have widely improved because of their high spatial and temporal resolution, the use 

of fast contrast material injection rates and post-processing tools. Besides stenosis degree, 

MDCTA clearly depicts carotid arterial wall thickness (CAWT) as recently demonstrated by 

Saba et al
11,12,13

. 

The purpose of this study was to compare semi-automated and automated algorithms for 

the analysis of CAWT and IMT.  

 

MATERIALS AND METHODS 

Demographic data. We retrospectively studied 20 patients, (13 males, 7 females; 

average age 66 years; age range 59–79 years) that underwent both MDCTA and Colour 

Doppler ultrasound  (CD-US).  MDCTA was performed every time a previous Colour Doppler 

ultrasound (CD-US) examination had evidenced a stenosis > 50% (according to NASCET 

criteria) and/or a plaque alteration (irregular plaque surface, ulcerated plaque). MDCTA was 

also performed when CD-US provided insufficient information about stenosis degree and 

plaque morphology, i.e., in those patients with difficult necks (obese subjects, edema), large 

calcified plaques with acoustic shadowing or high carotid bifurcation. 

 Exclusion criteria for the study consisted of contraindications to iodinated contrast 

media, such as a known allergy to iodinated contrast materials or elevated renal function tests. 

Since imaging undertaken was not additional to that performed routinely in this group of 

patients, it is the policy of our divisional research committee that specific ethical approval did 
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not need to be obtained. Patients belonging to the study group were, however, asked to sign a 

written consent to perform MDCTA and CD-US. The department committee approved the 

study. Part of this study population was already used for other papers [Blinded for Peer 

Review]. 

 

CD-US technique. Colour duplex ultrasound scanning was performed by using a 

previously described technique [Blinded for peer review] with a US machine (Esaote 

MyLab™ 70, Milan, Italy) with a 10 MHz linear-array transducer. The carotid arteries were 

scanned, and tape recordings of vessel walls were recorded. No specific rules concerning gain 

controls settings were imposed to the sonographer, who was allowed to regulate gain controls 

according to their experience. We considered a blood flow velocity > 1.2 m/s as defining a 

NASCET stenosis with 50% lumen diameter reduction. The subject’s head was tilted to get to 

the CCA just proximal to the bulb placed horizontally across the screen. 

 

MDCTA technique. All patients underwent MDCTA of the supra-aortic vessels by 

using a previously described technique [Blinded for peer review] using a 16-detector row CT 

system (Philips Brilliance, Rotterdam, Netherlands). A basal scan was performed and was 

followed by the angiographic phase in which 80 mL of contrast medium (Iomeron 400; Bracco, 

Milan, Italy) were injected into a cubital vein, using a power injector at a flow rate of 5 mL/s 

and an 18-gauge intravenous catheter. A bolus tracking technique was used to calculate the 

correct timing of the scan. Dynamic monitoring scanning began 6 seconds after the beginning 

of the intravenous injection of contrast material. The trigger threshold inside the ROI was set at 

+ 80 HU above the baseline. The delay between the acquisitions of each monitoring scan was 
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one second. When the threshold reached the patient was instructed not to breathe and after an 

interval of four seconds the scan started in the caudo-cranial direction. CT technical parameters 

included: matrix 512x512, field of view (FOV) 14–19 cm; mAs 180–200; kV 120–140; section 

thickness 1 mm, increment 0.5 mm and the window was selected according to previous 

papers
20

. Angiographic acquisition included the carotid siphon. None of the patients included in 

the study had a medical history of cardiac output failure, or any contraindications to iodinated 

contrast media. 

None of the patients included in the study had a medical history of cardiac output 

failure, any contraindications to iodinated contrast media, such as a known allergy to iodinated 

contrast media or elevated renal function tests. 

 

Automated algorithm for the CAWT analysis.  We use Athero-CTview™ for 

computation of the CAWT in CT images. Variational level set method (VLSM) without-re-

initialization
14

 was used in the study for arterial wall segmentation with CT images of carotid 

arteries. The details regarding VLSM can be found in the appendix. Wall thickness measured 

by polyline distance
15

 was calculated for each carotid artery section, defined as the closest 

average distance from the estimated lumen boundary to the outer wall boundary
15

 (Figure 1).  

In this study we explored as anatomical range from 2-3 cm below the bifurcation to 2-3 

cm in the ICA. 

 

Automated algorithm for the IMT analysis. The concept of automated IMT 

measurement based on edge estimation for LI and MA borders using a two stage process was 

first published by Molinari et al
16 

as AtheroEdge™  first published as CAMES (Completely 
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Automated Multi-resolution Edge Snapper). The principal advantages of this system are: (a) 

full automation; (b) border estimation of lumen-intima (LI) and media-intima (MA). The 

AtheroEdge™ architecture consists of two stages: First stage is the recognition phase and 

second phase is the LI and MA boundary estimation and IMT measurement. 

The sequence of steps for stage-I consists of (a) down sampling the original image to half 

its size and (b) reduction of speckle noise; the far and near wall edges of the artery are then 

computed by convolving the image with the first order Gaussian derivative with a priori scale 

(Figure 2).  The scale of the Gaussian kernel is adjusted almost the same size as the wall 

thickness. Finally, the peak detection heuristics is adapted to yield the edge points.  Stage-II of 

the overall system consists of an accurate edge-snapper based on first order absolute moments, 

well discussed in our recent work
17,18

.  The LI and MA border detection in the region of interest 

is based on peak detection driven by Heuristics. The IMT was measured as the polyline 

distance metric
19 

 between the LI and MA border profiles. 

 

Semi-automated (Ground Truth) assessment of CT and Ultrasound.  

ImgTracer™ (Global Biomedical Technologies, Inc., California, USA) is a user-friendly 

interactive software system that was used for two purposes: (a) for tracing LI and MA borders 

and then computing the IMT in Ultrasound images; (b) tracing of carotid lumen and outer wall 

borders and computing the wall thickness (CAWT) in CT images. On invoking the 

ImageTracer™ software system, the user is prompted to select MR/CT package or Ultrasound 

package for ground truth tracing and semi-automated quantification. The tracing tool concept 

and foundation is same for Ultrasound and MR/CT, except for few differences: (a) In 

Ultrasound, the borders for LI/MA is traced without closing the borders (first and last point on 
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the curve), while the borders for the CT lumen/outer wall are automatically closed as soon as 

the last point is traced.  The process of tracing has same foundation leading to CAWT in CT 

and IMT in ultrasound. With the click of the button, the physician can “load” the ultrasound 

DICOM or CT DICOM image in ImgTracer™ system.  The user can automatically adjust the 

window/level of the image for the superior visualization of the atherosclerotic walls in 

CT/Ultrasound images.  With the comfort of the “zoom” button, the physician can zoom the 

CT/Ultrasound image region where the ground truth borders need to be traced. This allows the 

physician or sonographer to trace the lumen-intima (LI) and media-adventita (MA) interfaces 

with the help of the “trace” button in ultrasound or lumen/outer wall borders in the CT image. 

The “trace” menu has different options such as selection of left or right carotids, spline-fitted 

smooth borders vs piece-wise polyline borders and closed vs. unclosed borders. In CT package 

of ImgTracer™, the output of the tracing process automatically closes the contours around the 

lumen or outer wall. In case of Ultrasound, the LI/MA borders are never closed. Using the right 

combination protocol, the physician can generate the smooth LI and MA arterial wall borders 

in Ultrasound by clicking few set of points (say 10 to 15) along the whole artery in the selected 

region. A similar process is applied for CT lumen and outer wall in a clock-wise or anti-

clockwise fashion. The physician or sonographer has an option to select manually the IMT 

zone in Ultrasound image which is one to two centimetres from the shoulder of the carotid 

bulb. In the CT image, the radiologist has an option to zoom or unzoom to accurately trace the 

lumen/outer wall borders. The protocol is user friendly and the uses left click mouse to trace 

the LI and MA borders in Ultrasound (lumen/outer wall in CT) and right click to end the 

tracing process for a particular image frame. ImgTracer™ has a general tool that allows the 

physician to save the borders as set of points in a boundary text file or can save the borders on 
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the image as an overlay. This overlay image can be saved in DICOM, JPEG, TIFF or BMP 

formats. The most important feature of ImgTracer™ is the ability to automatically compute the 

IMT values (or CAWT values) once the physician has traced the LI and MA borders or 

lumen/outer wall borders in CT. Standard algorithm earlier published by Suri et al. was adapted 

in IMT/CAWT computation and now used by several groups around the world
33,34 

. The 

ImgTracer™ can allow multiple users to tracer the manual carotid far walls and compare them 

eventually with different colour codes on the image. This is very useful feature to see the 

variability effect of different observers on the same carotid image. Figure 3 shows examples of 

manual tracings by using ImgTracer™. 

 

Statistical analysis. Kolmogorov-Smirnov Z test for the distribution the normality of 

each continuous variable group was calculated. Continuous data were described as the mean 

value ± Standard Deviation (SD). The correlation between groups was calculated by using the 

Pearson rho statistic and the regression scatter plots were calculated. We evaluated inter-

method agreement using a Bland–Altman analysis. A p-value less than 0.05 were considered 

significant. R software (www.r-project.org) was employed for statistical analyses. 

Results 

General Analysis. The summary statistics of the CAWT and IMT measurements are 

provided in the Table 1. In the CT groups the Kolmogorov-Smirnov Z test demonstrated the 

normality of the distribution whereas in the ultrasound groups the the Kolmogorov-Smirnov Z 

test did not show a normal distribution. The Box-and-Whiskers plots are given in Figure 4. 

 

http://www.r-project.org/
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Correlation analysis. The correlation analysis is summarized in the Table 1 whereas 

the scatter-plots are given in Figure 5. All the techniques showed a strong correlation between 

them with the highest values obtained by the association between semi-automated and Ground 

Truth automated US-IMT analysis (Pearson Rho = 0.9 with Confidence Interval from 0.82 to 

0.95 and a p value of 0.0001). The lowest value was obtained by the association between 

Ground Truth IMT and semi-automated CT-CAWT analysis (Pearson Rho = 0.44 whit 

Confidence Interval from 0.15 to 0.66 and a p value of 0.0047). 

 

Bland Altman analysis. We evaluated the performance of the semi-automated and 

automated algorithms in the quantification of CAWT and IMT by using also the Bland-Altman 

statistics and the results are give in the Figure 6. The better results were obtained by comparing 

the semi-automated and  automated algorithm for the study of IMT with an interval from -

16.1% to + 43.6% whereas sub-optimal results where detected between automated algorithm 

for the study of CAWT versus automated algorithm for the study of IMT with an interval from 

-16.1% to + 43.6%. 

DISCUSSION 

In the last years, several papers have demonstrated that the thickness of the carotid wall, 

measured by using the ultrasound (the analysis of IMT) or by using the Computed Tomography 

(the analysis of CAWT) is associated to an increase of cerebrovascular risk, as well as to 

several metabolic and neurological pathologies
6,8,9,10,11,12,13

. Nowadays the assessment of IMT 

represent an important step in the cardiovascular risk analysis because it is considered a reliable 

indicator of cardiovascular and cerebrovascular risk
21

 and the Rotterdam study showed that the 

IMT had an important diagnostic and predictive value for incident myocardial infarction
22

.  
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Recently, much attention has been given to the association between ultrasound 

measurement of the IMT and the Framingham risk scores
24

. Polak et al.
24

 showed that the 

Framingham risk factors accounted only for about 28% of the common and internal carotid 

IMT variability and concluded that the IMT predicting value should be further compared in 

outcome studies. In another study, the same team compared manual IMT measurements from 

ultrasound images to measurements obtained through an automated computer program
25

 and 

demonstrated that the obtained IMT values maintained the same correlation with the 

cardiovascular risks. Thus, they concluded that the computer measurements of the IMT could 

be used in large studies as surrogate for manual measurements.  

This study represents a further step in the analysis of human and computer based 

measurements to be used in large and multi-centre trials. We widened the analysis to comprise 

CT and US based IMT measurements. Several recent publications
26,27,28,29

 have proposed semi-

automated and automated techniques in the analysis on the IMT, but on the best of our 

knowledge no papers were published about automatic and semi-automatic algorithms in the 

CAWT quantification by using CT. The purpose of this study was to compare automated and 

semi-automated algorithms for the analysis of CAWT and IMT. 

By analyzing the IMT and CAWT values we observed that there is a statistically 

significant difference (p = 0.001) between the IMT values (both automated and semi-

automated) and the automated CAWT values whereas no statistically significant difference was 

present between the IMT automated and semi-automated techniques. This data should not 

surprise because it reflects that the IMT technique algorithm are nowadays extremely advanced 

because these were extensively analysed in the last ten years. The algorithms for the study of 

CAWT are new and should be tested to refine their potentialities. The mean CAWT value 
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obtained with the semi-automatic algorithm was 1.01 mm that is markedly lower compared to 

the automated CAWT values and IMT values (automated and semi-automated). This was an 

unexpected results because in previous papers it was reported that the CAWT value is bigger 

that the IMT
12

 and should be tested in further publications.  

The correlation analysis demonstrated the techniques showed a strong correlation 

between all the algorithms with the highest value obtained by the association between semi-

automated and automated Ultrasound-IMT analysis (Pearson Rho = 0.9 whit Confidence 

Interval from 0.82 to 0.95 and a p value of 0.0001). The lowest value was obtained by the 

association between semi-automated Ultrasound-IMT and automated CT-CAWT analysis 

(Pearson Rho = 0.44 whit Confidence Interval from 0.15 to 0.66 and a p value of 0.0047). 

In the Bland-Altman analysis the better results were obtained by comparing the semi-

automated and  automated algorithm for the study of IMT with an interval from -16.1% to + 

43.6% whereas sub-optimal results where detected between automated algorithm for the study 

of CAWT versus automated algorithm for the study of IMT with an interval from -16.1% to + 

43.6%. The IMT algorithms show very good results whereas the CAWT algorithms show sub-

optimal results.  

In this study there is a limitation: this is a retrospective analysis. Further to this point, 

we used the same techniques, hardware, operators and data standardization and so the 

variability in the retrospective analysis should have been reduced but these results should be 

further tested in a prospective study.  

 

CONCLUSION 
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In conclusion, the algorithms for the automated and semi-automated study of carotid 

artery wall are becoming a reality that in the future can be implemented in the clinical daily 

activity. The results of this preliminary study demonstrated that the CAWT and IMT can be 

studied with this kind of software although the CT analysis need to be further improved. 
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Appendix 

The evolution equation of the traditional level set formulation can be written in the 

following general form
27

, 

0F
t





  


                                                                 (1) 

F is the speed function, which is depended on the imaging data and level set function  . The 

moving front C can be represented by the zero level set as ( ) {( , ) | ( , , ) 0}C t x y t x y  . We 

will limit our problem domain in two-dimension image space.  

For traditional LSM
28

,   is required to be kept close to a signed distance function 

during the evolution, therefore re-initialization is required constantly during the evolution. 

However the re-initialization procedure can be very complicated and time consuming, and have 

great side effects. In order to overcome those difficulties, the evolution equation 1 is redefined 

as 

0
t

 



 
 

 
                                                                (2) 

21
( ) ( 1) ( ) ( )

2
dxdy g dxdy gH dxdy         

  

                                (3) 

The first term in the right hand side of equation 3 is the measurement of the distance of how 

close a function   is to a signed distance function, this term will eliminate the re-initialization 

of   during level set evolution, and µ>0, controlling the weight of the penalty term. The 

second and third terms in the right hand side of equation 3 are the energy terms which will 

drive the motion of the zero level curve of   to the desired boundaries.  >0 and   is a 

constant,  is a univariate Dirac function, H is the Heaviside function, g is the edge indicator 

function defined as: 
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2

1

1
g

G I


  

                                                                   (4) 

G is the Gaussian kernel with given  , I  is the given image matrix.  

Finally, equation 3 can be solved as:  

               [ ( )] ( ) ( ) ( )div div g g
t

  
      

 

  
    

  
                             (5) 

Equation 5 can now be easily implemented by simple finite difference scheme. The 

proposed VLSM was implemented in Matlab (MathWorks, Natick, MA). The segmentation 

procedure was done on a slice-by-slice basis as follows: (1) initializing boundary inside lumen 

by a region growing method with a manually selected point inside the lumen. (2) The initial 

boundary evolved according to Equation 5, and stop at the luminal boundary. Usually the 

iteration is chosen to be 100 to ensure the initial boundary will evolve towards luminal 

boundary as close as possible. (3)The segmented lumen boundary grows outward by 2 pixels 

for the initialization of outer wall boundary segmentation. (4)  Based on step 3, the newly 

initialized boundary will evolve similar as in step 2 according to Equation 5. Due to poor 

contrast between outer wall and surrounding tissues, usually 20 iteration steps were chosen in 

order to avoid over-estimation. 
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Tables 

Table 1 : summary statistics table  

  

Mean Variance SD SEM Median 95% CI Minimum Maximum 5 - 95% 
Percentile 

Normal Distr.   
K-S Z-test 

Automated US IMT 1,628 0,4928 0,702 0,111 1,543 1,266 - 1,667 0,639 4,225 0,780 - 2,860 0,001* 

Ground Truth US IMT 1,403 0,3188 0,5647 0,0893 1,237 1,093 - 1,515 0,703 3,086 0,742 - 2,715 0,001* 

Semi-Automated CT CAWT 1,547 0,085 0,2915 0,0461 1,532 1,396 - 1,661 0,983 2,299 1,049 - 1,944 0,778 

Ground Truth CT CAWT 1,01 0,1071 0,3272 0,0517 0,949 0,822 - 1,153 0,545 1,814 0,559 - 1,652 0,205 

* = statistically significant p value. 
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Table 2: correlation analysis  

Method Ground Truth CAWT Automated CAWT Ground Truth IMT Automated IMT 

Ground Truth CT CAWT NC 
0,58 (0,33-0,75)                 
p value = 0,0001 

0,61 (0,37 - 0,77)                  
p value = 0,0001 

0,63 (0,39 - 0,78)                  
p value = 0,0001 

Automated CT CAWT 
0,58 (0,33-0,75)                   
p value = 0,0001 

NC 
0,44 (0,15 - 0,66)               
p value = 0,0047  

0,47 (0,18 - 0,68)               
p value = 0,0023 

Ground Truth US IMT 
0,61 (0,37 - 0,77)                 
p value = 0,0001 

0,44 (0,15 - 0,66)               
p value = 0,0047  

NC 
0,9 (0,82 - 0,95)               
p value = 0,0001 

Automated US IMT 
0,63 (0,39 - 0,78)                 
p value = 0,0001 

0,47 (0,18 - 0,68)               
p value = 0,0023 

0,9 (0,82 - 0,95)               
p value = 0,0001 

NC 

Between parentesis 95% Confidence interval       
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Fig 1.  MDCTA axial image original slice (a) and after manual and automated detection (b). White arrows indicate the 
internal carotid artery. In panel b are visible the detected boundaries using Athero-CTview™ (blue) superimposed with 
manual tracing using ImgTracer ™ (red). The tracked lumen and outer wall boundaries are well close to the manual 
tracing.   
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Fig 2.  Far adventitia (ADF) profile computation using AtheroEdge™: Original cropped image. B) Down sampled 
image. C) Despeckled image. D) Image after convolution with first-order Gaussian derivative (sigma = 8). If we take the 
intensity profile of the column (shown as white dotted line), one can obtain values equal to 255 that corresponds to arterial 
wall. E) Intensity profile of the column indicated by the vertical dashed line in panel C. (ADF indicates the position of the far 
adventitia wall). F) Final ADF profile. 
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Fig 3. Manual delineation of the lumen-intima and media-adventitia interfaces by ImgTracer™ for Ultrasound and CT 
images. Top row: manual tracings of the lumen-intima (indicated by the arrows) and of the media-adventitia interfaces in 

two B-Mode ultrasound images. Bottom row: manual tracings in CT images. The manual delineation process is shown left 
to right: from the original image, first the lumen-intima profile is traced, then the media-adventitia. The rightmost panel 

shows the two profiles overlaid to the original CT image. 
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Fig 4. Box-and-Whisker plots of the IMT measurements. From left to right: automated IMT measurement by US; automated 
IMT measurement by CT; semi-automated IMT measurement by US, and semi-automated IMT measurement by CT. Each 
plot shows the median value, along with the first and third quartiles. The vertical error bars represent the 95% confidence 

interval. Each The black dots represent the outliers. 
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Fig 5.  Scatter-plot analysis of the IMT measurements. The left column is relative to the automated US measurements 
(vertical axis) vs. automated CT (top), semi-automated CT (middle), and semi-automated US (bottom). The right column is 

relative to the automated CT measurements (vertical axis) vs. semi-automated CT (top) and vs. semi-automated US 
(middle). The bottom panel of the right column is relative to semi-automated CT vs. semi-automated US (bottom). 
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Fig 6.  Bland Altman plots for the IMT measurements. The left column is relative to the automated US measurements 
(vertical axis) vs. automated CT (top), semi-automated CT (middle), and semi-automated US (bottom). The right column is 

relative to the automated CT measurements (vertical axis) vs. semi-automated CT (top) and vs. semi-automated US 
(middle). The bottom panel of the right column is relative to semi-automated CT vs. semi-automated US (bottom). 

 
 
 
 
 


