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Summary 

Due to their peculiar low density properties, cellular solids are widely used in 

industries and play a very important role in our daily life. Two of the most studied 

celluar solids are honeycombs and foams. With the development of nanotechnology, 

another kind of cellular solids - carbon based materials are drawing more and more 

attentions nowadays, e.g., the carbon nanotube related researches. The other very hot 

research field is the bio-inspired materials. Many efforts have been made by the 

scientists all over the world and a lot of insightful results are obtained. No matter the 

well studied celluar solids or the newly studied natural and artificial materials, what we 

care about them are not only their mechicanl properties but also the multifunctionality 

they may display, in order that they could serve the human being more effectively and 

more conveniently. Therefore, in this thesis we have focused on the multifunctional 

hierarchical cellular solids.     

In the first chapter, by reviewing some recent developments of the cellular solids, 

honeycombs and carbon nanotube networks, we summarized the potential 

multifunctionality they show and thus the significance they may be of for practical 

applications. Based on this simple review, the motivation of this thesis is introduced, 

which is to explore the multifunctionalities of these two kinds of cellular solids more 

widely and deeply.  

In chapter 2, through the effective media model, the thermal and 

thermomechanical performances of the two-dimensional metal honeycombs (with 

relative density less than 0.3), hexagonal, triangular, square and Kagome honeycombs, 

are systematically studied. 

To improve the in-plane stiffness of the regular hexagonal honeycombs, in 

chapters 3 and 4 we proposed the multifunctional hierarchical honeycombs (MHH). 

The MHH is constructed by substituting the cell wall of an original regular honeycomb 

with five different equal mass lattices, hexagonal, triangular, Kagome, re-entrant 

hexagonal and chiral honeycombs, respectivley. Elastic and transport properties of the 

MHH with hexagonal, triangular and Kagome substructures are studied. In-plane 

stiffnesses of the MHH with re-entrant hexagonal and chiral honeycombs are analyzed.  

Chapter 5 involves the cellular solids, super carbon nanotubes (STs). To avoid the 
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diameter shrinkage that the normal STs under uniaxial tension show, a new kind of 

hierarchical fibers with a negative Poisson’s ratio for tougher composites is proposed 

and their equivalent elastic parameters are calculated. Chapter 6 reported an application 

of the hierarchical fibers in bridged crack model. 

Chapter 7 provides conclusions and an outlook for the future work. 

 
 



 

Chapter 1 

1 Introduction 

Two of the most peculiar and attractive cellular solids are honeycombs 

and carbon nanotube networks. In this part, recent developments about 

the multifunctionality of thess two kinds of cellular solids are reviewed, 

which may inspire researchers to exploit the properties of honeycombs 

and carbon nanotube networks more deeply and broadly.  

 

1.1 Introduction 

As one common kind of cellular solids, periodic cellular metals are highly porous 

structures with 20% or less of their interior volume occupied by metals (Evans et al. 

2001; Wadley et al. 2003). They are widely used for the cores of light weight sandwich 

panel structures. And one of the common periodic celluar solids is honeycombs. They 

have closed cell pores and are well suited for thermal protection while also providing 

efficient load support, see Fig. 1.1. For example, the hexagonal honeycomb is widely 

used to enable the design of light weight sandwich panel structures (Bitzer, 1997), for 

creating unidirectional fluid flows (Lu, 1999), for absorbing the energy of impacts 

(Zhang & Ashby, 1992), to impede thermal transport across the faces of sandwich 

panels and for acoustic damping.  

Another kind of cellular solids is carbon nanotube networks. Due to the extreme 

mechanical and thermal properties related to the strong carbon–carbon bonding, and 

the interesting electronic properties related to the quantum confined structure, 

nowadays carbon based materials present an enormous variety of forms, such as 

graphite, diamond, fullerenes, and carbon nanotubes, and play an important role in the 

development of nanotechnology (Coluci et al., 2006 ).  
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Fig 1.1 Examples of the three forms of honeycomb shown as core structures in sandwich panels: (a) 

hexagonal honeycomb, (b) square honeycomb and (c) triangular honeycomb. (Wadley, 2006) 

In this part we aim to review some recent developments about the 

multifunctionality of honeycombs and carbon nanotube networks, which could be 

meaningful in inspiring us to exploit the properties of honeycombs and carbon 

nanotube based materials more deeply and broadly.  
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1.2 Honeycombs  

With respect to their deformation properties under in-plane loads, honeycombs 

can be generally divided into two kinds, the regular honeycombs and the negative 

Poisson’s ratio (NPR) honeycombs. Many review works have been done by the 

researches, in which the mechanical properties, multifunctionality and fabrication 

processes of the cellular metal systems are summarized (Evans et al., 1999, 2001; 

Wadley et al., 2003; Wadley, 2006). In this part, we mainly review the multifunctional 

properties of some of the common regular honeycombs and NPR honeycombs.  

1.2.1 Conventional honeycombs 

In this part, we simply summarize some properties of the regular honeycombs, 

mechanical, thermal and blast wave mitigation properties and the role of hierarchy may 

play on honeycombs.  

Mechanical properties 

Except the low density property, mechanical properties of honeyboms can be said 

to have drawn the first attentions in the theoretical and applied research fields. 

Therefore, they have been most widely and well studied. Gibson and Ashby (1999) 

systematically revealed the in-plane and out-of-plane structural and properties of 

honeycombs. Wang and McDowell (2004) investigated the in-plane stiffness and yield 

strength of different periodic metal honeycombs, and showed that the diamond, 

triangular and Kagome cells have superior in-plane mechanical properties to the 

hexagonal, rectangular and mixed square/triangular cells. Fleck and Qiu (2007) 

analyzed the damage tolerance property of 2D elastic-brittle isotropic honeycombs and 

reported that the Kagome cells have much higher fracture toughness than those of 

hexagonal and triangular cells.  

Thermal properties 

By treating the honeycombs as the core of the compact heat for cooling of 

multi-chip module by forced convection (Fig. 1.2), Lu (1999) and Gu et al. (2001) 
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reported that regular hexagonal metal cells, comparing with triangular and square cells, 

provide the highest level of heat dissipation (Fig 1.3), as comparable to that of 

open-cell metal foams.  

Combining the experimental and numerical methods, Wen et al. (2006) revealed 

that the overall thermal performance of metal honeycomb structures are superior to 

other heat sink media, such as metal foams, lattice-frame materials, 3D Kagome 

structures and woven textile structures. Hyun and Torquato (2002), employing the 

topology optimization technique, showed that the effective conductivity of the regular 

hexagonal honeycomb is nearly approaching the Hashin-Shtrikman upper bounds and 

for the triangular and Kagome honeycombs, both the in-plane effective moduli and 

conductivity are approaching the Hashin-Shtrikman (H-S) upper bounds (Hashin and 

Shtrikman, 1962; Hashin and Shtrikman, 1963). Hayes et al. (2004) studied the 

mechanical and thermal properties of linear cellular alloys with square cells, and 

concluded that mechanical and heat transfer characteristics of the honeycomb materials 

outperformed those of open- and closed-cell metal foams with comparable relative 

density. 

 
Fig. 1.2 Prototypical design of compact heat sink with two-di-mensional metal honeycombs for 

cooling of multi-chip module by forced convection (Gu et al., 2001). 
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Fig. 1.3 Thermal performance index 1I plotted as a function of relative density for triangular, square 

and hexagonal structures.  

Blast wave mitigation 

Another function of honeycombs is blast wave mitigation, i.e., using the sandwich 

panel concepts to disperse the mechanical impulse transmitted into structures thereby 

reducing the pressure applied to a protected structure located behind. A schematic 

illustration of this concept is shown in Fig. 1.4. Numerical and exprimental results 

show that significant performance improvements can be achieved through the use of 

periodical cellular materials (Xue and Hutchinson, 2003; Xue & Hutchinson 2004; 

Fleck and Deshpand, 2004; Qiu et al. 2004 ; Hutchinson & Xue 2005;Wadley, 2006). 

One example of a honeycomb core sandwich panel fabricated from high ductility 

stainless steel subjected to strong air blast shock loadings is shown in Fig. 1.5. The 

comparison between the sandwich panel and the response of solid plate is apparent. 
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Fig. 1.4 Air blast mitigation concept using a sandwich panel and its response to  

blast loading (Wadley, 2006) 
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Fig. 1.5 Measurements of the sandwich panel front and back face deflections as a function ofapplied 

impulse compared with solid plate centre deflections(Wadley, 2006) 

Hierarchical honeycombs 

Low-density cellular materials widely exist in Nature and exhibit fascinating 

mechanical properties in the aspects of strength, stiffness, toughness, etc. One common 

characteristic among them is the hierarchical structures. Inspiring by natural materials, 

many researchers have tried to introduce the concept of hierarchy to improve the 

properties of honeybombs. And the results are appealing. Fratzl and Weinkamer (2007) 

reviewed the basic principles involved in designing hierarchical biological materials, 

such as cellular and composite architectures, adapative growth and as well as 

remodeling, and used wood, bone, tendon, and glass sponges as illustrations. Chen and 

Pugno (2012a) reviewed some well-studied and newly-studied natural materials, and 

summarize their hierarchical structures and mechanisms behind their mechanical 

properties, from animals (nacre, gecko feet, mussel, spider silk, crabs, armadillo and 

turtle shells) to plants (diatoms and plant stem). Introducing the concept of hierarchy 

and surface effects of nanoscale into honeycomb, our group studied the properties of 

the hierarchical honeycomb materials, in which the elasticity, in-plane buckling and 
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bending collapses are analyzed (Pugno and Chen, 2011; Chen and Pugno, 2012b,c). 

Taylor et al. (2011) introduced the functionally graded hierarchical honeycombs by 

performing a set of finite element analyses, and the results suggested that the elastic 

modulus of the functionally graded hierarchical honeycomb can be up to 1.75 times 

that of its equal-mass first-order hexagonal honeycomb if the structure was designed 

properly. Different from Taylor’s work, Ajdari et al. (2012) developed a new 

hierarchical honeycomb structure by replacing every three-edge joint of a regular 

hexagonal lattice with a smaller hexagon, and showed that the elastic moduli of the 

hierarchical honeycombs with one level and two levels can be 2.0 and 3.5 times stiffer 

than their equal-mass regular hexagonal honeycomb, respectively. 

1.2.2 Negative Poisson’s ratio honeycombs 

The Poisson's ratio of a material influences the transmission and reflection of 

stress waves, the decay of stress with distance according to Saint Venant's principle, 

and the distribution of stress around holes and cracks (Lakes, 1993). Negative 

Poisson’s ratio honeycombs may be of use in new kinds of fasteners, due to the lateral 

deformation, and in sandwich panels for aircraft or automobiles, due to the convex 

shapes under bent.  

Since many reviews have been done before, in this section, we only shortly 

summarize some developments about the NPR honeycombs, the re-entrant 

honeycombs and the chiral honeycombs. 

Re-entrant honeycombs 

Macroscopic auxetic cellular structures in the form of 2D re-entrant honeycombs 

were first reaized in 1982 (Fig. 1.6), deforming predominantly by flexure of the ribs of 

the honeycomb cells (Gibson, 1982; Evans et al., 2000). Compared with the 

conventional honeycombs, the re-entrant honeycombs can have increased compressive 

strength and shear stiffness, enhanced indentation resistance (toughness), self-adaptive 

vibration damping and shock absorption etc. For comprehensive reviews, many papers 

can be referred (Lakes, 1993; Evans and Alderson, 2000; Yang et al., 2004; 

Stavroulakis, 2005; Alderson and Alderson, 2007; Scarpa, 2008; Greaves, 2011).  
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(a)                                                                                     

 

(b) 
Fig. 1.6 (a) Polymeric re-entrant honeycomb membrane fabricated by femtosecond laser ablation. 

Pores are approximately 1 mm in width along the horizontal direction (Evans et al., 2000); (b) 

re-entrant honeycomb in the underformed and deformed states (Alderson and Alderson, 2007). 

Chiral honeycombs 

The hexachiral honeycomb (Fig. 1.7a) was first analyzed by Prall and Lakes 

(1996), it is isotropic in-plane and maintains a Possion’s ratio -1 over a significant 

range of strain. Then other kinds of chiral honeycombs are also introduced (Figs. 

1.7b-e). Chiral cellular solids could provide significant advantages over conventional 

hexagonal honeycombs, the compressive and shear strengths are partially decoupled 

between the cylinders and the ligaments and both the off axis deformations and the 

electromagnetic functionality of the honeycomb is tuneable through variation of 

honeycomb geometry (Lorato et al., 2010). 
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Fig. 1.7 Cell geometries for the auxetic chiral, anti-chiral, and conventional centre-symmetric and 

hexagonal structures: (a) hexachiral, (b) tetrachiral, (c) trichiral, (d) antitetra chiral, and (e) anti tri 

chiral(Lorato et al., 2010). 

In the aspect of mechanical properties, through numerical and finite element 

methods, Spadoni et al. (2005) and Scarpa et al. (2007) analyzed the bulking behavior 

of the hexagonal chiral honeycombs. Miller et al. (2010) did the flatwise buckling 

optimization of hexachiral and tetrachiral honeycombs and implied that the ligaments 

act as mixed stiffeners-elastic foundations during flatwise compressive loading, 

providing different buckling mode shapes for them during deformations. Lorato et al. 

(2010) revealed the transverse elastic properties of chiral honeycombs shown in Fig. 

1.7 and showed that the chiral honeycombs have two distinct upper and lower bounds 

for the different connectivities, while regular hexagonal honeycombs have coincident 

bounds. Spadoni and Ruzzene (2012) proved the elasto-static micropolar behavior of 

the chiral auxetic lattice. 

In the aspect of multifunctionality, many attractive results are obtained. 

Combining numerical and experimental methods, Spadoni et al. (2006) investigated the 

dynamic behavior of a truss-core beam composed of a hexagonal chiral-honeycomb 
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core and constraining layers. Results showed that at specific excitation frequencies the 

resonance of the presented truss-core beam produces localized deformations far from 

the excitation region, which suggested using the hexagonal chiral honeycombs for the 

design of innovative lifting bodies, such as helicopter rotor blades or airplane wings. 

Then, they introduced the chiral truss-core airfoils and studied their static compliance 

properties. Numerical and experimental results confirmed the ability of chiral-core 

airfoils to sustain large deflections while not exceeding yield strain limits (Spadoni and 

Ruzzene, 2007a, b). After that, they developed a manufacturing process for composite 

chiral structures for morphing airfoils (Bettini et al., 2009). They also studied the 

phononic properties of hexagonal chiral honeycombs and suggest these cellular lattices 

as potential building blocks for the design of meta-materials of interest for acoustic 

wave-guiding applications (Spadoni et al., 2009). Kopyt et al. (2010) investigated the 

electromagnetic properties of mechanically chiral honeycomb structures and showed 

that higher order harmonics due to structure periodicity are attenuated away from the 

panel surface at frequencies up to several GHz, which covers a number of popular ISM 

bands, and demonstrated that the structural chirality does not translate into chiral 

electromagnetic behaviour. 

1.3 Carbon nanotube networks 

In the last few years, due to their special mechanical and electronical properties, 

hierarchical covalent 2D and 3D networks based on 1D nanostructures have attracted 

much research attention. One relevant example is carbon nanotube (CNT) networks, in 

which carbon nanotubes are covalently connected through different nanojunctions such 

as X-, Y-, T-shape (Terrones et al., 2002; Romo-Herrera et al. 2007; Dimitrakakis et al., 

2008; Li et al., 2009a, b; Zsoldos, 2011) and the fractal ways (Yin et al., 2008; 2010). 

In this section, recent developments about the multifunctional 2D and 3D carbon 

nanotube networks are simply reviewed. 

1.3.1 Super carbon nanotubes 

One of the most attractive 2D and 3D carbon nanotube networks is the super 

carbon nanotubes (STs) (Fig. 1.8). The concept of the self-similar hierarchical super 
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carbon nanotubes (STs) is first proposed by Coluci et al. (2006). These structures are 

built from carbon nanotubes connected by Y-junctions forming a super-graphene that is 

then rolled to form a carbon ST. Such a procedure can be repeated several times, 

generating a hierarchical macroscopic tube. Through tight binding total energy and 

density of states calculations, Coluci et al. (2006) showed that these super-tubes can 

present either metallic or semiconducting behaviour, be prototypes for 

electromechanical actuators, and serve as hosts for large biomolecules. Li et al. (2008a) 

showed that the STs could be used to design the new generation of mass and strain 

sensors due to its high sensitivity and ultra-low density. 

 

Fig. 1.8 Generation of STs (Pugno, 2006). A nanotube (ST(0)) is considered as the fundamental unit 

(a); an ST(1) is generated by substituting the carbon bonds by entire nanotubes (see the schematic view 

on the right) (b); thus an ST(2) will present ST(1) bonds (c), and an ST(3) will present ST(2) bonds (d), 

and so on. After N iterations the hierarchical ST(N) is generated. 

With respect to the mechanical proeperties, through the fractal method, Pugno 

(2006) evaluated the strength, toughness and stiffness of the STs-reinforced composites 

and revealed that the optimized number of hierarchical levels is 2, similar to the 

optimization done by Nature in nacre (Zhang et al., 2011) and in other biological or 

bio-inspired materials (Wang and Boyce, 2010). In addition, different numerical 

methods have been exploited, such as the continuum (Wang et al., 2007a, b), molecular 

dynamics (Coluci et al., 2007; Qin et al., 2008) and molecular structure mechanics (Li 

et al., 2008a, b) methods. These numerical simulations generally show that the moduli 



Chapter 1                                                          13 

of the STs were almost independent of the chirality of the ST, slightly affected by its 

arm tube chirality and determined mainly by the arm tube aspect ratio (Li et al., 2008c), 

and that with the increase of the hierarchical level the stiffness and modulus of the STs 

reduced significantly.  

1.3.2 Other 2D and 3D carbon nanotube networks 

 
Fig. 1.9 Illustration of four different 2D or 3D CNT networks based on 1D nanostructures (CNTs) 

(Romo-Herrera et al., 2007). (a) 2D super square built by ‘X’ junction, (b) 2D super hexagon built by 
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‘Y’ junction, (c) 3D super cubic built by 4-terminal junction with cubic network node and (d) 3D 

super diamond built by 4-terminal junction with tetrahedral architecture. 

Except the hierarchical STs, there are also many other kinds of 2D and 3D carbon 

nanotube networks. Romo-Herrera et al. (2007) experimently created 2D super square, 

hexagonal and 3D super cubic, diamond carbon nanotube networks (Fig. 1.9). They 

found that the mechanical and electronic characteristics of these ordered networks 

based on carbon nanotubes are dominated by their specific super-architecture. And they 

showed that charges follow specific paths through the nodes of the multi-terminal 

systems, which could result in complex integrated nanoelectronic circuits.  

With respect to the mechanical properties, using the shell model of the finite 

element method Wang et al. (2007) analyzed the super hexagonal CNT networks and 

showed that they have great flexibility and outstanding capability in force transferring 

and the network configuration increases the ductility of the nanomaterials. Through the 

molecular structural mechanics method, li et al. (2009a; 2010) studied the tensile 

deformation mechanism and elastic bulking of the super square and hexagonal CNT 

networks. They showed that under uniaxial tensile loading in the principle direction, 

the super square could be regarded as a stretching-dominated network, while the super 

hexagon as a bending-dominated network. On the aspect of bulking, the super square 

and hexagonal CNT networks are more stable structures than the graphene structures 

with less carbon atoms. Through the same method Liu et al. (2009) explored the 

deformation and failure modes of the super square and hexagonal CNT networks, 

involving rotation, bending and stretching of the CNT arms. 

With respect to the multifunctionality, Menon and Srivastava (1997) proposed the 

CNT “T Junctions” and suggested their potential applications in nanoscale 

metal-semiconductor-metal contact devices. By exerting chemically induced capillary 

forces upon the nanotubes Correa-Duarte et al. (2004) fabricated the multiwalled 

carbon nanotubes (MWCNTs) based thin film networks, which are in principle ideal 

candidates for scaffolds/matrices in tissue engineering. Day et al. (2005) proposed the 

use of single-walled carbon nanotube (SWNT) networks as templates for the 

electrodeposition of metal (Ag and Pt) nanostructures. Meng et al. (2009) suggested 

using carbon nanotube networks to synthesize nanocomposites with enhanced 

thermoelectric properties. Besides, using the quantized molecular structural mechanics 

method, Li et al. (2009b) predicted the thermal properties of the super square and 
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hexagonal CNT networks and revealed their potential applications in fabricating 

excellent loudspeakers. 

1.4 Conclusions 

In this part, recent developments about the multifunctionality of honeycombs and 

carbon nanotube networks are reviewed. With respect to different deformation 

mechanism, honeycombs are divided into two kinds, the conventional honeycombs and 

the negative Possion’s ratio honeycombs. The mechanical properties and different 

multifunctional potential applications on these two kinds of honeycombs are 

summarized. At the same time, the multifunctional applications of different 2D and 3D 

carbon nanotube networks, such as STs, super square and hexagonal CNT networks 

etc., are also simply reviewed. 

The following chapters of this thesis will involve more multifunctional 

applications of these two kinds of common cellular solids. 
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Chapter 2 

2 Optimized design of the two-dimensional 

metal honeycombs 

In this chapter, through the effective media model, the thermal and 

thermomechanical performances of the two-dimensional metal 

honeycombs (with relative density less than 0.3), hexagonal, triangular, 

square and Kagome honeycombs, are systematically studied. Dry air 

and water are chosen as the cooling media, respectively. Results show 

that the heat transfer properties of the hexagonal, triangular, square 

honeycombs are independent of the input velocity of the forced 

convection but it has great influence to Kagome honeycombs. With 

respect to the overall thermal performance, regular hexagonal 

honeycombs are found to provide the highest level of heat dissipation. 

About the thermomechanical performance, i.e., when combined heat 

dissipation and structural load capacity are considered, the optimized 

structural morphology is related to the cooling media used. When dry 

air is chosen as the cooling fluid, for heat sinks with relatively thin 

cellular cores, the thermomechanical performance of triangular 

honeycombs outperforms those of hexagonal, square and Kagome 

honeycombs; for high heat flux scenarios, however, Kagome 

honeycombs are the best. When water is chosen as the cooling fluid, the 

thermomechanical performance of Kagome honeycombs generally 

outperforms those of the other three kinds of honeycombs greatly.   
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2.1 Introduction 

As a kind of peculiar lightweight materials, the two-dimensional metal 

honeycombs have attracted much attention in the past years (Huang and Gibson, 1994; 

Masters and Evans, 1996; Gibson and Ashby, 1997; Wang and McDowell, 2004; Fleck 

and Qiu 2007). According to different requirments, in engineering structures there are 

mainly two arrangements for them. One is the core of sandwich panels, where the cell 

axis is perpendicular to the panel skins (Wilson, 1990; Bitzer, 1994; Thompson and 

Matthews, 1995; Price et al., 2001); the other one is the heat sink, where the cell axis is 

parallel to the panel skins (Lu, 1999; Gu et al. 2001; Wen et al., 2006). For the former 

one the structural load capacity, i.e., the high stiffness/strength at minimum weight, is 

essential; for the latter one, the combined heat dissipation and structural load capacity, 

i.e., the multifunctionalities, are predominated. 

To investigate the multifunctionalities of the two-dimensional metal honeycombs, 

many methods have been exploited. Through the topology optimization technique 

Hyun and Torquato (2002) revealed that for the regular hexagonal honeycomb the 

effective conductivity is nearly approaching the Hashin-Shtrikman upper bounds and 

for the triangular and Kagome honeycombs both the in-plane effective moduli and 

conductivity are approaching the Hashin-Shtrikman (H-S) upper bounds (Hashin and 

Shtrikman, 1962; Hashin and Shtrikman, 1963). Through the experimental and 

numerical methods, Wen et al. (2006) revealed that the overall thermal performance of 

metal honeycomb structures are superior to other heat sink media, such as metal foams, 

lattice-frame materials, 3D Kagome structures and woven textile structures. In addition, 

Wen et al. (2007) employed the intersection-of-asymptotes method for structural 

optimization of two-dimensional cellular metals cooled by forced convection.  

At the same time, the analytical methods are also developed. Through the 

corrugated wall model Lu (1999) studied the heat transfer efficiency of the hexagonal 

metal honeycombs and showed that the optimal cell morphology is not constant but 

dependent upon the geometry and heat transfer condition of the heat sink as well as the 
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type of convective cooling medium used. Comparing the corrugated wall model and 

the effective media model, Gu et al. (2001) investigated different types of cell shape 

and cell arrangement including regular hexagon, square with connectivity 4 or 3, and 

triangle with connectivity 6 or 4. They concluded that for high heat flux scenarios, 

hexagonal cells outperform triangular and square cells. We have carefully checked their 

results and did not arrive at this conclusion. Besides, using dry air as the cooling fluid, 

through the effective media model Wang et al. (2007) performed the multifunctional 

design of sandwich panels with Kagome-like cores. However, they did not consider the 

influence of the velocity of the input cooling fluid on the combined honeycombs 

(Kagome honeycombs) and also we did not arrive at the results they showed for 

Kagome honeycombs (Figs. 1-9 in their paper).  

In this paper, through the effective media model the heat transfer efficiencies of 

the two-dimensional metal honeycombs (with relative density less than 0.3), hexagonal, 

triangular, square and Kagome honeycombs, are systematically studied. Dry air and 

water are chosen as the cooling fluids to show the effect of cooling media on the 

structural optimization. More systematic and complete conclusions for structural 

optimization of these multifunctional two-dimensional metal honeycombs are given. 

2.2 Physical model 

 

Fig. 2.1 Physical model of the heat sink with different two-dimensional metal cellular cores for 
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cooling by forced convection (Wang et al., 2007)  

The physical model of the heat sink with the core of different two-dimensional 

metal honeycomb cells is shown in Fig. 2.1. The detailed description of this model has 

been done by Gu et al. (2001) and Wang et al. (2007), so here we only simply introduce 

it. Its thickness, width and length are H, W and L, respectively. The honeycomb cells, 

with cell size l, cell wall thickness t and relative density  , are uniformly distributed in 

the core. The bottom ( 0x  ) and top ( x H ) surfaces are the heat sources with the 

high temperature T. The cooling fluid, with velocity 0v  and temperature 0T , is forced 

into the cellular core at the inlet 0z  . The width W is assumed to be much larger than 

the cell size l in order that both the thermal and hydraulic fields are independent of the 

y-coordinate. The steady-state flow and constant thermal/physical properties are 

assumed for both fluid and solid. In addition, the isothermal boundary conditions are 

assumed. And the process-induced geometrical imperfections for the cellular cores are 

neglected.  

2.3 Indexes of the optimized design  

The heat transfer performance of the heat sink is measured by the ratio of the 

overall heat transfer coefficient to the pumping power needed to force the fluid through 

(Gu et al. 2001; Wang et al., 2007) and the non-dimensional index, i.e., the thermal 

performance index, is: 

1I ch p                                                    (2.1) 

in which 0f f sc v k  ( f and f are the kinematic viscosity and density of the 

cooling fluid; sk is the thermal conductivity of the metal), h is the overall heat transfer 

coefficient of the cellular core and p is the pressure drop of the laminar flow. The 

higher the value 1I , the better the heat sink performance. 

Furthermore, since it is important for the heat sink to sustain a defined structural 

load, another non-dimensional index, the thermomechanical index, for the combined 
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heat transfer performance and structural load capacity, is introduced: 

2 1
s s

G G h
I I c

E E p
 

                                                   
(2.2) 

in which G and sE  are the shear modulus of the cellualr core and the Young’s 

modulus of the metal, respectively. The reason why here the non-dimensional shear 

stiffness sG E  is used as a relevant measure of the structural utility is that the cellular 

core shear has a major influence on the minimum weights realized in practice 

(Budiansky, 1999; Gu et al. 2001). 

The calculations of 1I and 2I for all the cellular cores shown in Fig. 2.1, i.e., the 

calculations of the overall heat transfer coefficient h  and the pressure drop p , will 

be discussed in detail below. 

2.4 The overall heat transfer coefficient 

In this section, through the effective media model we calculate the overall heat 

transfer coefficient, h , of the cellular cores given in Fig. 2.1. The effective media 

model is a model involving the volume-average method in which the properties of each 

phase are averaged separately within a representative unit element (i.e., individual cells) 

and correlated with bulk properties of the pure phases (Gu et al. 2001). The following 

concept in this section is translated from the paper of Wang et al. (2007) which is 

written in Chinese. 

Let xk be the effective thermal conductivity in the x-direction of the heat sink and 

Ah be the heat source coefficient, where A and h stand for the surface area density and 

local heat transfer coefficient for each cell shape. And the nominal temperature of the 

fluid in cross section z is defined as  fT z . After reaching the steady-state, the 

governing equations and boundary conditions of the structural temperature,  ,x z , can 

be expressed as: 
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in which the heat loss at the heat sink surfaces has been neglected and it has been 

assumed that x z      (i.e., most of the heat flux through the solid is normal to 

the fluid flow). Defining 2
x A xm h k , from Eq. (2.3) we can get  
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The heat transfers on the bottom and up surfaces of the heat sink are  
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(2.5) 

Then the total heat flowing into the heat sink is  

 1 2 1 2 fQ q q l l T z   

                                              

(2.6) 

in which  1 2 tanh 2x x xl k m W m H T and  2 1 2 tanh 2x x xl l T k m W m H    . From 

the local energy balance, we get 

     1 21 f
p f f f

dT z
c v HW Q l l T z

dz
                                    (2.7) 

where pc , f and fv are the heat capacity, density and average velocity (over the length 

L) of fluid. Solving Eq. (2.7) gives 

     0 expfT z T T T l z  

                                           

(2.8) 

in which  2 1p f fl l c v HW      . Then, the averaged fluid temperature (over the 

length L), fT , and the outlet temperature (at z L ), ,f outT , can be expressed as 

  0

0
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f f

T T
T T z z T l L

L l L





     

                               

(2.9)
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 , 0( ) exp( )f out fT T L T T l L T                                         (2.10) 

Subsequently, the overall heat balance implies that 

     , 02 1f p f f f outh T T WL c v HW T T     

                           

(2.11) 

Finally, combining Eqs. (2.8) to (2.11), the overall heat transfer coefficient, h , is 

obtained 

 2 tanh 2
2 x x x

l
h k m m H

W
  

                                        
(2.12) 

2.5 Pressure drop and other related effective 

coefficients  

2.5.1 The traditional honeycombs 

In this section, we talk about the pressure drop and other related effective 

coefficients for the heat sink with the core of hexagonal, square and triangular cells.   

For laminar flow, the pressure drop, i.e., the pumping power needed to force the 

cooling fluid through the heat sink, is (Gu et al. 2001) 

 
 

2

022

Re

8 1

a
f f

f c
p L v

l
 


 


                                            (2.13) 

in which f is the kinematic viscosity of the fluid; the frictional coefficient 

Re =13.3,f 14.17, 15.07 and 6.93,ac  4.0, 2.31 for triangular, square and hexagonal 

cells, respectively. 

The heat source coefficient, Ah , reflecting the heat change capacity between the 

cooling fluid and the cellular core, is expressed as (Gu et al. 2001) 
2

24
a f

A

c Nuk
h

l
                                                       (2.14) 

where fk is the thermal conductivity of the cooling fluid and the Nusselt number
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3.0,Nu  3.614, 4.021 for triangular, square and hexagonal cells, respectively. In 

addition, the effective thermal conductivities, xk , in the x-direction of the heat sink for 

the triangular, square and hexagonal cores are the same 

0.5x sk k                                                        (2.15) 

Besides, the in-plane shear moduli for the triangular, square and hexagonal cells are 

12 0.125 sG E , 3
12 0.0625 sG E , 3

12 0.375 sG E                        (2.16) 

respectively.  

Combining Eqs. (2.12-2.16) with Eqs. (2.1-2.2), we can obtain the optimized 

design indexes, 1I and 2I , for the two-dimensional triangular, square and hexagonal 

metal honeycombs. 

2.5.2 Kagome honeycombs 

In this section, we talk about the pressure drop and other related effective 

coefficients for the heat sink with the core of Kagome honeycombs. Kagome 

honeycombs are a kind of combined honeycombs which contain multi-geometry 

honeycomb cells in parallel. The effective pressure drop and heat source coefficient for 

the heat sink with combined honeycombs, under fully developed laminar flow, have 

been studied by Shah and London (1978; 1980). Blow we firstly introduce the effective 

pressure drop and heat source coefficient for the heat sink with the core of general 

combined honeycombs and then consider those related to the specific Kagome 

honeycombs. 

Effective pressure drop for the general combined honeycombs 

Supposing there are m honeycombs cells in the heat sink core having n different 

shaped honeycombs in parallel and the total number of the ith shaped honeybombs is

iN , we have  

1 2 i nN N N N m                                               (2.17) 

Supposing the fluid properties are constant and the same for all honeycomb cells and 
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neglecting the pressure losses at the inlet and outlet, the effective pressure drop can be 

determined as follow. 

Under fully developed laminar flow, the pressure drop for any one of the ith 

shaped honeybombs is 

 
2
,

Re
2 i

f i
i h i

f
p L V

A D
                                                  (2.18) 

Defining  Re
e

f , eP , V , A , hD as the effective frictional coeffiecient, total wetted 

perimeter, total fluid flow rate, total flow cross section area and effective hydraulic 

diameter, respectively, then, for the m-cell combined honeycombs core  
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in which
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Substituting Eqs. (2.18) and (2.19) into Eq. (2.21) and rearranging it gives  
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n
h i i i

i he i

D N A

f f D A

       
  

                                    (2.22) 

Then, equating Eqs. (2.18) and (2.19) yields the flow distribution for each honeycomb 

cell  
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                                            (2.23)  

which will be used below for calculation of the effective heat source
 

coefficient. 

Finally, substituting Eq. (2.22) into Eq. (2.19) results in the effective pressure drop 
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(2.24) 

Effective heat source coefficient for the general combined honeycombs 

Defining eNu as the effective Nusselt number of the combined honeycombs core 

under isothermal boundary conditions, the effective heat source coefficient can be 

expressed as  

  e f
A Ae

h

Nu k
h

D
                                                    (2.25) 

in which A is the effective surface area density of the combined honeycomb cells.

eNu can be calculated through the Shah and London’s method (Shah and London, 

1978). For the ith shaped honeycombs, the number of heat transfer units, ,tu iN , and the 

heat transfer effectiveness, i , are given by 
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4 f i
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p p f f i h ii
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                                (2.26) 

 ,1 expi tu iN                                               (2.27) 

,f iv is the averaged fluid velocity in the ith shaped honeycombs and can be derived 

from Eq. (2.23) 
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From energy balance, the averaged heat transfer effectiveness, ave , and the averaged 

number of heat transfer units, ,tu eN , can be obtained 
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Then, referring to Eq. (2.26) gives 
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                                            (2.31) 

Finally, substituting Eq. (2.31) into Eq. (2.25) produces the effective heat source 

coefficient,  A e
h , for the general combined honeycombs. 

The related coefficients for Kagome honeycombs 

Since Kagome honeycombs is a kind of combined honeycombs, the effective 

pressure drop and heat source coefficient for Kagome honeycombs core can be 

obtained by substituting the specific parameters of Kagome honeycombs into the above 

equations for the general combined honeycombs. 

A standard Kagome cell is constituted by 4 regular triangular cells and two regular 

hexagonal cells. The relative density,  , and the effective surface area density, A , of 

the Kagome honeycombs are 

2

3
t t

l l
    

 
                                                    (2.32) 

4 3 4A l                                                      (2.33) 

respectively. According to the heat balance in the x-direction, the effective thermal 

conductivity, xk , is given by (Wang et al., 2007) 
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And the flow cross section area ratios for triangular and hexagonal cells are 

 

 

2

2

4 3 4 1
1 4 1

2 3 2

2 1 4 1
3 1 4 1

2 3 2

T

H

A

A

A

A

 

 

  
           


 
          

                                 

(2.35) 

in which the subscript “T” stands for Triangle and “H” stands for Hexagon. The 
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effective hydraulic diameter of the Kagome honeycombs is  
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                                  (2.36) 

The hydraulic diameters of the triangular and hexagonal cells in the Kagome cell are  
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(2.37)

 The in-plane

 

stiffness of the Kagome honeycombs is

 

12 0.125 sG E                                                     (2.38) 

After the properties of the cooling fluid are given, substituting the above 

parameters into the equations for the general combined honeycombs, we can obtain the 

optimized design indexes, 1I and 2I , for the two-dimensional Kagome metal 

honeycombs. 

2.6 Optimized design 

In the section, we use some examples to perform the optimized design of the 

multifunctional two-dimensional metal honeycombs-hexagonal, triangular, square and 

Kagome honeycombs. The solid metal and the cooling fluids are chosen to be 

aluminum, the dry air (at 300 K) and water (at 293 K), respectively. The related 

parameters are 200 W m  Ksk  , 1 mml  , 100L l , 0.01 0.3   . For the dry air 

0.026 W m  Kfk  , =1004.9 J kg Kpc , 31.177 kg mf  , 5 21.568 10 m sf
  ; for 

water 0.6 W m  Kfk  , =4183J kg Kpc , 3998.3kg mf  , 6 21.004 10 m sf
  . 

The ratio, H l , of the heat sink size, H, to the cell size, l, is a variable and is chosen to 

discuss the size scale effect of the heat sink. The inlet fluid velocity 0v is also a variable.  
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2.6.1 Heat transfer optimization 

For heat transfer optimization, the thermal performance index 1I ch p   given 

in Eq. (2.1) is used. h can be calculated from Eq. (2.12), p for hexagonal, triangular 

and square honeycombs and for Kagome honeycombs can be obtained from Eqs. (2.19) 

and (2.24), respectively. From Eqs. (2.1), (2.12) and (2.19) it is easy to see that for 

hexagonal, triangular and square honeycombs 1I is independent of 0v . However, for 

Kagome honeycombs 1I is dependent of 0v (See Eqs. (2.1), (2.12) and (2.24)).  

We start by using 20H l  and 0 1v  , 10, 50, 100 m s to the study the effects 

of  on 1I . The results are shown in Fig. 2.2. In Fig. 2.2 and the following figures, 

the red arrow represents that along the arrow direction the four lines for Kagome 

honeycombs correspond to 0 1v  , 10, 50, 100 m s , respectively. From Figs. 2.2a and 

2.2b we can see that for both the cooling media, dry air and water, the thermal 

performance of hexagonal honeycombs outperforms those of the other three kinds. For 

all the four kinds of honeycombs there exists the maximum value of 1I , 1maxI . And the 

thermal performance of Kagome honeycombs increases with the increase of 0v . Using 

air as the cooling media, the thermal performance of Kagome honeycombs is generally 

inferior to that of triangular honeycombs (Fig. 2.2a). However, when using water as the 

cooling media, the thermal performance of Kagome honeycombs generally 

outperforms that of triangular honeycombs (Fig. 2.2b).   
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Fig. 2.2 Thermal performance index 1I  vs  at 20H l  for (a) air; (b) water. (The red arrow 

here and in the following figures, represents that along the arrow direction the four lines for Kagome 

honeycombs correspond to 0 1v  , 10, 50, 100 m s , respectively.) 

Defining the relative density corresponds to 1maxI as the optimum relative density,

opt , then different H l will correspond to different 1maxI and opt . Here we use 

1 200H l   as examples to observe the trends of 1maxI and opt with the increase of

H l . The results are reported in Figs. 2.3 and 2.4. From Figs. 2.3a and 2.3b we can see 

that with the increase of H l , the thermal performance of hexagonal honeycombs still 

generally outperforms those of the other three kinds of honeycombs. One interesting 

phenomenon is that size scale effects exist for the four honeycombs, i.e., when H l

reaches a certain value, 1maxI will be a constant. That is to say, after a certain value of 

 
Fig. 2.3 Maximum thermal performance index 1maxI vs H l for (a) air; (b) water. 

H l , increasing H l (the heat sink size) will not increase the thermal performance of 

these honeycombs. Figs. 2.4a and 2.4b shows that at first the optimum relative density 

opt increases with the increase of H l , but after H l reaches a certain value, opt

will keep a constant. For hexagonal, triangular and Kagome honeycombs, this constant 

is 0.2. For Kagome honeycombs, this constant is larger than 0.2 and decreases with the 

increase of 0v . Comparing Fig. 2.3b with Fig. 2.3a it apparent that, using water as the 

cooling media, the heat sink thickness ( H l ) needed to arrive at 1maxI is much smaller 

than that of the dry air. 
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Fig. 2.4 The optimum relative density opt vs H l for (a) air; (b) water. 

2.6.2 Optimization for combined heat transfer and 

structural load capacity 

 
Fig. 2.5 Thermomechancial performance index 2I  vs  at 20H l   for (a) air; (b) water. 

For optimization of combined heat transfer and structural load capacity, the 

thermomechanical index  2 1s sI G E I c G E h p    given in Eq. (2.2) is used. Still 

we use the parameter 20H l  and 0 1v  , 10, 50, 100 m s  to study the effects of 
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on 2I . The results are given in Fig. 2.5. It is apparent that for all the four kinds of 

honeycombs, 2I increases with the increase of  . Like 1I , for Kagome honeycombs,

2I also increases with the increase of 0v . And the thermomechanical performances of 

Kagome and triangular honeycombs outperform those of the hexagonal and square 

honeycombs. Using air as the cooling media, at relatively low density, Kagome 

honeycombs are better than triangular, square and hexagonal honeycombs; however, at 

relatively high density, triangular honeycombs are better than the other three kinds of 

honeycombs (Fig. 2.5a). Using water as the cooling media, Kagome honeycombs 

generally outperform triangular, square and hexagonal honeycombs. 

 

Fig. 2.6 Maximum thermomechancial performance index 2 maxI vs H l for (a) air; (b) water. 

Since there are no peak values for 2I (Fig. 2.5), similar to the maximum thermal 

performance index 1maxI , the maximum thermomechanical performance index, 2maxI , is 

proposed as follow 

2 1 1max

max opt
s s

G G
I I I

E E


   
    
   

                                                                                (2.39) 

in which opt  is the one corresponding to 1maxI and is implicit in Fig. 2.4. The 

parameters 1 200H l   are used to the see the effects of heat sink size on 2maxI . The 

results are reported in Fig. 2.6. It is evident that the size scale effects also exist for 2maxI , 

i.e., when H l increases to a certain value, the maximum thermomechanical 
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performance 2maxI tends to be a constant.  

 
Fig. 2.7 Maximum thermomechancial performance index 2maxI vs H l by Gu et al. (2001) 

When dry air is used as the cooling media (Fig. 2.6a), we can see that for heat 

sinks with relatively thin cores, triangular honeycombs outperform hexagonal, square 

and Kagome honeycombs. When the ratio, H l , of the heat sink size to cell size is 

large than 40, Kagome honeycombs can greatly outperform the other three kinds of 

honeycombs. And as a whole triangular and Kagome honeycombs greatly outperform 

hexagonal and square honeycombs, which is different from the conclusion of Gu et al. 

(2001). Through the corrugated wall model they showed that for heat sink with thick 

cores, i.e., for high heat flux scenarios, the maximum thermomechanical performance 

of hexagonal honeycombs outperforms those of triangular and square honeycombs (Fig. 

2.7). We have checked their results very carefully and found that it is impossible to 

arrive at this conclusion. In fact, it is apparent that the thermomechanical performance 

of hexagonal honeycombs cannot be larger than that of triangular honeycombs. The 

thermal performance of hexagonal honeycombs is larger than that of triangular 

honeycombs (Figs. 2.2a and 2.3a), but it is not much larger (less than 10). However, 

when the non-dimensional in-plane shear modulus is added for the thermomechanical 
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performance (Eq. (2.2)), the shear modulus of triangular honeycombs 

( 12 0.125sG E  ) are much larger than that of the hexagonal honeycombs 

( 3
12 0.375sG E  ), even when the optimized density of hexagonal honeycombs is 

larger than that of the triangular honeycombs. So with respect to the combined thermal 

performance index and the non-dimensional in-plane shear modulus, i.e., the 

thermomechanical performance, hexagonal honeycombs cannot outperform triangular 

honeycombs.   

When water is used as the cooling media (Fig. 2.6b), generally the 

thermomechanical performance of Kagome honeycombs are much better than those of 

triangular, hexagonal and square honeycombs, different from the results of Fig. 2.6a 

where the dry air is used as the cooling fluid. This implies that the structural 

morphology optimization is related to the cooling media used.  

 

Fig. 2.8 2 max optI  vs H l for (a) air; (b) water. 

Considering that when H l is relative larger the optimum relative density opt  

for Kagome honeycombs are larger than that for triangular honeycombs (Fig. 2.4),  to 

see the effect of opt on 2maxI we plot the relationship between 2 max optI  and H l in 

Fig. 2.8. It is easy to see that the results are similar to those shown in Fig. 2.6, here we 

do not repeat them any more.   

 



Chapter 2                                                           41 

Under the same structural mass, how will the maximum thermomechanical 

performances change for these four kinds of honeycombs? Defining M as the mass of 

the cellular core, we can obtain opt sM LWH  . Rearranging it gives the normalized 

structural mass of the cellular core of the heat sink 

   optsM LWl H l                                               (2.40) 

The normalized structural mass against 2maxI is plotted in Fig. 2.9. We can see that, 

when dry air is the cooling fluid (Fig. 2.9a), under relatively low normalized structural 

weight, triangular honeycombs are the best; under high normalized structural weight, 

Kagome honeycombs are the best. When water is the cooling media (Fig. 2.9b), the 

maximum thermomechanical performance index, 2 maxI , of the Kagome honeycombs 

increases greatly with the increase of  0v . And under the same normalized structural 

mass, the thermomechanical performance of Kagome honeycombs generally 

outperforms hexagonal, triangular and square honeycombs greatly.   

 
Fig. 2.9 Normalized structural mass vs 2 maxI (a) air; (b) water. 

2.7 Conclusions 

Through effective media model, in this chapter the thermal and thermomechanical 

performances of the hexagonal, triangular, square and Kagome metal honeycombs are 
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systematically studied. Dry air and water are chosen as the cooling media, respectively. 

Results show that the heat transfer properties of hexagonal, triangular and square 

honeycombs are independent of the input velocity of the forced convection but it has 

great influence to Kagome honeycombs. Considering the thermal performance alone, 

hexagonal honeycombs are the best. About the thermomechanical property, the 

optimized structural topology is related to the cooling media used. When dry air is used 

for the cooling media, for heat sinks with relatively thin cellular cores, triangular 

honeycombs outperform Kagome, square and hexagonal honeycombs. However, when 

the ratio between the heat sink size and cell size are relatively large, Kagome 

honeycombs are better than triangular, square and hexagonal honeycombs. When water 

is chosen as the cooling media, the thermomechanical performance of Kagome 

honeycombs generally is much better than the other three kinds of honeycombs, 

especially for the heat sink where thick cores are needed. This paper implies that for 

structural design of the heat transfer panels, the structural topology optimization should 

be performed based on the cooling media used. 
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Chapter 3 

3 Elastic and Transport Properties of the 

Tailorable Multifunctional Hierarchical 

Honeycombs 

Compared with triangular, square and Kagome honeycombs, hexagonal 

honeycombs have lower in-plane stiffness, which restricts its 

multifunctional applications. Therefore, in this chapter, considering 

identical mass with an original regular hexagonal honeycomb (ORHH), 

we analytically study the in-plane elastic and transport properties of a 

new class of hexagonal honeycombs, i.e., multifunctional hierarchical 

honeycomb (MHH). The MHH structure is developed by replacing the 

solid cell walls of the ORHH with three kinds of isotropic honeycomb 

sub-structures possessing hexagonal, triangular and Kagome lattices. 

Formulas to derive the effective in-plane elastic properties of the 

regular hexagonal honeycombs at all densities are developed for 

analyzing the MHH structure. The results show that the hexagonal 

sub-structure is difficult to greatly improve the elastic properties of the 

MHH structure, however, its counterparts, the triangular or Kagome 

sub-structures, result in a substantial improvement by 1 magnitude or 

even 3 orders of magnitude on the Young’s and shear moduli of the 

MHH structure, depending on the cell-wall thickness-to-length ratio of 

the ORHH. Besides, the effective in-plane conductivities (or dielectric 

constants) of the three different MHH structures are also studied, 

generally they are smaller than the ORHH structure except for some 
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cases of the MHH with Kagome structure. The presented theory could 

be used in designing new tailorable hierarchical honeycomb structures 

for multifunctional applications. 

3.1 Introduction 

Low-density cellular materials widely exist in Nature and exhibit fascinating 

mechanical properties in the aspects of strength, stiffness, toughness, etc. (Huang and 

Gibson, 1994; Masters and Evans, 1996; Gibson and Ashby, 1997). As one typical kind 

of low density cellular solids, honeycombs, which are mainly used as cores of the 

light-weight sandwich panel structures (Wilson, 1990; Bitzer, 1994; Thompson and 

Matthews, 1995; Price et al., 2001), have seen many applications in different fields, 

such as in aerospace and automotive industries. Apart from the fantastic low-density 

and mechanical properties, honeycombs also show other attractive functionalities, e.g., 

heat transfer, thermal protection, catalysis application and so on. In order to find 

optimal topologies for different multifunctional applications, varieties of prismatic 

honeycombs have been studied in recent years. 

Up to date, from the point of view of multifunctionalities, Lu (1999) and Gu et al. 

(2001) reported that regular hexagonal metal cells, comparing with triangular and 

square cells, provide the highest level of heat dissipation, as comparable to that of 

open-cell metal foams. Combining the experimental and numerical methods, Wen et al. 

(2006) revealed that the overall thermal performance of metal honeycomb structures 

are superior to other heat sink media, such as metal foams, lattice-frame materials, 3D 

Kagome structures and woven textile structures. Hyun and Torquato (2002), employing 

the topology optimization technique, showed that the effective conductivity of the 

regular hexagonal honeycomb is nearly approaching the Hashin-Shtrikman upper 

bounds and for the triangular and Kagome honeycombs, both the in-plane effective 

moduli and conductivity are approaching the Hashin-Shtrikman (H-S) upper bounds 

(Hashin and Shtrikman, 1962; Hashin and Shtrikman, 1963). Besides, Evans et al. 

(2001), Wadley et al. (2003) and Wadley (2006) reviewed the multifunctionalities and 

the fabrication technologies of the multifunctional periodic cellular metals with 

different topological structures. Hayes et al. (2004) studied the mechanical and thermal 

properties of linear cellular alloys with square cells, and concluded that mechanical and 
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heat transfer characteristics of the honeycomb materials outperformed those of open- 

and closed-cell metal foams with comparable relative density. 

More specifically, from the viewpoint of mechanics, Wang and McDowell (2004) 

investigated the in-plane stiffness and yield strength of different periodic metal 

honeycombs, and showed that the diamond, triangular and Kagome cells have superior 

in-plane mechanical properties to the hexagonal, rectangular and mixed 

square/triangular cells. Fleck and Qiu (2007) analyzed the damage tolerance property 

of 2D elastic-brittle isotropic honeycombs and reported that the Kagome cells have 

much higher fracture toughness than those of hexagonal and triangular cells. 

On the other hand, structural hierarchy in natural materials, can result in 

significantly higher stiffness or strength efficiencies (i.e. stiffness- or 

strength-to-weight ratios), compared with their single length scale microstructure 

counterparts, and maintain flaw-tolerance or energy-absorbing property (Lakes, 1993; 

Pugno, 2006; Gao, 2006; Pugno and Carpinteri, 2008;  Carpinteri and Pugno, 2008; 

Zhao, et al., 2009). Combining the low-weight property of cellular solids and the 

particular functions that natural hierarchical materials display, many researchers (Fratzl 

and Weinkamer, 2007; Pugno and Chen, 2011; Chen and Pugno, 2011; Chen and Pugno, 

2012a, b, c) have focused on the mechanical properties of the hierarchical cellular 

structures. Burgueno et al. (2005) studied the hierarchical cellular designs for 

load-bearing bio-composite beams and plates. Kooistra et al. (2007) investigated 

hierarchical corrugated core sandwich panels and revealed that the second-order trusses 

could have much higher compressive and shear strengths than their equal-mass 

first-order counterparts if relative densities are less than 5%. Fan et al. (2008) studied 

two-dimensional cellular materials made up of sandwich struts and showed that the 

relevant mechanical properties of the materials were improved substantially by 

incorporating structural hierarchy. Also, inspired by diatom algae which contains 

nanoporous hierarchical silicified shells, Garcia et al. (2011) revealed the toughening 

mechanism in the superductile wavy silica nanostructures by performing a series of 

molecular dynamics simulations. Taylor et al. (2011) introduced the functionally 

graded hierarchical honeycombs by performing a set of finite element analyses, and the 

results suggested that the elastic modulus of the functionally graded hierarchical 

honeycomb is 1.75 times that of its equal-mass first-order hexagonal honeycomb if the 

structure was designed properly. Different from Taylor’s work, Ajdari et al. (2012) 

developed a new hierarchical honeycomb structure by replacing every three-edge joint 
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of a regular hexagonal lattice with a smaller hexagon, and showed that the elastic 

moduli of the hierarchical honeycombs with one level and two levels can be 2.0 and 

3.5 times stiffer than their equal-mass regular hexagonal honeycomb, respectively. And 

more, inspired by natural materials, Chen and Pugno (2012a, b) created another 2D 

hierarchical honeycomb and 3D hierarchical foam and presented the corresponding 

theories, then applied to the natural materials. 

In this chapter, following the above works, we analytically study the in-plane 

elastic moduli and thermal conductivity of a new multifunctional hierarchical 

honeycomb (MHH), which is formed by replacing the solid cell walls of an original 

regular hexagonal honeycomb (ORHH) with three different isotropic honeycomb 

sub-structures possessing hexagonal, triangular or Kagome lattices. First, we derive the 

analytical formulas of the effective elastic moduli of the regular hexagonal 

honeycombs for all densities, then, the in-plane Young’s, shear and bulk moduli of the 

three kinds of MHH structures are calculated. Besides, the effective in-plane 

conductivities of the three kinds of MHH structures are formulated through the 

Hashin-Shtrikman upper bounds. 

3.2 The effective in-plane elastic moduli of the regular 

hexagonal honeycombs for all densities 

 
Fig. 3.1 (a) Three-point parameters and for the regular hexagonal honeycomb (Hyun and 

Torquato, 2000) vs the relative density ; (b) Effective Young’s modulus e sE E of the regular 

hexagonal honeycomb vs the relative density predicted by different methods. 



Chapter 3                                                           49 

Hyun and Torquato (2000) analytically studied the effective in-plane properties of 

the regular hexagonal honeycomb for all densities via the three-point approximations 

and expressed the effective Young’s modulus eE
 

as 

  
       

2 1 1

3 2 2 2 1 2 2 1 1
e

s

E

E

   

      

  


          
             (3.1) 

in which   is the relative density of the hexagonal honeycomb, sE is the Young’s 

modulus of the constituent solid,  and   are the three-point parameters (Fig. 3.1a). 

The simulation data of the effective Young’s modulus eE  (Hyun and Torquato, 2000) 

are also provided in Fig. 3.1b. It is apparent that for the high density case (≥0.5), the 

three-point approximations method matches very well the simulation data, but the low 

density overestimates the results. In the very low density case, the overestimation is so 

large that the three-point approximations method is not suitable.  

It is well-known that for the low-density regular hexagonal honeycombs, the Euler 

beam theory and the Timoshenko beam theory could be used to obtain very good 

analytical results for predicting elastic properties. Here, in order to get the analytical 

predictions for the in-plane elastic properties of the regular hexagonal honeycomb for 

all densities, we apply the Euler beam theory and the Timoshenko beam theory to the 

entire range of the relative density and compare the results with the three-point 

approximations. Under the Euler beam theory, Torquato et al. (1998) expressed the 

effective Young’s modulus eE  as: 

33

2
e

s

E

E
                             (3.2) 

On the other hand, Gibson and Ashby (1997) studied the elastic properties of the low 

density honeycombs using the Timoshenko beam theory. For the regular hexagonal 

honeycombs, the effective Young’s modulus is given by: 

  

3

2

4 1

3 1 5.4 1.5
e

s s

E t

E l t l
   
   

                       (3.3) 

in which s  is the Poisson’s ratio of the constituent solid and  3 1 1t l   
 

is 
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the cell-wall thickness-to-length ratio.  

For honeycombs at all densities, the comparisons between the Euler beam theory, 

Timoshenko beam theory, three-point approximations method and the simulation data 

are plotted in Fig. 3.1b. We can see that when 0.5   the results calculated by the 

Euler beam theory matches very well the simulation data, while the results are well 

predicted by the three-point approximations when 0.5  . Therefore, the prediction of 

the effective Young’s modulus of the regular hexagonal honeycombs for all densities 

can be expressed as:  

  
       

33
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            (3.4) 

Besides, through the three-point approximations, Hyun and Torquato (2000) also 

developed the expression for the effective in-plane bulk modulus ek  of the regular 

hexagonal honeycombs at all densities: 

 
   

 
   

2 1 2 1

1 1 2 ( 1) 1 1 2 ( 1)
s s se

s s s s s

G G kk

k k G G k

   
     

 
 

       
            (3.5) 

where, sk
 

and sG  are the bulk and shear moduli of the constituent solid, 

respectively. 

Because of the in-plane isotropic properties, sk and sE , ek , eG and eE satisfy the 

following relationships: 

 2 1
s

s
s

E
k





                         (3.6) 

 2 1
e

e
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E
k





                      (3.7) 

 2 1
e

e
e

E
G





                                                      

(3.8) 

in which eG
 

and e  
are the effective in-plane shear modulus and Poisson’s ratio of 

the hexagonal honeycombs, respectively. Defining e sE E A and e sk k B , Eqs. 
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(3.4)-(3.8) provide the prediction formula for eG : 

 4 2 1
e

s s

G AB

E B A 


 
                       (3.9) 

Then, the effective Poisson’s ratio e of the regular hexagonal honeycombs is derived 

through dividing Eq. (3.6) by Eq. (3.7): 

 1 1e s

A

B
                        (3.10) 

 
Fig. 3.2 The effective Poisson’s ratio e of the regular hexagonal honeycomb with 1 3s  vs the 

relative density .  

To illustrate the correctness of the expressions of eE , ek  and eG , Eq. (10) is 

depicted in Fig. 3.2 for the honeycombs at all densities with 1 3s  . Note that in the 

calculations, the three-point parameters and are interpolated from Fig. 3.1a and the 

relation  2 1s s sG E      
is used. 

Fig. 3.2 shows excellent agreement with the existing results (see Jasiuk et al., 

1994; Gibson and Ashby, 1997), that is to say, the 2D effective Poisson’s ratio flows to 

a fixed point as the percolation threshold is reached. Here e tends to 1 for the extreme 

low densities and tends to the Poisson’s ratio of constituent solid 1 3s  for the 
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extreme high densities. This also illustrates the validations of Eqs. (3.4), (3.5) and (3.9). 

Here, it is worth to point out that different from the formula in Ref. Gibson and Ashby 

(1997), the Poisson’s ratio is not a constant when the relative density is low.  

3.3 MHH with isotropic hexagonal sub-structure 

3.3.1 Basic theory 

 
Fig. 3.3 (a) The original regular hexagonal honeycomb (ORHH); (b) the tailorable multifunctional 

hierarchical honeycomb (MHH) with hexagonal sub-structure; (c) amplification of a hexagonal lattice 

cell wall in (b) (the cell walls marked by blue circle suggest n=8 and the dash line denotes the middle 

line of the MHH cell wall). 

First of all, we consider the MHH with isotropic hexagonal lattice sub-structure 
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(Fig. 3.3). Fig. 3.3a is an ORHH with the cell-wall thickness and length denoted by 0t  
and 0l , respectively; Fig. 3.3b is an equal-mass MHH with the cell-wall thickness and 

length denoted by 1t and 0l , respectively. We can see that the cell-wall lengths of the 

ORHH and the MHH are identical. In particular, one of the MHH cell walls in Fig. 

3.3b is shown in Fig. 3.3c, and the cell-wall thickness and length for hexagonal cells 

are denoted by ht  
and hl , respectively. The out-of-plane depth is a constant and 

identical for both structures. 

The geometry of Fig. 3.3c implies: 

    0 1 2 = 3 2h h hl nl n l n l                  (3.11) 

where, n is the number of the solid hexagonal cell walls lying on the middle line of the 

MHH cell walls (e.g., in Fig. 3.3c, n=8). Defining 0/hl l   as the hierarchical length 

ratio, then rearranging Eq. (3.11) provides, 

1
=

3 2n



                     (3.12) 

Again, defining N as the number of hexagonal cells away from the middle line of 

the MHH cell walls (e.g., in Fig. 3.3c, N=1), and M the total number of half-thickness 

hexagonal cells in a MHH cell wall (see Fig. A in appendix A), then the relationship 

between M and N can be expressed as: 

 2 2 1 4
3 N

n
M N n A                   (3.13) 

with  2 1 ( 1) 1 6NA N N       (see Appendix A). Then, basing on the mass 

equivalence between cell walls of the MHH and the ORHH, we find 

    2 2
0 0 01 2 3 6 1 2 1 2 3h h ht l t t l t M    , which gives 

0 0

2
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2 1
3 1 1 1

3 3 2 3
h

h

t t t

l l lM

  
     
   

            (3.14) 

Besides, a geometrical analysis on Fig. 3.3c provides maxN , the upper bound of N , and 

1t , the thickness of the MHH cell walls： 
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max
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             (3.16) 

where, ‘fl[ ]’ is the floor function, which denotes the largest integer not greater than the 

term in the brackets. Then, rearranging Eq. (3.16) gives: 
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             (3.17) 

On the other hand, with respect to Eq. (3.14), a relation 

   2
0 0 0 01 2 3 3 1 1 2 3 0M t l t l      should be satisfied. Considering Eqs. (3.12) 

and (3.13), this relation provides minN , the lower bound of N :
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               (3.18) 

where, ‘ce[ ]’ is the ceiling function, which denotes the smallest integer not less than 

the term in the brackets. Note that Eq. (3.18) may give min 0N  , in this case min 1N  . 

Defining the in-plane Young’s, shear and bulk moduli of the ORHH as OE , OG
 

and Ok , then, from Eqs. (3.4), (3.5) and (3.9), we find: 
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                                                               (3.19)
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 4 2 1
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where, 
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is the relative density of the ORHH, and O  
and O ,

 
interpolated from Fig. 3.1a, are 

the corresponding three-point parameters.  

Besides, Hyun and Torquato (2000, 2002) showed that the effective thermal 

conductivity of the regular hexagonal honeycomb nearly approaches the H-S upper 

bounds. Thus, defining the thermal conductivities of the ORHH and the constituent 

solid as O and s , and using the H-S upper bounds, we approximately obtain: 

2
O O

s O

 
 




                     (3.23) 

Note that due to the mathematical analogy, results for the effective thermal 

conductivity translate immediately into equivalent results for the effective dielectric 

constant, electrical conductivity and magnetic permeability. 

Similarly, defining the in-plane Young’s, shear and bulk moduli and thermal 

conductivity of the hexagonal sub-structure as hE , hG , hk and h , we obtain: 
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(3.24) 
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where, 
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is the relative density of the hexagonal sub-structure, and h  
and h , interpolated 

from Fig. 3.1a, are the corresponding three-point parameters. Denoting the effective 

Poisson’s ratio of the hexagonal sub-structure by h , the relation  / 2(1 )h h hG E    

is satisfied. Then, combining Eqs. (3.24) and (3.26) gives, 

1 (1 )h
h s
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B
                        (3.29) 

Thus, 

 
 

2 1 1 (1 )

1 2 (1 )2 1
h hh h h s

h h h h sh h

EG A

k B AE

  
 

      
    

              (3.30) 

At the same time, by treating the hexagonal sub-structure as a continuum and defining 

the in-plane Young’s, shear and bulk moduli and thermal conductivity of the MHH as 

ME , MG , Mk and M , it is easily to obtain: 
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where, 
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and M and M , interpolated from Fig. 3.1a, are the three-point parameters 

corresponding to M . 

Combining Eqs. (3.19), (3.24) and (3.31) gives the relative Young’s modulus

M OE E : 

M hM

O O

A AE

E A
                      (3.36) 

Similarly, from Eqs. (3.20), (3.25) and (3.32), we can get the relative in plane bulk  

modulus M Ok k : 

M hM

O O

B Bk

k B
                      (3.37) 

And from Eqs. (3.21), (3.24) and (3.33), we obtain the relative shear modulus M OG G : 
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Finally, from Eqs. (3.23), (3.27) and (3.34), we get the relative thermal conductivity

M O  : 
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               (3.39) 

3.3.2 Effect of N on the relative elastic moduli and thermal 

conductivity of the MHH with hexagonal sub-structure 

To investigate the influence of N on the relative elastic properties M OE E ,

M OG G , M Ok k and the relative thermal conductivity M O  , here, we discuss the 
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following examples with parameters 16n  ,  =1 3 2 0.02n    and 0 0 0.01t l  , 

0.05, 0.1, 0.2 and 0.3. Then, we can find max 25N   through Eq. (3.15), and minN
 

for 

each 0 0/t l  through Eq. (3.18). The results of the relative elastic properties M OE E and

M OG G , M Ok k
 

and the relative thermal conductivity M O   versus N  are 

reported in Figs. 3.4-3.6, respectively. 

From Figs. 3.4a, b, we can see that for all the 0 0/t l  ratios considered, the 

optimal M OE E  and M OG G , which vary between 1 and 2, exist as N increases. Note 

that the optimal M OE E  and M OG G  may do not correspond to the same N . The 

reason is that O sE E  and M hE E  are independent of the Poisson’s ratios s  and 

h  but O sG G  and M hG G  are dependent on them (Hyun and Torquato, 2000). 

 

Fig. 3.4 (a) The relative Young’s modulus M OE E vs N for different 0 0/t l ; (b) The relative shear 

modulus M OG G vs N for different 0 0/t l . 

Figs. 3.5 and 3.6 show that the relative bulk modulus M Ok k  and the relative 

thermal conductivity M O   increase with the increasing 0 0/t l , but they are 

generally less than 1 for all the 0 0/t l
 

ratios considered. This means that the effective 

bulk modulus and thermal conductivity of the MHH with regular hexagonal 

sub-structure are smaller than those of the ORHH structure. Of particular interest, there 

is an optimal value for the thermal conductivity, and this could be used to design low 

heat conductivity materials with an optimal topology. 
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Fig. 3.5 The relative bulk modulus M OG G vs N for different 0 0/t l  

 

Fig. 3.6 The relative thermal conductivity M OG G vs N for different 0 0/t l . 
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3.3.3 The effects of 0 0t l  ― the cell-wall thickness-to-length 

ratio of the ORHH 

To investigate the effects of the cell-wall thickness-to-length ratio 0 0t l  of the 

ORHH on the relative elastic properties and thermal conductivity of the MHH structure, 

again, we use the examples in Section 3.2 and we maintain 16n  , 0.02   but 

change 0 0t l  from 0.01 to 0.5 with incremental 0.01. In fact, under the same N , the 

value of M OG G is in general weakly larger than M OE E
 

(Fig. 3.4a, b), so here we 

only consider the relative Young’s modulus M OE E against 0 0/t l . At the same time, 

M O   and M Ok k  generally are smaller than 1 for all 0 0/t l  as shown in Figs. 3.5 

and 3.6, thus, the discussion will not be treated in this section. 

 

Fig. 3.7 The maximum M OE E vs 0 0/t l
 

The analytical results are reported in Fig. 3.7. We can see that the maximum 

M OE E  increases before 0 0/t l  reaches 0.07 but after that it decreases. That is to say, 
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the optimal M OE E  of the MHH with hexagonal sub-structure exists at 0 0/ 0.07t l  , 

of which the value approximately equals 2. This result is comparable to the finite 

element result given by Taylor et al. (2011). 

3.4 MHH with triangular sub-structure 

3.4.1 Basic theory 

 
Fig. 3.8 Schematics of (a) the ORHH; (b) the tailorable MHH with triangular sub-structure; (c) 

amplification of a trianglar lattice cell wall in (b). 

In this section, we substitute the ORHH cell walls with the equal-mass isotropic 

triangular sub-structure, see Fig. 3.8. As defined in Section 3, the hierarchical length 
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ratio is expressed as, 

 
0

1
  1tl n

l n
                        (3.40) 

where, n is the number of solid triangular lattice cell walls lying on the middle line of 

the MHH cell walls. From Fig. 3.8c, according to the equal-mass principle, we can find

2 2
0 0 0

1 1 3
3

2 22 3
t t tt l t t l t M

 
     

 
, which gives 

0 0
2

0 0

1 4 3 1
1 1 1

33 2 3
t

t

t t t

l l lM

  
     
   

                   (3.41) 

where, M is the total number of half thickness triangular lattice cells in a MHH cell 

wall and M has the following relationship with n and N (see Appendix B): 

   2
2 2    (1 )

3
M N n N n N N n                     (3.42) 

in which N  is the number of triangular lattice cells away from the middle line of the 

MHH cell walls. Similarly as that in Section 3, a geometrical analysis on Fig. 3.8c 

provides maxN , the upper bound of N , and 1t , the thickness of the MHH cell walls：

maxN n                          (3.43) 

max

1

0 max

3
2    1 1

2

3
2              

2

t tN l t N N

t

l N N

  
         


 

             (3.44) 

Then, rearranging Eq. (3.44) gives, 

max1

0

max

3    1 1

3                    

t

t

t
N N Nt

l
l

N N


 

    
  




             (3.45) 

On the other hand, with respect to Eq. (3.41), the relation 

   2
0 0 0 01 4 3 3 1 1 2 3 0M t l t l      should be satisfied. In conjunction with Eqs. 

(3.40) and (3.42), this relation gives minN , the lower bound of N : 
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 2 0 0

0 0

min

1
6 1 6 1 12 2 3 1 1

2 3

6

t t
n n n n

l l
N ce

           
     
 
 
  

           (3.46) 

Note that Eq. (3.46) may give min 0N  , in this case min 1N  . 

Like the discussion in Section 3, we would like to analyze the effective elastic 

properties and thermal conductivity of the triangular lattice sub-structure. As already 

mentioned in the introduction, Hyun and Torquato (2002) showed that for the 

triangular and Kagome honeycombs, both the in-plane effective moduli and 

conductivity (or dielectric constant) are approaching the H-S upper bounds (Hashin and 

Shtrikman, 1962; Hashin and Shtrikman, 1963). So, we approximately use the H-S 

upper bounds to calculate the effective elastic moduli and thermal conductivity of the 

triangular lattice sub-structure. Defining the in-plane Young’s, shear and bulk moduli 

and thermal conductivity of the triangular sub-structure as tE , tG , tk and t , we obtain: 

3 2
t t

t
s t

E
A

E




 


                    (3.47) 

1
t t s s

t
s t s s

k G k
B

k G k




 
 

                   (3.48) 

    
1

2 1 1 1 2 1
t t

t
s s t s s

G
C

E G k


 

 
   

               (3.49) 

2
t t

s t

 
 




                     (3.50) 

where, 

2
1

2 3 3   
3

t t t
t

t t t

t t t

l l l


   
     

   
              (3.51) 

is the relative density of the triangular sub-structure. Denoting the effective Poisson’s 

ratio of the triangular sub-structure by t , the relation  / 2(1 )t t tG E    holds. Then, 

combining Eqs. (3.47) and (3.49) gives, 
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1
1

2
t

t
t

A

C
                        (3.52) 

Thus, 

 
 

2 1 1
4 1

12 1
t tt t t

t t tt t

EG C

k AE

 


      
  

             (3.53) 

At the same time, by treating the triangular sub-structure as a continuum and 

defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the 

MHH with triangular sub-structure as ME , MG , Mk and M , we have: 

  
        

33
                                                                                               0.5
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   
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      

 
     
 
           

 

                                                              (3.54) 

 
   

2 1

1 1 2 ( 1)
t t M MM

M
t M t t M M

G kk
B

k G k

 
  


 

   
               (3.55) 

 4 2 1
M M M

t M M t

G A B

E B A 


 
               (3.56) 

2
M M

t M

 
 




                     (3.57)  

where, 

2

1 1 1

0 0 0

2 1
  3

33
M

t t t

l l l


   
     

   
              (3.58) 

and M and M , interpolated from Fig. 3.1a, are the three-point parameters 

corresponding to M .  

Combining Eqs. (3.19), (3.47) and (3.54) gives the relative Young’s modulus

M OE E : 

M tM

O O

A AE

E A
                      (3.59) 
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Similarly, from Eqs. (3.20), (3.48) and (3.55), we can find the relative bulk modulus

M Ok k : 

M tM

O O

B Bk

k B
                      (3.60) 

And from Eqs. (3.21), (3.47) and (3.56), we obtain the relative shear modulus M OG G : 

 
 2 1

2 1
O O sM M tM

O M M t O O

B AA B AG

G B A A B




 


 
               (3.61) 

Finally, from Eqs. (3.23), (3.50) and (3.57), the relative thermal conductivity M O   

is derived: 

 
  

2

2 2
M t OM

O O M t

  
   




 
                     (3.62) 

3.4.2 Effects of N on the relative elastic moduli and thermal 

conductivity of the MHH with triangular 

sub-structure 

 
Fig. 3.9 The relative Young’s modulus M OE E vs N for different 0 0t l : (a) 0 0 0.01t l  ; (b) 

0 0 0.05t l  ; (c) 0 0 0.1, 0.2, 0.3t l  . 

As discussed in Section 3, the influence of N  on the effective elastic properties 

and thermal conductivity of the MHH with triangular sub-structure are studied, here we 

consider other examples with parameters 20n  , 1 0.05n   , 0 0 0.01t l  , 0.05, 0.1, 
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0.2 and 0.3. Then, we immediately obtain max 20N   by Eq. (3.23) and the lower 

bounds minN
 

for each 0 0t l by Eq. (3.46). The results of the relative elastic moduli

M OE E , M OG G , M Ok k
 

and the relative thermal conductivity M O  versus N are 

reported in Figs. 3.9-3.12, respectively. 

 

Fig. 3.10 The relative Young’s modulus M OG G  vs N  for different 0 0t l : (a) 0 0 0.01t l  ; (b)

0 0 0.05t l  ; (c) 0 0 0.1, 0.2, 0.3t l  . 

From Figs. 3.9 and 3.10, we can also see that the relative Young’s modulus

M OE E  and the effective shear modulus M OG G  increase with the increase of N , 

and the thickness-to-length ratio 0 0t l  has a strong influence on them. With respect to 

its equal-mass ORHH, the enhancements of the relative Young’s and shear moduli of 

the MHH with triangular sub-structure can be 1 (Figs. 3.9c and 3.10c) or even 3 orders 

of magnitude(Figs. 3.9a and 3.10a). Although the enhancement on Young’s modulus of 

the MHH with triangular sub-structure decreases with the increase of 0 0t l , for a 

relatively small 0 0t l  (less than 0.3), its stiffening effect (Figs. 3.9 and 3.10) by the 

triangular sub-structure is much larger than that of the hexagonal sub-structure (Figs. 

3.4a, b).
 

The relative bulk modulus M Ok k  and the relative thermal conductivity M O   

shown in Figs. 3.11 and 3.12 have the same varying trends with those of the MHH with 

hexagonal sub-structure reported in Section 3.2. The discussion is the same as before. 
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Fig. 3.11 The relative bulk modulus M Ok k  vs N  for different 0 0/t l

 

Fig. 3.12 The relative thermal conductivity M O   vs N  for different 0 0/t l
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3.5 MHH with isotropic Kagome sub-structure 

3.5.1 Basic theory 

 
Fig. 3.13 Schematics of (a) the ORHH; (b) the tailorable MHH with Kagome sub-structure (in this 

thesis the red dashline is for the convenience of linear dimension); (c) amplication of a Kagome 

sub-structure cell wall in (b); (d)the representative cells for the Kagome honeycomb. 

Kagome honeycomb has been revealed to have pronounced higher fracture 

toughness (Fleck and Qiu, 2007) and better thermal-mechanical performance than the 

triangular honeycombs (Wang et al., 2007). Therefore, in this Section, we will consider 
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the third topology of the MHH, namely, substituting the ORHH cell walls with their 

equal-mass Kagome sub-structure (Fig. 3.13), and study its effective elastic properties 

and thermal conductivity. In this case, the hierarchical length ratio is expressed as: 

0

1
  4,  6,  8,  10 kl n

l n
                   (3.63) 

where, kl  is the side length of triangles in Kagome cells and n  is the number of 

sides of the effective triangles on the middle line of the MHH cell walls. As discussed 

before, here, the equal-mass principle provides    2 2
0 0 01 2 3 3 3 2k k kt l t t l t M    , 

and k kt l  is derived as: 
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33 2 3
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  
     
   

                   (3.64) 

where, M is the total number of triangles in a MHH cell wall, and it is expressed with 

n  and N  as (see Appendix C): 

 2    (1 )
2

n
M N n N N                      (3.65) 

where, N  is the number of the Kagome representative cells (e.g., in Fig. 3.13c, 1N  ) 

away from the middle line of the MHH cell walls. Similarly to that in Sections 3 and 4, 

a geometrical analysis on Fig. 3.13c provides maxN , the upper bound of N , and 1t , the 

thickness of the MHH cell walls： 

max 2

n
N                           (3.66) 
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Then, rearranging Eq. (3.67) gives 
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On the other hand, with respect to Eq. (3.64), the relation 

   2
0 0 0 01 2 3 3 1 1 2 3 0M t l t l      holds. In conjunction with Eqs. (3.63) and 

(3.65), this relation gives minN , the lower bound of N : 
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 
 

            (3.69) 

Also, it should be note that Eq. (3.69) may give min 0N  , for this case min 1N  . 

Here, we again approximately use the H-S upper bounds to analyze the effective 

elastic properties and thermal conductivity of the Kagome lattice sub-structure. 

Defining the in-plane Young’s, shear and bulk moduli and thermal conductivity of the 

Kagome sub-structure as kE , kG , kk and k , we obtain: 
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where, 
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is the relative density of the Kagome sub-structure. Denoting the effective Poisson’s 

ratio of the Kagome sub-structure by k , employing  / 2(1 )k k kG E   and combining 

Eqs. (3.70) and (3.72) give 

1
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2
k

k
k

A

C
                        (3.75) 

Thus, 
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Again, by treating the Kagome sub-structure as a continuum and defining the 

in-plane Young’s, shear and bulk moduli and thermal conductivity of the MHH with 

Kagome sub-structure as ME , MG , Mk and M , we have: 
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and M  
and M  

interpolated from Fig. 3.1a are the three-point parameters 

corresponding to M .  

Combining Eqs. (3.19), (3.70) and (3.77) gives the relative Young’s modulus

M OE E : 

M kM

O O

A AE

E A
                      (3.82) 

Similarly, from Eqs. (3.20), (3.71) and (3.78) we can get the relative bulk modulus

M Ok k : 
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M kM

O O

B Bk

k B
                      (3.83) 

And from Eqs. (3.21), (3.70) and (3.79) we obtain the relative shear modulus M OG G : 

 
 2 1

2 1
O O sM M kM

O M M k O O

B AA B AG

G B A A B




 


 
            (3.84) 

Finally, from Eqs. (3.23), (3.50) and (3.57), we find the relative thermal conductivity

M O  : 
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               (3.85) 

3.5.2 Effects of N  on the relative elastic moduli and 

thermal conductivity of the MHH with Kagome 

sub-structure 

In this section, we consider the examples with parameters 20n  , 1 0.05n   ,

0 0 0.01t l  , 0.05, 0.1, 0.2 and 0.3. Then, Eq. (3.66) provides max 10N   and Eq. (3.69) 

the lower bound minN
 

for each 0 0t l  . The results of the relative elastic moduli

M OE E , M OG G , M Ok k  and the relative thermal conductivity M O   versus N  

are shown in Figs. 3.14-17, respectively. 

 

Fig. 3.14 The relative Young’s modulus M OE E  vs N for different 0 0t l : (a) 0 0 0.01t l  ; (b)

0 0 0.05t l  ; (c) 0 0 0.1, 0.2, 0.3t l  . 
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Fig. 3.15 The relative shear modulus M OG G vs N for different 0 0t l : (a) 0 0 0.01t l  ; (b) 

0 0 0.05t l  ; (c) 0 0 0.1, 0.2, 0.3t l  . 

Comparing Figs. 3.14 and 3.15 with Figs. 3.9 and 3.10, we can see that the 

Young’s and shear moduli of the MHH with Kagome sub-structure are similar to that of 

the MHH with triangular sub-structure, so the discussion is the same as before. 

 

Fig. 3.16 The relative bulk modulus M Ok k
 

vs N  for different 0 0/t l  

However, it is worth to say that, different from the MHH with hexagonal and 

triangular sub-structures, the relative bulk modulus M Ok k  and the relative thermal 

conductivity M O   of the MHH with Kagome sub-structure become larger than 1 

with the increase of 0 0/t l (Figs. 3.16 and 3.17). This is to say, when 0 0/t l
 

is large 

enough, the effective bulk modulus and thermal conductivity of the MHH with 
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Kagome sub-structure could be greater than those of the ORHH structures.  

 

Fig. 3.17 The relative thermal conductivity M O 
 
vs N  for different 0 0/t l

 

3.6 Comparisons of hexagonal, triangular and 

Kagome sub-structures 

Comparing the examples discussed in Sections 3 to 5, it is apparent that for an 

identical ORHH, the in-plane stiffness enhancements of the MHH with triangular and 

Kagome sub-structures could be much greater than that with the hexagonal 

sub-structure. To illustrate this point clearly, one more example with the parameters 

0 0 0.1t l   and 1 20   is analyzed, and the result is plotted in Fig. 3.18, in which 

the relative Young’s modulus M OE E  against N for the MHH with the above three 

sub-structures are depicted. Interestingly, we find that the relative Young’s moduli of 

the MHH with triangular and Kagome sub-structures increase as N increases, but it is 

inverse for the MHH with hexagonal sub-structure, and more, the Young’s modulus of 
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the MHH with Kagome sub-structure is improved most with respect to the ORHH. 

  

Fig. 3.18 The relative Young’s modulus M OE E
 

vs N for different sub-structures with the same 

parameters 0 0 0.1t l 
 

and 1 20  . 

 

Fig. 3.19 The relative bulk modulus M Ok k
 

vs N  for different sub-structures with the same 

parameters 0 0 0.3t l 
 

and 1 20  . 
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Fig. 3.20 The relative thermal conductivity M O 
 

vs N  for different sub-structures with the 

same parameters 0 0 0.3t l 
 

and 1 20  . 

For the comparisons on bulk modulus and thermal conductivity of the three 

MHHs, the parameters 0 0 0.3t l   and 1 20   are employed, and the results are 

depicted in Figs. 3.19 and 3.20. From the two figures, we can say that the MHH with 

Kagome sub-structure is the optimal structure to design the elastic moduli and transport 

properties of the multifunctional regular hexagonal honeycomb. 

3.7 Conclusions 

In this chapter, we have studied the in-plane elastic properties and transport 

properties of a new class of MHH, which are formed by replacing the ORHH solid cell 

walls with three types of equal-mass isotropic honeycomb sub-structures. The 

analytical results show that with the hexagonal sub-structure it is difficult to greatly 

increase the elastic and shear moduli of the MHH. Different from the hexagonal 

sub-structure, the triangular and Kagome sub-structures share a similar improvement 

on the MHH Young’s and shear moduli, and the improvement is substantial, i.e., from 1 
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to 3 orders of magnitude, depending on the cell-wall thickness-to-length ratio 0 0t l  

of the ORHH. At the same time, if 0 0t l  is large enough, the effective bulk modulus 

and transport ability of the MHH with Kagome sub-structure can be larger than those 

of the ORHH structure. These interesting results show a possibility to design new 

hierarchical honeycombs for multifunctional applications, e.g., the metal MHH can be 

used as the light weight sandwich panels in electronic packages and airborne devices, 

where both the structural and thermal characteristics are desirable. 

Appendix A: MHH cell wall with hexagonal 

sub-structures 

 

Fig. A Schematics of MHH cell walls in Fig. 1b: (a) 1N  ; (b) 2N  . 

Fig. A shows the representative cell walls of the MHH with regular hexagonal 

sub-structures shown in Fig. 3.3b. The mass of the sub-structure is distributed 

uniformly among the half-thickness hexagonal sub-structure cells within the blue 

hexagon. 



78                Yongtao Sun / Multifunctional Hierarchical Cellular Solids 

From Fig. A, we can see that the number of the half-thickness hexagonal 

sub-structure cells M can be determined by n and N as the following form: 

     1
2 1 2 4 2 2 1 4

6 3N N

n
M N n n n A N n A                        (A1) 

in which 1 1 6A  and 2 1A  .  

Here, NA depends on N , so we find NA generally expressed as: 

 2 1 ( 1) 1
    ( 1)

6N

N N
A N

  
                    (A2) 

Appendix B: MHH cell wall with triangular 

sub-structures 

 

Fig. B Schematics for the representative cell walls of the MHH with triangular sub-structures: (a)

1N  ; (b) 2N  . 
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Fig. B schematically shows the cell walls of the MHH with triangular 

sub-structures (Fig. 3.8b).The hierarchical length ratio is 1 n  . M is the total number 

of the half-thickness triangular cells in one sub-structure cell wall. It is easy to get the 

following relation between M, N and n: 

   

   

   

2
1:  2 2 1 1 1

3
2

2 :  2 2 2 1 1 2 2
3

2
3 :  2 2 3 1 1 2 2 3 3

3

N M n n

N M n n

N M n n

     

       

         

               (B1) 

Then, by inductive method, we find: 

   2
2 2    1

3NM n N B n N N n                       (B2) 

with 

2
NB N                           (B3) 

Substituting Eq. (B3) into Eq. (B2) gives: 

   2
2 2    (1 )

3
M N n N n N N n                   (B4) 

Appendix C: MHH cell wall with Kagome 

sub-structures 

Fig. C schematically shows the cell walls of the MHH with Kagome 

sub-structures. The hierarchical length ratio is 1 n  . M is the total number of the 

triangular cells contained in one Kagome sub-structure cell wall. Then, the relationship 

between M, N and n are expressed as: 

 
 
 

1:   2 1 0

2 :   2 2 1 2

3 :   2 3 1 2 4

N M n

N M n

N M n

     
     
      

               (C1) 

Then, by inductive method, we find: 
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Fig. C Schematics for the representative cell walls of the MHH with Kagome sub-structures: (a) 1N  ; 

(b) 2N  . 

 2 1   1
2N

n
M N n C N                            (C2) 

with 

 1NC N N                          (C3) 

Substituting Eq. (C3) into Eq. (C2), M is derived: 

 2    (1 )
2

n
M N n N N                       (C4) 
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Chapter 4 

4 In plane stiffness of multifunctional 

hierarchical honeycombs with negative 

Poisson’s ratio sub-structures 

Compared with triangular, square and Kagome honeycombs, hexagonal 

honeycomb has superior heat dissipation capabilities, but its lower 

in-plane stiffness hinders its multifunctional applications. In this 

chapter, comparing it with an original regular hexagonal honeycomb 

(ORHH) of identical mass, we propose a multifunctional hierarchical 

honeycomb (MHH) with negative Poisson’s ratio (NPR) sub-structures. 

This MHH is constructed by replacing the solid cell walls of the ORHH 

with two kinds of NPR honeycombs, the anisotropic re-entrant 

honeycomb or the isotropic chiral honeycomb. Based on the Euler beam 

theory, formulas for the Young’s moduli of these two kinds of MHH 

structures are derived. Results show that by appropriately adjusting the 

geometrical parameters both the re-entrant honeycomb (when the 

cell-wall thickness-to-length ratio of the ORHH is less than 0.045) and 

the chiral honeycomb (when the cell-wall thickness-to-length ratio of 

the ORHH is less than 0.75) can greatly tune the in-plane stiffness of the 

MHH structure. The presented theory could thus be used in designing 

new tailorable hierarchical honeycomb structures for multifunctional 

applications. 
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4.1 Introduction 

As one typical kind of low density cellular solids, honeycomb structures have 

been applied in many fields such as aerospace and automotive industries in which they 

are mainly used as cores of the light-weight sandwich panel structures (Wilson, 1990; 

Bitzer, 1994; Thompson and Matthews, 1995; Price et al., 2001). In addition to the 

appealing low-density and specific mechanical properties, honeycombs also have other 

attractive functionalities, e.g., heat transfer, thermal protection, catalysis application, 

and so on (Lu, 1999; Gu et al., 2001; Hyun and Torquato, 2002; Wen et al., 2006). 

Referring to the heat transfer properties, comparing with the triangular, square and 

Kagome honeycombs, the regular hexagonal metal honeycombs provide the highest 

level of heat dissipation when used as heat sink media (Lu 1999; Gu et al., 2001; Wang 

et al. 2007). However, the regular hexagonal honeycombs have much lower in plane 

stiffness which greatly restricts their multifunctional applications. To improve the in 

plane stiffness of regular hexagonal honeycombs, the crucial role on stiffness, strength 

and toughness that hierarchy plays in both natural and bio-inspired materials has been 

exploited (Lakes, 1993; Pugno, 2006; Gao, 2006; Pugno and Carpinteri, 2008;  

Carpinteri and Pugno, 2008; Zhao, et al., 2009, Fratzl and Weinkamer, 2007; Pugno 

and Chen, 2011; Chen and Pugno, 2011; Chen and Pugno, 2012a, b, c; Burgueno et al., 

2005; Fan et al., 2008; Garcia et al., 2011). In the previous chapter we (Sun et al., in 

submission) proposed multifunctional hierarchical honeycombs (MHH), which are 

formed by replacing the solid cell walls of an original regular hexagonal honeycomb 

(ORHH) with three different isotropic honeycomb sub-structures possessing hexagonal, 

triangular or Kagome lattices respectively. Analytical results show that, when 

compared with the ORHH, triangular and Kagome sub-structures could greatly 

increase the in plane Young’s modulus of the MHH structure, up to 3 orders of 

magnitude depending on the cell wall thickness-to-length ratio of the ORHH. 

The concept of negative Poisson’s ratio (NPR) can also be explored to improve 

the elastic moduli of regular hexagonal honeycombs. One of the two interesting NPR 

cellular solids are the anisotropic re-entrant honeycomb (Masters and Evans, 1996; 

Gibson and Ashby, 1997) and the isotropic (Poisson’s ratio -1) chiral honeycomb (Prall 

and Lakes, 1996). The multifunctionality of these two kinds of honeycombs has been 

widely studied. Scarpa and Tomlinson (2000) studied the vibration of a sandwich plate 
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with re-entrant honeycomb cores and suggested that the dynamic performance of a 

sandwich structure could be significantly improved using the re-entrant cell cores. 

Ruzzene (2004) analyzed the vibration and sound radiation of sandwich beams with 

re-entrant honeycomb truss cores and indicate that re-entrant configurations are 

generally more effective for vibration and sound transmission reduction applications.  

Innocenti and Scarpa (2009) studied the thermal conductivity and heat transfer 

properties of the multi-re-entrant honeycomb structures and showed that this auxetic 

honeycomb configurations show higher out-of-plane conductivity, strong in-plane 

thermal anisotropy and the lowest peak temperatures during heat transfer between the 

bottom and top faces of honeycomb panels. Besides, numerical and experimental 

simulations showed that chiral honeycombs have attractive dynamic properties when 

used as the core of airfoils (Spadoni et al., 2006; Spadoni and Ruzzene, 2007a; Bettini 

et al., 2009). At the same time, Spadoni et al. (2009) studied the phononic properties of 

the hexagonal chiral lattices and suggested this kind of cellular lattices as potential 

building blocks for the design of meta-materials of interest for acoustic wave-guiding 

applications. 

In this chapter, by substituting the solid cell wall of a ORHH with anisotropic 

re-entrant honeycombs or isotropic chiral honeycombs, two new kinds of MHH 

structures with NPR sub-structures are introduced. Based on the Euler beam theory, 

formulas for the in-plane Young’s moduli of these two kinds of MHH structures are 

finally derived. The presented theory could be used in designing new tailorable 

hierarchical multifunctional honeycombs. 

4.2 MHH with re-entrant honeycomb sub-structures 

4.2.1 Basic theory 

At first, we consider the MHH with anisotropic re-entrant honeycomb 

sub-structures (Fig. 4.1). Fig. 4.1a is a ORHH with cell-wall thickness and length 

denoted by 0t  
and 0l , respectively; Fig. 4.1b is an equal-mass MHH with the 

cell-wall thickness and length denoted by 1t  
and 0l , respectively. We can see that the 

cell-wall lengths of the ORHH and the MHH are identical. In particular, one of the 
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MHH cell walls in Fig. 4.1b is shown in Fig. 4.1c. The cell-wall thickness, lengths 

parallel and inclined to the local direction 2 for re-entrant hexagonal cells are denoted 

by rt , rh
 

and rl  
respectively. The angle between the inclined cell wall and the local 

direction 1 is denoted by  ( 0   ). The out-of-plane depth is a constant and identical 

for both structures.  

 
Fig. 4.1 (a) The original regular hexagonal honeycomb (ORHH); (b) the tailorable multifunctional 

hierarchical honeycomb (MHH) with re-entrant honeycomb sub-structures; (c) amplification of a 

re-entrant hexagonal lattice cell wall in (b). 

For simplicity of the calculation we suppose that both the cell walls of the MHH 

structure and re-entrant honeycomb substructures are Euler beams. That is to say, under 

small deformations we only consider the bending of the cell walls of the MHH 

structure and re-entrant honeycomb sub-structures, which requires that 1 0 0.25t l  , 

0.25r rt h  and 0.25r rt l  (Gibson and Ashby, 1997). Under the above assumptions 
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we can approximately treat this MHH structure as isotropic, even though its cell walls 

are constituted by anisotropic re-entrant honeycomb substructures. 

Here we define r rh l  and r rt l  . The geometry of Fig. 4.1c implies that: 

       0 2 sin 1 2sin 1r r r r rl n h l n h n l n l                            (4.1) 

where, 1n   is the number of solid re-entrant hexagonal cell walls lying on the middle 

line of the MHH cell wall (e.g., in Fig. 4.1c, n=15). Defining 0/rl l   as the hierarchical 

length ratio and rearranging Eq. (4.1) provides 

   0

1
=

2sin 1
rl

l n n


  


  
                (4.2) 

Then, defining N as the number of re-entrant hexagonal cells away from the middle line of 

the MHH cell walls (e.g., in Fig. 4.1c, N=1), from the geometric analysis we get the cell 

wall thickness of the MHH structure: 

   1 02 cos 2 2 4 cos 4 cos
2
r

r r

t
t l N N l N l                              (4.3) 

that is 

 1

0

4 cos
t

N
l

                                                        (4.4) 

Then from the precondition 1 0 0.25t l 
 
we obtain maxN , the upper bound of N : 

max

1

16 cos
N fl

 
    

                                                   (4.5) 

where, ‘fl[ ]’ is the floor function, which denotes the largest integer not greater than the 

term in the brackets.  

The mass equivalence between the cell wall of the ORHH and that of the MHH 

structure gives the following relationship (see Appendix A): 

 3 2 0BD AD BC AC E                                             (4.6) 

in which     2 2 1 2 1A N n n      ,     1 1
2 2 1 1 tan

2 cos
B N n n 


           

, 
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2
1 cos

3
C N   ,

1

2 3
D   ,

2

0 0
2

0 0

1 1

2 3

t t
E

l l

  
    
   

. Through Newton’s method 

we solve Eq. (4.6) and get the solutions for  . Then, through the precondition 0.25  , we 

can obtain minN , the lower bound of N . 

Defining OE , ME and 2rE as the in plane Young’s moduli of the ORHH, MHH and the 

re-entrant honeycomb sub-structure in the local direction 2, we find (Gibson and Ashby, 

1997): 

3

0

0

2.3O

s

E t

E l

 
  

 
                                                         (4.7) 

3

1

2 0

2.3M

r

E t

E l

 
  

 
                                                        (4.8) 

3

32
3 3

sin sin

cos cos
r r r r

s r

E t h l

E l

  
 

   
  
 

                                     (4.9) 

Combining Eqs. (4.7) to (4.9) gives the relative Young’s modulus M OE E : 

   
 

3 3
1 0

3 3
0 0

sin

cos
M

O

t lE

E t l

  




                                              (4.10) 

4.2.2 Effects of  , N , 0 0t l and  on the relative Young’s 

moduli  

To investigate the influence of N  on the relative elastic moduli M OE E , here we 

consider the following examples with parameters 30n  , 5    , 0 0 0.01t l  , 0.02, 

0.03, 0.04, 0.045 and 1  ,1.5, 2 and 3. The results of M OE E  vs N  for different 

0 0/t l are shown in Fig. 4.2. It is easy to see from Fig. 4.2 that in general M OE E

increases with the increases of N and .  
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Comparing Eqs. 4.2(a) to 4.2(d) shows that the parameter has a vital influence 

on M OE E , which can also be seen from Eq. (4.10). When 1.5   the relative elastic 

moduli 1M OE E  (Figs. 4.2(a) and
 
4.2(b)), which means that for 1.5  the Young’s 

modulus of the MHH structure with re-entrant honeycomb sub-structures is smaller 

than that of the ORHH. Note that when 0 0 0.045t l   the assumptions in section 3.1 

are not satisfied. So we only consider the case of 0 0 0.045t l  . 

 
Fig. 4.2 The relative Young’s modulus M OE E vs N for different 0 0/t l with (a) 1  ; (b) 1.5  ; (c)

2  ; (d) 3  .  

To see the effect of on M OE E , we use the parameters 30n  , 3  , 0 0 0.01t l  , 

0.02, 0.03, 0.04, 60 5     . The results involving the maximum M OE E  and 

are given in Fig. 4.3. It is apparent that the maximum M OE E decreases with the 

decrease of  . At the same time, to see the effects of  , i.e., n , on M OE E , we 
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study the parameters 4  , 5    , 0 0 0.01t l  , 0.03 and 10 50n   . The results are 

shown in Fig. 4.4(a) which shows that with the increase of n the maximum M OE E

increases in a sawtooth shape. The reason is due to the change of maxN with the 

increase of n (Fig. 4.4(b)). 

 

Fig. 4.3 The maximum M OE E vs for different 0 0/t l  

 

Fig. 4.4 (a) The maximum M OE E  vs n  for different 0 0/t l ; (b)
 M OE E  vs N  for different 

n with 0 0/ 0.01t l 
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4.3 MHH with isotropic chiral honeycomb 

sub-structures 

4.3.1 Basic theory 

 
Fig. 4.5 Schematics of (a) the ORHH; (b) the tailorable MHH with chiral honeycomb sub-structures; 

(c) amplification of a chiral lattice cell wall in (b); (d) geometrical parameters of the chiral 

honeycomb cell in (c). 

In this section, we substitute the ORHH cell walls with equal-mass isotropic chiral 

honeycomb sub-structures, see Fig. 4.5. The cell wall thickness, the circular node 

radius, the distance between the centers of the adjacent circular cells and the length of 

the ligaments in the chiral honeycomb are denoted by t , r , R and l , respectively (Fig. 

4.5d). Then the geometrical relation 2 2 24 4r l R  holds. We suppose 0.25t l   so 
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that the Euler beam theory can be applied, i.e., only the bending of ligaments is 

considered (Prall and Lakes, 1996; Gibson and Ashby, 1997). 

As defined in Section 3, here the hierarchical length ratio is expressed as 

 
0

1
  1

R
n

l n
                        (4.11) 

where, n is the number of the distance R lying on the middle line of the MHH cell walls. 

Supposing 

R
k

r
                                                             (4.12) 

and combining it with the relation 2 2 24 4r l R  , gives: 

2

2

0

2

1

4

4

4

r
A

l k

l k
B

l nk

R k
C

l k

  


   



 


                                                  (4.13) 

Defining N as the number of circular cells in the thickness direction of the cell 

wall of the MHH structure, similarly as done in Section 2, a geometrical analysis on 

Fig. 4.5c provides maxN , the upper bound of N , and 1t , the thickness of the MHH cell 

walls： 

maxN n                          (4.14) 

max
1

0 max

3 2    1

3                    

NR t N N
t

l N N

    


                                         (4.15) 

Then, rearranging Eq. (4.15) gives 

max1

0
max

3
2    1

3                       

N
B N Nt

n
l

N N




   
 

                                       (4.16) 

in which t l  is the thickness-to-length ratio of the ligaments.  
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If maxN N , from Fig. 4.5c, according to the equal-mass principle, we can find 

 2
0 0 0 0

1 1
2 2

2 3
t l t MQ l NR t MQ NC tl

B
        
                        

(4.17)
 

where, M is the total number of the circular cells in one cell wall of the MHH 

structure and Q is the in-plane areas of one circular cell and six half-length ligaments. 

In fact, one circular cell in the MHH cell wall corresponds to six half-length ligaments. 

M has the following relationship with n and N (see Appendix B):
 

 2   (1 )M N n N N n                               (4.18) 

and  

2 2 2
1

2
1

1 2 1
6 tan 2

2 2 2 2 2 2 2
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r t t
rt tl r r tr

t
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





                                                    
                      

                                                                 

(4.19) 

Then, rearranging Eq. (4.17) gives 
2

1

2

0 0
2

0 0

2 2 2 1 1
2 3 6 tan 3 2

2 2 2

1 1

2 3

NC A
A A A A

BM M

t t

l lB M

    


                          
  
    
   

   (4.20) 

When maxN N , it gives  

 2
0 0 0 0

1
2

2 3
t l t MQ l NR t MQ                                       (4.21) 

and rearranging Eq. (4.21) we obtain 

 
2

1

2

0 0
2

0 0

2 1 1
2 3 6 tan 3 2

2 2 2

1 1

2 3

A
A A A A

t t

l lB M

    


                  
  
    
   

               

(4.22) 

Through Newton’s method we can solve Eqs. (4.20) and (4.22) and get the solutions 
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for  . Then from the precondition 0.25  we can obtain minN , the lower bound of 

N . 

 

Fig. 4.6 Three-point parameters and for the regular hexagonal honeycomb (Hyun and Torquato, 

2000) vs the relative density  

In the previous chapter we derived analytical formulas for the Young’s modulus of 

the regular hexagonal honeycomb at all densities (Sun et al., in submission). Defining 

OE , ME and CE as the in plane Young’s moduli of the ORHH, MHH and the chiral 

honeycomb sub-structures, using our previous results and referring to the results of 

Prall and Lakes (1996), we find: 

  
       
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 
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      

 
     
 
           

(4.23)
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                                                                 (4.24) 
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(4.25)

 in which 
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2 1
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O
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l l l


   
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   
,                                       (4.26) 
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   
     

   
,                                       (4.27) 

O and O , M and M , interpolated from Fig. 4.6, are the three-point parameters 

corresponding to O and M respectively; sE is the Young’s modulus of the solid of 

which the ORHH is made.

 

Combining Eqs. (4.22) to (4.25) gives the relative Young’s 

modulus M OE E :

 M cM

O O

A AE

E A


                                                       

(4.28) 

4.3.2 Effects of N , 0 0t l , k and  on the relative Young’s 

moduli 

To see the effect of 0 0t l on M OE E , we use the parameters 20n  , 20k  and 

0 0 0.01 0.3t l   . The results involving the maximum M OE E and 0 0t l are shown in Fig. 

4.8(a), which indicates that with the increase of n the maximum M OE E increases in a 

sawtooth shape. The reason of this kind of increasing trend is the change of the range of 

N with the increase of 0 0t l (Fig. 4.8(b)).  
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To see the effect of k on M OE E , we consider the parameters 20n  , 0 0 0.1t l  and

5k  , 10, 20. The results are shown in Fig. 4.9. Apparently M OE E increases with the 

increase of k . Finally, to see the effects of  , i.e., n , on M OE E , we investigate the 

parameters 20k  , 0 0 0.1t l  , 0.2 and 10 100n   . The related results are shown in 

Fig. 4.10. We can see that the maximum M OE E also
 
increases in a sawtooth shape with the 

increase of n . The reason is again the change of the range of N with the increase of n . 

 
Fig. 4.7 The relative Young’s modulus M OE E vs N for different 0 0/t l  

 
Fig. 4.8 (a)The maximum M OE E vs 0 0/t l ; (b) M OE E vs N for different 0 0/t l  
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Fig. 4.9 M OE E vs N for different k  

 
Fig. 4.10 The maximum M OE E vs n for different 0 0/t l  
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4.4 Conclusions 

In this chapter, by substituting the solid cell walls of the original regular 

hexagonal honeycomb (ORHH) with two equal mass NPR honeycombs, the re-entrant 

honeycomb and the isotropic chiral honeycomb, two new kinds of multifunctional 

hierarchical honeycombs are proposed. Based on the Euler beam theory, the analytical 

formulas for the Young’s moduli of these two new MHH structures are derived. 

Analytical analysis indicates that both the re-entrant honeycomb sub-structures and the 

chiral honeycomb substructures can greatly increase the in-plane stiffness of the MHH 

by appropriately designing its geometry. This chapter shows the possibility to design 

new hexagonal honeycombs for multifunctional applications, which combine the 

advantages of hierarchical and NPR materials. 

Appendix A: MHH cell wall with re-entrant honeycomb 

sub-structures 

In this appendix the mass equivalence between the cell walls of the ORHH and 

the MHH with re-entrant honeycomb sub-structures is derived. As shown in Fig. A(a), 

the cell walls of the MHH with re-entrant honeycomb sub-structures are fabricated by 

cutting the rectangular re-entrant honeycomb beams at the four red lines. The angles 

between the four red lines and the local direction 2 are all 60 . So the cell wall mass of 

the ORHH is equal to the mass encased by the four red lines (Fig. A(a)). 

Supposing the density of the solid of which the ORHH is made and the 

out-of-plane depth of the MHH structure are both 1, from geometrical analysis it is 

easy to obtain the following parameters and the mass of half-thickness re-entrant 

honeycombs cell 

 

 
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1 1 1 1
2 tan 2 tan
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1 1
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r r r r r r r r r

r r r

A t l h t t h l t t

t l t

 
 

 


                    
     
 

        (A1) 
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Fig. A (a) Schematics for the representative cell walls of the MHH with re-entrant honeycomb 

sub-structures ( 1N  ) shown in Fig. 4.1(b); (b) details of the re-entrant cells in (a). 

The number of the half-thickness re-entrant honeycomb cells in the uncut beam is 

   2 1 2 2 1B N n n N n     
                                         

(A2) 

The number of the half-thickness cell walls in the two outward sides is 

  2 1C n  
                                                      

(A3) 

The mass of half-thickness cell walls in the two outward sides is 
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 
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                 
    
 

     (A4) 

The ratio of the area encased by the four red lines is 

 
1 1

1

1 0 0

1 1
4

1 12 2 2 31 1 1 4 cos
2 3 2 3

t t
t

E N
t l l

  
   

                       (A5)   

Then the mass equivalence between the cell walls of the ORHH and the MHH with 
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re-entrant honeycomb sub-structures gives (Sun et al., in submission) 

  2
0 0 0

1

2 3
A B C D E t l t                                                 (A6) 

Rearranging Eq. (A6) gives 

 3 2 0BD AD BC AC E                                           (A7) 
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. 

Appendix B: MHH cell wall with chiral honeycomb 

sub-structures 

 
Fig. B Schematics for the representative cell walls of the MHH with chiral honeycomb sub-structures: 

(a) 1N  ; (b) 2N  . 

Fig. B schematically shows the cell walls of the MHH with chiral honeycomb 
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sub-structures (Fig. 4.5b). The hierarchical length ratio is 1 n  . M is the number of 

the circular cells in one cell wall of the MHH structure, N is the number of circular 

cells in the thickness direction of the cell wall. It is easy to get the following relation 

between M , N and n : 
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      

           
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                   (B1) 

Then, recursively, we find 

 2   (1 )M N n N N n                                               (B2) 
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Chapter 5 

5 Hierarchical fibers with a negative Poisson’s 

ratio for tougher composites 

In this chapter, a new kind of hierarchical tubes with a negative 

Poisson’s ratio (NPR) is proposed. The first level tube is constructed by 

rolling up an auxetic hexagonal honeycomb. Then, substituting the arm 

of the auxetic sheet with the first level tube and rolling it up give the 

second level tube. Iteratively, we can build the Nth ( 1N  ) level tube. 

Based on the Euler beam theory, the elastic parameters of the NPR 

hierarchical tubes under small deformations are derived. Under 

longitudinal axial tension, instead of shrinking, all levels of the NPR 

hierarchical tubes expand in the transverse directions. Using this kind 

of auxetic tubes as reinforced fibers in composite materials results in a 

higher resistance to fiber pullout. Thus, this chapter provides a new 

strategy for the design of fiber reinforced hierarchical bio-inspired 

composites with superior pull-out mechanism and toughness. An 

application with super carbon nanotubes concludes the chapter.  

5.1 Introduction 

In the last several years, due to their special mechanical and electronical 

properties, hierarchical covalent 2D and 3D networks based on 1D nanostructures have 

attracted many research attentions. One relevant example are the carbon nanotube 

(CNT) netwoks, in which carbon nanotubes are covalently connected through different 

nanojunctions such as X-, Y- or T-shape (Terrones, 2002; Romo-Herrera et al., 2007; 
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Georgios, 2008; Dimitrakakis, 2008; Li et al., 2009a; Li et al., 2009b;  Zsoldos, 2011), 

even in hierarchical ways (Pugno and Chen, 2011; Chen and Pugno, 2011; Chen and 

Pugno, 2012a, b, c). Coluci et al. (2006) proposed the self-similar hierarchical super 

carbon nanotubes (STs) and showed that they are stable and could present metallic or 

semiconducting behavior. Then, through the fractal method, Pugno (2006) evaluated 

the strength, toughness and stiffness the STs-reinforced composites and revealed that 

the optimized number of hierarchical levels is 2, similar to the optimization done by 

Nature in nacre. Then different numerical methods are applied to study the mechanical 

properties of the STs, such as the continuum (Wang et al., 2007a, b), molecular 

dynamics (Coluci et al., 2007; Qin et al., 2008) and molecular structure mechanics (Li. 

et al, 2008a, b) methods. These numerical simulations generally showed that the 

moduli of the STs were almost independent of the chirality of the ST, slightly affected 

by its arm tube chirality and determined mainly by the arm tube aspect ratio (Li. et al, 

2008c) and that with the increase of the hierarchical level the stiffness and modulus of 

the STs reduce significantly. Through theoretical analysis and finite element calculation 

Wang et al. (2007b) indicated that the stiffness reduction was mainly caused by radial 

shrinking of STs. The deformation of the STs can be greatly decreased if the shrinking 

is suppressed, therefore, they suggested filling the STs with a matrix, i.e., emphasizing 

the importance of the STs-reinforced composites as initially proposed by Pugno (2006). 

With respect of their disadvantageous shrinking, that normal STs under tension 

display, the concept of negative Poisson’s ratio (NPR) could also be introduced if we 

appropriately modify the geometrical structures of the super tubes. It is well known 

that under tension, instead of shrinking, the NPR materials will expand in the directions 

perpendicular to the loading direction and could thus have some interesting properties, 

when used as fiber-reinforced cement in a composite, such as enhanced toughness, 

improved shear stiffness, higher pull-out resistance and so on (Xu et al., 1999; Evans 

and Alderson, 2000; Yang et al., 2004; Greaves et al. 2011).   

In this chapter, combining the peculiar properties that super tubes show and the 

auxetic characteristics of NPR materials, a new hierarchical structure, hierarchical 
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tubes with a negative Poisson’s ratio, is proposed. Based on the Euler beam theory, the 

elastic parameters of the NPR hierarchical tubes under small deformations are 

calculated. Such auxetic hierarchical fibers are ideal to increase pull-out resistance and 

thus toughness of composites. 

5.2 Hierarchical structures with negative Poisson’s 

ratio 

5.2.1 Design of hierarchical NPR tubes 

 

Fig. 5.1 Schematic of the N-level hierarchical tube with negative Poisson’s ratio 

Fig. 5.1 shows the schematic of a N-level ( 1N  ) hierarchical tube with negative 

Poisson’s ratio. The N-level ( 1N  ) hierarchical tube is fabricated through iterating N 
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times a process, rolling a NPR sheet to a tube along the x-axis, see Figs. 5.1 and 5.2a.  

 

Fig. 5.2 (a) Schematic of the ith (1 i N  ) level NPR sheet and the corresponding ith (1 i N  ) 

level NPR tube made by rolling the NPR sheet; (b) the force diagram of a representative junction of 

the ith (1 i N  ) level NPR sheet or tube subject to the y-axis tension 

At first, based on the considered 1D nanostructure (e.g. a solid nanorod or a thin 

hollow cylinder, such as CNT) the first level NPR sheet that mimicks the NPR 

hexagonal honeycomb is constructed. Then, rolling up the first level NPR sheet gives 

the first level NPR tube. The second level NPR tube is constructed by substituting the 

arm tube of the first level NPR sheet with the first level NPR tube and then rolling it up. 

Iteratively, repeating the above process N times, we can build the Nth level tube. A 

representative junction of the ith (1 i N  ) level NPR sheet or tube is shown in Fig. 

5.2b, in which  1il  is the length of the arms and  30 0i    . 
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5.2.2 Elasticity of the hierarchical NPR tubes 

Based on the Euler beam theory, Wang et al. (2007b) derived the equivalent elastic 

parameters of the STs (positive Poisson’s ratio) from that of the arm tubes and verified 

the results through finite element simulations. Instead of the Young’s modulus E , they 

adopted a parameter E to describe the equivalent modulus of the CNT and STs, in 

which  is the thickness to diameter ratio of these thin hollow cylinder tubes. Similarly, 

in the following we analytically study the elastic moduli of the hierarchical NPR tubes 

shown in Fig. 5.2a. 

The level 1 NPR tube 

At first, we analyze the level 1 hierarchical NPR sheet and tube under uniaxial 

tension p in the direction y, in which the fundamental unit (level 0) is a solid nanorod 

or a thin hollow cylinder such as a CNT (Fig. 5.2a). From the force diagram of the 

representative junction shown in Fig. 5.2b it is evident that 

     1 0 1cos
4

p
M l 

                                                  

(5.1) 

in which  1M is the bending moment and  0l is the arm length. If the fundamental unit 

(level 0) is a solid nanorod, we have 

    
    

2
0 0

4
0 0

1

4
1

64

A d

I d





 

 


                                                  (5.2) 

in which  0d ,  0A and  0I are its diameter, cross section area and inertia moment. If the 

fundamental unit (level 0) is a thin hollow cylinder, such as a CNT, denoting its 

equivalent thickness as  0t , we have (Wang et al., 2007b) 
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in which  0d ,  0A and  0I are its equivalent diameter, cross section area, inertia moment 

and      0 0 0t d  is the thickness-to-diameter ratio. 

To analyze the level 1 NPR sheet and tube, we analyze the first level 

representative junction (Fig. 5.2b). Its lengths along the x-axis and y-axis are 
     1 1 02cosxl l and       1 1 01 sinyl l  . The elongations along the two directions can 

be obtained through structural analysis; we find: 
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in which  0E is the Young’s modulus of the fundamental unit (level 0). Then, the 

equivalent strains along the two directions can be easily calculated as 

 
 

 

 

   

  
 

 

    
  

 

      
  

1 2
0

22 0 00
1 1

1

1 0 0 0 1 2
0

2
0 0 0

2 sin
3 4                   for the solid nanorod

3sin 1

2 12 sin
3 2   for the thin hollow cylinder 

6

x
x

x

p

E dll p

l E A I p

E d

 


 
 

    
          

        

   

                                                               (5.5) 

 
 

      
 

 

    

 

    
      

 

      

      

 

2
0 121 12

1

1 0 00 1

2
1 0 12 2

2 10 0

2
1 0 12 2

2 10 0 0

cos1 1 2sin

241 sin

1 1 2sin 2 3 cos4
              for the solid nanorod

1 sin
   

1 1 2sin 1 3 cos
for the thin hollow cylind

1 sin

y
y

y

ll p

l A IE

p

E d

p

E d




  



  

 

 
       

 

 




 


er











      

(5.6)

 

in which      0 0 0l d  is the aspect ratio of the level 0 arms. Thus, the equivalent 

Poisson’s ratio  1 is calculated as  
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(5.7)

 The level 1 NPR sheet with size    1 1
x yL L is constituted by repeating the 

representative junction (Fig. 5.2b) in its plane  1m times along the x-axis and  1n times 

along the y-axis (Fig. 5.2a). We treat it as a plate with equivalent thickness (1)t , Young’s 

modulus  1E and Poisson’s ratio  1 . Rolling the level 1 NPR sheet, with direction y as 

longitudinal axis, gives the level 1 NPR tube. From the equivalence between the 

circumference of the level 1 NPR tube and the width  1
xL of the level 1 NPR sheet, it is 

easy to calculate the equivalent diameter (1)d of the level 1 NPR tube 

       1 1 0 1(1) (1) (1)2 cosx xd L m l m l                                     (5.8) 

Then, the slenderness ratio (1) and the thickness-to-diameter ratio (1) become: 

      1 1(1) (1) (1) (1) (1) (1) (1) (1)1 sin 2 cosyl d n l d n m                         (5.9) 

(1) (1) (1)t d                                                        (5.10) 

where (1)l is the length of the level 1 NPR tube. 

Except for the NPR tubes with very small diameters, the slight change of angles 

between the arms due to rolling can be ignored. Thus the results obtained for the level 

1 NPR sheet are easily extended to the level 1 NPR tube. Accordingly, the total 

deformation  1
yL  along the length direction of the level 1 NPR tube can be expressed 

as: 
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Thus the tensional rigidity  1

yk of the level 1NPR tube is  
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Then, the axial rigidity of the level 1 NPR tube can be obtained as 
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that is to say, 
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in which       2
1 1 1A d  is the equivalent cross section area of the level 1 NPR tube. 

The bending rigidity of the level 1 NPR tube can be expressed as (Wang et al., 

2007b)
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Substituting the expression       2
1 1 1A d  into Eq. (5.13) gives the equivalent 

modulus    1 1E  of the level 1 tube. If the fundamental unit (level 0) is the solid 

nanorod, 
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or, if the fundamental unit (level 0) is the thin hollow cylinder, we have 
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The level N NPR tube 

The elastic parameters of any level N ( 1N  ) NPR tube can be recursively 

derived by repeating the analysis reported in section 2.2.1. 

About the Poisson’s ratio of the level N tube, similar to Eq. (5.7), if the 

fundamental unit (level 0) is the solid nanorod, 
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or if the fundamental unit (level 0) is the thin hollow cylinder, 
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where,  30 0N    and 
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is the slenderness ratio of the arms of the Nth level NPR tube.  

With respect to the axial rigidity    N NE A of the level N NPR tube, if the 

fundamental unit (level 0) is the solid nanorod, from Eq. (5.14) it is easy to obtain that 
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where,  30 0i    and 
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is the slenderness ratio of the arms of the ith level NPR tube.  

Similar to Eq. (5.15), the bending rigidity    N NE I of the level N NPR tube is 

          21

8
N N N N NE I d E A

 
                                         (5.24) 

in which      1( ) ( )2 cosN N NN N
xd L m l    is the equivalent diameter of the level N 

NPR tube. 

It is also easy to get that, if the fundamental unit (level 0) is the solid nanorod,  
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Effects of the parameters
 N ,

 1N 
and N 

 

Fig. 5.3 Schematics of (a)    1 1E  vs  0 and (b)  1 vs  0  

To see the effects of  N ,  1N  and N on the elastic parameters of the level N 

NPR tube, we use the following examples, considering the NPR tubes with CNT as 

fundamental unit. With respect to the effects of  1N  on    N NE  and  N , the 

parameters 1N  ,  1 20   ,  1 10m  ,  0 5 10   are adopted and the related results 

are reported in Fig. 5.3. From Fig. 5.3 we can see that both    1 1E  and  1 decrease with  
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Fig. 5.4 Schematics of (a)    1 1E  vs  1 and (b)  1 vs  1   

 
Fig. 5.5 Schematic of the axial rigidity    N NE A vs the hierarchical level N 

the increase of  0 . Similarly, about the effects of  N on    N NE  and  N , the 

parameters 1N  ,  0 5  ,  1 10m  ,  1 30 0     are considered. The related results 

are shown in Fig. 5.4. It can be seen that  1 increases with the increase of  1 , 

however,    1 1E  at first decreases with the increase of  1 until about 22  and after 

that it increases with the increase of  1 , showing an interesting minimum, see Fig. 

5.4a. For higher level N ( 1N  ), the effects of  N on    N NE  and  N are similar to 

that of level 1. Finally, about the effect of the hierarchical level N on the axial rigidity
   N NE A , the following parameters are considered: 1 5N   ,   20N   ,   10Nm  ,
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  50Nn  ,  1 5.5N   . The related results are displayed in Fig. 5.5. We can see that 

axial rigidity    N NE A decreases with the increase of N. Also for higher level N ( 1N  ) 

NPR tube the effects of the parameters  N ,  1N  and N are similar to those of the level 

1 NPR tube. Note that with the increase of the hierarchical level N the equivalent 

modulus    N NE  of the level N NPR tube sharply decreases, as can be easily seen from 

Eqs. (5.25) or (5.26). 

5.3 Conclusions 

A new kind of hierarchical tubes with negative Poisson’s ratio is proposed in this 

chapter. The equivalent elastic parameters of the NPR hierarchical tubes under small 

deformations are derived through the Euler beam theory. The results show that both the 

angles between the arms and the slenderness ratio of the arms have great influences on 

the equivalent modulus, axial rigidity and Poisson’s ratio of the hierarchical NPR tube 

and can thus be tuned to match the requirement of a specific application. Under 

longitudinal axial tension, all levels of the negative Poisson’s ratio hierarchical tubes 

will expand in the transverse directions rather than shrink. Using these NPR tubes as 

reinforced fibers in composite materials can result in a higher resistance to fiber pullout 

and thus provides new strategies for the design of the fiber reinforced tougher 

hierarchical bio-inspired composites. It should be noted that the theory in this chapter 

is limited to the hierarchical NPR tubes with slender arms in small bending 

deformations. 
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Chapter 6 

6 A hierarchical bridged crack model  

The constitutive flexural and tensile behaviors of the discontinuous fiber 

reinforced brittle matrix composites are analyzed. Snap-back or 

snap-through instabilities exist in both cases under the assumption of 

rigid-plastic bridging law. Results show that with the increase of the 

brittleness number, a brittle to ductile transition appears for the flexural 

loading case but for the tensile loading case our responses calculated 

here always tend to be brittle with the increase of the crack length. This 

illustrates that for fiber reinforced brittle matrix composites size-scale 

effects are influenced by the loading configurations. Meanwhile, the 

bridged crack model is hierarchically extended through the recursive 

method. A two level numerical example is discussed and the results are 

compared with the beam of the same geometry without hierarchy. The 

maximum strength for the former case is larger than that of the later one, 

which suggests the use of hierarchy to optimize fiber-reinforced 

hierarchical bio-inspired materials. 

 

6.1 Introduction 

Crack growth in brittle matrix composites attracted many attentions in the past 

thirty years. It is a discontinuous phenomenon which can be characterized by sudden 

initiations or arrests of the crack propagation caused by the bridging actions of the 

inclusion phases or by the rise and coalescences of microcracks in the process or 

bridging zone. Due to these kinds of local discontinuities, snap-back and snap-through 
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phenomena can appear in the crack loading process. Carpinteri et al. analyzed the 

size-scale effects involving snap-back instabilities in different kinds of materials and 

conditions, such as concrete, elastic softening slabs, brittle matrix fibrous composites, 

strengthened beams, multi-cracked solids, etc.(Bocca et al., 1990; Bosco et al., 1990; 

Carpinteri and Massabo, 1997). In particular, they introduced a parameter, the 

brittleness number, which explicitly describes the size-scale effects of materials. 

Bazant (1987) investigated the snap instability at crack ligament tearing and explained 

its implications for fracture micromechanics. Also, the fiber bundle model is used to 

consider the snap-back phenomenon in quasi-brittle materials (Ren and Li, 2011) or in 

the hierarchical supertough nanofibers inspired by spider silks (Bosia et al., 2010). 

General reviews about the crack-bridging concepts are given by Bao and Suo (1992) 

and Cox and Marshall (1994). 

Although the bridged crack model under monotonic and cyclic bending conditions 

have been extensively studied (Carpinteri and Massabo, 1997; Carpinteri et al., 2006), 

its applications to the axial tensile loading cases are not wildely discussed, and more 

importantly hierarchy has never been investigated. Therefore, in this chapter, based on 

the bridged crack model, the flexural and tensile behaviors of the discontinuous fiber 

reinforced brittle matrix hierarchical composites are studied. In fact, bio-inspired 

hierarchical materials (Lakes, 1993), especially the super-composites (Bosia et al., 

2010; Pugno, 2006), are attracting increasing interests. In this regard, hierarchy 

suggests a due to design materials with simltaneously optimized strength, stiffness and 

toughness (Gao, 2006).  

6.2 Bridged crack model and dimensional analysis 

As shown in Fig. 6.1, the bridged crack model is schematically illustrated for the 

discontinuous fiber reinforced brittle matrix composites. One is for the tensile loading 

case (Fig. 6.1a), and the other one is for the flexural loading condition (Fig. 6.1b). The 

load is placed on the composite beam with a notched through thickness edged crack 
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and the loading process is controlled by monotonically increasing the crack length. The 

cracked cross section of the composite beam is shown in the right picture of Fig. 6.1a 

or Fig. 6.1b, in which symbols h and b denote the depth and thickness of the cross 

section respectively. The crack length and the normalized crack depth are denoted by 

a and a h  . The closing force ( 1,2, , )iP i m  represents the bridging actions of a 

discrete number of localized reinforcements, iC is the relative localized coordinate of 

the reinforcement related to the bottom of the cross section and its normalized value is 

expressed as i iC h  . The symbol iw stands for the corresponding crack opening of 

the i-th reinforcement. 

 
Fig. 6.1 Schemes for the discontinuous fiber reinforced brittle matrix composite under (a) tension or 

(b) bending 

The crack propagation condition for the matrix is defined to be brittle, i.e., the 

crack starts to propagate when the global stress intensity factor IK , which is a 

measure of the singular stress field in the crack tip vicinity, reaches the fracture 
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toughness ICK of the matrix. A rigid-perfectly plastic bridging law relating the closing 

force iP to the crack opening iw is assumed for the reinforcements. This law is a simple 

model which is physically realistic for small slips that could represent both the fiber 

yielding and the matrix-fiber sliding. Moreover, it implies that a maximum bridging 

traction 
ip i yP A  is defined, in which iA  is the cross section area of the i-th 

reinforcement and y is the minimum between the i-th reinforcement yield strength and 

the sliding stress. Besides, low reinforcement volume ratios are considered in order that 

only the matrix properties control the composite elastic behavior. Here we define  as 

the total volume ratio of the reinforcements and i the single volume ratio of the i-th 

reinforcement. The constitutive flexural and tensile behaviors, which link the bending 

moment M to the localized rotation and the tensile force F to the local displacement

 , could be derived from the above introduced principles and laws.  

To synthetically investigate the flexural responses and final collapse of the cross 

section shown in Fig. 6.1b, the dimensional analysis with respect to the bending 

moment M and the localized rotation   can be adopted (Carpinteri and Massabo, 

1997): 

 
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, , , , , , 0y
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hM Eh
f f M N E

K KK h
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                           (6.1) 

in which M , E , pN are defined in Eq. (6.1) and
 
represent the dimensionless values of 

the applied bending moment M , the matrix’s Young’s modulus E  and the 

reinforcement ultimate strength y . Because the parameter E is simply a constant, then 

Eq. (6.1) can be simplified to the following form: 

 , , 0pf M N                                                       (6.2) 

in which the dimensionless parameter 

0.5
y

p
IC

h
N

K


                                                        (6.3) 

is also called brittleness number and reflects the brittleness of the composite beam. 
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Similarly, the dimensionless physical equation for the tensile force F and the local 

displacement D can be expressed as: 

 
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                                 (6.4) 

in which F represents the dimensionless applied tensile force. 

For a fixed crack length, the crack propagation tensile force FF , i.e., the force for 

the crack at the onset of propagation, can be obtained through the superposition 

principle and the mobile equilibrium conditions: 
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in which IK is the global crack tip stress intensity factor; IFK and IiK are the stress 

intensity factors due to the tensile force F and the generic closing forces iP ;  FY  and 

 ,P iY   are the dimensionless geometry functions for the tensile force F and the 

closing forces iP (Appendix B). By rearranging Eq. (6.5) we get the dimensionless form 

of the crack propagation tensile force FF : 
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The localized displacement D at the onset of crack propagation can be calculated 

using the Castigliano’s Theorem: 

Fu
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                                                          (6.7) 

in which Fu is the strain energy of the cracked body. The relationship among Fu , the 

energy release rate G and the global stress intensity factor IK has the following form:   
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Combining Eqs. (6.5), (6.7) and (6.8) we obtain the localized displacement D :  
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Rearranging Eq. (6.9) gives the dimensionless form of the localized displacement D : 
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Similarly, we can get the dimensionless form of the crack propagation moment FM and 

the corresponding localized rotation :             
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in which  MY  and  ,P iY   are the dimensionless geometry functions for the  

bending moment M and the generic closing forces iP (Appendix B). 

6.3  Flexural behavior vs tensile behavior 

In this part, numerical simulations for the above derived bridged crack model are 

analyzed. A comparison between the flexural behavior and the tensile behavior of a two 

layers reinforced composite beam is performed to study the influence of the brittleness 

number in different loading configurations.  

Using the calculating procedure reported in Appendix A, the flexural and tensile 

behaviors of a two layers reinforced brittle matrix composite beam are analyzed 

respectively for different brittleness numbers. The parameters used for the composite 

beam are 43 10E    MPa, 390y   MPa, 0.1b  m, 0.1h  m, the number of 

reinforced layers is 2m  , the fracture toughness of the matrix 1.75ICK  MPa m and

 0.5 0.1,  0.4, 0.6,  0.9P y ICN h K   . The normalized local coordinates of the two 

layers reinforcements are 1 0.1  and 2 0.2  .The initial crack length 0.11  . From 

the brittleness number  0.5
P y ICN h K  we can see that only the reinforcements 

volume ratio  is changing with the change of PN . The flexural and tensile responses 
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of the beam are shown in Fig. 6.2 and Fig. 6.3 respectively. 

 
Fig. 6.2 Dimensionless bending moments vs normalized local rotations for a beam with two 

reinforcements as the brittleness number pN varies 

From Fig. 6.2 and Fig. 6.3 we can see that due to the nonlinear properties of the 

reinforcements snap-back and snap-through instabilities exist in both loading 

conditions. In Fig. 6.2 it is obvious that with the increase of the brittleness number 

from 0.1 to 0.9 a brittle to ductile transition appears for the bending case. But for the 

tensile loading case in Fig. 6.3 even though the brittleness number increases, the 

response of the beam always tends to be brittle with the increase of the crack length. In 

fact, in Fig. 6.2a to Fig. 6.2d both the two reinforcements always yield, so the ultimate 

moment uM can change linearly with the brittleness number PN . From the moment 

equilibrium it is easy to get the relationship    1.5
I P 1 21 2u CM K bh N       . In Fig. 

6.3a both the two reinforcements yield in the loading process while in Fig. 6.3b to Fig. 

6.3d the two reinforcements do not yield although the crack length is keeping 

increasing, thus leading to the same tensile responses. In other words, in the 
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investigated tensile loading cases when the brittleness number is large enough the 

reinforcements do not reach their yielding strength, which means that the tensile 

behavior is independent of the brittleness number. The above different responses in Fig. 

6.2 and Fig. 6.3 imply that size-scale effects for the discontinuous fiber reinforced 

composites are closely related to the loading configurations. 

 

Fig. 6.3 Dimensionless tensile forces vs normalized localized displacements for the same beam in Fig. 

6.2 as the brittleness number pN varies 

6.4 The hierarchical bridged crack model  

In this section the bridged crack model is expanded to the self-similar hierarchical 

discontinuous fiber reinforced brittle matrix composite (Fig. 6.4), a relevant case for 

biological or bio-inspired nanomaterials. 
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6.4.1 Basic theory 

 
Fig. 6.4 Schematic of the self-similar hierarchical discontinuous fiber reinforced brittle matrix 

composite 

As shown in Fig. 6.4, the definition “self-similar” implies that the whole part of 

the lower level is treated as the reinforcement for the higher level. For each hierarchical 

level the rigid-perfectly plastic bridging law is assumed and the maximum strength of 

the lower level is treated as the yield strength for the fiber of the next hierarchical level. 

Then the recursive parameters for each hierarchy can be attained accordingly. 

The brittleness number for each hierarchy is 
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Here we consider the tensile behavior of the hierarchical model. Similar to Eq. (6.6), 

the dimensionless tensile force for each hierarchy is 
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And the corresponding dimensionless local displacement is 
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6.4.2 An example of a two levels hierarchical beam 

In this section a simple example for a two level hierarchical beam is given using 

the hierarchical bridged crack model presented in section 4.1 and the results (Fig. 6.5a) 

are compared with those related to the same geometry without hierarchy (Fig. 6.5b). 

 
Fig. 6.5 (a) A two level self-similar hierarchical beam with 3 reinforcements; (b) the composite beam 

with the same geometry as that of level 2 in (a) 

For level 1 of the hierarchical beam shown in Fig. 6.5a, we consider 3 layers of 

reinforcements which are located at 0.25,  0.5, 0.75  respectively. The employed 

parameters are 4
1 3 10mE    MPa, 5

1 2.06 10E   MPa, 1 450y   MPa, 1.43m   

MPa, 1 0.001b  m, 1 0.005h  m, 1 3n   (reinforced layers), (1) 1.75ICK  MPa m ,

 (1) (1) 0.5
1 1 1 0.033P IC yN K h   ,  (1) 0.5 (1)

P 1 1 0.6y1 ICN h K   . Using the procedure 

reported in Appendix A we get the tensile behavior of the level 1 beam involving the 

dimensionless tensile force and the normalized local displacement (Fig. 6.6). 
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Fig. 6.6 Dimensionless tensile forces vs normalized localized displacements for hierarchical level 1 

beam shown in Fig. 6.5a 

 

Fig. 6.7 Dimensionless tensile forces vs normalized localized displacements for hierarchical level 2 

beam shown in Fig. 6.5a 
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Using the assumptions given in section 4.1, that connect level 1 and level 2 of the 

hierarchical beam, we obtain the following parameters for hierarchical level 2 (Fig. 

6.5a): 4
2 1 3 10m mE E   MPa, 4

2 1 1 1(1 ) 3.1 10mE E E       MPa, 2 3n  ,
(2) (1) 1.75 MPa mIC ICK K  ,     2

2 2 1 1 2 2 2 1 1 1 1 2 1 3.3%n b h b h n b h Ab Ah n A        ,

2 1 0.01b Ab  , 2 1 0.05h Ah  ,    (1) (1) (1) 0.5
2 max max 1 1 1 1 1 10.9713y ICF b h K b h b h     

24.04 MPa, (2) 0.5 (2) (1) 0.5 (2)
2 2 2 2 max 2= =0.1014P y IC ICN h K h K    . The corresponding 

dimensionless tensile forces versus the normalized local displacements are depicted in 

Fig. 6.7. 

For the beam without hierarchy shown in Fig. 6.5b which has the same geometry 

of the 2 hierarchical level beam shown in Fig. 6.5a, we consider 9 reinforcements 

located at 0.225, 0.25, 0.275; 0.475, 0.5, 0.525; 0.725, 0.75, 0.775 respectively. 

Referring to Appendix A, we get its fracture response under the tensile loading (Fig. 

6.8). 

 

Fig. 6.8 Dimensionless tensile forces vs normalized local displacements for the beam without 

hierarchy shown in Fig. 6.5b 

From Fig. 6.6 and Fig. 6.7 we can see that snap-back instability phenomena exist 
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in both the hierarchical levels. With the increase of the hierarchy level, the maximum 

strength is decreasing. In order to investigate the efficiency of hierarchy in structural 

design we have compared the 2 level hierarchy beam in Fig. 6.5a with the beam 

without hierarchy shown in Fig. 6.5b. From Fig. 6.7 and Fig. 6.8 we can see that the 

global tensile behavior trends of the two beams are similar. In the hierarchical beam 

(Fig. 6.7) the amplitude of snap back is much larger than that in the beam without 

hierarchy (Fig. 6.8), because level 1 is treated as a whole reinforcement for level 2. But 

the number of snap- back for the hierarchical beam is less than those of the beam 

without hierarchy. Also the maximum strength for the two levels hierarchical beam is 

larger than that of the same geometry beam without hierarchy, which in some extent 

may imply that hierarchy could be a better design strategy in material science. 

6.5 Conclusions 

In this chapter, the constitutive response of the discontinuous fiber reinforced 

brittle matrix composites are analyzed through the bridged crack model. Under the 

assumption of the rigid-plastic bridging law, the flexural and tensile behaviors of the 

composite beam are compared. Due to the nonlinear properties of the reinforcements 

and the way of crack length controlled loading, snap- back or snap-through phenomena 

appear in both cases. Results show that with the increasing of the brittleness number, a 

brittle to ductile transition phenomenon appears for the bending case but for the tensile 

case the responses always tend to be brittle with the increase of the crack length. This 

illustrates that size scale effects can be greatly influenced by loading configurations for 

the discontinuous fiber reinforced composites. At the same time, the bridged crack 

model is extended to the hierarchical case through the recursive method. A simple 

example about a two levels hierarchical beam is given and the results are compared 

with the beam of the same geometry without hierarchy. The maximum strength for the 

hierarchical case is larger than that without hierarchy, which in some extent suggests 

hierarchy as a promising strategy to maximize the strength of composites. 
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Appendix A 

This appendix describes the adopted numerical procedure to plot Eq. (6.11) and Eq. 

(6.12), Eq. (6.6) and Eq. (6.10). Suppose there are m bridging fibers in the crack length. 

Under the assumption of rigid-perfectly plastic law for the reinforcements, the 

compatability equation for the flexural behavior can be expressed as 

        0M Fw M P                                              (A1) 

in which    T

1, , mw w w  is the vector of the crack opening displacements at 

different bridged levels,    T

1, , mP P P  is the vector of the corresponded bridging 

forces,  M and   are the vector of  the localized compliances related to the 

bending moment M and the symmetrical m m matrix whose generic element ij 

represents the localized compliance ij . The general form of the localized compliances 

ij for Fig. 6.1 is (Carpinteri and Massabo, 1997) 

0

2
d

a Ii Ij
ij

i j

K K
b a

E PP
                                                    (A2) 

For the beam under bending in Fig. 6.1(b), by substituting (B1) and (B3) (see next 

Appendix) into Eq. (A2) we can get the following localized compliances: 
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, d

i
iM M P iY y Y y y

Ebh




                                            (A3) 
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, , d
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 
                                        (A4) 

 2
2 0

2
dMM MY y y

Ebh


                                                 (A5) 

The integral singularity that may exist in (A3) and (A4) can be solved by using the 

trapezoidal quadrature rule, not necessarily the method introduced in reference (Bao 

and Suo, 1992) . 

If no reinforcements are yielded, from (A1) we can get the vector for the bridging 

forces 
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     1

Mp M                                                     (A6) 

Rearranging Eq. (A6) gives 

  ( 1, , )i ip r M i m                                                   (A7) 

The first plastic bending moment is 

1
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p
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                                                           (A8) 

Substituting Eq. (A7) into Eq. (6.5) we get the dimensionless crack propagation 

bending moment 
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When 
1F PM M or

1F PM M , the first fiber 1i  will yield. 

If  (1 )n n m  fibers have yielded, we get the following form of the 

compatability equation: 

,
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ep eeM ee e
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                                    (A10) 

in which the subscripts p and e refer to plastic and elastic or yielded and not yielded 

respectively. 

For the n yielded fibers the bridging forces are (1 )
ii pP P i n   . From   0ew  , 

we get  

      1

,e pp M e ep pp M p  


                                           (A11) 

which implies that 

 ( 1 )i i ip r M r n i m                                                 (A12) 

The plastic bending moment for 1n i m   is: 
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Substituting Eq. (A13) into Eq. (6.5) we obtain the dimensionless crack propagation 

bending moment 
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          (A14) 

Substituting Eqs. (A7) and (A9) or (A12) and (A14) into Eq. (6.12) gives the localized 

rotation .  

Similarly, by simply revising the equations and repeat the process from (A1) to 

(A14) we can numerically plot Eq. (6.6) and Eq. (6.10) for the tensile case. 

Appendix B 
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Chapter 7 

7 Conclusions and Outlook 

The light weight cellular solids are widely used in industries and play a vital role 

in our daily life. Two of the most peculiar celluar solids are honeycombs and the 

carbon nanotube networks. With respaect to these two kinds of common cellular solids, 

what we care about are not only their mechicanl properties but also the potential 

multifunctionality they may have, in order that they could serve the human being more 

effectively and more conveniently. Therefore, in this thesis we have focused on the 

multifunctional hierarchical cellular solids, involving honeycombs and super carbon 

nanotubes, respectively.     

Firstly, we reviewed some recent developments of honeycombs and carbon 

nanotube networks and summarized the potential multifunctionality they may show for 

practical applications.  

In chapter 2, through the effective media model, the thermal and 

thermomechanical performances of the two-dimensional metal honeycombs (with 

relative density less than 0.3), hexagonal, triangular, square and Kagome honeycombs, 

are systematically studied. With respect to the overall thermal performance, regular 

hexagonal honeycombs are found to provide the highest level of heat dissipation. 

Under the same structural weight, the thermomechanical performance of Kagome 

honeycombs generally outperforms the other three kinds of honeycombs.     

The multifunctional hierarchical honeycomb (MHH) is proposed in chapters 3 and 

4. It is constructed by substituting the cell wall of an original regular honeycomb with 

five different equal mass lattices, hexagonal, triangular, Kagome, re-entrant hexagonal 
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and chiral honeycombs. Elastic and transport properties of the MHH with hexagonal, 

triangular and Kagome substructures are analyzed. In plane stiffness of the MHH with 

re-entrant hexagonal and chiral honeycombs are studied. Results show that the 

hexagonal sub-structure is difficult to greatly improve the elastic properties of the 

MHH structure, however, its counterparts, the triangular or Kagome sub-structures, 

result in a substantial improvement by 1 magnitude or even 3 orders of magnitude on 

the Young’s and shear moduli of the MHH structure, depending on the cell-wall 

thickness-to-length ratio of the ORHH. By appropriately adjusting the geometrical 

parameters also both the re-entrant honeycomb (when the cell-wall thickness-to-length 

ratio of the ORHH is less than 0.045) and the chiral honeycomb (when the cell-wall 

thickness-to-length ratio of the ORHH is less than 0.75) can greatly tune the in-plane 

stiffness of the MHH structure. 

The hierarchical fibers with a negative Poisson’s ratio (NPR) for tougher 

composites is proposed in Chapter 5 and the related effective elastic moduli are 

calculated, based on the Euler beam theory. Under longitudinal axial tension, instead of 

shrinking, all levels of the NPR hierarchical tubes expand in the transverse directions. 

Using this kind of auxetic tubes as reinforced fibers in composite materials could 

produce a higher resistance to fiber pullout. In chapter 6 an application of the 

hierarchical fibers in bridged crack model is reported. Results show that for fiber 

reinforced brittle matrix composites size-scale effects are influenced by the loading 

configurations.  

Still there are a lot of points we can focus in the future, such as the heat transfer 

efficiency and dynamic properties of the multifunctional hierarchical honeycombs 

(MHH), the methods to fabricate the MHH and the negative Poisson’s ratio 

hierarchical fibers, and the experimental and numerical simulations to verify the 

analytical results obtained in this thesis.    




