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by Devagnik Dasgupta

The theory of molecular sieving has long been a subject of importance because of
its widespread technological applications .Classical molecular sieving mainly de-
pends on the size and shape of the guest molecules and the size of the host solid.
However,isotope seperation is usually very difficult to achieve through classical
sieving, as the isotopes generally have the same shape and size and differ only
in mass.One way to resolve such an issue is through the applications of quantum
effects which are prominent inside nanotubes and nanopores of diameters that are
comparable with the De-broglie wavelength λ of the molecules.
In the recent past, various authors have calculated the selectivity of isotopes
(mainly hydrogen-deuterium) diffusing through nanotubes where they predict the
preferable selectivity of the heavier species over the lighter species based on the
difference in their zero point energies. The effects are more pronounced at low
temperature regimes where quantum effects are dominant. However, this kind of
sieving, though showing appreciable preference to the heavier isotope, is far from
being ”perfect” and also technologically expensive as very low temperature range
is required.
In our work, we try to search for a technologically inexpensive method for realising
isotope sieving by introducing two nanotubes of different radii that are coupled
together. Through a mathemetical model that best describes the situation, we try
to search for a ”perfect” sieving of the hydrogen-deuterium isotopes over a wide
temeperature range, not restricting ourselves to very low temperatures. As we
have found out and will be described in the following work,the two nanotube sys-
tem does indeed go a long way towards a technologically efficient way of realising
”perfect” sieving. We also employ MD simulations to investigate kinetic sieving of
isotopes through nanotubes. The quantum effects are introduced into the system
via a modified FH potential, and ring polymer MD simulation is used to model
the system. Though the selectivity values we found in our results are lower in
comparison to those already predicted using equilibrium sieving, our results show
similar qualitative behaviour to the same approach adopted by others previously
using different sieving material .
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Chapter 1

INTRODUCTION

1.1 What is molecular sieving?

Molecular sieving is normally defined as the process that is used to seperate two

molecules from a mixture. Classically, a pore or an opening is used as a sieve(hence

the name sieving) which allows the molecule with the smaller size to pass through

and refuses to let the bigger one pass. However, as simple as it sounds, this process

is futile when used to seperate isotopes as normally isotopes of a same species are

almost similar in size and shape, differing only in mass.

1.2 Why quantum?

In the nano regime, the diameter of the nanotube or nanopore is comparable in size

to the De-broglie wavelength of the molecule. The quantum effects thus become

prominent due to constriction in size available for the movement of molecules.

2
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1.3 Literature Review

The concept of quantum sieving was introduced by Beenakker et al[1] through a

simplistic model. The authors considered the nanoporous materials of diameter

d such that d ≈ λ (where λ=h/mvr is the de-broglie wavelength associated with

the molecule). This resulted in the quantization of transverse motion of the parti-

cles and an overall reduced dimensionality of the particle ensemble. The authors

limited their discussions to low molecular densities in the pores such that the

molecule-molecule interaction was negligible to the molecule-wall interaction. The

pores were considered to be cylindrical with a constant diameter, and the motion

of the molecules could be seperated into two independent components, radial and

axial. While along the axial direction, the motion was free i.e classical, along the

radial direction the energies were quantized as the particles moved in a square

circular potential well of depth ε which arises due to the interaction between the

molecules and the walls of the nanotube. The quantized energy levels were given

as

Ei = ε+
2γ2i ~2

(d− σ)2m
(1.1)

where γi are related to zeroes of the bessel functions and σ is the molecular diam-

eter.

It can be seen directly from the expression for energy that Ei is inversely propor-

tional to mass, which indicates lighter particles have a higher quantization and

vice versa. This very fact is exploited explicitly in our studies. The authors con-

cluded that quantum effects were characterized by two main parameters-

i)E0/ε, the relative importance of the ground state energy with respect to the

potential energy originating from molecule wall interactions.

ii)(E1 − E0)/kbT , the excitation energy of the first excited level compared to the

thermal energy of the molecule.
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If E0/ε >1, this implies that a molecule entering the channel from a free space en-

counters an energy barrier that can only be overcome by thermal excitation. Phys-

ically, it means that zero point motion overcompensates the attractive molecule-

wall interaction and will result in a decrease of the molecular density inside the

nanochannel. They termed this effect, where the adsorption in porous media is

dominated by the zero point energy, as quantum sieving. The authors also gave

some estimates about the viability of quantum sieving in various molecules. For

example, for Helium isotopes, they concluded that the situation E0/ε >1 will be

realised for diameters of about 0.4 nm.

The second quantum effect arose from the increase in level splitting with decreas-

ing d and m. (E1 − E0)/kbT �1, indicates that the level splitting in the well

becomes so large that all particles for the radial motion are exclusively in their

ground state leaving the first excited state vacant. Thus the system behaves like a

1D gas, in which two degrees of freedom are frozen and only the axial tranlational

motion remains. This situation, according to the authors, should be realized for

T≤ 78 K for hydrogen and helium molecules. They also concluded that since iso-

topes will have the same values of σ and ε, the adsorption through the channels

would be dominated by the respective E0 values, and in turn, their masses. This

also implied that the heavier isotope should be favourably adsorped in preference

to the lighter one.

This basic idea was later expanded upon by several authors using realistic descrip-

tion of molecules and microporous adsorbents, notably by Johnson and co-workers

[2, 3]. Using a simple theoretical model and extensive path integral calculations,

the authors showed that molecular tritium will be readily adsorbed in microp-

ores whereas molecular hydrogen will be excluded as a result of quantum sieving.

They predicted that interstitial channels of close packed carbon nanotube bundles

or ropes have the correct pore size and solid-fluid potential to effectively sieve
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mixtures of H2 and T2. The theoretical model was based on considering a gas

mixture (H2 and T2) in equilibrium with the adsorbed phase. Like the previous

authors, the gas mixture was considered to be of sufficiently low density so that the

adsorbate formed a classical 1D gas, with unhindered motion along the axis and

quantized radial degrees of freedom in their ground state. However,an important

point to remember is that this treatment is only valid for very low temperatures.In

this model,the ground state energy of species i’s transverse wave function is de-

noted by Ei. The chemical potential of this adsorbed component is given by Stan

et al[4, 5],

µadsi = Ei + kbT ln(
ρiλi
qi

) (1.2)

where

ρi=number density of component i in the pore

λi=
√

2π~2/µikbT is the de-broglie thermal wavelength

qi=internal molecular partition function

µi=mass of the component i

T=absolute temperature

Assuming that the bulk phase is an ideal gas (following Maxwell-Boltzmann law of

distribution) at very low pressure, the chemical potential of the same component

µbulki is given as,

µbulki = kbT ln(
niλ

3
i

qi
) (1.3)

where ni is the bulk phase density of the component i

The adsorbed phase is in equilibrium with the bulk phase, so µadsi =µbulki . Thus

assuming qi is the same in adsorbed and bulk phase,

ρi = niλ
2
i e
−Ei/kbT (1.4)
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if the coadsorption of two distinct components are now considered, the selectivity

of component i over j is defined as

S =
xi/xj
yi/yj

(1.5)

where x and y refer to the mole fractions in the adsorbed and bulk phase respec-

tively. The analysis above yields the selectivity in the limit of low pressure and

temperature denoted by S0. Combining eqns(1.4) and (1.5)

S0 = (
µj
µi

) exp[−Ei − Ej
kbT

] (1.6)

It is noted that S0 is independent of the bulk phase composition. A simple example

as demonstrated by the authors elucidates the significance of this relation. A

case where the adsorption potential is radially symmetric harmonic potential is

considered i.e V (r)=Kr2/2. Then, the ground state energy of the species µi is

given by ~
2

√
K
µi

. Since the two isotopes of the adsorbed species with mass µ1 and

µ2 are subject to the same potential, the low pressure selectivity of component 2

over component 1 is given by

S0 =
µ1

µ2

exp[−~
√
K

kbT
(

1
√
µ2

− 1
√
µ1

)] (1.7)

thus if µ1 < µ2, then S0 > 1 at low temperatures. This shows that the pore selec-

tively adsorbs the heavier isoptope over the lighter one. Although the simple form

of harmonic potential for zero point energy of isotopes is highly exaggerated, yet

the preference of heavy over light isotope is a generic feature of quantum sieving.

Eqn (1.7) is valid when the quantum confinement of the adsorbate is two dimen-

sional. In very large pores, for species that adsorb close to pore wall, quantum

confinement will occur radially but not angularly. In this case of one dimensional
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confinement,S0 is given by

S0 =

√
µj
µi

exp[−Ei − Ej
kbT

] (1.8)

where Ei is the ground state energy due to the quantization in the direction nor-

mal to pore wall.

This theory was extended by the authors by relaxing the assumption that at low

temperatures only ground states are populated. If El is the lth energy level for the

quantized transverse motion, the chemical potential for the adsorbed component

is given by

µadsi = −kbT ln(
∑
l

e−E
l
i/kbT ) + kbT ln(

ρiλi
qi

) (1.9)

which reduces to eqn (1.2) when only the ground state is populated. Considering

the population of excited states, eqn (1.9) in combination with eqn (1.3) gives the

selectivity as

S0 =
µj
µi

[

∑
l exp(−El

i/kbT )∑
l exp(−El

j/kbT )
] (1.10)

To ensure the validity of the theoretical model , calculations were extended to the

numerical domain by almost accurate representation of adsorbate potential with

atom-atom potential functions(like Lennard-jones potential). For the evaluation

of S0, path integral Monte Carlo(PIMC)methods were used with a final expression

for S0 given as

S0 =

∫
dΓ1

∫
dω1

∫ R
0
rdr exp[−U1/kbT ]∫

dΓ1

∫
dω1

∫ R
0
rdr exp[−U2/kbT ]

(1.11)

where

U=the configurational energy

Γ , ω=path’s internal conformation and orientation

r=the radial position of the ring’s center of mass

R=tube’s radius
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For effective quantum sieving, the authors found that fullerene single wall carbon

nanotubes (SWNT) are excellent candidates as the pore widths of these tubes are

slightly larger than the molecular diameter of adsorbate molecules. They calcu-

lated the zero presuure selectivity S0 for SWNT s of various diameters. The solid

fluid potential was generated for various (n,m) tubes (nomenclature as used by

Hamada et al [6]) by using the Crowell-Brown [7] potential for hydrogen-carbon

interactions.They found that SWNTs wider than d ≈ 7Å exhibited weak selectiv-

ity while those smaller were predicted to show dramatically large selectivities. The

authors inferred that this is because below 7Å,the adsorbed molecules are highly

confined and hence possess significant zero point energies whereas as the tube di-

ameter goes beyond 7Å, molecules preferentially adsorb near the pore walls rather

than the pore center, leading to the type of 1 D confinement given by eqn(1.8).

A plot of S0(T2/H2) at 20 K for SWNTs of various sizes shows that selectivity

increases as tube diameter decreases, reaching a value of almost 105 for a (3, 6)

tube [2, 3]. Furthermore, the agreement between eqn(1.6) and the path integral

simulations were found to be excellent. One interesting feature as noted by the

authors were that the lowest selectivity occurs at the transition between 2D and

1D confinement, as in the (6, 6) nanotube. The reason given was that the interac-

tion potential inside the (6, 6) nanotube being flatter and broader at the well as

compared to either narrower or wider tubes, the adsorbate wave functions were

more delocalized, making them an unlikely candidate for confinement of small

molecules.

Another important feature noted in the same papers were that quantum siev-

ing could be effectively achieved by allowing adsorption in the interstitial regions

formed by ordered bundles of SWNT s. Stan et al[5] performed theoretical cal-

culations showing that He and Ne can be strongly physiosorbed inside these in-

terstices.This is beneficial because the interstices of a nanotube bundle can have

widths which are lesser than low diameter nanotubes, that are difficult to syn-

thesize. As shown in [3], the selectivity in the interstice of a (10, 10) nanotube is
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comparable to the highest selectivities observed in the smallest SWNT s. Apart

from the T2-H2 system (which gives the best results because of highest mass differ-

ence), several other systems like HD-H2, CH4-CD4 and He3-He4 were considered

which all showed the general preference of the heavier specimen getting selectively

adsorbed in preference to the lighter one. The authors also calculated the selectiv-

ity for different temperatures and found that it drops dramatically as temperature

is increased.For example at 77K, the selectivity of T2 over H2 is about 5.2 , which

is only about 0.05% of the corresponding value at 20K.This led them to conclude

that quantum sieving is strongly temperature dependent and is a general property

of adsorption of isotopic mixtures.

The model proposed by the previous authors treated the molecules as spherical

objects with isotropic rotations when confined and neglected the small effects that

arise from the asymmetry of the molecules. Hathorn et al[8] sought to correct this

issue and proposed that in addition to radial confinement, the hindered molecular

rotation in carbon nanotubes should contribute to quantum sieving. The rota-

tional energy of the diatomic molecules was given as E = J(J + 1) where J is the

total angular momentum.E might be zero when J is zero. Just as in the previ-

ous model, the translational motion was quantized, in the new model the authors

considered the quantization of rotational motion.

To proceed towards the eventual quantization, the partition function Q was consid-

ered initially. In case of non-interacting degrees of freedom, the partition function

reduced to a product of independent partition functions over the different degrees

of freedom.

Q = QtransQrot (1.12)

Considering a mixture of noninteracting species of molecules, the ratio of concen-

tration of adsorbed molecules to those in gas phase is given by S(the authors term

this as the seperation factor, which is similar to the selectivity used in the previous
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example). An explicit expression is given as

S =

(
Qads,1

Qads,2

)(
Qfree,1

Qfree,2

)
(1.13)

The authors note that the approximation that the rotational and translational

motions can always be decoupled inside carbon nanotubes is not exact. As an

example, when the translational motion of the molecules takes place near the

wall, the rotational potential will be higher, and the cylicdrical symmetry will

be lost. In the model they discuss, the authors consider that the molecule is in

the center of the nanotube corresponding to average translational motion. This

results in minimum perturbation of rotational eigenvalues as the molecule is in

the maximum possible distance away from the walls. For the calculation of the

partition function of hindered rotational motion, the eigenvalues of the restricted

rotor were used. In their model, the authors considered a linear rigid rotor whose

classical mechanical hamiltonian was given as

H = B

(
p2θ +

p2φ
sin θ2

)
+ V (θ, φ) (1.14)

where the first term represents the rotational kinetic energy in polar coordinates

and the second term indicates the potential interaction between the molecule and

the environment. The constant, B = ~/2µd2 is the rotational constant of the

diatomic molecule, with a bond length d and a reduced mass µ. The quantum

partition function is given by

Q =
∑
i

exp(−βEi) (1.15)
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where i stands for the quantum levels of the system, each with energy Ei. The

free quantum -rotational partition function is given as

Qrot,free =
∑
i

g(J)(2J + 1) exp[−βB(J)(J + 1)] (1.16)

where g(J) is the weight factor due to nuclear spin statistics. For homonuclear

diatomics with half-integral spin (i.e H2 and T2, both with nuclear spin 1/2),

Qrot,free =
∑
Jeven

(2J + 1)exp[−βB(J)(J + 1)] + 3
∑
Jodd

(2J + 1)exp[−βB(J)(J + 1)]

(1.17)

For D2 isotope with integral spin 1, the partition function is given by

Qrot,free = 6
∑
Jeven

(2J + 1)exp[−βB(J)(J + 1)] + 3
∑
Jodd

(2J + 1)exp[−βB(J)(J + 1)]

(1.18)

To calculate the quantum levels of the restricted rotor case, the authors make use

of the semiclassical treatment, yielding the quantization condition

∮
pdq = 2π~J(J + 1) (1.19)

Calculation of the free rotor quantum levels with the quantization condition (eqn

1.19) lead to the exact quantum levels of the rigid rotor. For their case, the authors

defined the azimuthal angle θ to be the rotation away from the principal axis of the

nanotube cylinder, which was assumed to have cylindrically symmetric potential

i.e V (θ, φ) was independent of φ. They employed a modified Lennard-jones type

potential for approximating the interaction of the molecules with the nanotube

V (θ, φ) = −2ε

(
r∗

rLJ

)6

+ ε

(
r∗

rLJ

)12

(1.20)
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with lennard Jones interaction distance between the end of the molecule and the

wall of the nanotube being given by

rLJ = R−
(
d

2

)
sinθ (1.21)

Upon calculation of the isotopic seperation due to quantization of rotational mo-

tion, the authors found that seperation factors for all possible hydrogen isotopmers

relative to the H2 standard yielded a high number (up to fifteen orders of magni-

tude) for low temperatures(≈ 20K). Like the previous study, they observed that

with reduced tube size and reduced temeperature, the seperation increased signifi-

cantly. In the range of 6-8 Å cylinder diameter, they found comparable selectivity

to those made in [2, 3], leading them to conclude that both translational and rota-

tional confinement lead to significant selectivity. Furthermore, it was their opinion

that combination of the two seperation factors should produce larger effects than

either one by itself.

Lu,Goldfield and Gray sought to explore the idea of including both rotational and

translational degrees of freedom and their coupling while studying quantum siev-

ing. In their paper[9], they study the effects of confinement in small single walled

carbon nanotubes on molecular hydrogen and its isotopes. Except for the motion

along nanotube axis,all other motions of the hydrogen relative to the tube were

treated explicitly viz. the motion of the H2 center-of-mass in a plane perpendic-

ular to the tube axis and rotation about that center-of-mass.Hence the problem

reduces to a four degree of freedom problem(two for translations and two for ro-

tations). Further considering a fixed position of the molecular center of mass at

the tube center, a fixed bond length of the diatomic in its equilibrium position

and neglecting the motions of atoms in the carbon nanotubes, the four degrees of

freedom hamiltonian is given by

H =
−~2

2M

(
∂2

∂x2
+

∂2

∂x2

)
−B

(
1

sin θ

∂

∂θ
(sinθ) +

1

sin2 θ

∂2

∂φ2

)
+V (x, y, θ, φ) (1.22)
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where

M is the total mass of the diatomic molecule

B = ~/2µr2e is the rotational constant

µ is the reduced mass of the molecule

re is the equilibrium bond length

The potential term includes all possible interactions between the atoms of the

diatomic and the carbon atoms of the nanotube. The wave function,expanded in

a set of real eigenfunctions of the rotational part of the Hamiltonian, is given as

Ψ(x, y, θ, φ) =

jmax∑
j=0

m=j∑
m=0

Pm
j (cos θ)(Cm

j (x, y) cosmφ+Dm
j (x, y) sinmφ) (1.23)

where

Pm
j is a normalized associated Legendre function

Cm
j , D

m
j are expansion coefficients

The authors used the Tersoff-Brenner potential to model the short range interac-

tions between the H atoms and the carbons in the nanotubes whereas the long

distance van der Waals forces between each hydrogen and each carbon atom were

computed using L-J potential. However, their results for quantum selectivity at

20K for smaller CNT s were considerably smaller than those for Johnson and co-

workers. They atrributed this disparity to the fact that Johnson and co-workers

used a different potential viz. Crowell-Brown potential which appears to be less

flat for smaller nanotubes. Their calculations indicated that temperature less than

20 K are required to observe significant quantum effects, but modest effects might

be seen at higher temperatures. They found that magnitude of quantum sieving is

primarily a function of diameter, but it is not a monotonic function. The largest

effects were seen in smallest nanotubes,where the molecule has 2D confinement in

the center of the nanotube. This result is perfectly in tandem with those observed
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in previous studies by different authors. They also found that lowest selectivity

occurs for the (2, 8) nanotube, which is near the transition between 1D and 2D

confinement and agrees with the findings of Johnson and co-workers. According

to the authors, this phenomenon occurs due to the decrease in steepness of the

nanotube potential as the diameter is decreased. Additionally, they inferred that

strong quantum effects could also be observed in the interstitial channels of bun-

dles of larger nanotubes, which was suggested earlier by Johnson and co-workers

and Trasca et al[10].

In a later article[11] by the same authors, they identified three different types of

confinements:one dimensional(1D), two dimensional (2D) and what they called the

extreme two dimensional(X2 − D) confinement. The last effect arises when the

nanotube radius becomes smaller than than re(re is the value of r at the minimum

of H-C interactions viz. for L-J potential, re=21/6σ). In this case the molecules are

very strongly confined to the center of the nanotube, preferentially aligned along

the nanotube axis. The characteristics of the X2-D state according to the authors

were steep potentials,very large ZPEs, large quantum selectivities and highly hin-

dered rotation. One further distinguishing characteristic of the X2-D also were

the small number of bound states, that is, those states that are lower in energy

than a hydrogen molecule an infinite distance away from the nanotube, which is

taken to be the zero of energy.

For their new work, the authors used three seperate H-C interactions and com-

pared the findings for each of them.The potentials were designated as NW,FB and

WS77.The first two were L-J 6-12 interaction potentials given by

V (r) = 4ε

(
σ12

r12
− σ6

r6

)
(1.24)

For the NW potential, ε = 18cm−1 and σ = 2.78Å whereas for the FB potential

ε = 19.2cm−1 and σ = 3.08Å. The WS77 potential, given by a Buckingham
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form[12] is written as

V = Be−Cr − A

r6
(1.25)

with A = 5.94eV Å6,B = 678.2eV , and C = 3.67Å−1. A calculation of the well

depth for various nanotubes by the authors revealed that in the NW interactions,

the largest well depth occurs for the smallest nanotube which is (3, 6). However,

the situation is different for the other two potentials where (2, 8) nanotube has the

largest well depth.

The authors found that FB and WS77 potentials exhibit the X2-D type confine-

ment for the (3, 6) and (8, 0) nanotubes, which however is not displayed by the

NW potential. As a result , it also has considerably smaller selectivity coefficient

when compared to the other two. According to the authors,this is consistent with

the fact that NW potential has a smaller re than the other two potentials, which

implies a weaker 2-D confinement. They also noted that quantum sieving and ZPE

simply does not decrease with the increase of CNT radius but rather displays a

minimum. The minimum corresponds to a transition from 2-D to 1-D confinement

and corresponds to the smallest nanotube radius that displays 1-D confinement.

By using the more realistic WS77 potential, the authors found that the results

for quantum sieving were also in better agreement with those of Johnson and co-

workers and in good agreement with Garberoglio et al[13].

Kumar and Bhatia[14] tried to examine the quantum effects on the dynamical

properties of confined systems,moving on from the equilibrium properties treated

in detail in the previous examples. Their simulations were done on zeolite rho,

rather than carbon nanotubes. The authors used equilibrium molecular dynam-

ics(EMD) simulation with Feynman-Hibbs(FH) modified interaction potential-

UFH(r) = (
6µ

πβ~2
)
3
2

∫
dRU(|R + r|)exp

(
−6µR2/β~2

)
(1.26)

where U(r) is the classical pair potential. The above expression considers the
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quantum pair as having a gaussian spread of
√
β~2/12µ in seperation where µ is

the reduced mass and β = 1/kBT .

In their EMD simulations for hydrogen isotopes in zeolite rho model, the authors

used the L-J potential to represent the sorbate and host atom atom interactions.

For the H2−H2 and D2−D2 interaction, the parameters used were σf = 0.292nm

and εf/kb = 38K while for the O−H2 or O−D2 interaction, the parameters used

were σf = 0.273nm and εf/kb = 76.76K. The simulations employed by the authors

solved the sytem of first order differential equations q̇i = Pi/m and Ṗi = Fi − λPi

where λ is the thermostat factor determined by the gaussian principle of least

constraint, qi and Pi are the position and momentum vectors respectively, and Fi

is the net force acting on the particle.

While determining the effective potential considering quantum effects, eqn(1.26)

was replaced by

UFH(r) = U(r) +
β~2

24µ

(
U ′′(r) + 2

U ′

r

)
+

β2~4

1152µ2

(
15
U ′(r)

r3
+ 4

U ′′′(r)

r
+ U ′′′′(r)

)
(1.27)

The above equation was used by for both fluid-fluid as well as solid-fluid interac-

tions. The simulation of transport in zeolite-rho by the authors showed that the

quantum effects led to significant reduction in the diffusivity of the confined H2

and D2,with the quantum diffusivity of the former decreasing more strongly with

temperature when compared with the classical case. In the bulk fluid, the opposite

effect i.e an increase of quantum diffusivity over classical one is observed and is

normally attributed to quantum tunneling, where a decrease of the intermolecular

potential well depth reduces the translational energy barrier. However, in case of

a confined quantum fluid, despite a similar well reduction, the authors observed a

reduction in diffusivity as well which they termed as paradoxical. The effect was

observed for both the isotopes, but being stronger for H2 consistent with its smaller

mass. The primary cause for the change in diffusivity, according to the authors,

was the steric hindrance caused by the swelling of the effective size parameter of
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the fluid-solid interactions. One remarkable feature regarding the diffusivity of the

isotopes that the authors observed was that below 150K, the heavier D2 diffused

faster. This, according to them, happens because the quantum shift in potential

is smaller for D2 compared to H2, and thus having the heavier mass, swelling

of D2 is smaller which ultimately leads to an increase in kinetic selectivity for

D2 with reduction in temperature. Infact, they found a dramatic increase in the

quantum selectivity below 70K, with a peak value of 21.70 at about 65 K. They

also commented that with the low temeperature kinetic selectivity enhancement

for D2, one could anticipate a relative increase in size for H2, and decrease in

its well depth, leading to an increased equilibrium selectivity of D2. This was in

agreement with what was observed in all the previous works.

In a subsequent publication [15] by the same authors, these claims were experi-

mentally verified by neutron scattering experiments. For the simulation part, L-J

potential was again used to model the fluid-fluid and fluid-zeolite interactions but

with best fitted parameters of σH2−H2 = 0.2782nm and εH2−H2/kb = 38.7K. While

classical results matched the experimental data at temperatures above 100K, be-

low this temperature they predicted significantly higher diffusivities, confirming

the importance of quantum effects below 100K. The zeolite structure was chosen

to have a small window (0.543 nm) and the calculations again found the crossover

selectivity, this time at around 94K. Below this temperature, D2 starts diffusing

faster than H2, the reason being the same steric hindrance as explained in their

earlier work. The same reversal of kinetic selectivity was also experimentally sup-

ported by Zhao et al [16] where H2 shows a slower adsorption kinetics compared

to D2 for temperatures around 77K, when carbon molecular sieves with pore di-

mension 0.546 nm and 0.566 nm were used. The authors finally conclude that the

reverse kinetic selectivity is extremely sensitive to pore dimensions and advised a

judicious choice of host material for practical applications.

In a recent article by Hankel et al[17], an effort was made to address the twin issue

of advancing the modelling of quantum kinetic sieving by incorporating quantum
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effects into classical simulations and searching for the actual occurence of the ”ac-

tivation barrier” during molecular transport of hydrogen through macroporous

materials. The methodologies used were the same as employed by Lu et al[9]

which took care of the first issue as the molecules were treated as diatomics and

therefore no quantum corerction to the potential was needed. The basic model

consisted of several connected pores with each pore mouth leading to a cavity and

the kinetic sieving being influenced by both the pore mouth and the cavity. The

pore mouths were made narrow enough to facilitate quantum kinetic sieving while

the cavity was made large enough to accomodate the molecules and not hinder

the transport between pore mouths. The H-C interaction was modelled by L-J

potential with parameters epsilon = 19.2cm−1 and σ = 3.08Å. As far as the

activation barrier was concerned, the authors found that in the case of the tube

shaped cavity models that they, the barrier in the cavity rather than in the pore

mouth. Since the cavities would be of large diameter, the overall selectivity would

be greatly reduced. If, however, spherical shaped cavities were considered the po-

tential barrier could lie in the pore mouth provided the cavity was not too large.

Though such a case would potentially make kinetic sieving possible, the flip side

of such a structure is that the synthesis and control of both the shape and size of

cavity as well as the size of the pore mouth is presently too challenging.

1.4 Our Aim

As is clear from a brief survey of the existing literatures on quantum molecular

sieving, the effects have mostly been studied for a low temperature range and

for a single nanotube. We sought to advance this idea and study the effect of

molecular sieving by introducing a second nanotube. Thus instead of a single

nanotube, we have a system of two nanotubes ,with different radii, joined end to

end. This model, according to us, should serve as a preliminary investigation into
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how irregularities of the nanotube shape can affect molecular sieving. Along with

the analytic treatment of this mathemetical model, we also sought to inquire how

a kinetic sieving of isotopes using carbon nanotubes compares with equilibrium

sieving.



Chapter 2

THEORETICAL TOOLS

2.1 A brief discussion about carbon nanotube

structures

The discussion in this section mainly follows the book by Reich, Thomsen and

Maultzsch[18].

Carbon nanotubes are hollow cylinders of graphite sheets. A tube made of a single

graphitic layer rolled up into a hollow cylinder is called a single-walled nanotube

(SWNT), whereas a tube comprising several, concentrically arranged cylinders is

referred to as a multiwall tube (MWNT). They can be looked at as single molecules,

regarding their small size ( ∼ nm in diameter and ∼ µ in length), or as quasi-one

dimensional crystals with translational periodicity along the tube axis. There are

infinitely many ways to roll a sheet into a cylinder, resulting in different diameters

and microscopic structures of the tubes. These are defined by the chiral angle i.e

the angle of the hexagon helix around the tube axis.

In carbon nanotubes, the graphene sheet is rolled up in such a way that a graphene

lattice vector ~c = n1 ~a1 + n2 ~a2 becomes the circumference of the tube. This cir-

cumferential vector ~c, which is usually denoted by the pair of integers (n1, n2)

20
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, is called the chiral vector and uniquely defines a particular tube.For example,

the (10, 10) tube contains 40 atoms in the unit cell and is metallic where as the

close-by (10, 9) tube with 1084 atoms in the unit cell is a semiconducting tube.

The number of lattice points on the chiral vector is given by the greatest com-

mon divisor n of (n1, n2),since ~c = n(n1/n. ~a1 + n2/n. ~a2) is a multiple of another

graphene lattice vector ~c′.

The direction of the chiral vector is measured by the chiral angle θ, which is defined

as the angle between ~a1 and ~c. The chiral angle θ can be calculated from

cosθ =
~a1.~c

| ~a1|.|~c|
=

n1 + n2/2√
n2
1 + n1n2 + n2

2

(2.1)

For each tube with θ between 0◦ and 30◦ an equivalent tube with θ between 30◦

and 60◦ is found, but the helix of graphene lattice points around the tube changes

from right-handed lo left-handed. Because of the six-fold rotational symmetry of

graphene, to any other chiral vector an equivalent one exists with θ ≤ 60◦. We

will hence restrict ourselves to the case n1 ≥ n2 ≥ 0 (or 0◦ ≤ θ ≤ 30◦).

Tubes of the type (n, 0) (θ = 0◦) are called zig-zag tubes, because they exhibit a

zig-zag pattern along the circumference. (n, n) tubes are called armchair tubes;

their chiral angle is θ = 30◦. Both, zig-zag and armchair tubes are achiral tubes,

in contrast to the general chiral tubes.

The geometry of the graphene lattice and the chiral vector of the tube determine

its structural parameters like diameter, unit cell, and its number of carbon atoms,

as well as the size and the shape of the Brillouin zone. The diameter of the tube

is given by the length of the chiral vector

d =
~c

π
=
a0
π

√
n2
1 + n1n2 + n2

2 =
a0
N

(2.2)

The smallest graphene lattice vector ~a perpendicular to ~c defines the translational

period a along the tube axis. In general, the translational period a is determined
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from the chiral indices (n1, n2) by

~a =
2n2 + n1

nR
~a1 +

2n1 + n2

nR
~a1 (2.3)

and

a = |~a| =
√

3(n2
1 + n1n2 + n2

2)

nR
a0 (2.4)

where R = 3 if (n1 − n2)/3n is integer and R = 1 otherwise. Thus, the nanotube

unit cell is formed by a cylindrical surface with height a and diameter d. For

achiral tubes, eqn(2.2) and (2.4) can be simplified as

aZ =
√

3a0, | ~cZ | = na0 (zigzag) (2.5)

aA = a0, | ~cA| =
√

3.na0 (armchair) (2.6)

Figure 2.1: figure showing armchair, zigzag and chiral nanotubes respectively

The number of carbon atoms in the unit cell n, can be calculated from the area

St = a·c of the cylinder surface and the area Sg of the hexagonal graphene unit cell.

The ratio of these two gives the number q of graphene hexagons in the nanotube
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unit cell

q = St/Sg =
2
√
n2
1 + n1n2 + n2

2

nR
(2.7)

Since the graphene unit cell contains two carbon atoms, there are

nC = 2q =
4
√
n2
1 + n1n2 + n2

2

nR
(2.8)

carbon atoms in the unit cell of the nanotube.The results are summarised in table

(2.1)

2.2 Energy eigenvalues for a particle in a square

circular potential

The problem of a point mass in a one dimensional potential well is one of the

most frequently solved problems in introductory quantum mechanics. On the one

hand, the quantized energy levels can be easily understood in terms of simple wave

mechancis argument involving fitting the de-broglie waves inside the box, while the

position and momentum space wave functions can be intutitively correlated with

behaviour of a particle bouncing back and forth in the well. The 2-D square well

is one of the first examples of degeneracy due to symmetry (Lx = Ly) while the

Table 2.1: Structural parameters of armchair (A), zigzag (Z) and chiral (C)
nanotubes

Type Tube N q = nc/2

A (n, n) 3n2 2n
Z (n, 0) n2 2n

C (n1, n2)
√
n2
1 + n1n2 + n2

2 2N/nR

Type diameter(d) translational period(a) chiral angle(θ)

A
√

3na0/π a0 30◦

Z na0/π
√

3a0 0◦

C
√
Na0/π

√
3Na0/nR cos−1[(n1 + n2/2)/

√
N ]
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rectangular well, in certain cases, also give rise to accidental degeneracies. The 2-D

circular infinite well can be used to introduce the quantum description of angular

momentum and also exhibit degeneracies(due to the equivalence of clockwise and

counter clockwise rotations).Since our proposed model will consist of a circular

infinite well, in this section we briefly discuss the solutions for a general circular

infinite well and its implications

2.2.1 Quantum Solutions

The quantum mechanical hamiltonian for a particle of mass µ inside a channel of

radius R is given by

H =
−~2

2µ
∇2 + V (r)

where

V (r) =

 0 for r < R

+∞ for r > R

The time independent Schrödinger equation in such a case then merely reduces to

Helmholtz equation , the radial part of which corresponds to the Bessel equation

with the solution given by

E =
~2

2µR2
[λ2m,n]

where λm,n is the nth zero of the mth bessel function, n=nr +1 and nr counts the

number of radial nodes in the wave function. Also,

L = (i/~)(∂/∂θ)

with eigenvalue m~. Each state with non zero m is doubly degenerate due to

the two equivalent values of m = ±|m| corresponding to clockwise and counter

clockwise motion.
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The behaviour of the wave functions can be discussed more concretely by exam-

ining the probability density for the radial co-ordinate, given by P (r) = r|R(r)|2

with the normalization condition that

∫ R

0

P (r)dr = 1

where the additional factor of r comes from the two dimensional measure for the

polar co-ordinates.We can easily analyse the behaviour of two limiting cases-

1)For the generic case of m=0 and nr large, we can make use of the asymptotic

form (for z=kr�1)of the regular bessel function, namely

Jn(z) ∼
√

2

πz
cos(z − nπ/2− π/4)

to note that

P(0,nr>>1)(r)→ r[

√
2

πkr
cos(kr − π/4)]2 ∝ cos2(kr − π/4)

This is quite similar to the case of a one dimensional well where the particle would

bounce back and forth across a diameter through the origin.

2)For the case of purely angular motion, m�1 and nr=0, we can make use of a

general variational wave function to examine the limiting behaviour. We can use

Rm(r;α) = r|m|(Rα − rα)

where α is the variational parameter. This form incorporates the appropriate

boundary conditions at r=0 [where R(r)→ rm due to the angular momentum

barrier] and at r=R and has no radial nodes; it will provide a lower boundary

to the energy of the nr=0 state for each value of m. The energy functional given
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by this trial wave function is

Em(α) = E(Rm(r, α)) =
~2

2µR2
[(m+ 1)

(2m+ α + 2)(m+ α + 1)

m+ α
]

which has a minimum for α =
√
m+ 2 − m for each value of m. Using this

functional form as a guide, we can easily find that in the large m limit, we have

for the average of r

< r >→ R(1− 1/2
√
m− 3/4m+ ....)

and

< r >2= R2(1− 1/
√

(m)− 1/m+ ....)

so that

∆r =
√
< r >2 − < r2 >→ R

2
√
m

and the limit for purely rotational motion, strongly peaked near the radius in the

rim, is evident for m>>1.

2.2.2 Classical probability distribution for position

The classical probability distribution for position PCl(x) can be defined by av-

eraging over many measurements of the co-ordinates along a classical trajec-

tory. A similar quantity for the radial co-ordinate can be derived for compari-

son with PQm(r)=r—R(r)—2 by considering a classical expression for E, in terms

of the radial co-ordinate and the conserved angular momentum L. According to

Robinett[19]

E =
1

2
µ(dr/dt)2 +

L2

2µr2
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This gives,

dr

dt
=

√
2

µ
(E − L2

2µr2
)⇒ dt =

√
µ

2E

rdr√
r2 −R2

min

where Rmin =
√

L2

2µE
is the distance of closest approach to the origin.

Using the standard argument that the probability of finding the particle in the

radial interval (r,r+dr) is proportional to the small time dt spent in the region,

one makes the asssociation PCl(r)dr=dt/(τ/2) where τ is the period of motion.

For the radial variable we then find that

τr =

√
2µ

E

√
R2 −R2

min

and

PCl(r) =
r√

R2 −R2
min

√
r2 −R2

min

The limit of purely radial motion corresponds to Rmin=0 so that τ =
√

2µR2

E
=

2R/v as expected while PCl(r)=1/R corresponding to uniform probabilty of finding

the particle at any point on a given radius, again, similar to the one dimensional

box.

2.3 Bessel functions:Introduction,few properties

and recurrence relation

In our calculations we have extensively used Bessel functions and their properties.

This section is hence devoted to the discussion of Bessel functions and few of their

important properties[20].
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2.3.1 Bessel functions of the first and second kind

Bessels equation is an ordinary, linear, homogeneous differential equation given by

x2y′′ + xy′ + (x2 −m2) = 0 (2.9)

and gives rise to a solution that is a linear combination of a Bessel function of

order m (m is positive) denoted by Jm(x) and a Neumann function of order m

denoted by Ym(x).

We note that the solutions of eq(2.9) is of the form

f(x) =
∞∑
n=0

anxn+s (2.10)

and we proceed to obtain the solution via Frobenius’ method.

To determine s for a second order homogenous differential equation, one must set

eq(2.10) equal to the dependent variable and take appropriate derivates and then

equate all coefficients to zero. After doing so, one will get a quadratic relationship

for s (giving two roots s1 and s2) known as the indicial equation. Now two situa-

tions may arise-

1)If s1 and s2 are distinct and do not differ by an integer, then there are two

linearly independent solutions of both of the form of (2.10)

2)If s1 and s2 are distinct but do differ by an integer, one must use an important

fact from differential equations which states that if one solution is found, y1, then

a second may be found by

y2(x) = y1(x)

∫
exp(−

∫
P (x)dx)

y21(x)dx
(2.11)

This equation can be maniplulated thus finally giving

y2(x) = Cy1(x)ln(x) +
∞∑
n=0

bnx
n+s2 (2.12)
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3)If s1 and s2 are degenerate roots of the indicial equation, then one must find a

second solution of the form of (2.12).

Making the substitution of (2.12), as well as appropriate derivatives into (2.10),

we can get the indicial equation that has concerned us to be (s2−m2)a0 = 0 which

implies that s = ±m. This means that case (1) applies to us when 2m 6= integer

or m 6= one half of an integer, case (3) applies when m = 0 and case (2) applies

for any other m.

Lets initially consider the case of +m to get our first solution (which will turn out

to be the Bessel functions). After completing the Frobenious method, one of the

solutions is found to be

Jm(x) =
∞∑
n=0

(−1)n

n!Γ(m+ n+ 1)

(x
2

)2n+m
(2.13)

where Γ(m+n+1) is known as the gamma function and is defined by Γ(n+1) = n!

To get a second linearly independent function we must first consider the nature of

m. As discussed previously, if m is not either an integer or a half integer, we know

that it fits into the case 1 category. This means that our general solution (which

must include a linear combination of two linearly independent functions) is of the

form

y1 = C1Jm(x) + C2J−m(x) (2.14)

From here, we have two special circumstances where a case 2 scenario may arise.

The first circumstance is where m is a half and odd integer. In this case the

solutions reduce to linear combinations of sine and cosine functions. This is an

example of a case where the difference in the s values is an integer, but we still get

two linearly independent functions of the form of (2.12). The case where m is a half

integer is called spherical bessel function. In our dicussion, we will limit ourselves

to the situations where m is integer and not bother ourselves with spherical bessel

functions.
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We are looking for the relationship between Jm and J−m where m = 1, 2, 3... (we

have considered m as non negative). Putting this into the series representation of

the Bessel function , we see that

J−m(x) =
∞∑
n=0

(−1)n

n!Γ(−m+ n+ 1)
(
x

2
)2n−m (2.15)

However since Gamma function is not defined for negative inetgers, we can further

modify the above result as

J−m(x) =
∞∑
n=m

(−1)n

n!Γ(−m+ n+ 1)
(
x

2
)2n−m

.

If we wish to start the series from n = 0 ,a new variable z = n−m can be defined

and after some manipulation one finally obtains

J−m(x) = (−1)mJm(x) (2.16)

which gives the relation between Jm(x) and J−m(x).

The other solution Ym(x) is generally given by

Ym(x) = lim
p→m

cos(pπ)Jp − J−p
sinpπ

(2.17)

Now that two linearly independent solutions have been presented that will cover

any order Bessel function, we can explore some of the properties of these mathe-

matical functions. From the form of (2.16), we can conclude that a Bessel function

of an odd integer order is considered an odd function while a Bessel function of

an even integer order is an even function. Also, it useful to derive the follow-

ing relationship between Bessel functions of different orders and their respective

derivatives.



Chapter 2. THEORETICAL TOOLS 31

Figure 2.2: Jm(x) for first few orders (note the continuity at origin)

d

dx

(
Jm(x)

xm

)
=
−Jm+1

xm
(2.18)

d

dx
(xmJm(x)) = xmJm−1(x) (2.19)

One special case of (2.19) is when it applies to J0(x).Here, since m=0, we have,

d

dx
J0(x) = −J1(x) (2.20)

From the diagram of Jm(x) we can see that like trigonometric functions, Jm(x)

have infinitely many zeros and it can be shown that spacing between these zeros

approach π (however, the zeros of the function are not spaced by the same amounts

as they are in trigonometric functions). Also, like the cosine function, J0(0) = 1

while like the sine function J1(0) = 1

Also from the diagram for Ym(x), we notice how the function is unbounded at

origin, contrary to Jm(x).Hence, for well behaved solutions at origin, we must

only consider Jm(x).(as we have done throughout our calculations to follow)
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Figure 2.3: Ym(x) for first few orders (note the singularity at origin)
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Figure 2.4: Im(x) for first few orders (note continuity at origin)

2.3.2 Modified Bessel functions

If the form of eqn.(2.9) is changed by the transformation x→ ix , it reduces to

x2y′′ + xy′ − (x2 +m2) = 0 (2.21)
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the solutions of eq(2.21) are Bessel functions of imaginary argument. The solution

which is regular at the origin(analogous to Jm(x)) is

Im(x) = i−mJm(ix) (2.22)

It is also often represented as

Im(x) = e−mπi/2Jm(xeiπ/2) (2.23)

The series representation of I±m(x) is given as

I±m(x) =
∞∑
0

1

s!(s±m)!

(x
2

)2s±m
(2.24)

For integral m,

Im(x) = I−m(x) (2.25)

A second solution to eqn.(2.21)is also considered on basis of its asymptotic be-

haviour and is given as

Km(x) =
π

2

Im(x)− I−m(x)

sinmπ
(2.26)

2.3.3 Recurrence relations

This section lists a few useful recurrence relations between the Bessel functions that

have been used in future calculations, especially the relation among the derivatives.

d

dx
(xmJm(x)) = xmJm−1(x) (2.27)
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Figure 2.5: Km(x) for first few orders (note the singularity at origin)

d

dx
J0(x) = −J1(x) (2.28)

d

dx
(xmYm(x)) = xmYm−1(x) (2.29)

d

dx
Y0(x) = −Y1(x) (2.30)

J ′m(x) =
1

2
[Jm−1(x)− Jm+1(x)] (2.31)

Y ′m(x) =
1

2
[Ym−1(x)− Ym+1(x)] (2.32)

d

dx
I0(x) = I1(x) (2.33)

d

dx
K0(x) = −K1(x) (2.34)

I ′m(x) =
1

2
[Im−1(x) + Im+1(x)] (2.35)

−K ′m(x) =
1

2
[Km−1(x) +Km+1(x)] (2.36)
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2.4 Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution is the classical probability distribution func-

tion for distribution of molecular speed, momenta or energy between identical but

distinguishable particles and applies to ideal gases close to thermodynamic equilib-

rium with negligible quantum effects and at non-relativistic speeds.The derivation

of the distribution can be readily seen from the Maxwell-Boltzmann statistics

where the expected number of particles with energy εi is given as

Ni =
gi

e(εi−µ)/kbT
=
N

Z
gie
−εi/kbT (2.37)

where

• Ni is the number of particles in state i

• εi is the energy of the ith state

• gi is the degeneracy of energy level i

• µ is the chemical potential

• kb is Boltzmann’s constant

• T is absolute temperature

• N =
∑
Ni is the total number of particles

• Z =
∑
gie
−εi/kbT is the partition function

2.4.1 Distribution for the momentum vector

For the case of an ”ideal gas” consisting of non-interacting atoms in the ground

state, all energy is in the form of kinetic energy, and gi is constant for all i. The
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relationship between kinetic energy and momentum for massive particles is

ε =
p2

2m
(2.38)

where p2 is the square of the momentum vector ~p = [px, py, pz].Eqn(2.37) thus

becomes

Ni

N
=

1

Z
exp

[
−
p2i,x + p2i,y + p2i,z

2mkbT

]
(2.39)

This distribution of Ni/N is proportional to the probability density function fp

for finding a molecule with these values of momentum components, so

fp(px, py, pz) =
c

Z
exp

[
−
p2i,x + p2i,y + p2i,z

2mkbT

]
(2.40)

and the normalizing constant c is given as c = Z
(2πmkbT )3/2

and the final distribution

looks like

fp(px, py, pz) =
1

(2πmkbT )3/2
exp

[
−
p2i,x + p2i,y + p2i,z

2mkbT

]
(2.41)

The distribution is seen to be the product of three independent normally dis-

tributed variables px, py, pz, with variance mkbT . Additionally, it can be seen that

the magnitude of momentum will be distributed as a MaxwellBoltzmann distribu-

tion, with a =
√
mkbT .

2.4.2 Distribution for velocity

The velocity probability densityfv is proportional to the momentum probability

density function by

fvd
3v = fp

(
dp

dv

)3

d3v (2.42)

Using ~p = m~v we get

fv(vx, vy, vz) =
m

(2πkbT )3/2
exp

[
−
m(v2x + v2y + v2z)

2mkbT

]
(2.43)



Chapter 2. THEORETICAL TOOLS 37

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0  200  400  600  800  1000  1200  1400

f(
E

/k
)

E/k

M-B dist. at 100 K
M-B dist. at 200 K

Figure 2.6: Maxwell-Boltzmann energy distribution for two different temper-
atures

The probability of finding a particle with velocity in the infinitesimal element

[dvx, dvy, dvz] about velocity v = [vx, vy, vz] is fv (vx, vy, vz) dvxdvydvz.Like the

momentum, this distribution is also the product of three independent normally

distributed variables vx, vy, vz, but with variance kbT
m

.
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THEORETICAL MODEL

Our theoretical model , as mentioned before, consists simply of a two nanotube

system with unequal radii that are joined end to end. Let us denote the radii of

the two channels as a and b (a>b). The nanotube with the wider radius is at the

bottom while the narrower one is at the top. The system as whole is connected to

two reservoirs, one at both ends. The reservoir at the bottom (the one connected

to the wider nanotube)has a mixture of H2 and D2 isotopes in equilibrium. Next

we allow the molecules to enter the nanotube system and we make the following

crucial assumption. The molecules that are inside the nanochannel have a free

classical motion along the axis of the tube, but are confined in a potential well

along the radial plane . The potential well arises due to the interaction of the

molecules with walls of the nanochannel. We are interested in finding out the final

percentage of each isotope that is allowed to go through the system and end up in

the second reservoir on the top. In the following sections, a systematic approach

to developing such a model is given.

38
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Figure 3.1: a rough sketch of the theoretical model

3.1 From reservoir to nanochannel

We considered previously that outside the channel the gas molecules are in a kind

of thermodynamic reservoir in equlibrium having all possible energies. Therefore it

is natural to assume that they are distributed according to the Maxwell-Boltzmann

distribution.

The Maxwell-boltzmann distribution for velocity is given by

f 3(v)d3v =

(
µ

2πkbT

) 3
2

exp(−µv2/2kbT )d3v (3.1)

where v2 = v2x + v2y + v2z

d3v = dvxdvydvz is the volume element in cartesian co-ordinates. It is noted that

the axial direction coincides with the z axis while the radial plane lies along x− y

direction.
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We can consider the above equation as being a product of 3 independent one di-

mensional equations. Now, instead of cartesian coordinates, we turn our attention

to cylindrical coordinates.

Then, v2 = v2ρ + v2θ + v2z and the relation between cylindrical and cartesian co-

ordinate is given by x = ρ cos(θ), y = ρ sin(θ), z = z. The volume element in

this case becomes d3v = ρdvρdvθdvz where the prefactor ρ is the jacobian of the

coordinate transformation.

As before, we can consider the distribution as a product of three seperate distri-

butions with the distribution along ~z in particular given as

f(vz)dvz =

(
µ

2πkbT

) 1
2

exp(−µv2z/2kbT )dvz (3.2)

which is the same as in cartesian case , as the transormation of the z axis is same

in both cases.

As per our assumption, the molecule propagates along the ~z direction, i.e the axis

of the nanotube,unhindered (like a classical gas). Hence we expect its energy to

be the same as that outside the channel , unaffected by the quantum restrictions

which apply only along the radial direction i.e ρ− θ plane.

So the component of the distribution along ~z should be the same in both classical

case (outside tube) and the confinement case (inside tube). More specifically, we

want the distribution for the energy in preference to the distribution for velocity.

We want to quantize the distribution along vx and vy while keeping vz fixed i.e

we want to evaluate the integral f(vx)f(vy)dxdy. We transform to the polar co-

ordinates to evaluate the integral easily.

x = ρcos(θ), y = ρsin(θ)and vx = vρcos(θ), vy = vρsin(θ).
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Therefeore the distribution now becomes-

f(vx)f(vy)dxdy =

(
µ

2πkbT

)
exp(−µ(v2x + v2y)/2kbT )dxdy

=

(
µ

2πkbT

)
exp(−µv2ρ/2kbT )vρdvρdθ

Because of isotropy , the equation can be integrated over θ leaving us with distri-

bution along x-y plane as

f(vρ)dvρ =
µ

kbT
exp(−µv2ρ/2kbT )vρdvρ

with(vρ ≥ 0)

However, since we are more interested in the energy distribution, we transform

the distribution by setting Eρ = (1/2)µv2ρ and dEρ = µvρdvρ.

So the distribution in terms of energy becomes

Figure 3.2: a sketch of how the molecules proceed from the resrevoir to the
first nanochannel
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f(Eρ)dEρ =
1

kbT
exp(−Eρ/kbT )dEρ (3.3)

Simplifying the equation further by defining Eρ/kb = E ′ρ, we get

f(E ′ρ)dE
′
ρ =

1

T
exp(−E ′ρ/T )dE ′ρ (3.4)

Now,inside the channel we have

kx + ky + V = En

⇒
(v2x + v2y)

2µ
+ V = En

⇒ µv2ρ/2 + V = En

⇒ Eρ + V = En

⇒ Eρ = En − V = Ẽ

⇒ E ′ρ = En/kb − V/kb = Ẽ/kb = Ẽ ′

Therefore, to calculate the percentage of particles that are allowed into the chan-

nels, we have to integrate the distribution f(E ′ρ)dE
′
ρ between the limits Ẽ ′−4Ẽ ′

and Ẽ ′ +4Ẽ ′. The limits arise because the nanotube radius may not be exactly

smooth (with a variation of 4r), and hence a variation of radius will eventually

lead to a slightly varying energy level. To smooth out these effects and for a more

accurate approximation, it is imperative to integrate within a limit, rather than

calculating the percentage corresponding to a fixed energy value.
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3.2 Quantized energy levels in the nanochannels

In this section, we consider the quantization of energy levels of the confined

molecules inside the nanochannels. As mentioned earlier, the molecules are con-

fined inside an infinite potential well of depth ε that is created due to the interac-

tion between the molecules and the nanotube walls. The channel radius is denoted

by R.

The Hamiltonian for a particle of mass µ in such a case is given by

H = − ~2

2µ
∇2 + V (r)

where

V (r) =

 −ε for r < R

+∞ for r > R

The corresponding stationary Schrödinger equation thus reduces to

(∇2 + k2)ψ(r, θ) = 0 (3.5)

where

k2 =
2µ(E + ε)

~2

with the boundary condition that

ψ(R, θ) = 0

(since the molecules are confined inside the tube, hence the wavefunctions must

vanish at the boundary). Here we have two channels of radius a and b and we

solve the Schrödinger equation independently for both channels. Because of the
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circular symmetry, the solution can be written in the seperable form

ψ(r, θ) = R(r)Θm(θ)

where

Θm(θ) =
1√
2π
eimθ

for m = 0,±1,±2, ... The resulting radial equation is

d2R

dr2
+

1

r

dR

dr
+ (k2 − m2

r2
)R = 0 (3.6)

which can be recognized as the Bessel’s equation in variable z = kr. We want only

those solutions which are well-behaved at the origin which are J|m|(kr) with the

energy eigenvalues being determined by the boundary condition i.e R(r)Θm(θ) =

0⇒ J|m|(kr) = 0. The solution to this equation is given by

Em,n = −ε+
~2

2µR2
[λ2m,n] (3.7)

where λm,n is the nth zero of the mth Bessel function.Each state with non zero m

is doubly degenerate due to the two equivalent values of ±|m| , for every integer

m.

As mentioned earlier, we have a two nanotube system with radii a and b respec-

tively. We solve the quantized energies for both channels independently and then

claim the following. A molecule is allowed to travel to the second channel through

the first channel only when its quantized energies overlap (within a given tolerance)

in both channels.
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Figure 3.3: a sketch of how the molecules proceed through the nanotubes

To be more precise, we provide a theoretical treatment of the facts provided

above.For two radii a and b , if we want overlapping energy levels, we have

E1
k,l = E2

m,n =⇒
(
λk,l
a

)2

=

(
λm,n
b

)2

As such an exact equality is too hard to satisfy . But considering the fact that

the channel radii and the molecular energies are only approximately fixed, we

allow a tolerance δ of the energy levels and look for a correspondence within that

tolerance:

E2
m,n − δ ≤ E1

k,l ≤ E2
m,n + 2δ (3.8)

In terms of bessel zeroes, this becomes

∣∣∣∣∣
(
λk,l
a

)2

−
(
λµ,n
b

)2
∣∣∣∣∣ ≤ 4µδ

~

2
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where µ is the mass.

Also, we must take k = m as the angular momenta of the molecules don’t change

while they travel from one channel to the other. In other words, we look for

correspondences of energy between molecules of same angular momentum. The

smoothness of the dependence of bessel zeroes on parameters implies the existence

of a χm,n > 0 such that the condition is verified for

∣∣∣∣∣
(
λm,n
a

)2

−
(
λm,n
a+ χ

)2
∣∣∣∣∣

for a fixed m,n if χm,n < χ.
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RESULTS

In this section. we discuss in details the results obtainded from our calculations

and their implications.

4.1 Calculation of energy levels

Following the discussions of section 3.2, we try to calculate the energy levels

inside of a nanotube whose width is fixed at 1nm. The molecules are con-

strained to move inside a potential well with ε/kb = −200K. The remaining pa-

rameters for are given as µH(mass of hydrogen)=3.348 × 10−27 Kg,µD(mass of

deuterium)=12.025 × 10−27 Kg and ~ = 1.0546 × 10−34 J.s. We consider the so-

lution of the Helmholtz equation given in the preveious chapter for m = 0, 1, 2...5

and list the first few energy levels for hydrogen and deuterium following eq(3.6).

It is pertinent to note that the energy levels are independent of temperature

From the tables 4.1 and 4.2, it is clear that the energy levels of deuterium are far

more closely spaced than that of hydrogen. Actually, from eq (3.6) it is evident that

47
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Table 4.1: energy levels (in K) for hydrogen for various m values

En m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
E0 -199.304 -198.233 -196.827 -195.103 -193.072 -190.744
E1 -196.334 -194.079 -191.476 -188.537 -185.271 181.684
E2 -190.990 -187.548 -183.756 -179.620 -175.148 -170.345
E3 -183.272 -178.643 -173.662 -168.335 -162.666 -156.660
E4 -173.180 -167.363 -161.194 -154.677 -147.815 -140.612
E5 -160.712 -153.708 -146.352 -138.646 -130.593 -122.197
E6 -145.870 -137.678 -129.134 -120.240 -110.100 -101.400
E7 -128.652 -119.274 109.542 99.460 -89.029 -78.251
E8 109.061 -98.494 87.576 76.305 64.685 -52.718
E9 -87.094 -75.340 -63.234 -50.776 -37.968 -24.811

increasing the mass of the molecule increases the proximity of corresponding energy

levels ,in agreement with the correspondence principle of quantum mechanics.

4.2 Inside the first nanochannel

In section 3.1 ,we have already derived an expression for the number density of the

molecules inside the first nanotube travelling from the thermal reservoir. Here we

try to give a numerical estimate of the percentage of particles that can be inside

the first nanotube following eqn (3.4). 4Ẽ ′ is taken to be 1 K for our calculations

(4Ẽ ′ ≈ 4r from eqn (3.7)). In table 4.3, an estimate of the percentage of Hydro-

gen molecules(in units of 10−3) that are allowed to pass into the first nanochannel

of width 1 nm( at room temperature T=300 K) for various m values are displayed.

Table 4.2: energy levels (in K) for deuterium for various m values

En m=0 m=1 m=2 m=3 m=4 m=5
E0 -199.652 -199.116 -198.411 -197.548 -196.531 -195.366
E1 -198.165 -197.035 -195.732 -194.261 -192.626 -190.830
E2 -195.489 -193.767 -191.867 -189.796 -187.557 -185.152
E3 -191.625 -189.307 -186.813 -184.146 -181.308 -178.301
E4 -186.572 -183.659 -180.571 -177.308 -173.872 -170.266
E5 -180.330 -176.823 -173.140 -169.281 -165.250 -161.046
E6 -172.898 -168.797 -164.519 -160.066 -155.439 -150.639
E7 -164.278 -159.582 -154.710 -149.662 -144.440 -139.043
E8 -154.469 -149.179 -143.712 -138.069 -132.252 -126.260
E9 -143.471 -137.586 -131.525 -125.287 -118.875 -112.288
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Table 4.3: percentage of hydrogen(in units of 10−3) inside first nanotube for
various m values

En m=0 m=1 m=2 m=3 m=4 m=5

E0 6.651 6.627 6.596 6.559 6.514 6.464
E1 6.586 6.556 6.480 6.417 6.347 6.272
E2 6.469 6.396 6.315 6.229 6.344 6.039
E3 6.305 6.208 6.106 5.999 5.886 5.770
E4 6.096 5.979 5.858 5.732 5.603 5.469
E5 5.848 5.713 5.575 5.434 5.289 5.144
E6 5.566 5.416 5.264 5.110 4.940 4.799
E7 5.256 5.094 4.931 4.768 4.605 4.443
E8 4.923 4.753 4.583 4.414 4.246 4.080
E9 4.576 4.400 4.226 4.054 3.885 3.718

Table 4.4: percentage of hydrogen(in units of 10−3) inside first nanotube for
various temperature (m is fixed at 0)

En T=-200 T=-100 T=-50 T=0

E0 27.138 11.514 8.941 7.307
E1 26.056 11.318 8.822 7.228
E2 24.217 10.974 8.613 7.088
E3 21.787 10.495 8.320 6.891
E4 18.974 9.900 7.952 6.641
E5 15.995 9.212 7.520 6.344
E6 13.052 8.455 7.034 6.008
E7 10.310 7.654 6.513 5.641
E8 7.883 6.834 5.965 5.251

In the next two tables 4.4 and 4.5, a comparative study of the percentage of

hydrogen and deuterium molecules (for a fixed m value, in this case taken to be

zero) that are allowed inside the channel with respect to varying temperature (in

Celsius) are given.
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Figure 4.1: dN/N vs temperature(in Celsius)for ground state energy(m = 0)
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From the table 4.3, we see that lower energy levels allow for more molecules at low

temperatures and this trend gets reversed as the temperature is increased. This

makes sense physically as we expect the low energy states to dominate at lower

temperatures whereas with increase of temperature more and more higher energy

levels come to play. As a result, the percentage of molecules entering into the

channel with high energies increase as the temperature is increased

.

Table 4.5: percentage of deuterium(in units of 10−3) inside first nanotube for
various temperature (m is fixed at 0)

En T=-200 T=-150 T=-100 T=0

E0 27.267 16.214 11.537 7.317
E1 26.718 16.019 11.439 7.277
E2 25.756 15.675 11.263 7.206
E3 24.283 15.190 11.014 7.015
E4 22.795 14.579 10.697 6.974
E5 20.926 13.857 10.318 6.817
E6 18.901 13.045 9.884 6.634
E7 16.796 12.162 9.404 6.427
E8 14.684 11.230 8.886 6.201
E9 12.630 10.269 8.338 5.956

4.3 Inside the second channel

Now, we concentrate on the second channel and try to calculate the energy levels

inside it for both hydrogen and deuterium by varying the width of the channel

from 0.9 nm to 0.1 nm following equation (3.4). For two tubes of width of 1nm

each it is evidently equivalent of having a single nanotube. Two tables showing

the first few energy levels for both hydrogen and deuterium with m = 0 are given

in tables 4.6 and 4.7.

If we compare the energy levels in the narrower channel for both hydrogen and

deuterium, we find that the probability of coincidence of energy levels between

the two channels in deuterium is much higher than that in case of hydrogen. This
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means that deuterium is more likely to pass into the second channel as compared

to that of hydrogen, especially at lower temperatures .Here in lies the uniqueness

of the sieving device. If it was a single nano channel, isotopic sieving would have

been due to the difference in zero point energy(which occurs because of the dif-

ference in mass). However, with the addition of a second nanochannel, narrower

in width than the first one, the prediction of this model is that there appears to

be another possibility of sieving which is based on energy. By tuning the right

energy levels, we can determine the percentage of molecules we want to allow to be

passed to the second channel, or shut out the complete possibility of one isotope

travelling to the narrower channel, therefore achieving isotopic separation.

We also avoid the general assumption that only ground states would be occu-

pied by the molecules. As the calculations show,we have considered a series of

energy levels. It is true that the probability of higher order energy levels being

occupied are pretty remote at low temperatures. However, our discussion includes

a wide range of temperature, and at sufficiently high ones, these energy levels are

indeed accesible. As our calculation shows, if the second nanochannel has effective

radius of 0.6 nm or 0.3 nm, then no hydrogen molecules are allowed to pass whereas

a certain percentage of deuterium molecules are allowed. This in turn creates a

situation where the second channel contains pure deuterium,free of hydrogen.

Table 4.6: First few energy levels of hydrogen(in K) inside second nanotube
for varying tube radii (m is fixed at 0)

En a=0.9 a=0.8 a=0.7 a=0.6 a=0.5 a=0.4 a=0.3 a=0.2 a=0.1

E0 -199.141 -198.913 -198.520 -198.067 -197.217 -195.651 -192.269 -182.606 -130.424
E1 -195.474 -194.272 -192.518 -189.817 -185.336 -177.088 -159.267 -108.352
E2 -188.877 -185.923 -181.613 -174.974 -163.962 -143.691 -99.895
E3 -179.349 -173.863 -165.862 -153.534 -133.090 -95.453 -14.138
E4 -166.888 -158.093 -145.264 -125.499 -92.718 -32.372
E5 -151.496 -138.612 -119.820 -90.867 -42.848
E6 -133.172 -115.421 -89.530 -49.638
E7 -110.916 -88.520 -54.393 -1.813
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Table 4.7: First few energy levels of deuterium(in K) inside second nanotube
for varying tube radii (m is fixed at 0)

En a=0.9 a=0.8 a=0.7 a=0.6 a=0.5 a=0.4 a=0.3 a=0.2 a=0.1
E0 -199.570 -199.456 -199.289 -199.032 -198.607 -197.823 -196.129 -191.291 -165.165
E1 -197.734 -197.132 -196.254 -194.902 -192.658 -188.524 -179.606 -154.114 -16.457
E2 -194.431 -192.952 -190.794 -187.470 -181.957 -171.807 -149.880 -87.230
E3 -189.660 -186.914 -182.908 -176.736 -166.500 -147.656 -106.944
E4 -183.422 -179.018 -172.595 -162.699 -146.287 -116.073 -50.797
E5 -175.715 -169.265 -159.856 -145.360 -121.318 -77.060
E6 -166.541 -157.654 -144.691 -124.718 -91.593 -30.615
E7 -155.899 -144.185 -127.098 -100.773 -57.113

From the tables 4.6 and 4.7, it is clear that the energy levels rise as we make the

radius of the second channel narrower. Now,following eq(3.8), we hypothesise that

the molecules travelling into the second channel from the first channel are only

those with appropriate energies(i.e energies corresponding to those in the narrower

channel). Simply put, we take δE in eqn(3.8) to be 1 K and hence in reduced

form the equation looks like

|E2 − E1| 6 1 (4.1)

where E2 and E1 are the energies in the second and first nanotube respectively. In

other words,only molecules in the second channel whose energies are approximate

subsets of those in the first channel are allowed, the others are constrained to

remain in the first channel itself and not go beyond.

Figure 4.2: comparison between percentages at 100K
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This drastically reduces the percentage of molecules that can travel into the second

channel as very few energy levels in two channels are co-incident. One unespected

fact that is worth to noticing is that when the radius of the narrower channel is

0.2 nm, all its computed energy levels are subsets (within a tolerance of 1K) of

those of the wider channel (with radius of 1 nm). This observation is unique only

in this case and does not apply for any other channel width that we investigated.

This happens because the zeroes of Bessel function almost co-incide in such a sit-

uation. Another point to note is that more coincidences are possible only at lower

temperatures (i.e at low energy levels) because the higher energy levels are only

acccesible at increased temperatures and these values are extremely unrealistic to

be achieved physically.

Figure 4.3: comparison between percentages at 200K

The figures above show extremely irregular behaviour and it is very hard to make

sense of the results in a predictive kind of way.As shown in the figures above, there

are multiple points in the range of 0.1-0.9 nm where hydrogen is totally cut-off

from entering the second nanotube. However, these points are completely random

though one can safely concur that if the second radii is close to the first one (larger

than 0.7 nm in our case), then there is very little chance of perfect sieving under
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Figure 4.4: comparison between percentages at 300K

any condition. Another important point to note is that the deeper the potential

well is , the better are the chances of sieving . This is because a deeper potential

well allows for larger number of energy levels, and larger percentage of molecules

to go through (provided the levels are approximately co-incident). A choice of

a larger tolerance i.e 4Ẽ ′, also allows for a higher number of co-incident energy

levels.

4.4 A general theorem on correspondence

In the following section, we obtain a rule for coincidence of energy levels. In accor-

dance with the above treatment, we propose a theorem for the special case when

a=1 nm and b is varied.

Theorem: As n, l −→∞ , b = nπ
lπ

= n
l

where n, l are integers.

Proof : The seperation between zeroes of consecutive bessel function approach

π asymptotically. So, if we are looking for correspondences between zeroes of

bessel functions, we should have

bλl = aλn
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or

bλl = λn

.

Here λn = nπ + cn and λl = lπ + cl.

cl, cn are corrections because of the fact that the zeroes don’t exactly coincide with

mutilples of π to begin with.

Figure 4.5: coincidence of zeroes of bessel function when a=5b

Now,

b(lπ + cl) = (nπ + cn) =⇒ b =
nπ

lπ + cl
+

cn
lπ + cl

.

Since lπ � cl as l −→∞, the second term on R.H.S −→ 0

Hence,

b =
nπ

lπ + cl
≈ nπ

lπ
=
n

l

(proved)
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However, this result is misleading if one is looking for coincidences with error

smaller than δE . Also a point to note is that the coincidences are asymptotic,

hence extremely unphysical in a real situation.

4.5 Comparison between percentage of H2 and

D2 in the second channel

As we know, the molecules inside the channel have infinitely many quantized en-

ergy levels. However, for all practical purposes, these energy levels have a cut off

which is dictated by the nature of the Maxwell-Boltzmann curve. More specifi-

cally, we ignore those energies which lie in the tail end of the distribution as the

probability of molecules with these energies are small when compared to the bulk.

The table below gives a cut off for the energies at various temperatures.

Table 4.8: Cutoff for Maxwell-Boltzmann distribution at various temperatures

temperature(K) cutoff-energy(K)
77 400
100 600
200 1200
300 1500

In table 4.8, we give an approximation of the percentage of molecules (in units

of 10−3) for both species that are allowed into the second channel for various

tube radii and varying temperature. The calculations are accomplished by first

calculating the energy levels via eq(3.7) and then integrating eq(3.4) between the

limits E + δE to E − δE to finally achieve the required percentage of molecules

that are allowed inside the channel.(δE/kb is taken 1 K)

.
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Table 4.9: Percentage of moelcules (in units of 10−3) allowed into the second
channel

temp(K) molecule radius(nm)
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

77
H2 31.73 44.11 38.26 0 20.05 25.55 0 31.25 0
D2 64.88 60.29 94.67 72.03 25.51 25.24 44.63 45.61 16.52

100
H2 26.34 35.27 31.29 0 19.45 19.15 0 27.24 0
D2 52.95 48.89 76.30 56.46 19.72 19.57 35.55 40.76 14.12

200
H2 15.66 18.72 17.54 0 9.86 9.78 0 20.32 0
D2 31.29 26.90 42.37 28.67 9.93 9.89 18.84 29.44 8.40

300
H2 11.23 12.75 12.19 0 6.61 6.57 0 16.72 0
D2 23.04 18.57 29.60 19.59 6.64 6.62 12.81 23.56 5.94

As is evident from the table, deuterium in general has greater probability of passing

into the second channel as compared to hydrogen. Also, specific tube radii allow

almost no hydrogen ( atleast negligible compared to percentage of deuterium) to

enter the second channel. This indicates that at these radii we have an almost

perfect sieve for isotopes.

4.6 Distribution of nanotubes

Let us consider the situation where the nanotubes of varying radius are distributed

randomly in a porous membrane and the gas molecules, which are inside a reser-

voir, are equally likely to access any one if them. We want to calculate the average

percentage of molecules that are allowed to pass in such case. The average per-

centage of molecule absorbed is given by

< P >=

∫ ∞
−∞

P (ω)f(ω)dω

where f(ω) is the distribution function for the nanotubes.

Before we proceed with the calculation, in the table is given the actual percentage

of molecules absorbed(in units of 10−3 ) inside nanotubes with widths varying

from 0.1 nm to 1 nm at room temperature.
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We first consider the simple case of uniform distribution where f(ω)=1.In this

case, the formula for average percentage reduces to

< P >=

∫ ∞
−∞

P (ω)f(ω)dω ≈
∫ 1

0

P (ω)f(ω)dω =
1∑
i=0

Pi(ω)dω

Here Pi(ω) corresponds to P0.1(ω), P0.2(ω) etc and dω is the increment in width

of the nanontubes which we have taken to be 0.1nm. In this case the average

percentage for H2 and D2 are given by < PH2 > =49.45×10−3 and < PD2 >

=70.69×10−3 respectively.

Next we consider the case of gaussian distribution where f(ω) = 1√
2πσ

e
−(ω−µ)2

2σ2

where µ=mean of the distribution and σ=the standard deviation of the distribu-

tion. The choice of mean and s.d in this case depends entirely on our discretion.

However, it is evident that the distribution is limited between 0.1 and 1. We

also know that about 99.7 percent of the total distribution lie within the range

µ± 3σ. Armed with this knowledge, we choose µ as 0.55 and σ as 0.15. Proceed-

ing with the calculations, the respective percentages for H2 and D2 are given as

< PH2 >=19.27×10−3 and < PD2 >=27.59×10−3.

We further try to refine our calculations by reducing dω to 0.05 nm. In the follow-

ing table, the percentage of molecules absorbed for the new nanotubes are given.

Table 4.10: Percentage of molecules (in units of 10−3) absorbed inside nan-
otubes with varying width at room temperature with dω = 1

temp(K) molecule radius(nm)
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

300
H2 88.24 82.78 73.45 63.82 54.60 45.24 35.26 26.45 17.04 7.61
D2 125.05 117.53 104.35 91.27 77.57 64.61 52.08 38.10 24.81 11.52
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With these modifications, we calculate the percentage for uniform distribution and

find < PH2 >=46.98×10−3 ,< PD2 >=67.27×10−3.

For gaussian distribution, the same are given as < PH2 >=18.62×10−3 and <

PD2 >=26.79×10−3 respectively.

4.6.1 Distribution of nanotubes in the second channel

Figure 4.6: comparison of percentages of isotopes present inside the first nan-
otube for uniform distribution

Let us consider the situation where the nanotubes of varying radius are distributed

randomly and the gas molecules, which are inside a reservoir, are equally likely to

access any one of them.We want to calculate the average percentage of molecules

that are allowed to pass in such case. This means that we have an ensemble of

1nm tubes to which tubes of radii varying from 0.95 nm to 0.1 nm are connected

following a distribution. We want to calculate the average percentage of molecules

Table 4.11: Percentage of molecules (in units of 10−3) absorbed inside nan-
otubes with varying width at room temperature with dω = 1

temp(K) molecule radius(nm)
0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15

300
H2 85.14 78.67 67.89 59.01 48.88 40.13 30.85 21.52 13.01
D2 120.34 110.16 98.51 84.79 71.03 58.35 45.67 31.45 18.14
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absorbed into the second channel under such conditions. The average percentage

of molecule absorbed is given by

< P >=

∫ ∞
−∞

P (ω)f(ω)dω

where f(ω) is the distribution function for the nanotubes.

To do this bit, we first calculate the individual energy levels associated with each

radius . Then we try to look for correspondences between the energy levels of

different radii (by allowing a tolerance of E/kb=1 nm). For example, suppose an

energy level for radius a is given as E1/kb=-100.56 K and that for radius b is given

by E2/kb=-99.87 K. These two energy levels are then considered to correspond

because 1/kb|E1 − E2| <1 K.

The percentages are then calculated and integrating between the limits E + δE

to E− δE to finally achieve the required percentage of molecules that are allowed

inside the channel.(δE/kb is taken 1 K)

We first consider the simple case of uniform distribution where f(ω)=1. In this

case, the formula for average percentage reduces to

< P >=

∫ ∞
−∞

P (ω)f(ω)dω ≈
∫ 1

0

P (ω)f(ω)dω =
1∑
i=0

Pi(ω)dω

.

Figure 4.7: comparison of percentages of isotopes present inside the second
nanotube for normal distribution
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Here Pi(ω) corresponds to P0.1(ω), P0.2(ω) etc and dω is the increment in width

of the nanotubes which we have taken to be 0.05 nm. In the following table, a

comparison between the average percentage of hydrogen and deuterium moelcules

absorbed are given for different temperatures.

Table 4.12: Percentage of molecules (in units of 10−3) absorbed inside nan-
otubes with varying temperatures considering uniform distribution

temp(K) < PH2 > < PD2 >
100 16.87 37.39
200 11.06 20.91
300 7.79 14.84

Next we consider the case of gaussian distribution where f(ω) = 1√
2πσ

e
−(ω−µ)2

2σ2

where µ=mean of the distribution and σ=the standard deviation of the distribu-

tion. The choice of mean and s.d in this case depends entirely on our discretion.

However, it is evident that the distribution is limited between 0.1 and 0.95. We

also know that about 99.7 percent of the total distribution lie within the range

µ± 3σ. Armed with this knowledge, we choose µ as 0.50 and σ as 0.15.

Table 4.13: Percentage of molecules (in units of 10−3) absorbed inside nan-
otubes with varying temperatures considering gaussian distribution

temp(K) < PH2 > < PD2 >
100 5.99 13.65
200 3.41 7.32
300 2.53 5.11

An important thing to note here is that the percentages increase when the tem-

perature is decreased, while the reverse happens if temeperature increases. This

is due to the fact that most correspondences occur within the ground state and

the first few excited states. As the temperature is increased, the occupation of
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Figure 4.8: comparison of percentage of hydrogen inside second nanotube for
different distributions

these states decrease as the molecules are encouraged to occupy higher order states.

Figure 4.9: comparison of percentage of deuterium inside second nanotube
for different distributions
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KINETIC SIEVING OF

ISOTOPES

This section is devoted to the development and discussions related to the kinetic

sieving of hydrogen and deuterium that were performed by us via MD simulation

techniques. A major part of this work has been done in collaboration with Prof.

Debra Bernhardt and Dr. Stefano Bernardi of AIBN,University of Queensland

and in essence is somewhat similar to that performed by Kumar and Bhatia[14].

5.1 Theoretical Outline

We wished to study the kinetic sieving effect of hydrogen and deuterium through

nanotubes using molecular dynamics (MD) simulation with the Feynman-Hibbs

(FH) modified interaction potential

UFH(r) = (
6µ

πβ~2
)
3
2

∫
dRU(|R + r|)exp

(
−6µR2/β~2

)
(5.1)

63
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which is based on the variational treatment of the path integral. Ring Polymer

Molecular Dynamics [21–24] was used for this variational treatment in our case.

Figure 5.1: A physical representation of the simulation setup

Our MD simulations for hydrogen isotopes in carbon nanotube model the fluid-

fluid and fluid-solid interactions according to Lennard-Jones (12-6) potential. For

H2-H2 and D2-D2 interactions, the parameters used were εf/kb= 36.7 K and σf=

0.2958 nm whereas for the C-C interactions, the parameters were εs/kb=37.26 K

and σs=0.34 nm. The fluid-solid interaction potential parameters were determined

according to the Berthelot mixing rule. The model consists of a nanotube con-

nected to two reservoirs at either ends. The first reservoir holds a combination

of isotopes , and is thermostated via a Nosé-Hoover Thermostat. After an initial

period of equilibriation , the molecules are allowed to travel from one reservoir

to the other one via the nanotube. A typical run consists of the same number of

particles in the initial reservoir to begin with (indicating a molar concentration

of 0.5 each) and after a certain time interval the molar concentration in the final

chamber is calculated. The selectivity of deuterium over hydrogen is given by the

ratio of molar concentrations in the initial and final reservoir and is defined as

S =

(
Df

Di

)
/

(
Hf

Hi

)
(5.2)
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where Df and Di respectively indicate the molar concentrations of deuterium in

the final and initial reservoir (similarly for hydrogen). A selectivity value of greater

than 1 indicates a preferential passage of deuterium into the final reservoir as com-

pared to hydrogen.

In determining effective potential considering quantum effects, eq (5.1) is replaced

by

UFH(r) = U(r) +
β~2

24µ

(
U ′′(r) + 2

U ′

r

)
+

β2~4

1152µ2

(
15
U ′(r)

r3
+ 4

U ′′′(r)

r
+ U ′′′′(r)

)
(5.3)

which is obtained upon expanding the integrand in (5.1) upto R4. This same

potential was used for both fluid-solid as well as solid-solid interactions. Such

an approximation reduces computation time, and also overcomes the singularity

in the integrand at zero interparticle seperation. Our simulations were run for 4

nanotubes of different radii viz. (2,8), (6,6), (8,8) and (10,10) within a temperature

range of 20-100 K.Multiple runs were made to account for statistical error.

5.2 Results

We expected that the selectivity values would be greater than 1 in general, indicat-

ing more deuterium to accumulate in the final reservoir as compared to hydrogen.

This happens beacuse of the steric hindrance caused due to the increase in effective

size of the solid-fluid interactions.

For the lighter hydrogen, the quantum effects are stronger compared to the heavier

deuterium, and as such the former faces a much higher hindrance. This results

in an easier passage of deuterium through the nanotube. Considering Bertholet’s
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Figure 5.2: sample run of a single simulation(this one is for a (6,6) nanotube
at 40 K)

mixing rule, the effective fluid solid interaction parameters are given as εfs=36.93

K and σfs= 0.317 nm. So, any nanotube with radii smaller than 0.317 nm is

not expected to allow any molecule to pass through.Sure enough, when we ran

the simulations for (8,0) and (3,6) nanotubes (with radii 0.309 nm and 0.307 nm

respectively ), we didn’t get any molecule to go through to the final chamber,

confirming the theoretical prediction.
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Figure 5.3: selectivity vs T curve for a (2,8) nanotube

Fig 5.2 shows the variation of selectivity of a with simulation time for sample run.

The discontinuity at the beginning corresponds to the equilibriation period. The

initial values of selectivity are also pretty high due to the fact that only a few
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Figure 5.4: selectivity vs T curve for a (6,6) nanotube

number of molecules are allowed to go inside. However, as time grows, more and

more particles go in through the nanotube into the final chamber, giving a much

better estimation of selectivity. Also after certain period of time , the selectivity

values reach a stable value, indicating that a sort of optimization has been estab-

lished inside the nanotube whereby no more molecules can pass though on account

of high pressure inside.
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Figure 5.5: selectivity vs T curve for a (8,8) nanotube

Fig 5.3 shows the variation of selectivity with temperature for a (2,8) nanotube.

The graph peaks at 30 K , with a mean value of 2.681 before tapering off as the

temperature is increased. A similar kind of behaviour is shown for (6,6) and (8,8)

nanotubes(fig 5.4 and fig 5.5 respectively), with the peak shifting to 40K and

with peak mean values of 2.138 and 1.801 respectively. However, the (10,10) tube
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deviates from this standard behaviour(fig 5.6), showing a peak value of 1.449 at

20K before decreasing monotonically with increasing temperature. This can be

attributed to the fact that the quantum effects already start to wane in (10,10)

tube (with a radius of 0.678 nm) and hence display an almost classical behaviour.

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100  120

s
e

le
c
ti
v
it
y

T(K)

Figure 5.6: selectivity vs T curve for a (10,10) nanotube

The selectivity values that we obtained via kinetic sieving are noticeably much

less in magnitude than those obtained via equilibrium sieving done in previous

works. As a matter of fact, Kumar and Bhatia[14] have obtained much higher

values (selectivity of 21.7 at 65K) via a similar procedure but using zeolite rho.

However, the low values are not surprising considering the fact that the sieving

in our case is not achieved by means of a pore, but the molecules have to travel

through the entire length of the tube to be sieved . The crowding effect inside the

tube due to the accumulation of molecules can severely affect selectivity.

Fig 5.7 shows how the molar concentration for the two isotopes vary inside the

initial and the final reservoir. It is interesting to note that for the first reservoir,

both the isotopes start initially with the same molar concentration. However, as

simulation time progresses, the molar concentration of H2 decreases while that of

D2 decreases. This indicates that as time goes by, more and more D2 molecules are
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Figure 5.7: change in molar concentration of the isotopes inside the two reser-
voirs for a typical simulation(this one is for a (6,6) nanotube at 40K)

prone to leave the initial resrevoir as compared to their lighter counterpart. This

difference of concentration in the first chamber is compensated by an increased

D2 concentration in the final reservoir when compared to a depleted H2 number,

indicating that D2 molecules are more probable to travel to the final reservoir via

the nanotube, resulting in an effective selectivity greater than 1.
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Figure 5.8: comparison of selectivity for different nanotubes

However, despite the quantitative difference, the qualitative behaviour of the

selectivity-temperature curve in our case shows remarkable similarity with that

obtained by Kumar and Bhatia, with a distinct peak obtained at 65 K for them

(30 K and 40 K for us), before decreasing . The difference in temperature at which

the peak value is observed can be conveniently attributed due to the difference of

sieving material used in both cases (zeolite rho vs carbon nanotube). Also it is
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important to note that the two smallest tubes (2,8) and (6,6) show the highest

selectivity.
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CONCLUSION

We have , in our works, thus tried to achieve sieving through nanotubes by means

of equilibrium as well as kinetic sieving. In case of the former, we have seen

that a combination of two nanotubes can actually act as a perfect sieve under

certain conditions, with a selectivity of deuterium over hydrogen being infinite.

Another advantage of the approach we adopted was that sieving could be carried

over a wide temeprature range as the quantum energy levels are independent of

temperature. So even at moderately high temepratures, a perfect sieving can be

observed. Though the analytical calculations were done considering a square well

potential and under ideal circumstances, more realistic nanotube potentials are

also expected to show similar kind of behaviour, albeit with less efficiency. A two

nanotube sieving device can thus made to work like a perfect sieve. It should also

be interesting to observe how roughness of the nanotube walls (varying radius)

affect sieving. A two nanotube system can be a perfect precursor for such kind of

study. As far as kinetic sieving is considered, the selectivity values we obtained are

much lower than those obtained in previous works, suggesting a not so attractive

proposition of its use as a sieving device at first glance. However, we feel that

this kind of setup is much more realistic and is open to further explorations.

Nevertheless, a two nanotube system for this kind of setup can also be studied
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and the results compared with the single nanotube case. Since the molecules show

a kind of ballistic transport through the nanotubes, it is very difficult to calculate

the traditional transport properties such as diffusivity in the case of kinetic sieving

we have considered. But the ballistic tranport properties in such a case can also

be an interesting aspect to ponder upon in the future.
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