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Pairwise Discriminative Speaker Verification
In the |-Vector Space

Sandro Cumani, Niko Bmmer, LuksS Burget, Pietro Laface,
Oldfich PIchot and Vasileios Vasilakakis

Abstract

This work presents a new and efficient approach to discritvmapeaker verification in the i-vector space. We
illustrate the development of a linear discriminative slfisr that is trained to discriminate between the hypothesi
that a pair of feature vectors in a trial belong to the samealsgreor to different speakers. This approach is
alternative to the usual discriminative setup that disorates between a speaker and all the other speakers. We use
a discriminative classifier based on a Support Vector Maz8VM) that is trained to estimate the parameters of a
symmetric quadratic function approximating a log—likelild ratio score without explicit modeling of the i—vector
distributions as in the generative Probabilistic Lineasddiminant Analysis (PLDA) models. Training these models
is feasible because it is not necessary to expand the i+vpatcs, which would be expensive or even impossible
even for medium sized training sets. The results of experismperformed on the tel-tel extended core condition
of the NIST 2010 Speaker Recognition Evaluation are coripetivith the ones obtained by generative models,
in terms of normalized Detection Cost Function and EquabiERate. Moreover, we show that it is possible to
train a gender—independent discriminative model thateselsi state—of-the—art accuracy, comparable to the one of
a gender—dependent system, saving memory and executierbtith in training and in testing.

Index Terms

Speaker Recognition, |-vector, Discriminative trainiri@grobabilistic Linear Discriminant Analysis, Support
Vector Machines, Large—scale training.

. INTRODUCTION

ECENT developments in speaker recognition technology haee 8e success of systems based on a low-
dimensional representation of a speech segment, the sed-cadentity vector” or i—vector [1], [2]. An
i—vector is a compact representation of a Gaussian Mixtuoelé (GMM) supervector [3], which captures most
of the GMM supervectors variability. The availability of ledimensional features boosted the research interest
towards probabilistic generative models [4]. These teasgaim at decomposing the speaker and inter—session
variability components of i-vectors, estimating theirtdimitions, and perform induction on the speaker identity i
a Bayesian framework. The most effective approaches in taimdwork are the Gaussian (G—PLDA) or Heavy-
Tailed Probabilistic Linear Discriminant Analysis (HT-PLDAJ][ and the Two-covariance model, a linear-Gaussian
generative model introduced in [5], [6]. PLDA models [7] notyohave well founded probabilistic interpretations,
but have also the advantage of producing log—likelihodidsathich do not, in principle, require score normalization
In [4] this has been confirmed in the case of telephone speechefvy-tailed distributions, whereas normalization
was needed for Gaussian distributions. A complete symnwadttiie train and test segments is another interesting
characteristic of these approaches.
Besides generative models, remarkable success has beabtsed by discriminative systems based on Support
Vector Machines, usually in combination with Nuisance idtite Projection [8], [9] for inter—session compensation.
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However, SVM—-based systems have mostly been trained as enseiswall classifiers, i.e., using the utterances of
a given speaker against the utterances from a backgrourattaohimpostor speakers. This approach has a major
weakness: the available samples for the target speakeftarescarce, and can easily reduce to just one. Moreover,
in a scenario where a single enrollment and test utterareeailable for a speaker, the two utterances play a
completely different role, which implies that the scoredagiven trial is not symmetric with respect to the segments.

In this work we present a new framework for discriminativealer classification that aims at overcoming the
problems of the classical SVM approach while retaining méshe interesting characteristics of Bayesian systems,
namely almost calibrated scores and symmetry betweenlemmi and test utterances. In this approach we do not
model speaker classes, but we train a binary classifier wHadsifies a pair of utterances as belonging to either
the same speakeor different speaker$l]. In particular, the speaker verification score for a pdir-gectors is
computed using a function having a form derived from the PLDAegative model. The parameters of the function,
however, are estimated using a discriminative trainingeddn. Discriminative training of a PLDA-like model for
speaker verification was originally proposed in [5], and s@raiminary work was done in [1] using as features
the speaker factors extracted using Joint Factor Analy€ig [

We show that the same functional form derived from PLDA can beinbd without making reference to the
distribution of the i—vectors, and that we can train an SVMt testimates the parameters of a second order
approximation of good symmetric score functions using gmaesion of each i—vector pair. We also show that this
pairwise SVM corresponds to a second degree polynomial k&vill.

Experiments performed on a NIST SRE 2010 evaluation task [1dyghat this new approach achieves state—
of-the—art performance with a scoring time comparable o dimplest i—vector based systems. Moreover, our
approach was directly used to train a gender—independeatkep recognition system, ignoring the gender labels
both in training and in test, with accuracy comparable todhe of gender—dependent systems trained on the same
data.

The outline of the paper is as follows: Section Il briefly introdsa the i—vectors, and Section Ill recalls the PLDA
approach and the two—covariance model, where both the espaakl the intra—speaker variability sub—spaces are
assumed to be full-rank. It also shows how to obtain a biriagat classifier in an appropriate nonlinearly expanded
space of i-vector pairs. In Section IV, using an expandedoveepresenting a pair of i—vectors in a trial, we derive
an SVM model. A fast solution to the computation of gradiend anore, which are needed for efficient training
and scoring, is presented in Section VI. The experimentalteesamparing the performance of the discriminative
and generative models are given in Section VII, and conahssare drawn in Section VIII.

Il. [-VECTORS

I-vector based techniques represent the state—of—thm-apeaker verification [2], [12]. |-vectors provide an
elegant way of reducing large-dimensional input data. is @pproach, a speech segment is mapped to a fixed small-
dimensional vector retaining most of the relevant infolioranecessary to give state-of-the-art speaker recognitio
performance. The mapping is obtained by modeling the seguefifeature vectors by a large GMM, the parameters
of which are constrained to lie in a low dimensional subsphltearticular, the i—vector model constrains the GMM
supervectos, representing both the speaker and inter—session chasticeeof a given speech segment, to live in
a single subspace according to:

s=m+T¢, Q)

where m is the Universal Background Model (UBM) GMM mean supervecteith ¢ GMM components of
dimensionF'. T is a low-rank rectangular matrix, @ x F' rows andM columns, spanning the subspace including
important inter— and intra—speaker variability in the meapervector space, awgis a realization of a latent variable

® of size M with standard normal distribution. A Maximume-Likelihoodtiesate of matrixT" is usually obtained

by minor modifications of the Joint Factor Analysis approat®][ Given the sequence of features representing an
utterance/X, its i-vector is computed as the Maximum a Posteriori (MAP)np@&stimate of the variabl@®, i.e.,

the mean of the posterior distributigrf®|.X’).

The main advantage of the i—vector representation is thapithislem of intersession variability can be deferred
to a second stage. The possibility of dealing in this secoadeswith low-dimensional vectors, rather than with
the high-dimensional supervectors of the GMM means, bdotte study of probabilistic generative models [4],
[6]. A procedure for extracting i-vectors has been desdribed effectively used in [2], [12].
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I11. GENERATIVE MODELS

Good speaker recognition accuracy has been obtained usuegtors and simple LDA and cosine distance
scoring [2]. However, since the introduction of these loirehsional features, the speaker recognition community
has focused on more accurate models for computing spealesmtioa scores directly from i—vectors. The generative
models analyzed in [7], [4] are among the best models for @iepn of i—vectors. In this section we briefly recall
the PLDA framework and a simplified model that will be used forideg the formulation of our discriminative
speaker verification approach.

A. PLDA

Probabilistic Linear Discriminant Analysis (PLDA) [7], [4] isne of the most successful models for i—vectors
comparison. PLDA assumes that the i—vector generation pparas be described by means of a latent variable
probabilistic model where i—vectap is modeled as the sum of three factors, namely a speaker factm inter—
session (channel) factor and the residual noiseas:

¢=m+ Uy +Usx+e€. (2)

MatricesU; and U, typically constrain the speaker and inter—session faditse of lower dimension than the
i~vectors space. The generation of an i-vector requiressthga random speaker factgraccording to speaker
prior distributionp(y) and a random inter—session factoraccording to a prior distributiop(x). The i-vector is
then the sum olU,y + U,x, the mean vectom and of the residual noise generated according to the distribution
p(e).

PLDA estimates the matricdd;, Uy, and the values of the hyper—parameters of possible patiarpebrs [4],
which maximize the likelihood of the observed i—vectorguasing that i—vectors from the same speaker share the
same speaker factor, i.e., the same value for latent varjabl

The simplest PLDA model (G-PLDA) assumes a Gaussian distribfwiote prior parameters. However, in [4] it
is shown that ML estimation of the PLDA parameters under a Gansssumption fails to produce accurate models
for i-vectors. Thus, heavy—tailed distributions for the mbgriors have been proposed leading to the Heavy-Tailed
PLDA model, which however, is computationally expensive.

A simpler approach preserves the Gaussian distributionngstion, but incorporates a pre—processing step where
the vector dimensionality is possibly further reduced by L[&d more importantly, within-class covariance and
length normalization is applied to the resulting patterh3].[ Using these dimension reduced and normalized i—
vectors, the performance of the Heavy-Tailed and GaussiamARhbdels is comparable, the latter being much
faster both in training and in testing.

B. Two-covariance model

Further model simplification is obtained by merging togetherresidual noise and the inter—session components,
assuming that the speaker and inter—session subspacethspaintire i—vector subspace. This simplified model is
referred to as the two—covariance model [5], [6]. An i-vecipis assumed to be produced by a linear-Gaussian
generative modeM that accounts for a speakgrand a Gaussian—distributed compongnincluding inter—session
variability, as:

d=y+z. 3)
If we assume that the speaker component is Gaussian—disttilas:
P(y|M) = N(y|u, B! , 4)

whereB~! is the between—speaker covariance matrix, and the disbibof the i—vector given the speaker identity
is also Gaussian:
P(gly. M) = N(¢ly, W), 5)

whereW 1 is the within—speaker covariance matrix, then, given aSset{¢1, ..., ¢,} of n i-vectors associated
to the same speaker, the posterioryof also normal [14]:

P(y|S,M) =N (y[L™ 'y, L7, (6)
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and the parameters of the distribution are:

L=B+nW ’Y:BM+WZ¢~ (7)
peS

C. Two—covariance scoring

The conditional likelihood of two i-vectors allows obtaigithe speaker verification log-likelihood ratio score
between the “same—speaker” hypothelisand “different—speaker” hypothesid,:

A\ = log P(¢17 ¢2’HS)
P(¢1,p2|Hy) ’
where ¢1, ¢ are two i-vectors that are scored.

The numerator probability is computed assuming that thecktewe¢; and ¢, belong to the same speaker, i.e they
share a common value of the hidden variableAccording to Bayes rule this probability can be computed as

P(¢1, $p2lyo, M)P(yo| M) )
P(yo|p1, p2) ’

wherey is any value which does not cause the denominator to be zerce 8ie intersession variability components
of different utterances are assumed to be independenthiesi—vectors are independent given the speaker variable,

(9) can be rewritten as: P(1|y0, M)P(¢alyo, M) P(yo| M)
_ 11Y0, 21¥0, Yo
P(1, ¢2|Hy) = P(yol¢1, $2) ’

The denominator probability in (8) is computed, insteaduassg that the i-vectoré; and ¢, belong to different
speakers, as:

(8)

P(¢1, p2|Hs) =

(10)

P(¢1, p2|Ha) = P(¢1)P(¢2) =
P(¢1lyo, M)P(yo|M) P(p2|yo, M)P(yo| M) (11)
P(yo|¢1, M) P(yo|p2, M) ’
where the first equality derives from the independence of flealeer factors, and the second equality from Bayes
rule.

Substituting (10) and (11) in (8) we get:

P(yol¢1, M) P(yo|p2, M)

A=lo . 12
& Plyol M) P(yoldr, b2 M) 42
Using (4) and (6), and selecting, = 0, we finally get the log—likelihood ratio:
1 - - - -
A= (og [P =y Ty +log[T] = 72" Ty
—log [B| + u"Bp — log|A| +7{5Am.2) , (13)
where, according to (7): . B
A= (B+2wW)! r=B+W)! (14)

Yi2=Bu+W(p +¢2) v =Bu+W¢,.

Collecting in a constart all the terms in the sum that are not a functiomf -2, and~; 2, (13) can be rewritten
as:

1 /- ; ~ 5
A = 3 (k: + 91 9AY12 = Ty — 72" Tye > (15)

with
k =2log|T| —log|B| —log|A| + n"Bp (16)
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Substituting (14) in (15) to make the role of the two i—vectiorshe log-likelihood ratio computation explicit, we
obtain the score:

s(p1,¢2) =
5 ((Br+ W+ 62)TABY + W(o1 + 62))
—~(Bu+We1) T(Bu+ W)
~(Bu+ W) T(Bu+ W) + i) (17)
which can be rewritten as:
s(d1,¢2) = ¢ Ady+ B3 Ady + ¢ Ty + ¢3 Db
o1+ ¢2) etk (18)

Thus, the speaker verification score is a quadratic functiaimnei—vector pair in a trial, where the original model
parameters are related 10, T", ¢ and k& according to:
A =1WTAW I=1wWIi'A-T)W

e=WT(A-T)Bu k=k+} (B (A 20)By) . (19)

Since the two—covariance model is a particular case of the PLp#oach, where the dimensionality of the
speaker and channel spaces is full, its parameR¥/, andu can be trained by means of the same EM algorithm
that has been used for PLDA [4].

Another derivation, based on the two—covariance modelingath the same formulation has been illustrated in
[15].

D. Expanded vector linear classifier

To demonstrate that the log—likelihood ratio scefe, ¢2) of (18) can be computed as a dot—product in an
i—vector pairs expanded space, we recall that the computafithe bilinear formx” Ay can be expressed in terms
of the Frobenius inner product ad' Ay = (A, xy”) = vec(A)?vec(xy?), wherevec(-) is the operator that stacks
the columns of a matrix into a vector ad, B) denotes the dot—product between matridesind B Hence, the
expression for the speaker verification log-likelihoodaatcore (18) can be rewritten as:

s(d1, P2) = (A, P15 + o] ) + (T, 19T + pap?)
+cT(pr+ o) + K. (20)

By stacking the parameters as:
vec(A) WA
(r

wo |vee )| _ |wr (21)
c We
k Wi

and expanding an i-vector pair as:

Vec(¢1¢§ + ¢2¢§) oA (D1, P2)
_|vec(d1d] +d23)| | er(d1, @2)

PO =1 g ke | T | el ) &2
1 o ( )
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s(¢1, ¢2) can be written as the dot—product of a vector of weight&¢he model hyper—parameters) and an expanded
vector ¢(¢1, ¢2) representing a trial:

5(¢1, P2) = Sa(@1, P2) + Sr(d1, ¢2)
+ Sc(@1, P2) + Sk(d1, @2)
= WAQA(P1, ¢2) + Whor (1, ¢2) +
We c(P1, p2) + Wi k(b1 ¢2)
= wip(o1,¢2) - (23)

E. Taylor approximation of the speaker verification score

In this section, we show that it is possible to discriminagdween same—speaker and different—speaker trials,
without having to explicitly model the distributions of egtors, i.e., without making reference to the two-covargan
model.

The same expansiop(¢1, ¢2) defined in (22) can be obtained as a second order Taylor exjraaSia speaker
verification score. Let's assume that the speaker verificatioresis an analytic functior(®) of the i—vector pair
® = (¢1,¢2), invariant to i-vector swapping, i.es(¢1, ¢2) = s(¢2, ¢1). The Taylor expansion fos, around a
point ®, is:

. k
o ((2-P) V) 54
S(®) =) ( ,2, ) : (24)
k=0 ’
whereV is the vector of differential operators
0 0
V - <&§l, ] m) ) (25)

andd is the dimension of the i-vector pair.

In order to preserve the symmetry of the Taylor polynomiaitheut having to further constrain the score function
we consider Taylor series around symmetric points, ffie= (¢po, ¢o) for somegy. In particular, let's consider
the second order Taylor expansion fdi®) around the pointb = 0:

5(®) = 5(®) + (2 Vslg) + 2" (H(s)|5)® . (26)
whereH(s) is the Hessian of function(®). If we define:
r A
HOlW = |3 1
Vs|lg = [c c] (27)
s(®) = k,

with a symmetricA, we obtain the same score formulation as in (18). It is wodting that the structure imposed
by (27) arises naturally from the symmetry of the score fiomct(®) and from the symmetry of the expansion
point ®. It does not depend on the particular choicefof= 0. It is possible to prove (see Appendix A) that, for any
choice of a symmetrié all Taylor expansion polynomials for(®) at & are symmetric, and that the coefficients
of the Taylor expansion of(®) at & have exactly the structure of (27).

Since the second order Taylor approximation of the scorimgtfan around a symmetric point has the structure
described in (18), the pairwise discriminative trainingoegach, which is illustrated in the next section, can be
interpreted as a procedure that estimates the paramettrs sécond order approximation of a good score function,
according to the SVM optimization criterion.

IV. DISCRIMINATIVE CLASSIFIERS

Using the expanded vectas(¢q, ¢2) representing a trial, pairwise discriminative traininghdae performed
by estimating the weightsv in (23). We estimate these weights by means of a linear distative classifier,
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e.g. a Support Vector Machine. A Support Vector Machine [16T][[18] is a binary classifier which estimates
the hyperplane that best discriminates two given classgmtiérns according to a maximum separation margin
criterion. The separation hyperplane is obtained by soltmgproblem:

n

w* = argn‘ai,n %AHWH2 + % ;max (O, 1— Cinxi) , (28)
wheren is the number of training patterng; € X denotes ad—dimensional) training pattern with associated
label ¢; € {—1,+1}, and X is a regularization factor. The second term in this expresgothe empirical risk
evaluated on the training set, whereas the first term — theredu2 norm of the separating hyperplame — is
a regularization contribution, which is related to the gafization capability of the model [17]. The regularization
factor A allows tuning the trade—off between the margin and the dogpirisk. The latter is the sum of so—called
hinge (L1) loss function:

I21(i) = max(0,1 — Gwx;) . (29)

The minimization of (28) gives the maximum soft-margin diks The SVM is a linear classifier, however, a
non-linear classifier can be obtained by means of the so cé{khel trick” [19] where every dot product is
replaced by a nonlinear kernel function, or as in our casemegns of a non-linear feature expansion. In fact,
the feature mapping (22) defines a linear kernel that is elguivao a second degree inhomogeneous polynomial
kernel:

K(x1,%2) = (xf %0 +1)° (30)
wherex; = [¢, ¢p] andxs = [¢,, ¢.| define two different speaker recognition trials. The kernel
K(x1,%2) = K([¢a &) [Pw ¢2])
= (¢r b+ B . +1)’ (31)

can be rewritten as:

K(x1,%3) =¢ Quwbryda + O D=7 P+
20 pudL Pb + 20, bu + 244 P + 1
—(batbs , Pub,) + (Poy  P-0L) + (32)
2padt , udL) + 200 b + 24 .+ 1.

Defining the feature mapping:

P(¢p1, P2) = vec([p1 P2 1][p1 2 1]7) ~ b1 : (33)

where ~ is used to denote equivalence of vectors ignoring the orfi¢heir elements, we can conclude that the
kernel K (x;,x2) is the dot—product of two expanded vectors:

K (x1,%2) =([atpl][atpl]”, [Puwd:1][Puep-1]")
=3(¢ats) (Pup-) - (34)
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Looking at the log-likelihood in (18) and halving its (unkn@wparametek as¢ = c¢/2, so that the linear term
of the log-likelihood become®c’ (¢1 + ¢»), the feature expansion given in (22) becomes:

vec(p1opd + papl)
vec(p17 + ¢agpl) (35)
2 (1 + ¢2)
1

(1, P2) =

and it is easy to verify that the two expansions:

(Do, ®) 0(bw, D2) = G(bar D) P(Du, D) (36)

are equivalent, i.e., correspond to the same kernel.

Often, SVM classifiers are trained using a solver of the dudblpra, where a Gram matrix needs to be evaluated.
The Gram matrix contains the dot—products between everygbdimining examples. Since our training examples
are i—vector pairs, the size of the Gram matrix &{n*) due to the square of? i~vector pairs — would be
unacceptably large. Therefore, we train an SVM by solving tfiead problem using a general solver (see Section
V), and an efficient evaluation of loss function gradient thikaw both memory and computational resources to be
constrained.

Although the G—PLDA and the pairwise SVM expressions are fdgnmeduivalent, an important difference has
to be highlighted considering the hyper—parameters thattrained. The parameters estimated in G-PLDA (and
two—covariance) model are constrained, due to the positfmiteness constraints of their covariance matrices. In
the pairwise discriminative training approach, insteaal,parameter constraints are imposed, except for the ones
arising from the regularization of the optimization fumeti Thus, the latter approach is more flexible and does not
make a priori assumptions about the i—vector distribution.

It is also worth noting that the same task can be performed lgistio Regression (LR), another widely used
linear classifier, which allows estimating class posterimbpbilities given a set of patterns [18]. Normalizing the
loss function of LR by the number of patterns and including a regularization fact%\n\wHQ, the regularized LR
objective functionf,r(W) is:

Ay ¢ W,
fLR(W):gHWHQ—i—aZlog <1+e Gi ) , (37)
i=1

which is similar to the SVM objective function. SVM and LR optiration can be seen as the solution of a particular
instance of the unconstrained convex regularized risk miiation problem:

1 , 1w
E(w) = arg min §>\ Ilw||* + - Z;E(W,xi, i) (38)
with loss function
0r1(1) = max(0,1 — Gwrx;) (39)
and S
Lon(i) = log (14 76%" %) (40)

respectively. The SVM optimizes the margin separation batwee classes, whereas LR minimizes the cross—
entropy error function.

In the following we will illustrate our solutions and repaisults for the SVM classifier, but the same con-
siderations apply to LR, just changing the loss function. Témults of some experiments comparing these two
discriminative classifiers have been reported in [15].

V. PAIRWISE SVM TRAINING

Since our training patterns are all possible pairs of i-vsdtothe training set, their number grows@én?). The
feature mapping described in Section I1I-D produces mappetufes having)(d?) components, thus the global
dataset size would b&(n%d?). Caching the complete kernel matrix is impractical evenrégatively small sized
datasets because it would requién*) memory. In [20] we have shown that SVM training of the i-vegbairs
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by means of a dual solver requires either keeping in memaryctimplete dataset of mapped featur@$r>d?)),
or mapping the feature on-line, with a complexi®(n2d?) for each iteration. Since in our experiments= 400
andn is approximately 20000, a standard dual solver approacbtiviable.
Training is feasible, instead, by using a primal solver bseaas we show in Section VI, it is possible to efficiently
evaluate the loss function and its gradient with respest tover the set of all training trials i (n?d +nd?) time,
without the need to expand the i—vectors. Due to the smadl sizhe i—vectors, the dataset of training utterance
can easily be loaded in main memory. The evaluation of losstiiims and gradients in these algorithms requires
matrix—by—matrix multiplications of large matricesxn), however it is not necessary to store the complete matrices
in main memory because the computations can be performedghrblock decomposition of the matrices.

An analysis of large-scale SVM training algorithms suitegpeaker recognition tasks [20] allowed us to select,
among the primal solvers, the Bundle Methods for ReguldrRisk Minimization (BMRM) [21], [22], which offer
a general and easily extensible framework for solving cemreonstrained regularized risk minimization problems.
In particular, we trained our SVM using the Optimized Cuttidne Algorithm (OCAS) approach proposed in
[23], [22], which is an extension to BMRM that shows betted @amoother convergence properties.
An important advantage of these methods is that they do mptine the loss function to be differentiable in the
whole domain.

VI. EFFICIENT SCORE AND GRADIENT COMPUTATION

Using the OCAS technique, the SVM parametersare optimized by evaluating the loss function and a sub—
gradient of its error function (38):

1 0L, ;) 0s(i, @;)
VE(w) = =
= gy 05 Bir®3) 0w

The use of sub—gradients for optimization [24] is necessagabse the hinge loss function is not differentiable
everywhere. A sub—gradient for the SVM hinge loss function is

Olpi (i b)) _ {0 if Gijs(¢i, d5) > 1 (42)

+ Aw . (41)

Is(¢i, P;) —¢i; otherwise,

where(; ; € {—1,+1} is the label of the i—vector paifp;, ¢;). The derivative of the score with respect to the
classifier parameters is simply the expanded trial vector:

PO D) - 0 T, 4) = () 43)
The evaluation of the loss function and its gradient requireprinciple, a sum over all the expanded i—vector pairs
in the training set. Since their numberi$, which can easily reach the order of hundred of millions fgical
training sets, these evaluations would be not effectivevendeasible because the complexity would®g:?d?).
In the next section, however, we show that these computatan be done without an explicit full expansion of
all the i-vector pairs, with a complexity that reducesQén?d + nd?).

A. Fast scoring

In order to obtain effectively the loss contributions of @#lining pairs, we need a fast procedure for computing
the scores of all the training i—vector pairs, obtaining imatrix of the scores of every i—vector against each other.

Given a trained classifier, a verification score for a trial gain be computed by means of the expanded vector
(i, ¢;) and the dot—product in (22) and (23). However, a much morei@fficsolution in terms of memory
and computation can be obtained using (18). In particulal = [¢p1 2 . . . ¢,,] be a matrix including: stacked
i-vectors, and leSg; ; = Se (¢, ¢;) denote the score matrix for all possible trials related togonent© of w,
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where® € {A, T, c, k}. From (23) and (18) the score matrices can be evaluated as:
Sa(¢i &;) = &) Ad;j + ¢] Ap; = Sy =2 D'AD
- - T
St(¢i, @) = ¢ Tpi + ¢ T'p; = Sp = Sp + St

Sc(¢iv ¢]) = CT(¢i + ¢j) = Sc = S~c + S~cT

Sr=[dp...dr] S.=][d....d,]

where

and
dr = diag D’TD) d.=D"c.

The operator diag returns the diagonal of a matrix as a coluaatoy, andl is ann x n matrix of ones.

No explicit expansion of i-vectors is therefore necessarytliis evaluation.

B. Loss function evaluation

10

(44)

(45)

(46)

Denoting byS = Sp + Sr + S¢ + S the sum of the partial score matrices, the SVM loss functiom loa

obtained as:
€1(D,Z) = Y max(0,1-G,w o(¢i, ;)
1,J

= <i,max(0, 1-(Zo8)),

(47)

where0 is ann x n matrix of zeros,Z is then x n matrix of the trial labels; ; for each i—vector paifeg;, ¢;),

ando is the element-wise matrix multiplication operator.

C. Gradient evaluation

The sub—gradient of the loss function can be evaluated frenddtivative with respect to thex-th dimension

of w as:
Owp, ig a(wTSO(qbza ¢])) 0w,
Osi 1
= ) gij 8w7] = 9i5(Pi, D)),
i m i,

whereg; ; is the derivative of the hinge loss function with respecthte scores; ; = w (i, ¢;):

ii = 0 if Ci,jsi,j >1
Z’] —(i; otherwise.

Considering the i—vector expansion (22), the loss funcgjadient (48) can be written as:

VA £ vec (>, 9ij ¢i¢;"ﬁ+¢j¢?
e Ve €| _ |vec > Y ¢i¢¢T+¢j¢JT

Ve £
VZ ¢ > i (@i + @j)
i 9.3

(48)

(49)

(50)

Defining G the matrix of the elements; ;, and taking into account that it is symmetric, the terms @&f slub—
gradient of the loss function, related to a componéntf w, can be expressed in terms of dot—products and
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Fig. 1: minDFCO08 and minDCF10 as a function of the speaker sglksganensionality for the female and male
speakers

element—wise matrix products as:

2 vec (DGDT)
2 vec ([Do (14 G)]DT)
2 Do(1la G) 1B ’
1L G 1p

Ve = (51)

wherel 4 is a M x n matrix of ones {/ is the i—vector dimension) antlg is a sizen column vector of ones.
Again, no explicit expansion of i-vectors is necessary fos evaluation.

TABLE I: Comparison of the performance of G-PLDA with and withéwvector length normalization and PSVM

i—vector_ _ System _Female _ _ Male _
length normalization EER (%) | minDCFO08 | minDCF10| EER (%) | minDCFO08| minDCF10
no G-PLDA 3.51 0.15 0.39 2.28 0.12 0.43
yes G-PLDA 2.10 0.10 0.35 1.24 0.07 0.28
no PSVM 2.21 0.10 0.34 1.96 0.08 0.26

D. Estimation of the regularization factor

Training a risk minimization problem (38) entails the sélmt of an appropriate value for the regularization
factor \. Different approaches have been proposed to estimate afgotm, such as cross—validation, or fitting
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TABLE II: EER and minDCFs for PSVM on SRE2010 tests with 400 and 600 dsio® i—vectors

i—vector type| Model Gender . Female . . Male g
System || EER | minDCF08| minDCF10|| EER | minDCF08| minDCF10
GD GD 400 GD || 2.21 % 0.109 0.360 1.73 % 0.081 0.303
Gl GD | 400 PGI|| 2.49 % 0.115 0.369 1.84 % 0.084 0.298
Gl Gl 400 GI || 2.51 % 0.115 0.382 1.82 % 0.087 0.309
GD GD 600 GD || 2.32 % 0.106 0.342 1.76 % 0.077 0.290
Gl GD | 600 PGI| 2.59 % 0.103 0.358 1.82 % 0.082 0.274
Gl Gl 600 GI || 2.51 % 0.108 0.383 1.80 % 0.078 0.307

the models for all possible regularization factors [25]tekfa few cross-validation search strategies were tried, we
found that the simple heuristic factor proposed as the dtefegularization parameter in SV [26] is sufficient
to produce accurate models. It has the advantage that iteaasily computed from the training data as:

" )
1 1
C= = (n ; HXiH> ; (52)

wherex; is one of then patterns in the training s€tt'}. In our approach a pattesq is an i—vector pair. Looking at
(34) and (31), by replacing.,, and ¢, with ¢, and ¢, respectively, the norm of the expanded featusés, , @)
for the i—vector pair(¢1, ¢2) can be computed as:

lo(d1, d2)|| = b1 b1+ 3 po + 1. (53)

Thus the regularization parametgrcan be set so that:

L= e )l

i=1 j=1

n

12

-\ n2 Les
=17

-2

-2

(] i + ¢]T</5j +1) (54)
1

n

" 2
2
<1 +- Z ||¢iH2> :
i=1

VII. EXPERIMENTAL RESULTS

The i-vector extractor used for the first set of experimentsaised on 60-dimensional cepstral features and a
2048-component full covariance GMM. The UBM and i-vectorragtor are trained on NIST SRE 2004, 2005
and 2006, Switchboard and Fisher data. The PLDA systems andndiisative classifiers have been trained using
i-vectors with dimensionl =400 ord = 600, respectively, extracted from NIST SRE 2004, NIST SRE 2005, NIST
SRE 2006, Switchboard Il Phases 2 and 3, and Switchboard Celfalés 1 and 2.

Table | presents the results for the extended condition I5télg¢ from NIST SRE 2010 evaluation in terms of
percent Equal Error Rate and normalized minimum Detectiont €Eaaction (minDCF) as defined by NIST for
SREO8 and SRE10 evaluations [11].

The system denoted as G—PLDA without length normalization setan a generatively trained PLDA model
with a 120—dimensional speaker variability subspace, afichannel variability subspace. For the system denoted
as G—PLDA with length normalization, which is our references perform in sequence within-class covariance
normalization [27] and length normalization of the i—vest§l3]. This configuration was found to give the best
minDCF10, which was the primary performance measure in NIST @BE evaluation focusing on low false
alarm rates.
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In the Pairwise SVM (PSVM) system, the lack of normalization leé i-vector dimensions would affect the
regularization tern%)\||w||2 in the SVM objective function (28). Thus, to make SVM regulatima effective, we
normalize the i—vectors so that they have identity withpeaker covariance matrix.

In these conditions, the behavior of the two systems is amfdnd much better than G—PLDA without i—vector
length normalization [13]).

Since the G-PLDA with length-normalized i—vectors perfornighdly better than PSVM, we performed another
set of experiments to assess the effects of size of the speakability subspace on G—-PLDA accuracy. Figure 1
shows the minDFCO08 and minDCF10 as a function of the speak@bility subspace dimension for the female
and male speakers separately. We can observe in these figatelsd dimension of the speaker variability subspace
must be carefully tuned because it affects system perfarendto tuning is necessary in our pairwise SVM models
because we always estimate full-rankandI' matrices.

A. Gender—-independent pairwise SVM

State—of—the—art text—independent speaker recognitistersig are designed to achieve best performance when
the gender label is known both at training and testing timend&r information, however, is not available in a
number of real applications. Although the speaker genderbea estimated from the trial data, this preliminary
classification is a potential source of accuracy degradation

The interpretation of pairwise discriminative trainingugitrated in Section IlI-E provides the rationale for a
straightforward approach to gender—independent pairdigsziminative training. If we consider the most elabodate
generative models, such as Heavy-Tailed [4] or Mixtures of RLUBEB], we can notice that they differ only in the
formal expression of their log-likelihood ratio score ftion. Since in pairwise SVM training we directly optimize
a second order approximation of a good score function, aaggeimtlependent SVM can be implemented by training
a single system with pooled gender i—vectors, without tredrfer gender labels both in training and in testing. The
gender prior is implicitly built into the SVM solution via thgroportions of males and females in the training data,
thus some care might be required in case of very unbalancésl and female training sets. The PLDA mixture
solution has the advantage (at least in principle) that gex can specify this prior externally at run-time, if the
user knows, for example, that females may be scarce in arcegtalication. In practice however, calibration of the
gender likelihoods relative to the prior may cause the agatior not to have much effect. A gender—independent
system has two benefits: a larger amount of training data carséxe for off-line estimation of the UBM and of the
speaker and inter—session sub—spaces, moreover its nredeise less memory and computation during testing.
Memory is saved because there is no need to keep separaier geodels, and unless the knowledge of the gender
is a—priori known, a gender detector is heeded for a gendpertlent system.

It is worth noting that from the experiments with GD systemeported in Table |, we know that the pairwise
SVM system and the PLDA systems using the same GD i—vectors giwparable performance. We did not train,
however, a Gl PLDA system using Gl i—vectors because the segiven [28] for similar telephone tests, show
that it is necessary to use mixtures of PLDA models to reach #réopnance of a GD PLDA system trained
with the same Gl i—-vectors. We focused, thus, only on pagv@8¥M systems using Gl i—vectors, to assess their
performance in a fully Gl speaker verification task. In pattc, we trained three types of PSVM systems using
i~vectors of 400 and 600 dimensions, respectively:

« a fully gender—-dependent (GD) system, where both i—vectivaetion and SVM training is gender—dependent,

« a partially gender—independent (PGI) system, where thectexg are gender—independent, whereas two SVMs

are trained using GD segments,

« a totally gender—independent (GI) system, where both teveextraction and SVM training is performed

without using gender labels.
For GD and PGI systems gender labels are provided at test wimits for the Gl system no gender information
is used to score the trials.
The results for these models, reported in Table Il on the satemeed tel-tel SRE10 evaluation Seshow that a
fully GI system, using both 400 or 600 Gl i-vectors, gives panable performance to a partially gender independent

The GD results of Table Il are different with respect to the the onesigiv@able | because the list for training matfixincluded two
additional datasets: Part 1 and 2 of the Fisher English Corpus.
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system, which needs the gender labels at test time, and ipatidive with the more expensive GD models, which
of course not only use GD models but also GD i—vectors. Thues rélative loss of performance observed with
respect to the GD systems is due to the use of Gl i—vectorstonmiodel deficiency.

VIIl. CONCLUSIONS

In this work we presented a novel framework for discrimivtiraining of speaker verification systems, where
a trial is represented, as in the PLDA approach, by an i—vecair, pnd the task is discrimination between
same—speaker and different—speaker classes. This paiBVibk approach provides a more natural paradigm to
speaker verification compared to the classical one-vs—sadrridiinative training. We showed that this technique
has strong connections with the state—of-the—art gereratbdels, but does not need to explicitly model the i—
vector distribution. Rather, it can be interpreted as a gulace that estimates the parameters of a second order
approximation of a good score function, or simply as a paensecond degree polynomial kernel classifier in the
i—vector pairs space.

We addressed and solved the time and memory issues raisedddeaguadratic expansion of the i—vector pairs
for an efficient computation of the loss function gradientd ahthe verification scores.

A fully Gender—Independent discriminative system has beamed which achieves, using Gl i—vectors, an
accuracy comparable to the one offered by similar Gendgrebdent systems, with the advantage of not requiring
two separate models nor gender knowledge.

While some issues are still open, for example extensionseofrtodel to deal with more than a pair of utterances
or large—scale training, pairwise discriminative tragiprovides models that allow fast scoring of test utterances
achieving state—of—the—art performance.

APPENDIXA

Proposition 1: For &, = (o, ¢0), all Taylor polynomials ofs(®) at &, are symmetric with respect to i—vector
swapping.

Proof: Sinces is symmetric, the functiong (o1, ¢2) = s(d1, ¢2) and g(p1, P2) = s(¢p2, ¢1) are equal and,
therefore, have the same Taylor polynomials for any givemalorLetT,f, T and T, denote thep—-th order Taylor
polynomials forf, g ands, respectively. We havé; (¢1, ¢2) = T,f(¢1, ¢2) = T3 (P1, 2) = T3 (2, ¢1), thus the
Taylor polynomials fors(¢q, ¢2) at b = (¢o, ¢o) are symmetric for any. [ ]

Proposition 2: The coefficients of the first and second order Taylor expansiori®j at & = (¢, ¢) have the
symmetric structure given in (27).

Proof: To derive the structure of the Taylor coefficients given in)(2ve first consider the Taylor series of
around® = 0:

+o0 . k;s

k!
k=0
=k+¢ici+dples + ¢l Apy + ¢l Bopo
+o00 k
®-V)'s
+ 61061 + @i D+ T (55)
k=3
We can rewrite the first three terms of the series as:
A B
6o = |& Dl
VS|0 = [Cl CQ} (56)

s(0) = k.

From the symmetry of the Hessian it directly follows th&atand D are symmetric and thaf' = B”.
_In order to prove that; = ¢z, A = D, and B is also symmetric, we consider the Taylor expansiorn afound
®(, computed in® = (¢, ¢2) and in the symmetric poind® = (¢2, ¢1). Sinces is symmetric, in these two
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points the series has the same value. In particular,
s(B) =k +djc1+ ol ea+ d) Az + ¢ By
S
+¢{ Cepy + ¢T Doy +Z¢ .
k=3

Since B = CT, we have tha! B, + ¢l Cd, = 2¢L B, for any ¢, ¢p. Therefore, combining (55) and (57)
we get:

(57)

k+¢lci+ ¢sca+ ¢ Apr + 2¢1 B

(®-V
+ 7 Dby +27> o _
k=3
k+¢ser+ ¢1T02 + ¢7TA¢2 +2¢{ BT ¢

8’0

+¢1 D¢ + Z (58)

The equality (58) holds for any choice &f only |f aII coefficients of the two polynomials are equal, iié.c; = ca,
A = D, and B is symmetric.

Finally, consider a generic symmetric poibt, = (90, P0), and leth (g1, ¢2) = s(¢1+ o, P2+ ). The Taylor
expansion ofh, around0 has, by definition, the same coefficients of the Taylor series faround®,. Moreover,
h is symmetric, therefore the Taylor coefficients of its secoriker Taylor polynomial have the same structure as
in (27). [ |
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