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Abstract

NAND flash memories represent a key storage technology for solid-state stor-

age systems. However, they su↵er from serious reliability and endurance

issues that must be mitigated by the use of proper error correction codes.

This paper proposes the design and implementation of an optimized Bose-

Chaudhuri-Hocquenghem hardware codec core able to adapt its correction

capability in a range of predefined values. Code adaptability makes it pos-

sible to e�ciently trade-o↵, in-field reliability and code complexity. This

feature is very important considering that the reliability of a NAND flash

memory continuously decreases over time, meaning that the required cor-

rection capability is not fixed during the life of the device. Experimental

results show that the proposed architecture enables to save resources when

the device is in the early stages of its lifecycle, while introducing a limited

overhead in terms of area.
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1. Introduction 1

NAND flash memories are a widespread technology for the development 2

of compact, low-power, low-cost and high data throughput mass storage sys- 3

tems for consumer/industrial electronics and mission critical applications. 4

Manufacturers are pushing flash technologies into smaller geometries to fur- 5

ther reduce the cost per unit of storage. This includes moving from tradi- 6

tional single-level cell (SLC) technologies, able to store a single bit of infor- 7

mation, to multi-level cell (MLC) technologies, storing more than one bit per 8

cell. 9

The strong transistor miniaturization and the adoption of an increasing 10

number of levels per cell introduce serious issues related to yield, reliability, 11

and endurance [? ? ? ? ? ]. Error correction codes (ECCs) must therefore 12

be systematically applied. ECCs are a cost-e�cient technique to detect and 13

correct multiple errors [? ]. Flash memories support ECCs by providing 14

spare storage cells dedicated to system management and parity bit storage, 15

while demanding the actual implementation to the application designer [? 16

? ]. Choosing the correction capability of an ECC is a trade-o↵ between 17

reliability and code complexity. It is therefore a strategic decision in the 18

design of a flash-based storage system. A wrong choice may either overesti- 19

mate or underestimate the required redundancy, with the risk of missing the 20

target failure rate. In fact, the reliability of a NAND flash memory continu- 21

ously decreases over time, since program and erase operations are somehow 22

destructive. At the early stage of their life-time, devices have a reduced 23

error-rate compared to intensively used devices [? ]. Therefore, designing an 24

ECC system whose correction capability can be modified in-field is an attrac- 25
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tive solution to adapt the correction schema to the reliability requirements 26

the flash encounters during its life-time, thus maximizing performance and 27

reliability. 28

This paper proposes the hardware implementation of an optimized adapt- 29

able Bose - Chaudhuri - Hocquenghem (BCH) codec core for NAND flash 30

memories and a related framework for its automatic generation. 31

Even though there is a considerable literature about e�cient BCH en- 32

coder/decoder software implementations [? ? ? ], modern flash-based mem- 33

ory systems (e.g., Solid State Drives (SSDs)) usually resort to specific high 34

speed hardware IP core [? ? ] in order to minimize the memory latency. This 35

is motivated by the fact that contemporary high-density MLC flash mem- 36

ories require a more powerful error correction capability, and, at the same 37

time, they have to meet more demanding requirements in terms of read/write 38

latency. 39

Given this premise, we will tackle a BCH hardware implementation for 40

encoding and decoding tasks. In particular, the main contribution of the 41

proposed architecture is its adaptability. It enables in-field selection of the 42

desired correction capability, coupled with high optimization that minimizes 43

the required resources. Experimental results compare the proposed architec- 44

ture with typical BCH codecs proposed in the literature. 45

The paper is organized as follows: Section ?? shortly introduces basic 46

notions and related works. Sections ?? and ?? present a solution to reduce 47

resources overhead, while Section ?? and ?? overview the proposed adapt- 48

able architecture. Section ?? provides experimental results and Section ?? 49

summarizes the main contributions of the work and concludes the paper. 50
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2. Background and related works 51

Several hard- and soft-decision error correction codes have been proposed 52

in the literature, including Hamming based block codes [? ? ], Reed-Solomon 53

codes [? ], Bose-Chaudhuri-Hocquenghem (BCH) codes [? ], Goppa codes 54

[? ], Golay codes [? ], etc. 55

Even though selected classes of codes such as Goppa codes have been 56

demonstrated to provide high correction e�ciency [? ], when considering the 57

specific application domain of flash memories, the need to trade-o↵ code e�- 58

ciency, hardware complexity and performances have moved both the scientific 59

and industrial community toward a set of codes that enable very e�cient and 60

optimized hardware implementations [? ? ]. 61

Old SLC flash designs used very simple Hamming based block codes. 62

Hamming codes are relatively straightforward and simple to implement in 63

both software and hardware, but they o↵er very limited correction capability 64

[? ? ]. As the error rate increased with successive generations of both SLC 65

and MLC NAND flash memories, designers moved to more complex and pow- 66

erful codes including Reed-Solomon (RS) codes [? ] and Bose-Chaudhuri- 67

Hocquenghem (BCH) codes [? ]. Both codes are similar and belong to the 68

larger class of cyclic codes which have e�cient decoding algorithms due to 69

their strict algebraic architecture, and enable very optimized hardware im- 70

plementations. RS codes perform correction over multi-bit symbols and are 71

better suited when errors are expected to occur in bursts, while BCH codes 72

perform correction over single-bit symbols and better perform when bit er- 73

rors are not correlated, or randomly distributed. In fact, several studies have 74

reported that NAND flash memories manifest non-correlated or randomly 75
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distributed bit errors over a page [? ] making BCH codes more suitable for 76

their protection. 77

An exhaustive analysis of the mathematics governing BCH code is out 78

of the scope of this paper. Only those concepts required to understand the 79

proposed hardware implementation will be shortly discussed. It is worth to 80

mention here that, since several publications proposed very e�cient hardware 81

implementations of Galois fields polynomial manipulations, such manipula- 82

tion will be used in both encoding and decoding operations [? ? ? ]. 83

Given a finite Galois field GF (2m) (with m � 3), a t-error-correcting BCH 84

code, denoted as BCH [n, k, t], encodes a k-bit message bk�1

bk�2

. . . b
0

(bi 2 85

GF (2)) to a n-bit codeword bk�1

bk�2

. . . b
0

pr�1

pr�2

. . . p
0

(bi, pi 2 GF (2)) by 86

adding r parity bits to the original message. The number r of parity bits 87

required to correct t errors in the n-bit codeword is computed by finding 88

the minimum m that solves the inequality k + r  2m � 1, where r = 89

m · t. Whenever n = k + r < 2m � 1, the BCH code is called shortened 90

or polynomial. In a shortened BCH code the codeword includes less binary 91

symbols than the ones the selected Galois field would allow. The missing 92

information symbols are imagined to be at the beginning of the codeword 93

and are considered to be 0. Let ↵ be a primitive element of GF (2m) and 94

 
1

(x) a primitive polynomial with ↵ as a root. Starting from  
1

(x) a set of 95

minimal polynomials  i (x) having ↵i as root can be always constructed [? 96

]. For the same GF (2m), di↵erent valid  
1

(x) may exist [? ]. The generator 97

polynomial g (x) of a t-error-correcting BCH code is computed as the Least 98

Common Multiple (LCM) among 2t minimal polynomials  i(x) (1  i  2t). 99

Given that  i(x) =  
2i(x) (8i 2 [1, t]) [? ], only t minimal polynomials must 100
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be considered and g (x) can therefore be computed as: 101

g (x) = LCM [ 
1

(x) , 
3

(x) ..., 
2t�1

(x)] (1)

When working with BCH codes, the message and the codeword can be 102

represented as two polynomials: (1) b(x) of degree k�1 and (2) c (x) of degree 103

n�1. Given this representation, both the encoding and the decoding process 104

can be defined by algebraic operations among polynomials in GF (2m). The 105

encoding process can be expressed as: 106

c (x) = m (x) · xr + Rem (m (x) · xr)g(x)

(2)

where Rem(m (x) · xr)g(x)

denotes the remainder of the division between the 107

message left shifted of r positions and the generator polynomial g(x). This 108

remainder represents the r parity bits to append to the original message. 109

The BCH decoding process searches for the position of erroneous bits 110

in the codeword. This operation requires three main computational steps: 111

1) syndrome computation, 2) error locator polynomial computation, and 3) 112

error position computation. 113

Given the selected correction capability t, the decoding process requires 114

first the computation of 2t syndromes of the codeword c (x), each associ- 115

ated with one of the 2t minimal polynomials  i (x) generating the code. 116

Syndromes are calculated by first computing the remainders Ri(x) of the 117

division between c (x) and each minimal polynomial  i (x). If all remainders 118

are null, c(x) does not contain any error and the decoding stops. Otherwise, 119

the 2t syndromes are computed by evaluating each remainder Ri(x) in ↵i: 120

Si = Ri (↵i). Practically, according to (??), given that  i(x) =  
2i(x), only 121
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t remainders must be computed and evaluated in 2t elements of GF (2m). 122

The most used algebraic method to compute the coe�cients of the error 123

locator polynomial from the syndromes is the Berlekamp-Massey algorithm 124

[? ]. Since the complexity of this algorithm grows linearly with the correction 125

capability of the code, it enables e�cient hardware implementations. The 126

equations that link syndromes and error locator polynomial can be expressed 127

as: 128

0

BBBBBB@

St+1

St+2

...

S

2t

1

CCCCCCA
=

0

BBBBBB@

S

1

S

2

... St

S

2

S

3

... St+1

...
...

...

St St+1

... S

2t�1

1

CCCCCCA
·

0

BBBBBB@

�t

�t�2

...

�

0

1

CCCCCCA
(3)

129

The Berlekamp-Massey algorithm iteratively solves the system of equa- 130

tions defined in (??) using consecutive approximations. 131

Finally, the Chien Machine searches for the roots of the error locator 132

polynomial � (x) computed by the Berlekamp-Massey algorithm [? ]. It 133

basically evaluates the polynomial � (x) in each element ↵i of GF (2m). If ↵i
134

satisfies the equation 1 + �
1

↵i + �
2

↵2i + ... + �t (↵i)
t
= 0, ↵i is a root of the 135

error locator polynomial � (x), and its reciprocal 2m � 1� i reveals the error 136

position. In practice, this computation is performed exploiting the iterative 137

relation: 138

�
�
↵j+1

�
= �

0

+
t�1X

k=1

h
�k

�
↵j

�k
i
↵k (4)

Several publications proposed optimized hardware implementations of 139

BCH codecs with fixed correction capability [? ? ? ? ? ? ]. However, 140
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to the best of our knowledge, only Chen et al. proposed a solution allowing 141

limited adaptation by extending a standard BCH codec implementation [? 142

]. One of the main contributions of Chen et al. is a Programmable Parallel 143

Linear Feedback Shift Register (PPLFSR), whose generic architecture is re- 144

ported in Fig. ??. It enables to dynamically change the generator polynomial 145

of the LFSR. This is a key feature in the implementation of an adaptable 146

BCH encoder. 147

D-FF D-FF

bi

gr-1

pr-1 pr-2
... D-FF

g0

p0

AND

g1

bi-s
gr-1 g0

AND

g1
pr-1 pr-2 p0

ck,rst,en

Figure 1: Architecture of a r-bit PPLFSR with s-bit parallelism.

The gray box of Fig. ?? highlights the basic adaptable block of this 148

circuit. It exploits a multiplexer, controlled by one of the coe�cients of the 149

desired divisor polynomial, to dynamically insert an XOR gate at the output 150

of one of the related D-type flip-flops composing the register. The s vertical 151

stages of the circuit implement the parallelism of the PPLFSR computing 152

the state at clock cycle i + s, based on the state at cycle i. However, this 153

8



solution has high overhead. In fact such PPLFSR is able to divide by all 154

possible r-bit polynomials, while just well selected divisor polynomials are 155

required. 156

Although Chen at al. deeply analyze the encoding process and the is- 157

sues related to the storage of parity bits, the decoding process is scarcely 158

analyzed, without providing details on how adaptability is achieved. Four 159

di↵erent correction modes, namely t = (9, 14, 19, 24) are considered in [? ] 160

for a BCH code defined on GF (213) with a block size of 512B (every 2KB 161

page of the flash is split in four blocks). The selection of the 4 modes is based 162

on considerations about the number of parity bits to store. However, there 163

is no provision to understand whether additional modes can be easily imple- 164

mented. As an example, when selecting correction modes in which the size 165

of the codeword is not a multiple of the parallelism of the decoder, alignment 166

problems arise, which are completely neglected in the paper. 167

3. Optimized Architectures of Programmable Parallel LFSRs 168

In this section, we will introduce an optimized block to perform an adapt- 169

able remainder computation. In fact, one of the most recurring operations 170

in BCH encoding/decoding is the remainder computation between a poly- 171

nomial representing a message to encode/decode and a generator/minimal 172

polynomial of the code, that depends on the selected correction capability. 173

The PPLFSR of Fig. ?? can perform this operation [? ]. 174

A r-bit PPLFSR can potentially divide by any r-bit polynomial by prop- 175

erly controlling its configuration signals (g
0

. . . gr�1

). However, in BCH en- 176

coding/decoding, even considering an adaptable codec, just well selected divi- 177
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sor polynomials are required (e.g., the generators polynomials g
9

(x), g
14

(x), 178

g
19

(x), g
24

(x) of the four implemented correction modes of [? ]). This com- 179

putational block is therefore highly ine�cient. Moreover, the set of divisor 180

polynomials required in a BCH codec usually share common terms among 181

each other. Such terms can be exploited to generate an optimized PPLFSR 182

(OPPLFSR) architecture. 183

Let us consider, as an example, the design of a r=15-bit programmable 184

LFSR able to divide by two polynomials p
1

(x) = x15+x13+x10+x5+x3+x+1 185

and p
2

(x) = x13+x12+x10+x5+x4+x3+x2+x+1 using a s=8-bit parallelism. 186

A traditional PPFLSR implementation would require 15⇥ 8 = 120 gray 187

boxes (i.e., 120 XORs-MUXs). According to this implementation, this PP- 188

LFSR could divide by any 215 = 32, 768 possible 15-bit polynomials, even if 189

just 2 polynomials (i.e., the 0.006% of its full potential) are required. 190

An analysis of the target divisor polynomials can be exploited to optimize 191

the PPLFSR architecture. Table ?? reports the binary representation of the 192

two polynomials. 193

Looking at Table ??, three categories of polynomial terms can be identi- 194

fied: 195

1. Common terms (represented in bold), i.e., terms defined in all considered 196

polynomials (x13, x10, x5, x3, x, and 1 in Table ??). For these terms, 197

an XOR will be always required in the PPLFSR, thus saving the area 198

dedicated to the MUX and the related control logic. 199

2. Missing terms (represented in underlined italic zeros), i.e., terms not 200

defined in any of the considered polynomials, (x14, x11, x9, x8, x7 and 201

x6 in Table ??). For these terms both the XOR and the related MUX 202
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can be avoided. 203

3. Specific terms, i.e., terms that are specific of a subset of the considered 204

polynomials (x15, x12, x4, x2 in Table ??). These terms are the only 205

ones actually required. 206

We can therefore implement an optimized programmable LFSR (OP- 207

PLFSR) with three main building blocks: 208

1. each common present term (i.e., columns of all ”1” of Table ??) needs 209

an XOR, only; 210

2. each common absent term (i.e., columns of all ”0” of Table ??) needs 211

neither XOR nor MUX; 212

3. each specific term has a gray box, as Fig. ??; 213

Fig. ?? shows the resulting design for the portion x15, x14 and x13. 214

D-FF D-FF D-FF
clk, rst, en

…

p15 p14 p13

(a) PPLFSR

D-FF D-FF D-FF
p15 p14 p13

clk, rst, en

…

(b) OPPLFSR

Figure 2: Example of the resulting PPLFSR (a) and OPPLFSR (b) with 8-bit parallelism

for x

15, x

14 and x

13 of p1 (x) and p2 (x)

This optimization also applies on polynomials with very di↵erent lengths. 215

As an example, an OPPLFSR with single bit parallelism and able to divide 216

by p
1

(x) = x225 + x + 1 and p
2

(x) = x + 1, would only require a single 217

adaptable block, compared to the 226 blocks required by a normal PPLFSR. 218
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Furthermore, the advantage of the OPPLFSR increases with the parallelism 219

of the block. In fact, with the same 2 polynomials, a 8-bit OPPLFSR would 220

require 8 adaptable blocks compared to 226⇥ 8 = 1, 808 adaptable blocks of 221

a traditional PPLFSR. 222

For sake of generality, Fig. ?? shows the high-level architecture of a 223

generic OPPLFSR. Such a block is able to divide by a set p
1

(x) , ..., pM (x) 224

of polynomials. We denote with q the number of required gray boxes. 225

s
ROM
q x M

M
sel

q

s
b
rst
en
clk

OPPLFSRnet
{ p1, … pM }q

o

g

OPPLFSR

Figure 3: High-level architecture of the OPPLFSR

The OPPLFSR interface includes: a s-bit input port (b) used to feed 226

the data, a dlog
2

(M)e-bit input port (sel) used to select the polynomial of 227

the division, and a s-bit port (o) providing the result of the division. Two 228

blocks compose the OPPLFSR: OPPLFSRnet and ROM. The OPPLFSRnet 229

represents the complete network, partially shown in the example of Fig. ??. 230

Given the output of the ROM, the q-bit signal g controls the MUXs of the 231

q gray boxes (Fig. ??) according to the selected polynomial. The ROM is 232

optimized accordingly with the design of the OPPLFSR, which leads to a 233

reduced ROM and to a lower area overhead w.r.t. a full PPLFSR. 234
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4. BCH Code Design Optimization 235

In this section, we address first the issue of choosing the most suitable 236

set of polynomials for an optimized adaptable BCH code. Then, we propose 237

a novel block, shared between the adaptable BCH encoder and the decoder, 238

which reduces the area overhead of the resulting codec core. 239

4.1. The choice of the set of polynomials 240

The optimization o↵ered by the OPPLFSR introduced in Section ??, may 241

become ine↵ective if not properly exploited. It depends on the number and 242

on the terms of the shared divisor polynomials implemented in the block. As 243

an example, an excessive number of shared polynomials may make it di�cult 244

to find common terms, leading to an unwilled increase of the area overhead. 245

Therefore, the choice of the polynomials to share is critical and must be 246

properly tailored to the overall design. 247

Let us denote by ⌦ the set of t generators gi (x) and t minimal polynomials 248

 i which fully characterize an adaptable BCH code (see Section ??). Since 249

for GF (2m) several primitive polynomials  i (x) can be used to define the 250

code, several set ⌦i can be constructed. Choosing the most suitable set ⌦i is 251

critical to obtain an e↵ective design of the OPPLFSR. On the one hand, it 252

can be shown that the complexity of ⌦i increases with m [? ? ? ]. On the 253

other hand, the current trend is to adopt BCH codes with high values of m 254

(e.g., GF (215)) because current flash devices features a worse bit error rate [? 255

]. Therefore, a simple visual inspection of each set ⌦i is not feasible to find 256

the most suitable set of polynomials. An algorithmic approach is therefore 257

mandatory. 258

14



Each set ⌦i can be classified resorting to a Maximum Correlation Index 259

(MCI). We define as MCI (p
1

, p
2

, ..., pN) the maximum number of common 260

terms shared by a generic set of polynomials p
1

, p
2

, ..., pN . As an example, 261

the polynomials of Table ?? have MCI (p
1

, p
2

) = 12. 262

In the sequel, we introduce an algorithm to assess each set ⌦i according 263

to its MCI. Given i = {1, ..., Y }, for each set ⌦i: 264

1. consider ⌦i = {p
1

, ..., pN} and v
0

= p
1

; 265

2. determine the polynomial ph such that the partition Si,1 = (v
0

, ph) has 266

the maximum MCI (v
0

, ph), where h = {1, ..., N} and ph 6= v
0

; 267

3. determine the polynomial pk such that the partition Si,1 = ((v
0

, ph) , pk) 268

has the maximum MCI (v
0

, ph, pk), where k = {1, ..., N} and pk 6= ph 6= 269

v
0

; 270

4. repeat step 3 until all polynomials have been considered in the partition 271

Si,1; 272

5. change the starting polynomial to the next one, e.g., v
0

= p
2

, considering 273

Si,2 and repeat steps 2-4; 274

6. when v
0

= pN , consider the next set ⌦i+1

; 275

The algorithm ends when all sets ⌦i have been analyzed. For each ⌦i, 276

the output is a set of partitions: 277

Si,j = {Si,1, Si,2, ..., Si,N} (5)

Fig. ?? graphically shows the MCI of two partitions generated from two 278

di↵erent starting points, for an hypothetical set ⌦i. 279

Fig. ?? shows that MCI always has a decreasing trend with the size of 280

the partition S. This is straightforward since adding a polynomial may only 281

15



#polynomials

M
C

I

((p1,p2), p3)(p1, p2) (((p1,p2), p3), p4) ((((p1,p2), p3), p4), p5)

#polynomials

M
C

I

(p3, p2) ((p3,p2), p1) (((p3,p2), p1), p5) ((((p3,p2), p1), p5), p4)

Figure 4: MCI examples of two hypothetical partitions S

i,1 and S

i,2

decrease or keep constant the current value of MCI. The curves, reported 282

in ??, are critical in the choice of the most suitable set of polynomials for 283

an optimized BCH code. For each partition Si,j with j = {1...N}, we can 284

compute the average MCI (MCIavg) as: 285

MCIavg(Si,j) =
1

N

N�1X

l=1

MCIl (6)

Eq. ?? applies to each set ⌦i where i = {1...Y }. 286

The best partition of the set ⌦i is then computed selecting the one with 287
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maximum MCIavg: 288

Sbesti = argmax
j

[MCIavg (Si,j)] (7)

Finally, Eq. ?? compares the best partition of each set ⌦i to find the best 289

set of polynomials: 290

SbestBCH = argmax
i

[Sbesti ] (8)

Eq. ?? defines the family of polynomials SbestBCH , with the maximum 291

average number of common terms. 292

Table 2: An example of ⌦
i

x6 x5 x4 x3 x2 x1 1

p
1

1 0 1 0 0 1 0

p
2

1 1 0 1 0 1 1

p
3

1 0 1 1 1 1 1

p
4

0 1 1 0 0 0 1

p
5

1 1 0 1 1 0 1

p
6

0 0 1 0 0 1 1

Let us provide an example to support the understanding of the algorithm. 293

Suppose to consider a single set ⌦i composed of the polynomials of Table ??. 294

The steps of the algorithm are: 295

1. Let us start with v
0

= p
1

296
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2. We first evaluates MCI (p
1

, p
2

) = 3, MCI (p
1

, p
3

) = 4, MCI (p
1

, p
4

) = 297

3. Since MCI (p
1

, p
3

) = 4 is the maximum, the resulting partition is 298

Si,1 = {p
1

, p
3

} 299

3. The next step considers MCI((p
1

, p
3

) , p
2

) = 3 and MCI((p
1

, p
3

) , p
4

) = 300

3. It is straightforward that the choice of either p
2

or p
4

does not a↵ect 301

the final value of the MCIavg. 302

Given ⌦i with starting point p
1

, it can be shown that the final partition 303

is Si,1 = {((p
1

, p
3

) , p
4

) , p
2

} with a MCIavg = (4+3+3)/4 = 2.5 from Eq. ??. 304

The complete algorithm iterates this computation for all possible starting 305

points. Fig. ?? graphically shows the output of the MCI associated with each 306

partition Si,j calculated for the following starting point j = {1, 2, 3, 4}. 307

2 3 4 5 6
Partition Size

M
C

I(:
i)

 

 

MCI(Si,1)
MCI(Si,2)
MCI(Si,3)
MCI(Si,4)
MCI(Si,5)
MCI(Si,6)

Figure 5: The MCI Trend of Table ??

According to Eq. ??, Si,2 (the bold line) is the Sbesti of the example of 308
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Table ??, with a MCIavg (Si,j) = 4. 309

4.2. Shared Optimized Programmable Parallel LFSRs 310

Let us assume to design an adaptable BCH code with correction capability 311

from 1 up to tM . Such a code needs to compute remainders of the division 312

of: 313

• the message m (x) by (potentially) all generator polynomials from g
1

314

up to gtM , for the encoding (??); 315

• the codeword c (x) by (potentially) all minimal polynomials from  
1

(x) 316

up to  
2tM�1

(x), to compute the set of syndromes required during the 317

decoding phase. 318

In a traditional implementation, these computations are performed by 319

two separate set of LFSRs. In this paper, we propose to devise a shared 320

set of LFSRs able to: (i) perform all these computations, and (ii) reduce the 321

overall cost in terms of resources overhead. Therefore, we can adopt the same 322

shared set of LFSRs both in the encoding and decoding processes. This is 323

possible since in a flash memory these operations are, in general, not required 324

at the same time. 325

The OPPLFSR, introduced in Section ??, is the main building block of 326

the set of shared LFSRs. Therefore, we will refer hereafter to such set of 327

LFSRs as shared OPPLFSR (shOPPLFSR). Fig. ?? shows the high-level 328

architecture of the shOPPLFSR. Its interface includes: a s-bit input port 329

(IN) used to input the data to be divided, a dlog
2

(N)e-bit input port (en) 330

used to enable each OPPLFSR, an input port (sel) used to select the proper 331

19



polynomial by which each OPPLFSR has to divide, and a N⇥ s-bit port (p) 332

providing the result of the division. 333

IN
s

b

sel N x s

lrst

en
clk

p

N

OPPLFSR1 { g…, ψ…  }

OPPLFSR2 {g…, ψ…  }

OPPLFSRN-1 {g…, ψ…  }

OPPLFSRN {g…, ψ…  }

…

shOPPLFSR

Figure 6: The shOPPLFSR architecture is composed by multiple OPPLFSRs

Given N OPPLFSRs and a maximum correction capability tM , each 334

OPPLFSR
i

performs the division by a set of generator polynomials g (x) and 335

minimal polynomials  (x). Such shOPPLFSR can be seen as an optimized 336

programmable LFSR able to: 337

• divide by all generator polynomials from g
1

(x) to gtM (x); 338

• divide by specific subsets of minimal polynomials from Eq. ??, as well. 339

An improper choice of the shared polynomials g (x) and  (x) can dramat- 340

ically reduce the performance of the overall BCH codec. Also the partitioning 341

strategy adopted is critical to maximize the optimization in terms of area, 342

minimizing the impact on the latency of encoding/decoding operations. 343

The algorithm presented in Section ?? provides a valuable support for the 344

exploration of this huge design space. In fact, the proposed method can be 345

exploited to properly partition polynomials into the di↵erent OPPFLSRs of 346
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Fig. ??, in order to maximize the optimization of the resulting shOPPFLSR. 347

Such optimization should not be obtained following blindly the outcomes of 348

the algorithm, but always tailoring them to the specific design. Regarding 349

this topic, Section ?? provides more details about our experimental setup 350

and the related experimental results. 351

5. Adaptable BCH Encoder 352

In this section, we propose an adaptable BCH encoder which exploits the 353

shOPPLFSR of Section ??. According to the BCH theory, the shOPPLFSR 354

of Fig. ?? is a very e�cient circuit to perform the computation expressed in 355

Eq. ??. However, in the encoding phase, the message m(x) must be multi- 356

plied by xr before calculating the reminder of the division by g(x) (see Eq. 357

??). This can be obtained without significant modifications of the architec- 358

ture of shOPPFLSR. It is enough to input the bits of the message directly 359

in the most significant bit of the LFSR, instead than starting from least 360

significant bit. Fig. ?? shows the high-level architecture of the adaptable 361

encoder. 362

The encoder’s interface includes: a s-bit input port (IN) used to input the 363

k-bit message to encode starting from the most significant bits, a dlog
2

(tM)e- 364

bit input port (t) selecting the requested correction capability in a range 365

between 1 and tM , a start input signal used to start the encoding process 366

and a s-bit output port (OUT) providing the r parity bits. Three blocks 367

compose the encoder: a shOPPLFSR, a flush logic and a controller. 368

The shOPPLFSR performs the actual parity bits computation. Accord- 369

ing to the BCH theory, adaptation is achieved by supporting the computation 370
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Figure 7: High-level architecture of the adaptable encoder highlighting the three main

building blocks and their main connections.

of remainders with tM generator polynomials, one for each value t may as- 371

sume. The controller achieves this task in two steps: (i) enabling the proper 372

OPPLFSR through the len signal, and (ii) selecting the proper polynomial 373

through the lsel signal, according to the desired correction capability t. 374

Then, it manages the overall encoding process based on two internal param- 375

eters: 1) the number of s-bit words composing the message (fixed at design 376

time) and 2) the number of produced s-bit parity words, that depends on 377

the selected correction capability. The flush logic splits the r parity bits into 378

s-bit words, providing them in output, one per clock cycle. 379

To further optimize the encoding and the decoding process, since in a flash 380

memory these operations are not required at the same time, the encoder’s 381

shOPPLFSR can be merged with the shOPPLFSRs that will be employed 382

in the syndrome computation (see Section ??), thus allowing additional area 383

saving. 384
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6. Adaptable BCH Decoder 385

Fig. ?? presents the high-level architecture of the proposed adaptable 386

decoder. The decoder’s interface includes: a s�bit input port (IN) used to 387

input the n�bit codeword to decode (starting from the most significant bits), 388

a dlog
2

(tM)e�bit input port (t) to select the desired correction capability, a 389

start input signal to start the decoding and a set of output ports providing 390

information about detected errors. In particular: 391

• deterr is a dlog
2

(tM)e�bit port providing the number of errors that 392

have been detected in a codeword. In case of decoding failure it is set 393

to 0; 394

• erradd and errmask provide information about the detected error po- 395

sitions. Assuming the codeword split into h�bit words, erradd is used 396

as a word address in the codeword and errmask is a h�bit mask whose 397

asserted bits indicate detected erroneous bits in the addressed word. 398

The parallelism h of the error mask depends on the parallelism of the 399

Chien machine, as explained later in this section; 400

• vmask is asserted whenever a valid error mask is available at the output 401

of the decoder; 402

• fail is asserted whenever an error occurred during the decoding pro- 403

cess (e.g., the number of errors is greater than the selected correction 404

capability); 405

• end is asserted when the decoding process is completed. 406

23



IN
s

...m
S1 S2tM�1

m m

m m m
�0 �1 �tM

...

h

start rst ckt

ckAdaptable 
Syndrome Machine

S2

rsten
err

sen
serr

cldld
deterr

vmask
fail

Adaptable 
iBM Machine

Adaptable 
Chien machine

ck
rst

ck
rst

t

t

t

erradd
errmask

srst

irst
en ien

deg nerr
fail ifail

en cen
crst

log2(tM)

h

log2(n/h)

Cont.

Figure 8: High-level architecture of the adaptable decoder, highlighting the four main

building blocks: the adaptable syndrome machine, the adaptable iBM machine, the adapt-

able Chien machine, and the controller in charge of managing the overall decoding process
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The full decoder therefore includes four main blocks: (1) the Adapt- 407

able Syndrome Machine, computing the syndromes of the codeword, (2) 408

theAdaptable inversion-less Berlekamp Massey (iBM) Machine, that elabo- 409

rates the syndromes to produce the error locator polynomial, (3) the Adapt- 410

able Chien Search Machine in charge of searching for the error positions, and 411

(4) the Controller coordinating the overall decoding process. 412

6.1. Adaptable Syndrome Machine 413

Fig. ?? shows the high-level architecture of the proposed adaptable syn- 414

drome machine with correction capability 1 6 t 6 tM . 415

Ψ3(x)

Aligner

PLFSR
Ψ1(x)

PLFSR

R1(α) R1(α2) R3(α3) R3(α6)…

≠0
…

shOPPLFSR

R2tM-1(α2tM-1)R2tM-3(α2tM-3)

Ψi (x) … Ψ2tM-1 (x)

m m
S1 S2 S3 S6 S2tM-1S2tM-3

m m

err

s

Enable
div.

… N

tM
s
INck, rst t en

M
sel
N

…

Figure 9: Architecture of the adaptable Syndrome Machine

According to Section ??, remainders can be calculated by a set of Parallel 416

LFSRs (PLFSRs) whose architecture is similar to the one of the PPLFSR 417

of Fig. ??, with the only di↵erence that the characteristic polynomial is 418

fixed (XOR gates are inserted only where needed, without multiplexers). 419
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Each PLFSR computes the remainder of the division of the codeword by a 420

di↵erent minimal polynomial  i (x). Given two correction capabilities t
1

and 421

t
2

with t
1

< t
2

 tM , the set of 2t
1

minimal polynomials generating the code 422

for t
1

is a subset of those generating the code for t
2

. To obtain adaptability 423

of the correction capability in a range between 1 and tM , the syndrome 424

machine can therefore be designed to compute the maximum number tM 425

of remainders required to obtain 2tM syndromes. Based on the selected 426

correction capability t, only the first t PLFSRs out of the tM available in the 427

circuit are actually enabled through the Enable div. network of Fig. ??. 428

A full parallel syndrome calculator, including tM PLFSRs, requires a 429

considerable amount of resources that are underutilized in the early stages 430

of the flash lifetime when reduced correction capability is required. To opti- 431

mize the adaptable syndrome machine and to trade-o↵ between complexity 432

and performance, we exploit the shOPPLFSR introduced in Section ??. The 433

architecture proposed in Fig. ?? includes two sets of LFSRs for remainder 434

computation: (i) conventional PLFSRs, and (ii) shOPPLFSR. Conventional 435

PLFSRs are exploited for parallel fast computation of low order syndromes 436

required when the requested correction capability is below a given threshold. 437

shOPPLFSR is designed to divide for selected groups of minimal polynomials 438

not covered by the fixed PPLFSRs. It represents a shared resource utilized 439

when the requested correction capability increases. It enables area reduction 440

at the cost of a certain time overhead. The architectural design, chosen for 441

the fixed PLFSRs and the OPPLFSR, enables to trade-o↵ hardware com- 442

plexity and decoding time, as it will be discussed in Section ??. 443

It is worth to mention here that the parallel architecture of the PLFSR, 444
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Figure 10: Example of the schema of a byte aligner for t = 2 and s = 8

coupled with the adaptability of the code, introduces a set of additional 445

word alignment problems that must be addressed to correctly adapt the 446

syndrome calculation to di↵erent values of t. The syndrome machine receives 447

the codeword in words of s bits, starting from the most significant word. 448

When the number of parity bits does not allow to align the codeword to the 449

parallelism s, the unused bits of the last word are filled with 0. To correctly 450

compute each syndrome, the parity bit r
0

of the codeword must enter the 451

least significant bit of each LFSR. The aligner block of Fig. ?? assures 452

this condition by properly right-shifting the codeword while it is input into 453

the syndrome machine. Let us consider the following example: k = 2KB, 454

m = 15, t = 2, s = 8 and therefore r = m · t = 30. Since 30 is not multiple of 455

s = 8, the codeword is filled with two zeros and p0 is saved in position 2 of 456

the last byte of the codeword (m2047 m2046...m1 m0 p29 p28...p1 p0 0 0). In this case 457

the PLFSRs require a 2-bit alignment, implemented by the network of Fig. 458

??. It simply delays the last 2 input bits resorting to two flip-flops, whose 459

initial state has to be zero, and properly rotates the remaining input bits. 460

Changing the correction capability of the decoder changes the number of 461
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parity bits of the codeword, and therefore the required alignment. Given the 462

parallelism s of the decoder, a maximum of s alignments must be provided 463

and implemented in the Aligner block of Fig. ??. 464

With the proper alignment, the PLFSRs can perform the correct division 465

and the evaluators can provide the required syndromes. The evaluators are 466

simple combinational networks involving XOR operations, according to the 467

Galois Fields theory (the reader may refer to [? ] for specific implementation 468

details). 469

6.2. Adaptable Berlekamp Massey Machine 470

In our adaptable codec we implemented the inversion-less Berlekamp- 471

Massey (iBM) algorithm proposed in [? ] which is able to compute the error 472

locator polynomial � (x) in t iterations. 473

The main steps of the computation are reported in Alg. ??. At iteration 474

i (rows 2 to 12), the algorithm finds an error locator polynomial �(x) whose 475

coe�cients solve the first i equations of (??) (row 4). It then tests if the 476

same polynomial solves also i + 1 equations (row 5). If not, it computes a 477

discrepancy term � so that �(x) + � solves the first i + 1 equations (row 9). 478

This iterative process is repeated until all equations are solved. If, at the 479

end of the iterations, the computed polynomial has a degree lower than t, 480

it correctly represents the error locator polynomial and its degree represents 481

the number of detected errors; otherwise, the code is unable to correct the 482

given codeword. 483

The architecture of the iBM machine is intrinsically adaptive as long as 484

one guarantees that the internal bu↵ers and the hardware structures are sized 485

to deal with the worst case design (i.e., t = tM). The coe�cients of � (x) are 486
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Algorithm 1 Inversion-less Berlekamp-Massey alg.
1: �(x) = 1, k(x) = 1, � = 1

2: for i = 0 to t� 1 do

3: d =
P

t

j=1 (�
j

· S2i�j

)

4: �(x) = ��(x) + d · x · k(x)

5: if d = 0 OR Deg(�(x)) > i then

6: k(x) = x

2 · k(x)

7: else

8: k(x) = x · k(x)

9: � = d

10: end if

11: i=i+1

12: end for

13: if Deg(�(x)) < t then

14: output �(x), Deg(�(x))

15: else

16: output FAILURE

17: end if

m�bit registers whose number depends on the correction capability. In the 487

worst case, up to tM coe�cients must be stored for each polynomial. 488

The adaptable iBM machine therefore includes two m�bit register files 489

with tM registers to store these coe�cients. Whenever the requested correc- 490

tion capability is lower than tM some of the registers will remain unused. The 491

number of multiplications performed during the computations also depends 492

on t. Row 3 requires t multiplications, while row 4 requires t multiplications 493

to compute ��i (x) and t multiplications to compute d · x · k(x). 494

We implemented a serial iBM Machine including 3 multipliers for GF(2m) 495

to perform multiplications of rows 3 and 4. It can perform each iteration of 496
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the iBM algorithm in 2t clock cycles (t cycles for row 3 and t cycles for 497

row 4) achieving a time complexity of 2t2 clock cycles. This implementation 498

is a good compromise between performance and hardware complexity. An 499

input t dynamically sets the number of iterations of the algorithm, thus 500

implementing the adaptation. 501

6.3. Adaptable Chien Machine 502

The overall architecture of the proposed adaptable Chien Machine is 503

shown in the Fig. ??. The machine first loads into tM m-bit registers the 504

coe�cients from �
1

to �tM of the error locator polynomial �(x) computed by 505

the iBM machine (ld = 0). The actual search is then started (ld = 1). At 506

each clock cycle, the block performs h parallel evaluations of �(x) in GF(2m) 507

and outputs a h�bit word, denoted as errmask. Each bit of errmask corre- 508

sponds to one of the h candidate error locations that have been evaluated. 509

Asserted bits denote detected errors. This mask can then be XORed (outside 510

the Chien Machine) with the related bits of the codeword in order to correct 511

the detected erroneous bits. 512

The architecture of Fig. ?? provides an adaptable Chien machine with 513

lower area consumption than other designs [? ], having, at the same time, 514

a marginal impact on performance. Four interesting features contribute to 515

such optimization: (i) constant multipliers substructure sharing, (ii) adapt- 516

ability to the correction capability, (iii) improved fast skipping to reduce the 517

decoding time, and (iv) reduced full GF multipliers area. In the sequel, we 518

briefly address each feature. 519

The first feature is represented by the optimized GF Constant Multipliers 520

(optGFCM) networks of Fig. ??. The h parallel evaluations are based on 521
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Figure 11: Architecture of the proposed parallel adaptable Chien Machine with parallelism

equal to h

equation (??). In the worst case (t = tM), the parallel evaluation of equation 522

(??) requires a matrix of tM ⇥ h constant Galois multipliers. They multi- 523

ply the content of the tM registers by ↵,↵2, ...,↵tM , respectively. However, 524

we can note that each column of constant GF multipliers shares the same 525

multiplicand. Therefore, we can iteratively group their best-matching com- 526

binations [? ] into the tM optGFCM networks of Fig. ??. Such optGFCMs 527

provide up to 60% reduction of the hardware complexity of the machine with 528

no impact on performance. 529

The second feature is the adaptability of the Chien machine. The rows of 530

the matrix define the parallelism of the block (i.e., the number of evaluations 531

per clock cycles), while the columns define the maximum correction capability 532

of the block. Whenever the selected correction capability t is lower than tM , 533

the coe�cients of the error locator polynomial of degree greater than t are 534

equal to zero and do not contribute to equation (??), thus allowing us to 535
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adapt the computation to the di↵erent correction capabilities. 536

The third feature stems from a simple observation. Depending on the 537

selected correction capability t, not all the elements of GF(2m) represent 538

realistic error locations. In fact, considering a codeword composed of k bits 539

of the original message and r = m · t parity bits, only k + m · t out of 2m
540

elements of the Galois field represent realistic error locations. Given that an 541

error location L is the inverse of the related GF element (L = 2m�1� i), the 542

elements of GF(2m) in which the error locator polynomial must be evaluated 543

are in the following range: 544

2

4 ↵2

m�1

| {z }
error location L=0

, ↵2

m�k�m·t
| {z }

error location L=k+m·t�1

3

5 (9)

All elements between ↵0 and ↵2

m�k�m·t
can be skipped to reduce the 545

computation time. Di↵erently from fixed correction capability fast skipping 546

Chien machines this interval is not constant here but depends on the se- 547

lected t. The architecture of Fig. ?? implements an adaptable fast skipping 548

by initializing the internal registers to the coe�cients of the error corrector 549

polynomial multiplied by a proper value �t
ini = ↵2

m�k�m·t�1. For each value 550

of t, tM m�bit constant values corresponding to �t
ini, (�t

ini)
2, . . ., (�t

ini)
tM

551

must be stored in an internal ROM (not shown in Fig. ??) and multiplied 552

by the coe�cients �i using a full GF multiplier. 553

This is connected with the last feature, the reduced GF Full Multipliers 554

(redGFFM) network of Fig. ??. Each full GF multiplier has a high cost in 555

terms of area. Since they are used only during initialization of the Chien, the 556

redGFFM adopts only z 6 tM full GF multipliers. It also includes a (�) input 557
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port to input z coe�cients, per clock cycles, of the error locator polynomial. 558

This network enables to reduce area consumption, at a reasonable cost in 559

terms of latency. 560

For the sake of brevity, a detailed description of the controller required 561

to fully coordinate the decoder’s modules interaction is out of the scope of 562

this paper. 563

7. Experimental Results 564

This section provides experimental data from the implementation of the 565

adaptable BCH codec proposed on a selected case study. 566

7.1. Automatic generation framework 567

To cope with the complexity of a manual design of these blocks, a semi- 568

automatic generation tool named ADAGE (ADaptive ECC Automatic GEn- 569

erator) [? ] able to generate a fully synthesizable adaptable BCH codec core 570

following the proposed architecture has been designed and exploited in this 571

experimentation extending a preliminary framework previously introduced 572

in [? ]. The overall architecture of the framework is in Fig. ??. 573

The code analyzer block represents the first computational step required 574

to select the desired code correction capability based on the Bit Error Rate 575

(BER) of a page of the selected flash [? ]. The BER is the fraction of er- 576

roneous bits of the flash. It is the key factor used to select the correction 577

capability. Two values of BER must be considered. The former is the raw 578

bit error rate (RBER), i.e., the BER before applying the error correction. 579

It is technology/environment dependent and increases with the aging of the 580

page [? ? ]. The latter is the uncorrectable bit error rate (UBER), i.e., 581
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the BER after the application of the ECC, which is application dependent. 582

It is computed as the probability of having more than t errors in the code- 583

word (calculated as a binomial distribution of randomly occurred bit errors) 584

divided by the length of the codeword [? ]: 585

UBER =
P (E > t)

n

=
1
n

nX

i=t+1

✓
n

i

◆
· RBER

i · (1�RBER)n�i (10)

Given the RBER of the flash and the target UBER, Eq. ?? can be 586

exploited to compute the maximum required correction capability of the 587

code and consequently the value of m that defines the target GF. Given these 588

two parameters, the Galois Field manager exploits an internal polynomials 589

database to generate the set of minimal polynomials and the related generator 590

polynomials for the selected code. 591

Finally, the RTL VHDL code generator combines these parameters and 592

generates a RTL description of the BCH encoder and decoder implementing 593

the architecture illustrated in this paper. 594

The whole framework combines Matlab software modules with custom 595

C programs. The full framework code is available for download at http: 596

//www.testgroup.polito.it in the Tools section of the website. 597

7.2. Experimental setup 598

Experiments have been performed, using as a case study a 2-bit per cell 599

MLC NAND Flash Memory featuring a 45nm manufacturing process de- 600

signed for low-power applications, with page size of 2KB plus 64B of spare 601

cells. The memory has an 8-bit I/O interface. Considering the design of 602

the BCH code, the current trend is to enlarge the block size k over which 603
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ECC operations are performed. In fact, longer blocks better handle higher 604

concentrations of errors, providing more protection while using fewer parity 605

bits [? ]. For this reason, we adopted a block size k = 2KB, equal to the 606

page size of the selected memory. 607

Experiments performed on the flash provided that, in a range between 608

10 and 100,000 program/erase (P/E) cycles on a page, the estimated RBER 609

changes in a range [9⇥ 10�6 ÷ 3.5⇥ 10�4] [? ]. With a target UBER of 610

10�13, which is typical for commercial applications [? ? ], according to 611

equation (??) we need to design a codec with correction capability in the 612

range tmin = 5 up to tM = 24. Since k = 214 and tM = 24, from the 613

expression k+m ·tM  2m�1 we deduce m = 15, thus obtaining a maximum 614

of r = m · tM w 45B of parity information. Given the 8-bit I/O interface of 615

the memory, both the encoder and the decoder have been designed with an 616

input parallelism of s = 8 bits. The values of h and z of the Chien Machine 617

are a trade-o↵ between the complexity of the decoder and the decoding time. 618

Given the I/O parallelism of the flash and the area optimizations of Fig. ??, 619

we opted for a Chien machine with parallelism h = 8 and z = 1 full GF 620

multipliers. 621

In this experimentation we analyzed the three architectures summarized 622

in Table ??. 623

Arch. 1 is classic BCH architecture with fixed correction capability of 624

24 errors per page. It represents the reference to compare our adaptable 625

architectures. 626

Arch. 2 is an adaptable architecture with tmin = 5 < t  24 using 627

a traditional PPLFSR for the encoder and 24 PLFSRs for the syndrome 628
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calculation. It is worth mentioning here that, di↵erently from what reported 629

in the previous sections, the minimum required correction capability of the 630

codec is higher than 1. This allows us to save space in the encoder PPLFSR 631

since less polynomials must be stored, and in the Chien Machine’s ROM 632

since less �ini terms must be stored. 633

Arch. 3 is an optimized version of Arch. 2 exploiting the use of a shOP- 634

PLFSR shared between the encoder and the decoder, to trade-o↵ design 635

complexity and decoding time. In order to optimize the use of the shOP- 636

PLFSR, we exploited the algorithm proposed in Section ??. Given our adapt- 637

able BCH code, a set of ad-hoc Matlab simulation scripts implement this 638

preliminary analysis of 1,8001 set ⌦i of polynomials. Each set ⌦i contains 639

tM�tmin�1 = 20 generator polynomials required in the encoder and tM = 24 640

minimal polynomials required in the decoder. This analysis aimed at finding 641

the most suitable set of shared generator and minimal polynomials to trade- 642

o↵ between decoder’s area and latency. A reasonable trade-o↵ has been 643

found using a shOPPLFSR composed of N = 5 OPPLFSRs, each of which 644

dividing by the following set of polynomials: {g
5

, 
29

, 
39

}, {g
6

, 
31

, 
41

}, 645

{g
7

, 
33

, 
43

}, {g
8

, 
35

, 
45

}, and {g
9

, ..., g
24

, 
37

, 
47

}. The reader may refer 646

to the appendix of this paper for the full list of employed polynomials. All 647

other structures remain almost unchanged. The comparison between Arch.1 648

and Arch. 2 enables to highlight the benefits of using an adaptable codec, 649

while the comparison between Arch. 2 and Arch. 3 shows the advantages of 650

adding optimized shared blocks. 651

1our BCH code has 1,800 primitive polynomials  1 (x)
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Table 3: Characteristics of the analyzed architectures

Adaptable OPPLFSRs Chien Machine

Arch. 1 No - h = 8, t = 24

Arch. 2 Yes - h = 8, t 2 [5, 24]

Arch. 3 Yes 5 h = 8, t 2 [5, 24]

7.3. Performance evaluations 652

Table ?? summarizes the main implementation details of the three se- 653

lected architectures in terms of required parity bits and worst case encod- 654

ing/decoding latency, expressed in terms of clock cycles. 655

Let us start with the evaluation of the amount of redundancy introduced 656

by the two architectures. Arch. 1, which has a fixed correction capability 657

of 24 errors per page, requires to store m · tM = 24 · 15 = 360 parity bits 658

(about 45B) for each 2KB page of the flash. This accounts for about 70% of 659

the full spare area available for each page. Since the spare area cannot be 660

fully reserved for storing ECC information (high-level functions, such as file 661

system management and wear-leveling need to save considerable amount of 662

information in this area), this percentage represents a considerable overhead 663

for the selected device. Based on the results of Table ??, Fig. ?? shows how, 664

for the adaptable codecs of both Arch. 2 and Arch. 3, the percentage of spare 665

area dedicated for storing parity bits changes with the selected correction 666

capability. The total occupation ranges in this case from 15% to 70% of the 667

total spare area. This mitigates the overhead for storing parity bits whenever 668

the error rate enables to select low correction capabilities (e.g., for devices in 669
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the early stages of their life). 670
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Figure 13: Percentage of spare area dedicated to parity bits while changing the correction

capability of the adaptable codec of Arch. 2 and Arch. 3

For all implementations, the encoding latency depends on the size of the 671

incoming message and is therefore constant regardless the adaptability of the 672

encoder (see Table ??). The decoding latency is instead influenced by the 673

correction capability, as reported in Table ??. Fig. ?? compares the decoding 674

latency of the three architectures for each considered correction capability. 675

Results are provided in number of clock cycles. It is worth mentioning here 676

that timing estimations of Table ?? and Fig. ?? depict the worst-case sce- 677

nario in which the Chien Machine must search all possible positions prior to 678

find the detected number of errors. Fig. ?? highlights that, for the lowest 679

correction capability, both Arch. 2 and Arch. 3 enable 22% of decoding time 680

reduction when compared to the fixed decoding time of Arch. 1. The decod- 681
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ing time increases with the correction capability. For Arch. 2, it reaches the 682

same level of the fixed architecture when the correction capability reaches 683

t = 24. Arch. 3 deviates from this behavior for t > 20. This penalty is intro- 684

duced by the use of the shOPPLFSR in the Syndrome Machine. In this case, 685

the codec includes 5 blocks to perform remainder computation with 10 min- 686

imal polynomials { 
29

, 
39

, 
31

, 
41

, 
33

, 
43

, 
35

, 
45

, 
37

, 
47

}. This implies 687

doubling the syndrome computation time every time the required correction 688

capability reaches a level in which all these polynomials must be used. Nev- 689

ertheless, we will show that this reduced performance is counterbalanced by 690

a reduced area overhead. 691
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Figure 14: Worst case decoding latency for the three architectures considered.

7.4. Synthesis Results 692

Synopsys Design Vision and a CORE 45nm technology cell library have 693

been exploited to synthesize the designs. Table ?? shows the results of the 694
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synthesis of the three architectures. The hardware structures required to 695

obtain the adaptability of the code introduce a certain area overhead. Con- 696

sidering Arch. 2, the area of the encoder increases since 19 generator poly- 697

nomials must be stored in its ROM, while the area of the decoder increases 698

due both to the aligners in the syndrome machine and to the ROM in the 699

Chien machine to adapt the fast skipping process. Nevertheless, the intro- 700

duced overhead is about 14% which is still acceptable. Considering Arch. 3, 701

the introduced overhead is halved w.r.t. Arch. 2. The area of the encoder is 702

almost comparable with Arch. 2. However, it now includes the shOPPLFSR 703

and a smaller ROMs which contribute, with the LFSR sharing, at decreasing 704

the area of the decoder. For both architectures we obtained a maximum clock 705

frequency of 100MHz, which confirms that the adaptability does not impact 706

the maximum speed of the circuit. This area result is interesting if compared 707

with an estimation of the area for the adaptable architecture proposed in [? 708

]. [? ] designed a codec working on blocks of data of 512B, smaller than 709

the 2KB used in this paper. Given the same maximum correction capability 710

(tM = 24), [? ] uses a code defined on GF (213) instead of the code defined 711

on GF (215) used in this paper. However, even if the code is simpler and the 712

number of correction modes is smaller (only 4 correction modes), the area of 713

the codec accounts about 158.9K equivalent gates2, which is higher than the 714

111.4K and the 105.2K equivalent gates of the Arch. 2 and Arch. 3 proposed. 715

Fig. ?? compares the decoder’s dynamic power dissipation of the three 716

architectures computed using Synopsys PrimeTime. As for the decoding 717

2Equivalent gates for state-of-the-art architectures have been estimated from the infor-

mation provided in the papers

42



Table 5: Synthesis Results

Comp. Max Clock Equiv. Gates Over-head

Encoder 100 MHz 33.3 K

Arch. 1 Decoder 100 MHz 64.1 K

Overall 100 MHz 97.4 K (ref.)

Encoder 100 MHz 40.8 K

Arch. 2 Decoder 100 MHz 70.6 K

Overall 100 MHz 111.4 K 14%

Encoder 100 MHz 39.2 K

Arch. 3 Decoder 100 MHz 66.0 K

Overall 100 MHz 105.2 K 7%

latency the analysis has been performed for a worst-case simulation in which 718

t errors are injected at the end of the codeword so that the Chien Machine 719

must search all possible positions prior to detect all errors. Considering Arch. 720

2, results show that the introduction of the adaptability enables up to 15% of 721

dynamic power saving when the lowest correction capability can be selected. 722

This is due to the fact that the portions of the circuits not required for low 723

correction capabilities are disabled. The introduction of the optimizations 724

proposed in Arch. 3 has no significant impact on the dynamic power that 725

remains almost equal to the one of Arch. 2. 726
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Figure 15: Worst case dynamic power consumption of the three decoders for the three

considered architectures. Power is expressed in mW.

8. Conclusions 727

This paper proposed a BCH codec architectures and its related auto- 728

matic generation framework which enables its code correction capability to 729

be selected in a predefined range of values. Designing an ECC system whose 730

correction capability can be modified in-field has the potentiality to adapt 731

the correction schema to the reliability requirements the flash encounters 732

during its life-time, thus maximizing performance and reliability. 733

Experimental results on a selected NAND flash memory architecture 734

proved that the proposed solution reduces spare area usage, decoding time, 735

and power dissipation whenever small correction capability can be selected. 736
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Table 6: Minimal polynomials expressed with the corresponding hexadecimal string of

coe�cients

 
1

0x F465  
17

0x B13D  
33

0x 8011

 
3

0x C209  
19

0x B305  
35

0x BA2B

 
5

0x B3B7  
21

0x A495  
37

0x D95F

 
7

0x E6EB  
23

0x 88C7  
39

0x BFF5

 
9

0x E647  
25

0x C357  
41

0x BA87

 
11

0x D4E5  
27

0x B2C1  
43

0x 9BEB

 
13

0x 8371  
29

0x 97DD  
45

0x 93CB

 
15

0x EDD9  
31

0x FA49  
47

0x F385
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