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P. Manfredi, I. S. Stievano, F. G. Canavero
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ABSTRACT

This paper addresses the prediction of eye diagrams in
high-speed data links with the inclusion of manufacturing
tolerances. The statistical assessment of the system perfor-
mance is done via the combined application of accurate and
efficient IC models and of the stochastic collocation method
with Lagrange interpolating polynomials. Numerical results on
the computation of the eye opening profile for a realistic PCB
interconnect with the inclusion of the effects of parameters
uncertainties conclude the paper.

I. INTRODUCTION

The shrinking of the physical size of electronic devices,
along with the increase of their speed, is leading to a non-
negligible impact of the manufacturing process on the system
performance. In this framework, designers demand the avail-
ability of simulation techniques and tools for the stochastic
analysis of high-speed interconnects and circuits in the early
design phase. The typical resource for the assessment of
parameters variability effects on system responses is based
on the application of the brute-force Monte Carlo method, or
possible enhanced tools allowing to select the optimal subset
of model parameters in the whole design space [1]. These
methods, however, are inefficient and prevent their application
to the analysis of complex realistic structures, such as the data
link of Fig. 1.

A well-known example is provided by the generation of eye
diagrams from the voltage responses received at the far-end
side of the interconnect (e.g., the IC on the right of Fig. 1).
The prediction of the eye features, like the width or opening,
is currently one of the tools for the assessment of data link
reliability. In this specific application, a large number of bits
as well as a dense exploration of the design space, aimed
at collecting some quantitative information on the statistical
properties of the eye features, must be considered. The above
requirements lead to prohibitive simulation times, especially
when the computational cost of a single simulation is large,
as in the case where transistor-level models are employed to
mimic the behavior of the I/O ports of ICs. Although accurate,
this approach is extremely inefficient, and cleverer solutions
are therefore highly desirable.

To overcome the previous limitations, in this paper, a
simulation strategy aimed at improving the efficiency of both
the simulation of the data link and the assessment of the
impact of its uncertainties on the eye diagram is proposed.

The contribution in the paper is twofold. Firstly, state-of-
the-art models of IC buffers are used in place of transistor-
level description of devices. IC models have already been
proven to provide accurate results with large efficiency im-
provements [2]. This makes the Monte Carlo analysis feasible,
but still time consuming. Secondly, the stochastic collocation
method (SCM), combined with Lagrange interpolation [3], is
used to further speed up the transient simulation. The SCM
has already been successfully used for the statistical analysis
of high-speed interconnects [4], [5], and is here conveniently
applied to the SPICE simulation of realistic printed circuit
board (PCB) structures with nonlinear dynamical components,
like the one of Fig. 1.

Fig. 1. Example of a high-speed data link consisting of a long propagation
path between two digital integrated circuits.

II. APPLICATION TEST CASE

In the scheme of Fig. 1, a single point-to-point interconnect
is considered, where the output port of the IC on the card
communicates with another IC on the board, which acts as a
receiver circuit. The intermediate connector and the receiver
are represented by an LC circuit (L = 2 nH, C = 2 nF) and a
simplified equivalent composed by clamp diodes and a 10 pF
ideal capacitor accounting for the dominant behavior of the IC
input ports, respectively. The two interconnects in Fig. 1, one
on the card and one on the board, are both copper microstrips
with the following nominal parameters: width w = 150µm,
copper thickness t = 30µm, substrate thickness h = 100µm,
relative dielectric permittivity εr = 4.1.

The above assumptions are made for simplifying the struc-
ture and thus concentrating on the effects of the variation
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of the parameters defining the IC output ports and the PCB
interconnect on the performance of the data link. Specifically,
the variability is provided by the strength of the driver, the
width of the PCB microstrip, and the relative permittivity of
the dielectric substrate, which are modeled as independent
random variables with Gaussian distribution (additional details
will be provided hereafter, in Section V). A Texas Instru-
ments transceiver (model name SN74ALVCH16973, power
supply voltage VDD = 2.5 V), whose HSPICE transistor-level
description is available from the vendor official website, is
used in place of the IC on the left. The data pattern used
for this study is a 200-bit long sequence with a bit time of
3 ns and Gaussian jitter error (zero mean and 0.15 ns standard
deviation).

III. DETERMNISTIC IC (BUFFER) MODELING

Different approaches are currently in use for generating IC
models. The standard solution is offered by the Input/Output
Buffer Information Specification (IBIS) [6], which assumes
simplified equivalent circuits of typical buffer structures and
provides guidelines for collecting the key features of devices,
like the static characteristics of the output port of a buffer,
the equivalent capacitance of the silicon die, the parameters
of the equivalent circuit of the package, etc. Recently, other
approaches that complement IBIS and provide improved ac-
curacy for recent device technologies have been proposed [2],
[7], [8]. In this study, the modeling methodology presented
in [2] is considered.

In the case of the output ports of IC buffers, the relation
involving the port electric variables can be expressed as

i(t) = wH(t)iH(v(t), t) + wLiL(v(t), t), (1)

where v(t) and i(t) are the voltage at output port of the
IC buffer and i(t) is the associated current flowing out of
the buffer output terminal. In the above equation, wH and
wL are suitable weighting functions which play the role of
the input signal driving the buffer state, whilst iH and iL
are suitable parametric relations accounting for the device
behavior in the fixed high and low state, respectively. The
parameters defining equation (1), i.e., the weighting functions
wH,L, and the coefficients in the parametric relations iH,L,
can be computed via a well-established procedure from port
voltage and current responses to a predefined set of stimuli
(see [2] for additional details).

It is relevant to remark that the proposed model for IC
buffers has been proven to provide accurate results in the
prediction of the eye diagram, with speed-up on the order
of 10-100×. Specifically, timing errors computed as the max-
imum delay between the reference transistor-level model and
the proposed model responses at the VDD/2 level, turn out
to be on the order of 1% of the bit time. Also, for the same
comparison, the relative error obtained in the prediction of the
openings of eye diagrams is 2%.

IV. THE STOCHASTIC COLLOCATION METHOD

This section provides an overview of the SCM, with a
brief discussion of the three main features of the Lagrange

interpolation, i.e., the interpolating polynomials, the clever
choice of the collocation points, and the extension to account
for multiple random variables.

Lagrange interpolation. The basic idea of the SCM and
Lagrange interpolation is to sample the stochastic system
response at (few) clever points and to reconstruct the overall
response in the whole random space by interpolation [3]. For
a time-domain response y(t, ξ) depending on a single random
variable ξ, the interpolation is

y(t, ξ) ≈
P∑
i=0

y(t, ξi)Φi(ξ), (2)

where {Φi} are the P th-order Lagrange polynomials associ-
ated to the collocation points ξi. They are built as

Φi(ξ) =
∏

0≤j≤P
j 6=i

ξ − ξj
ξi − ξj

, (3)

and the following property holds:

Φi(ξj) = δij , (4)

with δij the Kronecker’s delta.
It is worthwhile noting that (2) turns out to be an analytical

function, where a limited set of responses y(t, ξi), evaluated
for predefined samples ξi of the random variable ξ, are used
to reconstruct the continuous behavior by means of Lagrange
polynomials. Such an analytical expression can be used as
a computationally-cheap model for a fast sampling of the
random response and extraction of statistical information.

Choice of the collocation points. One key issue of the solution
consists in finding a good set of collocation points for which
to evaluate the random response. Although different choices
are available, the analogy with Gaussian quadratures suggests
to use the roots of the polynomials which are orthogonal
to the distribution of the random variable ξ. For standard
distributions, such as uniform or Gaussian, these polynomials
are well-known and correspond to the Legendre and the
probabilists’ Hermite polynomials, respectively. Hence, in the
case of Gaussian variability, for a given value of P in (2), the
points ξi are given by the roots of the (P+1)th-order Hermite
polynomial. For instance, if P = 3, we have four evaluation
points at ξ0,1 = ±2.334 and ξ2,3 = ±0.742.

Extension to multiple random variables. A straightforward
generalization to the case of multiple random variables is to
use a multivariate interpolation where the collocation points
are represented by a tensor product grid obtained from the
one-dimensional case. In turn, the multivariate Lagrange poly-
nomials are built as products of univariate polynomials. For
example, given two random variables ξ and η, the two-
dimensional collocation grid is represented by all the possible
points ξi = (ξm, ηn), with 0 ≤ m ≤ P1 and 0 ≤ n ≤ P2.
It should be noted that a square grid (i.e., P1 = P2 = P )
is usually employed, but this is not mandatory. The bivariate
Lagrange polynomials are then obtained as

Φi(ξ) = Φi(ξ, η) = Φm(ξ)Φn(η), ∀m,n. (5)
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The total number of response samples to be computed is thus

Q =
n∏

k=1

(Pk + 1), (6)

where n is the number of random variables. For large values
of Pk and/or n, sparse grids allow to mitigate the growth in
the number of collocation points [3].

V. NUMERICAL RESULTS

This section collects the numerical results on the stochastic
simulation of the test case discussed in Section II. As briefly
outlined above, among the different sources of variations, we
select and focus on the following three parameters: (i) the
strength of the output buffer of the IC driver, (ii) the width
of the PCB microstrip interconnects, and (iii) the permittivity
of the dielectric substrate. This choice is relevant because it
allows to model typical variations in the output current of IC
buffers, as well as the uncertainties introduced by the etching
process and by the impurities in the substrate materials. The
buffer strength is varied by applying a Gaussian random
weight with unitary mean and 10% relative standard deviation
to the simplified model (1). The remaining parameters are
considered as two additional independent Gaussian random
variables having the nominal parameters given in Section II,
i.e. w = 150µm and εr = 4.1, and relative standard deviations
of 10% and 5%, respectively.
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Fig. 2. Eye diagram arising from the voltage signal received at the right-hand
side of the data link of Fig. 1. The double arrow identifies the eye opening.

In order to quantify the effects of parameters variability on
the system response, the eye diagram derived from the voltage
waveforms at the receiver side of the PCB link of Fig. 1 is
computed. Fig. 2 shows for example the eye pattern obtained
by means of a Monte Carlo analysis, carried out by means
of the pertinent feature available in HSPICE and by using the
IC output port model (1). This eye diagram is from now on
assumed as the reference. It is relevant to remark that the use
of the equivalent model (1) allows to reduce the Monte Carlo
simulation time to 5 h and 6 min for a 10000-run analysis,
whereas the predicted time for a transistor-level simulation is
more than one day and a half. However, this computational

burden is still rather heavy for a circuit designer , and can be
further reduced thanks to the SCM, as shown in the following.
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Fig. 3. Probability density function of the eye aperture for 10000 samples
of the random parameters. The curve labeled “MC” refers to the Monte
Carlo simulation, while the distribution marked “SCM” refers to the response
obtained via the SCM and a third-order Lagrange interpolation.

In fact, the stochastic link response can be alternatively
obtained by interpolating, according to the SCM, a reduced
set of simulated responses. For example, having three ran-
dom variables (n = 3) and using a third-order interpolation
(P1,2,3 = 3), only 64 simulation runs are required. A 64-
term Lagrange interpolation is then obtained according to (2).
The fast random sampling of such an interpolation enables
an alternative and convenient construction of the eye pattern.
For a thorough comparison between the two approaches, a
quantitative information is extracted from the eye diagrams,
i.e. the probability density function (PDF) of the height,
indicated by the double arrow in Fig. 2. Fig. 3 shows the PDF
of the eye aperture computed from the Monte Carlo- and the
SCM-based eye diagrams, both obtained by considering 10000
samples of the random parameters. A remarkable accuracy can
be appreciated.
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Fig. 4. Eye diagram of Fig. 2, with the inclusion of the profile of the
eye opening computed with a confidence level of 99% and based on 10000
samples of the random parameters. Solid line: prediction via the proposed
technique; circles: profile obtained via Monte Carlo simulation.

As an additional comparison, Fig. 4 shows the profile of
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the eye opening computed by considering a 99% confidence
level. Briefly speaking, this means there is a 1% probability
that the stochastic link response lies inside the black mask in
Fig. 4. Also for this case, the prediction obtained with the SCM
excellently compare with the result provided by the Monte
Carlo analysis. As far as the efficiency is concerned, the SCM-
based approach requires only 64 circuit simulations, which
take 1 min and 35 s, whilst a negligible additional time of 1 s is
needed to sample the interpolating polynomial. An impressive
speed-up of about 200× is thence obtained.

VI. CONCLUSIONS

The simulation of eye patterns including the effects of
parameters uncertainties in high-speed data links is addressed
in this paper. The proposed approach is based on the available
deterministic models of distributed interconnects and on state-
of-the-art models of the I/O ports of devices. Furthermore,
the variability on the link responses is taken into account
via Lagrange interpolating polynomials, whose coefficients are
computed in accordance with the SCM, i.e. via a small number
of SPICE simulations at predefined points in the design space.
The combination of equivalent circuit models for nonlinear
devices and of the SCM allows a considerable reduction in
the computational cost compared to the Monte Carlo analysis
at transistor level.

The proposed method has been applied to a realistic PCB
interconnected structure, leading to accurate results and a re-
markable efficiency improvement in the statistical assessment
of eye-diagram parameters.
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