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Introduction 

Under-platform damper is a device used in turbo engines to attenuate forced vibration amplitude 

and prevent high cycle fatigue of turbine blades, which are caused by hot gas flow and the 

vibration of engine rotor. 

The device itself is a piece of metal and during service it is loaded by centrifugal force against the 

platform underside of two adjacent blades. The relative movement of the blade platforms 

produces possible slip on the damper surfaces that dissipates the vibration energy through heat 

induced by friction. 

Although the damper is a simple device, it is difficult to predict and optimize its performance in 

the blades system by combining blade FE model, contact model and kinematic model due to 

marked nonlinearity of friction force, geometry coupling of two contact surfaces and uncertainties 

of contact surface conditions. As concluding from literature, the important parameters controlling 

damper effectiveness include damper mass, friction coefficient, contact stiffness and damper 

geometry. 

All numerical models require knowledge or information of contact and friction parameters, which 

are established either through direct single interface frictional measurements, done with the help 

of correct test arrangements or by fine tuning the parameters in numerical model and comparing 

the calculated response against the experimental response of damped blade(dummy or real) in 

vibration.  What happen in detail on the damper kinematics and contact forces on the interface 

are not experimentally observed.  

 

In this thesis, an alternative experimental way of investigating and evaluating under-platform 

damper behavior is proposed. By measuring relative movement between two simulated platforms, 

the movement of damper and forces transmitted through the damper, a record of the contact 

events(stick, slip, separation) which take place during the cycle is expected to provide information 

of friction coefficient, contact stiffness to better understand the damper behavior. It is paid 

attention to guarantee that the response determined by damper itself and contact interfaces 

should not be disturbed by test rig structure. The test rig is a trial to experimentally observe the 

damper kinematics and contact details , and furthermore reduce the ambiguity and complexity in 

optimizing damper geometry and performance .  

 

Two important motion types of under-platform damper are in phase (IP) and out of phase (OOP) 

motion. IP and OOP motion arise from the bending mode shapes of two adjacent vibrating blade 

with the same phase or opposite phase and normally their amplitude dominate among all the 

mode shapes. Equivalently during IP vibration one blade platform moves axially relative to the 

other platform and during OOP vibration one blade platform moves circumferentially relative to 

the other platform. In the experiments, relative motion along two perpendicular directions are 
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performed to simulate IP and OOP condition. In this thesis only 2D in plane motion of the damper 

is considered, translation and rotation in the other DOFs are not taken into account.  

 

Damper geometry is a difficult factor for investigation. From experimental point of view, the 

traditional way of measuring response from the main structure damped by the under-platform 

damper is not convenient to change platform shapes and respective dampers once the structure is 

manufactured. From modeling point of view, the geometry influences both contact condition and 

interface coupling through the damper dynamics. According to current contact models, the 

contact interfaces can be simplified as a point or a line with discretized points.  

                                                                       
1D Point and line contact 

 

In this thesis, three types of laboratory damper are used to reduce the uncertainty of this dual-

interface friction test. One is so called three-point damper, which is based on a wedge-shaped 

damper but has one curved surface on one contact interface and two curved surfaces on the other 

contact interface. The advantage of three-point damper is that the contact region on its surfaces 

are determined, or more rigorously, determined in a macro way. The so called crossed curve-flat 

has two crossed surfaces, one of which is curved and the other is flat. The intersection point of 

curved line and straight line is intended to locate in the line where centrifugal force passes.  The 

non-crossed curve-flat damper has surfaces like the crossed curve-flat damper but not crossed. 

The separation distance is intended to be made large to check the rotation effect. 

  
So called three-point damper, crossed curve-flat damper and non-crossed curve-flat damper 

A numerical simulation of the test is necessary for understanding the experimental results better 

and explore new geometries previous to new tests. On the other hand, the experimental results 

can be a validation tool of damper modeling once the results are reliable. In the simulation of this 

thesis, only macro contact model is implemented to compare the general response features of the 

damper from the tests when micro contact phenomenon is not significant. The stiffness of the 

damper itself is not considered, which means the damper is considered as a rigid body. 

 

point contact line contact 
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The thesis is divided into 5 chapters.  

The first chapter is ‘State of the Art’ for friction damping mechanism and under-platform damper 

development. Historical and current contact model, kinematic model and simulation methods are 

referred to and commented. 

 

The second chapter describes test rig set up and calibration procedures. The test rig is designed in 

a way conducting good performance, but material and structural limitations cannot be avoided 

completely. Calibration results give information on the stiffness distribution in the test rig and 

limitations of working range. 

 

The third chapter analyzes kinematics measurement error and deduces the  motion reconstruction 

of the damper from measured quantities. Force measurement error due to the structural 

indeterminacy is also presented and corrected. 

 

The fourth chapter is contributed to demonstrating the experimental results for the mentioned 

two types of damper. At the beginning an analysis is made to link the contact stiffness parameter 

used in the contact model with the experimental hysteresis. Hysteresis, force distribution and 

motion features are described. Even if the test results have marked variability, the basic features 

of certain motion type is observed by linking the kinematics and damper equilibrium. Limitations 

of the test rig and corresponding results are outlined. Further improvements to the test rig are 

suggested. 

 

The fifth chapter studies a numerical procedure to simulate the system response. Before applying 

the model and numerical solution to the test rig system, the numerical result is compared with an 

analytical solution for 1DOF system. The case when more than one stop happens during half a 

cycle is also obtained from the numerical calculation. Formulations are established taking the 

three-point damper as example, but relevant extensions can be done without much difficulty to 

other types of under-platform damper. Numerical solutions are compared with the experimental 

results, good consistency is obtained. Further investigations with the aid of the numerical tool are 

performed to check the characteristics of damper response. 

 

Each chapter contains its conclusions. 
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Chapter 1 State of the art 

1.1 Dynamics with friction  

The problems in structural dynamics with friction became tractable since the 30s of last century. 

After good approximated results were obtained, in 1931 one of the first important exact solution 

was given by J.P. Den Hartog when studying a single degree of freedom (SDOF) system damped by 

Coulomb friction or mixture of Coulomb and viscous damping [1]. He showed both theoretically 

and experimentally that, depending on system parameters, the mass may continuously move or it 

may come to a stop during parts of each cycle. Levitan [2] studied the forced oscillations of a 

mass-spring-damper system in which the support rather than the mass is excited. He used a 

Fourier series approximation for the Coulomb friction force that acts between the mass and the 

support. Hundal obtained closed-form analytical expressions for a single DOF system with the 

Coulomb friction force acting between the mass and the ground. His work was limited to a 

maximum of two stops per cycle [3]. Pratt and Williams [4] analyzed the relative motion of two 

masses with Coulomb friction contact. They used a combined analytical-numerical approach to 

obtain the response of the system for arbitrary values of the friction force, excitation frequency 

and natural frequency of the bodies. They showed that under certain conditions multiple lock-ups 

per cycle are possible and that for frequency ratios (excitation frequency versus natural frequency) 

below 0.5 no continuous sliding motion is possible. Their results were limited to two blocks with 

the same mass and spring stiffness and support motion of the same amplitude and frequency. 

 

The complexity of friction damping is not only from the difficulty getting an analytical solution for 

even simple systems, but also is related to sensitivity to system parameters and initial conditions. 

Dariusz Grech et al. [5] analyze a mechanical system in two-dimensional relative motion with 

friction. Although the system is simple, the peculiar interplay between two kinetic friction forces 

and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. 

When Wernitz and Hoffmann [6] process irregular friction brake vibration data , the recurrence 

analysis indicates that irregular vibration states of friction brakes are strongly dominated by 

intermittency phenomena. Phase space reconstruction suggests that this intermittency is 

dominated by low-dimensional irregular deterministic dynamics rather than by high-dimensional 

stochastic processes. Duffor and Woodhouse [7] study the linear stability of systems which contain 
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a sliding frictional contact at a single point. A condition for instability is found, in terms of the 

transfer functions of the two systems at the point of contact. This condition is explored for generic 

systems, to establish the circumstances under which instabilities might be expected. A major 

conclusion is that if the coefficient of friction is assumed to be constant, then at least one mode of 

one or other of the contacting systems must have a displacement at the contact with a particular 

pattern of signs. If such a mode exists then instability is possible, depending on the value of the 

coefficient of friction and on the frequencies and mode shapes of the other modes of the system.  

 

Apart from studying the dynamics with friction itself, people also paid attention to the damping 

effect of friction. Beards and Williams [8] analyzed the damping due to rotational slip in structural 

joints. They studied a two DOF system and concluded, analytically and experimentally that, as the 

friction force increases the response amplitude goes through a minimum. Beards and Woowat [9] 

carried out an experimental study of a steel frame where the joint clamping forces could be varied. 

They found that an optimum clamping force exists that minimizes the frame response. More 

recently, in his review of friction-induced vibration Ibrahim [10] compares the energy dissipated by 

friction to the energy dissipated by a viscous damper. the energy dissipated through friction is 

analyzed for a type of friction dampers used to reduce squeal noise from railway wheels. I.López et 

al. analytically study one degree-of-freedom system, giving existence and stability of the steady 

state solution and then the energy dissipated per cycle is determined as a function of the system 

parameters [11]. In this way the influence of the mass, natural frequency and internal damping of 

the friction damper on the energy dissipation is established. It is shown that increasing the mass 

and reducing the natural frequency and internal damping of the friction damper maximizes the 

dissipated energy. 

 

1.2 Under-platform damper application 

The under-platform damper was used in the turbo machinery since the 70’s of last century and in 

the beginning investigations of this kind of damper is limited to practice and simple models. One 

of the most important characteristic of the blade damper design aims to search for the best value 

of mass that produces the optimal normal load when the turbine is rotating.  

During the 80’s J.H. Griffin [12] and C.H. Menq et al. study the blade-to-ground damper(Fig.1.1). If 

the normal load is small with respect to the exciting force, the FRF of the blade tends to the linear 

free response, i.e. without damper. If the load is large with respect to the excitation force the 

structure stiffens because the blade-to-ground damper sticks introducing the damper stiffness in 

the dynamics of the blade. In this case its response results in a linear FRF with resonance 

frequencies shifted toward greater values. With the introduction of a new stiffness the structure 

changes its response, changing its modal deflections. The damper stiffness together with the 

normal load are the two variables of their initial studies. The mass of the damper is considered 

negligible. The response of a single DOF is studied through modal analysis. The proposed solution 

is an approximation of the equilibrium equation by interpolating linear results of the linear free 
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and stick response. By iterative procedure the resonance amplitude that verifies the nonlinear 

equilibrium equation for a given combination of excitation force and normal preload is calculated. 

Varying the normal load (and keeping the damper stiffness constant) the resonance response is 

minimum for a particular value of normal preload and excitation force. The minimum modal 

response corresponds to an average between the linear free mode and the linear stuck mode. The 

iterative procedure reveals the corresponding optimal displacement of the response (the 

minimum resonance amplitude with varying normal load) is twice the value of the displacement at 

which slip is initiated. In this case the contact is half in slip condition and half in stick condition 

within one oscillation. Experimental test varying the normal load for the two types of damper 

verifies the numerical solution. Some differences are detected when the structure reaches the 

stuck condition. This happens for high normal load. Here the numerical amplitudes result higher. 

The difference is explained with the not properly correct hypothesis of negligible mass of the 

damper and the presence of micro-slip is the most important cause of this difference. In 1984 the 

influence of static and dynamic friction coefficient is investigated through analytical and time 

integration method [13]. The static friction coefficient tends to maintain the contact in stick 

condition. 

                                                                      
Fig.1.1 Demonstration of blade to ground damper 

The introduction of the Harmonic Balance Method (HBM) was an important step in the analytical 

study of the nonlinear structure dynamics with friction. The HBM approximation proves to be a 

useful tool able to interact with complex structure modeled with FEM. The contact model can be 

integrated with HBM to predict the structure response. Normally the predicted response matches 

well with the time domain calculation except when some higher order mode shapes of the 

structure are excited [14]. 

When the normal load is large with respect to the excitation force, micro-slip effect may occur, 

where parts of the contact area slip while others stick. The model of a traditional Coulomb 

hysteresis loop (immediate state transition for one contact pair as a whole) does not reproduce 

nonlinear micro-slip influence on the dynamic response. In 1997 Sanlyturk et al. represented 

micro-slip hysteresis cycle by analytical formulation gradual transition from stick to slip through 

exponential curve [15].  

Discretized approach has been adopted to reproduce micro-slip effect since the model proposed 

by Iwan in 1967 [16, 17, 18]. The discretized contact models are based on Coulomb friction theory. 

a set of parallel element, each one with its elastic contact and its coefficient. Fig.1.2 shows the 

configuration of this kind of model. 

excitation 

pre-normal 

load 
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Fig.1.2 1D macro contact element and element arrays simulating micro contact  

 

When strain hardening is taken into consideration, the model in Fig.1.2.c can be modified to the 
form in Fig.1.3. 

 
Fig.1.3 Modified 1D micro contact model with strain hardening 

 

In 1986 Meng et al. introduced a different continuous micro-slip model, where a continuous area 

is loaded by a uniform pressure [19] and later used by Csaba [20]. This model can be referred as to 

the Bar-model. The contact body is represented by a rod having longitudinal elastic properties 

(Young modulus E, cross section A). The rod constraint is represented by the contact surface. 

When a tangential force is applied at one end of the Bar element, the distribution of shear at the 

contact interface produces slip in the point where the force is applied because it overpasses the 

local pressure multiplied for the friction coefficient. The disadvantage of Bar model is that there is 

no direct coupling between the geometry of most actual dampers and the relevant parameters of 

Bar model. 

 
Fig.1.3 1D Bar model (from [19]) 

In 1997 and 1998 Yang et al. introduced a new variable for a 1D tangential displacement contact 

model: a variable normal load through the presence of a normal contact stiffness [21, 22]. This is a 
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great improvement to the contact model since it introduces more physical information 

represented by the real contact surfaces(possible lift-off and stick state disappearance when 

tangential relative motion reverses). The variable normal load was introduced also in the 2D 

contact model [23]. 

In 1998, Yang and Menq introduce the problem of blade damping for the wedge shaped under-

platform damper [24, 25]. In this method, on each contact interface the contact is represented by 

a  point contact. The damper inertia and stiffness of itself is neglected. The kinematics for wedge 

shaped damper is important by coupling the two contact interfaces. Transition criteria for the 

coupled contact interfaces are given according to a Coulomb contact model with tangential 

stiffness also considering the variable normal load even if without normal contact stiffness. The 

kinematic and contact model are shown in Fig.1.4. Maps are diagrammed to show how the 

inclinations of the wedge damper sides influence the amount of stick-slip state for the two sides of 

the damper. These are two important articles about under-platform damper which start more 

comprehensive investigations on the damper behavior. 

 
Fig.1.4 Kinematic and contact model used in [24,25] 

Damper geometry influences not only the contact condition but also the coupling of interfaces. 

Except for triangle wedge damper, damper with curved contact surfaces are studied like cylindrical 

dampers [26] or with two rounded contact surfaces with a different position of the center [27], 

unsymmetrical dampers [28], and dampers with parabolic surfaces [29].  

 

In [30], the authors provide a modeling which makes use of experimentally measured contact 

characteristics(hysteresis loops) for description of the basic contact behavior of given material 

combination with respective surface finish. It is shown that the commonly used under-platform 

dampers are prone to rolling motion(from experiment), an effect which reduces the damping in 

certain modes of vibration usually described as the lower nodal diameter bladed-disk modes, 

which is also proposed by [24]. The analysis methodology is based on a combination of the 

harmonic balance method and a structural modification approach, which is also described in [14]. 

Models in [28] include the damper inertia and consider a rotational contribution to the damper 

kinematics leading to a possible lift off from the blade platforms, which is currently the most 

complicated damper model. [31] explains the experiment data scattering of blade response 

damped by the damper as a consequence of the non-uniqueness of the static normal preloads. In 

[32], the author measures the kinematics of two types of under-platform dampers(wedge and 

cylindrical) in the test of traditional damper-blade test rig. The strong influence of the rotation of 
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the under-platform damper on the dynamic response is analyzed in particular for the in-phase 

vibration of two dummy blades. 

1.3 Contact mechanics with friction and hysteresis measurement 

Although in the work of this thesis no continuous contact mechanics theory is applied to 

investigate the damper behavior, the frictional contact problem is an important field in contact 

mechanics, which provides physical meaning of discrete contact modeling parameters and guides 

the new methodology to be applied in dynamic problems with friction. 

 
In 1938 Cattaneo and then 1949 Mindlin published their seminal works on the effect of forces 

tangential to the interface of elastic bodies in contact and these studies take slip into account. 

They extended Hertz theory for normally loaded elastic spheres by adding an increasing tangential 

loading to these spheres and considering slip exclusively at their contact interface [33]. The 

concept of tangential stiffness and uniform friction coefficient is proposed. Fig.1.5 is the 

demonstration of this problem. Although Cattaneo and Mindlin’s concept has some assumptions 

made for simplification, it has been widely used. [34] points out that the contact area diameter   , 

resulting from the normal load  , may change considerably when a tangential loading   is added, 

which is ignored in Cattaneo and Mindlin’s model. The phenomenon of increasing contact area 

during tangential loading was first observed experimentally in 1950 by McFarlane and Tabor and 

independently by Parker and Hatch.  

 
Fig.1.5 Spherical contact under combined normal and tangential loading 

Apart from the detailed simplification, Cattaneo and Mindlin’s theory has been widely used in 

normal condition and scale and partly verified by the experiments carefully designed for contact 

measurement.  

 

Efforts to measure contact hysteresis date back to 1952,  Mindlin et al. [35] measured the 

hysteresis loops for lenses with convex surfaces. The annular shape of the observed surface wear 

showed agreement with the theories, however the hysteresis loops measured does not agree well 

with theory when displacement amplitude is small. Johnson [36] measured static and dynamic 

hysteresis loops for hard steel spheres in contact with hard steel rollers. The slopes of the 

hysteresis cycles which represents the tangential stiffness showed good agreement with the 

theory. Goodman and Brown [37] measured hysteresis loops and energy dissipated at the contacts 
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of a sphere oscillating between two parallel flat plates. For a cyclic tangential force that produced 

only micro-slip, their experimental results agreed well with the theory.  

One of the difficulties in measuring contact parameters relates to the disturbance of the test rig structure. 

The authors in [38] developed an experiment to measure structural response on a turbine vane 

segment. They obtained contact stiffness and dissipated energy by measuring hysteresis loops.  A 

test rig which provides hysteresis measurement is described in [39] and the test gives data for 

contact behavior of under-platform damper by using real damper and same material for the other 

block to be rubbed on. [40] presents a new test rig design to measure tangential contact hysteresis 

during micro-slip, in which potential measurement errors are estimated and corrected if possible. 

1.4 Time integration scheme  

It is not easy or even intractable to get analytical solution of a dynamical system with friction. For 

large structures with friction damping, the combination of modal reduction and HBM provides an 

effective tool to predict the main structure’s response. But when investigating the damper 

kinematics and dynamics itself, the simplification of HBM is not appropriate due to the 

nonlinearity of this unconstrained body. The test rig discussed in this thesis is designed to 

investigate the damper kinematics and dynamics not disturbed by the test structure, but in 

practice this is not achieved. In the range where outer dynamics can be neglected, the simulation 

of damper behavior adopts a time integration method. 

The numerical procedure adopted in this thesis is based on Newmark-  method which has the 

advantage of second order accuracy. Lu et al. employ a state-space formulation and a linear 

integration scheme to get the discrete-time solution of dynamic response of a structure system 

equipped with multiple friction devices, which can be in either a stick or slip state[41]. In [42] the 

authors present a new dissipative and contact-stabilized time discretization scheme for dynamic  

frictional contact problem. Their approach allows an implicit treatment of the contact forces in the 

framework of the Newmark scheme. This may be helpful to find improvements to the direct 

integration used in this thesis.   
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Chapter 2 Test rig set up and calibration 

2.1 Components and function of the test rig 

The test rig is designed aiming at:  

• measuring the forces transferred between the two simulated platforms of neighbouring 

blades through the under-platform damper.  

• measuring left platform movement and damper movement relative to the right platform to 

simulate In-phase and Out-of-phase motion. 

 

 

Fig.2.1 General view of the test rig 

The test rig is composed by two main parts. One part comprising from two perpendicular 

piezoelectric actuators with auxiliary preloading and guiding structures produces any planar 

displacement to the left platform(shown as the red arrows in Fig.2.1). The other part contains two 
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perpendicularly located piezoelectric force sensors and measures the transferred force passing 

through the right platform(shown as the blue arrows in Fig.2.1) and guiding rod.   

2.2 Introduction of piezoelectric actuator and piezomechanics  

2.2.1 Necessity of preload structure for the actuator 

Piezoelectric ceramics is a kind of material that can produce deformation according to applied 

charge or produce charge according to applied deformation. The current mostly used and reliable 

piezoelectric ceramics material is called PZT. 

A piezoelectric stack is composed by a series of thin layers of piezoelectric ceramics in order to 

achieve large displacements by means of a summation of small displacement from each layer. 

Generally, a typical stack contains several thin layers of 0.2 up to 1 mm thick of piezoelectric 

ceramic glued together with alternate electrical poling directions.  

PZT ceramic material can withstand pressures up to 250 MPa without breaking. This value must 

never be approached in practical applications, however, because depolarization occurs at 

pressures on the order of 20 % to 30 % of the mechanical limit. The PZT ceramic is especially 

sensitive to shear forces, which must be intercepted by external mechanisms.  

For stacked actuator(which is a combination of several materials), additional compression 

limitations apply. Parameters such as aspect ratio, buckling, interaction at the interfaces, etc. must 

be considered. 

Furthermore, the constructive configuration of piezoelectric stack makes it very sensible to pulling 

forces that can detach the layers. Therefore, ordinary piezoelectric stacks should work with an 

initial preload capable to avoid pulling forces. Torsion and bending moment should also be 

avoided due to the weakness of the glue [45]. 

 

2.2.2 Influence of preload structure to the displacement conducted by piezo 

actuator  

Actuator stiffness is an important parameter for calculating force generation, resonant frequency, 

full-system behavior, etc. As in normal cases, the stiffness of a piezo actuator is expressed in terms 

of a spring constant   . If the external force on the actuator is constant, no displacement 

reduction happens and only the origin of displacement is shifted. But if the external force is 

variable during the operation, which happens when the preload spring is applied, the 

displacement conducted by the piezo actuator is reduced as shown in Fig 1.2. In the figure,    is 

the initial length of the stack,     is the nominal displacement produced by the stack without 

external force,    is the real displacement produced by the stack coupled with the preload spring 

with stiffness   ,     is the respective displacement loss. 

From the equilibrium equation                , we have: 
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 ,         

  

  
                                                         (1) 

 

Fig2.2 Piezoelectric actuator displacement reduction due to preload spring 

 

The result shows that the real displacement produced by the piezo actuator will be reduced with 

the proportion between preload stiffness and actuator stiffness, which means the preload 

stiffness cannot be too stiff. 

The piezoelectric stack used in this test rig is PICATM-Power Actuator Model P-010.80. This model 

of actuator has the technical specifications as following: 
Table 2.1 Piezoelectric stack parameters 

MODEL Displacement 
[μm] -
10/+20% 

Diameter D [mm] Length L [mm]  
±0.5 

Blocking 

force (N) 
Stiffness 
[N/μm] 

Capacitance 
[nF] ±20% 

Resonant 
frequency 
[kHz] 

P-010.80 120 10 107 2400 19 510 10 

 

2.3 Set up of piezoelectric actuators   

As mentioned in the actuator specification table, the blocking force is a force to block any 

displacement of the stack even in the presence of an excitation voltage applied to its terminal. This 

force determines the upper limit of the feasible project area, white central area in Fig.2.3. The 

right limit is defined by the maximum displacement of the piezoelectric stacks, i.e. the 

displacement when the maximum voltage is applied to its terminals. 

 
Fig.2.3 Feasible working area of the piezoelectric stack 
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The curve A in Fig.2.3 corresponds to a piezoelectric stack where the free end travels with the 

resistance imposed by the spring; this resistant force can be decomposed in the preload force and 

the force proportional to the spring stiffness. The inclination of curve A is related only to the 

stiffness. Thus adding a third component force applied to the piezoelectric stack free end causes 

only a shift up or down in the curve. The curve B and C are curves due to a pushing force and a 

pulling force respectively. Considering the limitations of the piezoelectric stacks the force    in 

curve B is a maximum pushing force, which permits full displacement achieved by the stack. 

Similarly, the force    in curve C is the maximum pulling force possible applied to the free end of 

the piezoelectric stack without exposing it to traction forces, and this force is equal to the preload 

force.  

The scheme of working force    in this project is symmetric around          as following:  

                 

                                                     

                         

, where positive sign means pushing and negative sign means pulling.  

There is the relation between   (force on the stack),   (force on the spring) and   (working 

force): 

                                                                                                                                                           (2) 
Denote the stiffness of the preload spring as   , the unloaded length of the spring as  , the length 

of the spring to produce the preload as    . Then the spring force is calculated as:  

                                                                                                                                                        (3-1) 

                                                                                                                        (3-2) 

There are also the boundary conditions for stack force: 

                                                                                                                                                       (4-1) 

                                                                                                                                                 (4-2) 

, in which    is the blocking force. 

Combining (1), (2), (3-1,2) and (4-1,2), we have: 

                                                                             
 

   
                                                                              (5-1) 

                                                                        
     

      
                                                                            (5-2) 

    is required to be positive, therefore from (5) we know that the working force amplitude   has 

its maximum value lower than an half of the blocking force   . These relations are used to 

calculate the spring stiffness and the preload deformation in terms of the characteristics of the 

piezoelectric stack and the working force amplitude. It is presented in Fig.2.4 the stiffness 

variation due to different     . When       , the stiffness of the spring should be zero, as 

indicated by the curve "A" parallel to the abscissa, and the deformation to obtain the correct 

preload tends to infinite. On the other hand when   tends to zero, the stiffness goes 

asymptotically to        , as indicated in the figure. Therefore, a suitable option should 

equilibrate the preload spring stiffness and preload value.   
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Fig.2.4 Stiffness variation along with the ratio of      

 

Additionally from Fig.2.5,        
  

  
 

  

    
.                            (6) 

 
Fig.2.5 Preload scheme(force and displacement curve) 

 
Here         ,              ,            ,            . Notice that      is the 

length of the stack plus two heights(   and     shown in Fig.2.6) due to the bearing balls located 

between the stack and preload spring cover. From these parameters, If the preload force is set as 

         , the following initial values are calculated: 

         ,         ,            

 

 

Fig.2.6 Configuration of assembling the piezoelectric stack 

In order to satisfy the above mechanical properties, a basic geometric configuration of the spring 

is chosen a prior. The piezoelectric manufacturer PI suggests many configurations that protect the 
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stacks against some levels of bending and torsional  loads. In this test rig, a configuration called ‘ 

spring’ with bearing ball is adopted: 

- Length   with no deformation 
- Thickness   

- Pitch   

- Curvature diameter   

- Width   

- Minimum thickness    

 
Fig.2.7 Preload spring configuration 

According to the fabrication limitations the diameter " " was settled to 2.5 mm and the length " " 

was obtained from the initial calculation above. The variation of the natural frequency with the 

width " " is null, and the variations of the stiffness and of the stress are linear, therefore,   was 

settled to 14 mm using only the fabrication requirements. In the cases where to change this value 

by a factor, the stress will be reduced and the stiffness will be increased by the same factor. Finally, 

the remaining variables are the thickness " ", the minimum thickness " " and the pitch " ". Under 

the restriction that the first natural frequency of the preload spring component is about 500Hz, 

the manufacturing data determined are:             ,         .  

 
Fig.2.8 Calibration of assembled preload springs     
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The ‘’ spring has a quasi infinite life when made from ASTM 52SiCrNi5 steel, of which the yield 

strength is 1400   .  

 

After construction the springs reach the stiffness of 4.28     and 4.43     for horizontal and 

vertical actuator and with a preload of 842  and 834  respectively, which are within the 

variability range of initial presumed value. Fig.2.8 shows the way to measure preload structure 

stiffness.  

2.4 Set up of the parallel mechanism  

A mechanism should be designed to impose desired displacement on the left platform. Normally, a 

parallel mechanism is a proper choice due to its adequate resolution, low level of parasitic forces, 

motion smoothness and zero backslash. There is a kind of parallel mechanisms that use flexural 

hinges as revolution joints recommended by some researchers. In this work, a simple parallel 

mechanism as represented in Fig.2.9 was chosen, in which the flexural hinges are intended to 

work as cylindrical joints for small displacement amplitude.  

  

 
Fig.2.9 Parallel mechanism with flexural hinges 

 

 
Fig.2.10 Parallel mechanism and dislocated positions 

               

In this scheme,    and    are the lengths of the arms between the revolution joints. The 

revolution joints are considered in the kinematic formulation as ideal joints without clearance or 
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friction. The variables    and    are the imposed displacement by means of the piezoelectric 

stacks. Parallel configuration couples both directions even if a small displacement is applied. From 

Fig.2.10 a general dislocated position of the applied displacement is represented as follow: 

                  

                  

Applying the geometric relations           ,           , we obtain: 

                                                                                                                               (7-1) 

                                                                                                                              (7-2) 

If we write in matrix form according to the first order approximation, equation (7-1,2) become: 

                                          
   
   

   
 

  

  

 

           

  

  

 

           
 

  
  
  
                                                 (8) 

Equation (7) or (8) shows the displacement coupling between the two directions, a possible 

solution to reduce this coupling effect is to increase the lengths    and   . 

For example, if the lengths    and    are one hundred times larger than the displacements     

and     given by the piezoelectric stack, the error of position    or    is about 1% deviated from 

the real value. 

 
The detailed dimensions of the parallel component is determined by a gross Ansys 0-order 

optimization procedure.  

A typical Ansys optimization procedure is completed by the following steps: 

(1) Create an modeling and analysis file. 

①Parametric modeling: Initializing the design variables(which are involved in the 

optimization procedure) and build up the model by corresponding parameters. 

②Apply load and solve. 

③Go to the post-processing part, extract the result and assign the corresponding values to 

the constraint variables and objective function. 

(2) Form optimization control file. 

(3) Modify the design variables according to the finished optimization loops and the state of 

current optimization variables. 

  

The convergence of a feasible solution is guaranteed by checking certain tolerance   defined 

under different field. Assume   ,    and     ,      are the corresponding objective function and 

design variables at iteration   and    .    and    are the optimized objective function and design 

variables. If             or            , or alternatively,             or          , the 

iteration searching for the optimization can be considered convergent and be stopped.   is a 

tolerance defined in the relevant way. 
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The configuration of the parallel arm is shown in Fig.2.11. In this problem, from manufacturing 

point, the following dimensions are adopted:        ,       ,        ,       . 

  
Fig.2.11 Configuration of the parallel arm 

Apart from these known parameters, the parameters used in the optimization are: 

Design variables:  ,    

Objective function:    

State variables:   ,       

 

   is the horizontal resultant force on the area   due to the horizontal displacement imposed on 

the area  , which represents the parasitic force of this type of mechanism;   is the first natural 

frequency of the arm, which represents the stiffness of the structure;       is the maximal first 

principle stress of the arm.   

When the static analysis is performed, according to the symmetry of structure and loading, the 

following simplified load conditions are adopted: 

(1) On area  , there is not displacement along   direction, that is     . 

(2) On area  , there is not displacement along   direction, that is     .  

(3) On area  , there is the imposed displacement along   direction with an amplitude of 

80  (considering the displacement reduction caused by the preload springs about 23% of 

120   ) , that is           . 

From the static analysis,       and    can be obtained. 

 

When the modal analysis is performed, the following load conditions are adopted: 

(1) On area  , there is not displacement along   direction, that is     . 

(2) On area  , there is not displacement along   direction, that is     .  

(3) On area  , there is not displacement along   direction, that is     .  

From the modal analysis,    can be obtained. 

 

The initial dimensions are listed below:        ,        . 
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After the initial dimensions are input, the state variables       and  are calculated as:       

       ,          , and the objective function        . The stress distribution and first 

two mode shapes are shown in Fig.2.12 and Fig.2.13. 

 
Fig.2.12 Stress distribution in the parallel arm with the initial dimension 

 

 
Fig.2.13 Mode shapes of the first 2 modes with the initial dimension 

 
The practical range of design variables and state variables are given as:  

            ,             ,          ,             . A gross 

optimization procedure is performed and after 10 iterations an optimized solution is obtained 

shown in Fig.2.14 and List 1.1, which has a much lower value of the objective function.  

 

 

Fig.2.14 Objective function variation with the iteration  
 

List 1.1 Optimization trace  
LIST OPTIMIZATION SETS FROM SET   1 TO SET  10 AND SHOW 
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ONLY OPTIMIZATION PARAMETERS. (A "*" SYMBOL IS USED TO INDICATE THE BEST LISTED SET) 

 

                 SET  1        SET  2        SET  3        SET  4 

                (FEASIBLE)    (FEASIBLE)    (FEASIBLE)    (FEASIBLE) 

MAXSTRESS(SV)    0.19896E+08   0.19699E+08   0.14419E+08   0.16393E+08 

FREQUENCY(SV)     2039.1        2162.5        1680.1        1876.9 

T1      (DV)    0.15000E-02   0.17708E-02   0.10820E-02   0.13063E-02 

L1      (DV)    0.20000E-01   0.21657E-01   0.23539E-01   0.22943E-01 

FORCEX  (OBJ)    7.0313        11.561        3.3476        5.3912 

 

                SET  5        SET  6        SET  7        SET  8 

               (FEASIBLE)    (INFEASIBLE)  (FEASIBLE)    (FEASIBLE) 

MAXSTRESS(SV)    0.14531E+08   0.12337E+08   0.13122E+08   0.13523E+08 

FREQUENCY(SV)     1601.0     >  1434.6        1500.2        1515.6 

T1      (DV)    0.94919E-03   0.87103E-03   0.87030E-03   0.91499E-03 

L1      (DV)    0.19266E-01   0.18306E-01   0.19647E-01   0.18354E-01 

FORCEX  (OBJ)    1.2645       0.55611       0.97291       0.75412 

 

                SET  9       *SET 10* 

               (FEASIBLE)    (FEASIBLE) 

MAXSTRESS(SV)    0.13432E+08   0.13385E+08 

FREQUENCY(SV)     1506.7        1503.2 

T1      (DV)    0.92192E-03   0.92243E-03 

L1      (DV)    0.18087E-01   0.18037E-01 

FORCEX  (OBJ)   0.68174       0.66407 

 
From the optimization results, the final dimensions are adopted as: 

       ,        . 

In this way, after construction we have the length   =  =      , conducting to an error about 

0.11%, at the maximum displacement 80   of the piezoelectric stack.   

 

Additionally, to prevent spurious movement in other directions a suspension to guide the 

piezoelectric displacement and increase the stiffness in other directions. The suspension is 

composed by double cross shown in Fig.2.15. 
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Fig.2.15 Double cross suspension 

The parallel mechanism and double cross suspension will prevent the rotation of the left-platform 

to minimum. 

2.5 Set up of the force measurement structure  

The function of force measurement structure is to get the force transmitted by the damper 
through the interface between damper and right-platform. Piezoelectric force sensors are placed 
in the manner to form a Cartesian frame. The right platform, which has three threaded holes on 
the respective surfaces, is linked to three rods which have one threaded end with a nut. Then the 
rods are supported by two force sensors connected to two wall bases and one cylindrical extrusion 
connected to the ground.  

 

 
Fig.2.16 Force measurement structure 

Fig.2.16 is a demonstration of the force measurement structure. From the top view, the horizontal 

and vertical load cells have a top cap for each, one has an in-plane straight slot which provides two 

kinematic constraint and the other one has a spherical concave on the surface which provides 

three kinematic constraint. The cap of the cylindrical extrusion has a flat surface which gives one 

kinematic constraint. Thus the free tripod frame(6 DOF) follows a complete kinematic constraint 

condition. Additionally, the lengths of the three rods are adjusted by fixing the respective nut. 

Once the height of the rod perpendicular to the movement plane is determined with an 

acceptable tolerance, the tripod constructs a regular Cartesian system.  

A preload is then applied to make the respective rod and load cell in compression to guarantee the 

contact between them during operation. The preload is supplied by a deadweight-pulley 

mechanism. The tangent line of the preload wire passes through the center of the tripod to avoid 



26 

 

lateral force on the load cell. Losses due to friction in the pulley and uncertainties in the dead 

weight are negligible to the total preload. 

 

The force sensors used in this test rig(Dytran 1051 V2) has technical specifications as follows: 
Table 2.2 Force sensor specifications 

MODEL SENSITIVITY 
(N/V) 

COMPRESSION 
RANGE(N) 

MAX.COMP.(N) TENSION 
RANGE(N) 

MAX.TEN.(N) DISCH. 
TC(sec) 

RESOLUTION  
(N, RMS) 

1051V2 44.48 2224 44480 2224 4448 100 0.0007 

 

When the leakage of a charge (or voltage) occurs in a resistive capacitive circuit, the leakage 

follows an exponential decay. A piezoelectric force sensor system behaves similarly in that the 

leakage of the electrostatic charge through the lowest resistance also occurs at an exponential 

rate. The value of the electrical capacitance of the system (in farads), multiplied by the value of 

the lowest electrical resistance(in ohms) is called the Discharge Time Constant (in seconds). 

DTC is defined as the time required for a sensor or measuring system to discharge its signal to 37% 

of the original value from a step change. This is true of any piezoelectric sensor, whether the 

operation be force, pressure or vibration monitoring. The DTC of a system directly relates to the 

low frequency monitoring capabilities of a system and, in the case of force monitoring, becomes 

very important as it is often desired to perform quasi-static measurements.  

According to PCB force sensor calibration technique, miniature or high sensitivity models are 

calibrated by applying a known lightweight mass, letting the signal zero, and then quickly 

removing the mass. Output recorded is the sensitivity of the sensor. Based on this, a structure of 

relevant configuration is designed as in figure 2.17. 

A calibrated weight is applied on the force sensor through a symmetric frame. The point contact 

between cover component and force sensor guarantees that momentum imposed on the sensor is 

negligible. The length of parallel wires and the width of cover component are long enough to make 

sure that the lateral force at the contact point is negligible. The special bearing pulley prevent the 

effect of friction to the minimum. 

The sensitivity of the sensor   combined with the signal conditioner is then obtained though 

dividing the force drop    by the voltage drop   . 

 

  

Fig.2.17 Scheme recalibrating the force sensor 

m 

parallel wires 

force 

sensor 

cover component calibrated weight 

frictionless pulley 
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From the theory of propagation of uncertainties, given the objective function 

              

and the uncertainty(standard deviation) of each variables   ,   ,   , …, then the uncertainty of 

function   is calculated as: 

                                                       
   

  

  
   

 

  
  

  
   

 

  
  

  
   

 

                                             (9)                                         

Here   
  

  
, applying the above formulation, the following is obtained 

                                                            
 

  
   

 

  
  

   
   

 

                                                                 (10) 

The tests are repeated for three times under the same condition. Here we assume that the 

uncertainty of force drop caused by the friction through the pulley and the response time is less 

than 1%. Based on these the average and uncertainty of the sensor sensitivity are obtained. 

Fig.2.18 shows an example of the test results. 

Table 2.3 Force sensor calibration  
 voltage drop force drop sensitivity 

(force jump/voltage jump) 

Average(V) SD(V) Average(N) SD(N) Average(N/V) SD(N/V) 

horizontal 
sensor  

0.94 0.024 39.4  0.4 41.9 1.15 
(2.7%) 

vertical 
sensor  

1.24 0.024 56.1  0.6 45.2 1.00 
(2.2%) 

 

 

Fig.2.18 Representative load removal(weight of 5.72kg) result 

Since the piezoelectric force sensors are designed for dynamical measurement, the load removal 

performance can be used to get the real force of a damper acting on the platform, which is useful 

to investigate the damper equilibrium. 

Apart from the other factors, the uncertainty of measured dynamical force due to sensitivity is less 

than 3%.  
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2.6 Test rig calibrations 

After the total test rig is assembled, it is important to check the test rig performance by 

investigating the mechanical property and operation range. Before demonstrating the calibration 

results, an introduction of laser vibrometer is given. 

A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact 

vibration measurements of a surface. The laser beam from the LDV is directed at the surface of 

interest, and the vibration amplitude and frequency are extracted from the Doppler shift of the 

laser beam frequency due to the motion of the surface. The output of an LDV is generally a 

continuous analog voltage that is directly proportional to the target velocity component along the 

direction of the laser beam[Wikipedia]. 

Single-point vibrometers measure the amount of vibration at a single point on an object's surface. 

More specifically, a laser vibrometer measures the projected component of an object's surface 

vibration vector along the direction of the incident laser beam. For example, if aligned 

perpendicularly to surface under test, the vibrometer measures the out-of-plane vibration to the 

surface (the instrument is sometimes referred to as an out-of-plane vibrometer. A differential 

vibrometer is used to measure the movement of a point relative to a reference point. The 

differential vibrometer can be used as single-point vibrometer when then reference laser head is 

covered by a specified cap. 

In the work of this thesis, a differential laser vibrometer with controller Polytec OFV-3001 and 

sensor head OFV-512 is used. The displacement decoder inside the controller is OVD-20, of which 

the technical data are listed in Table 2.4. 

Table 2.4 Specification of laser displacement decoder used in the test 
Displacement 
decoder 

Measurement 
range 
(scaling factor) 
 m/V 

Full scale 
output 
(peak-peak) 
 

Resolution 
 m 

Maximum  
velodcity 
m/s 

Band width 
KHz 

Maximum frequency 
for specified accuracy 
KHz 

Amplitude 
linearity 

OVD-20 20 320 0.08 2.5 0-250 100   increment 

In the operation range of this test rig, this laser vibrometer is sensitive and precise enough to give 

correct displacement measurement. Maximally, when the measured body moves in harmonic way 

at 200Hz with amplitude(P-P) of 200 m, the maximal velocity is 100     (2 ) 200    

    m/s, safely lower than the limit. 

2.6.1 Piezoelectric actuator and force sensor operation range 

To get the dynamic calibration factor (the ratio between output displacement and input excitation) 

of the piezoelectric actuator combined with the auxiliary structure (preload springs, suspension 

and parallel arms), tests are performed as follows: using a random noise excitation as input signal 

for the piezoelectric actuator, the transfer function is obtained through dividing the cross 

spectrum between the input and the output by the input auto spectrum. The output displacement 

is measured by a laser Doppler vibrometer. The test results are shown in Fig.2.19 and Fig.2.20. 

http://en.wikipedia.org/wiki/Vibration
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Doppler_effect
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Fig.2.19 Dynamic calibration result of horizontal piezoelectric actuator with auxiliary structure 

 

Fig.2.20 Dynamic calibration result of horizontal piezoelectric actuator with auxiliary structure 

In the 5% linear range around the averaged value of the calibration factor             and 

           , the horizontal actuator can work under 180Hz and the vertical actuator can work 

under 193Hz.  

After knowing this dynamical factor, it is convenient to measure the real movement on the left-

platform without external force. Considering the similarity between horizontal and vertical 

actuator chain, here only the horizontal direction is measured. 

The measured signal compared with the excitation signal is shown in Fig.1.21. The results show 

that the dynamic calibration factor is reliable (all slopes are within 5% deviation range of 

7.74    . When the actuator has no close loop control, the inner hysteresis due to material 

polarization causes deviations to harmonic input. The proportion of largest deviation from the 

center displacement       to the respective amplitude is about 30%, which can be overcome in 

the future by close loop control to the piezo-electric actuator. 

Fig.2.21 shows the hysteresis behavior of displacement produced by the piezoelectric actuator 

without closed-loop control. 
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Fig.2.21 motion hysteresis of horizontal actuator under different frequency 

A rough hammer test is used to check the frequency working range of the force sensor connected 

with the tripod and respective support. Since a force sensor is also mounted on the tip of the 

hammer, when an impact is applied by the hammer to the structure. The frequency response is 

given by dividing the output spectrum measured from the sensor in the structure by the auto 

spectrum of the impact input measured from the hammer sensor. The result for horizontal sensor 

is shown in Fig.2.22. 

      



31 

 

 

Fig.2.22 Transfer function by the hammer test for horizontal force sensor 

An ideal hammer test can have a configuration that the hammer is suspended as a pendulum and 

the impact is realized by the gravity of the hammer. But here we roughly apply the impact on both 

directions manually since we need only the information of the sensitivity linearity range. After the 

tests, both sensors can work in a 5% linearity variation range below 175Hz. 

2.6.2 Stiffness distribution in the test rig 

In Fig.2.23,    is the mass of damper,    is the mass of right platform, the mass of guiding rod is 

neglected and regarded as a spring that has a stiffness of   ,    is the mass of force sensor plus 

the effective mass of supporting wall. And    is the equivalent stiffness of the force sensor and 

supporting wall. The damping in the structure is not shown. 
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Fig.2.23 Demonstration of discrete model parameters of the test rig 



32 

 

Assuming initially each mass is at its equilibrium point with necessary preload, the motion 

equations of the system is as follows: 

 

                     
                 

             

  

And there is the force relation           , consequently,  

                  

    is the force measured by force sensor. The difference between it and the real force at right 

interface is the inertial force of 2m .  

The energy consumed by the damper and two interfaces in one period is: 

0 2( )c i kR dR

T

E F dx F F dx    
              

Substitute iF , kRF and dRF by 3kF , the energy is expressed as 

3 1 1 2 2 0 3 2 2 2( ) ( )c k k

T

E F m x m x dx F m x dx      
          

 

If the kinetic energy of mass 2m and 3m are negligible, the formulation becomes 

             
3 0 2( )c k

T

E F d x x  
                                                             

(11) 

It is shown by equation (11) that linking the relative displacement between left platform and right 

platform and transmitted force to the force sensor to illustrate the interface characteristics is 

reasonable. 

Under low frequency operation range, the mass and damping parameters are not important, while 

the stiffness of test rig components can influence the measurement features through changing the 

relative displacement between two platforms, which is a consequence of contact force increase. 
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Fig.2.24 Demonstration of stiffness distribution in the operation chain 

According to the results in design stage, the preload springs for the horizontal actuator have a 

total stiffness of 4.28N/µm and the preload springs for the vertical horizontal actuator have a total 

stiffness of 4.43N/µm. The stiffness of the piezoelectric stack used is 19N/µm. The parallel 

combination of piezoelectric stack and preload springs has a stiffness of about 23N/µm which is 

very stiff, but the connection interfaces along the operation chain may reduce the total stiffness. 

The stiffness distribution is demonstrated in Fig.2.24. The two rectangles with shadow slash inside 

represent the ideal piezoelectric stacks which produce deformations only depending on the 

imposed voltage.    ,   is the respective resultant stiffness of each stack with preload system. 

   ,    is the respective stiffness of each parallel pushing arm. Respectively,    and    can be 

integrated as    ;     and     can be integrated as    ;     and     can be integrated as    ;     

and     can be integrated as    . 

To implement the calibration, two pieces of rubber are put between the platforms with pre-

compression. The inertial effect of mass is ignored along the operation chain. So the force 

measured from force sensor can be used to estimate the chain stiffness in different sections. 

Neglecting the damping between 4 and 6, the measured displacement at points 4 and 5 has the 

same phase with measured force. Denote      as the peak to peak amplitude of measured force 

and      as the peak to peak amplitude of measured displacement. The stiffness between the 

specified two points is: 

                                                                               
    

    
                                                                             (12) 

This can be used to estimate    ,     and    .     
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For    , consider imposing the same nominal amplitude from the actuator and denote the 

measured displacement amplitude of point 3 without external force as     
  and the respective 

amplitude under external force produced by the rubber as     
 .  

It is noticed that the viscous damping effect of the rubber is not negligible. So the phase shift 

between measured displacement at point 3 and measured force has to be taken into account. 

Fig.2.25 demonstrates the situation. 

 

Fig.2.25 Demonstration of phase shift between force and displacement signal 

The formulations of     
 and     

  are following: 

    
       

    
      

  
            

   
 

In which    is the calibration factor of the horizontal piezoelectric stack obtained in previous 

section.    is the maximum voltage with respect to a certain nominal amplitude of displacement. 

Then the stiffness is formulated as: 

                                    
            

    
      

                                                                           (13) 

Regarding to the horizontal direction, practical measurement position for point 2 is on the 

interface between actuator and pushing arm, for point 3 is on the cube attached to the left 

platform top, for point 4 is on the cube attached to the right platform top, for point 5 is on the 

bottom of force sensor. 

The test results give                ,                . 

Fig.2.26 shows the real horizontal displacement given by the actuator when the rubber is located 

between the platforms. The reduction of displacement can be compensated by closed-loop 

control to the actuator, which is not implemented in this thesis. 
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Fig.2.26 Demonstration of actuator displacement under external force 

2.7 Check of the synchronicity of measured signals 

Originally, the test rig is expected to give the relative displacement between the two platforms as 

the output displacement by the piezoelectric actuator, but due to the flexibility of the 

manufactured structures, it is necessary to measure the relative movement between the two 

platforms. So there are two kinds of signals to be measured, one is the displacement from laser 

and the other is the force from force sensor. 

The data acquisition is realized by NI USB-6289 board and corresponding Labview program. 

Although the innate hardware lag in the chain between NI board and physical devices such as 

voltage amplifiers is negligible, it is checked before performing damper tests to avoid spurious 

hysteresis between displacement and force signal. 

Again by using the laser, a square wave is applied to the actuator, when the input square signal 

changes its direction at the corner, there will be abrupt change at the same time for both 

displacement and force signal. Fig.2.28 shows a representative measurement under the following 

condition: 

Excitation frequency: 0.5Hz 

Excitation nominal amplitude(peak to peak): 40   

Sample frequency of generation: 1000Hz 

Sample frequency of measurement: 1000Hz 

 
Fig.2.27 Example of signal synchronicity check  
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The tests show that the generation and acquisition time delay for different channels can be 

neglected within at least the range of 1  .   

2.8 Conclusions 

The test rig is designed with the purpose of giving certain forms of displacement to the simulated 

platform and measuring forces transmitted to the simulated right platform through the damper.  

To reduce the influence of the test rig structure to the damper and corresponding interfaces, the 

left platform and right platform are two octagon shaped hard steel with small mass.  

The piezoelectric actuators, together with preload springs, double cross suspension and parallel 

mechanism guarantee accurate horizontal or vertical movement to the left platform. Potentially 

the combination of the two direction’s movement produces any trajectory in plane. The 

compliance calibration shows the weak point of this part, which has integrated stiffness times 

lower than the design value. The dynamic calibration shows both actuators can work in a linear 

range until about 190Hz. 

The piezoelectric sensors, together with force conducting tripod and preload device, is capable to 

measure the dynamic forces though the right platform in a linear range below 175Hz. Possible 

errors of the force measurement will be discussed in next chapter. 

The synchronicity of force and displacement signals is guaranteed. 
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Chapter 3 Measurement error analysis 

3.1 Measurement of relative movement between the two platforms 

 
Fig.3.1 Demonstration of in-phase(left) and out-of-phase(right) motion 

As mentioned in chapter 2, the measured force from the force sensor and corresponding 

movement between the two platforms form a dual-interface hysteresis representing the contact 

properties between damper and two platforms. When the relative movement of the two 

platforms  is measured by the differential laser, there can be an inclination between operation 

direction and correct projection direction of the laser beams. 

                                                                        
Fig.3.2 Projection error 

Fig.3.2 shows the situation when the direction of laser beams is deviated from the correct 

direction. Denote the motion amplitude of body A and the reference body R as     and   , the 

measurement value will be             and             respectively.   and    are limited 

to   , for single point measurement, the relative error is less than                , which is 

      

R 

A 
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practically negligible. This also holds for differential measurement.  In the following sections, this 

projection error is not considered.  

3.2 Measurement of damper kinematics 

3.2.1 Parallax error  

Here a wedge shaped under-platform damper, which is mostly used in gas turbine industry, is 

investigated to demonstrate the parallax error by laser measurement, shown In Fig.3.2. 

During oscillations, the damper may move both horizontally and vertically and allow some rotation. 

Due to the combination of the movement, the actual projected point of laser beam is changing, 

which could be a source of measurement error. The laser is used to measure the vertical 

movement component of the projected point. 

 
Fig.3.2 Measurement of vertical movement at a point on the damper 

 

First consider the vertical movement at a point on the damper bottom. Denote point   as the 

initial position where the laser beam is projected to the damper.        is the initial position of 

the damper mass center and origin of the fixed coordinate system, base on which the coordinates 

of each point in Fig.3.2 are established. 

The coordinates of   are        . If   moves    and    respectively in the horizontal and vertical 

direction, we have: 

         ,  
               ,  

            

Then when the damper has a rotation angle of  , the following geometric relations stand: 

                                      ,                                  

The  vector                   has components  
  
  
 , and the vector                has components  

     
  

 . They can 

be expressed in complex number as: 

                     
   ,                   

    

, in which       
    

 ,       
  

  
,       

  

  
 and                

 ,       
     

  
, 

      
  

  
. 

Thus the vectors                  and                are expressed as:                     
       ,                   

       . 

The coordinates of point     and    are respectively: 
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The line passing through     and    has an equation: 

                   

                   
 
                        

                         
 

From this equation and   coordinate of point   , the   coordinate is calculated:  

     
                        

                         
                                        

, simplified as: 

                                               

Then the difference between the vertical position of     and   is: 

                                            . 

This is the relative parallax error for a point vertical movement related to measurement position, 

horizontal movement and rotation. 

If   is small, the error can be treated as: 

                                                                      
  

 
                                                                 (1) 

The real vertical movement for point   is the vertical distance between point   and    , which is 

calculated as: 

                                                                               

                                                          
  

 
                                                                                       (2) 

Maximally when   is at the order of 10-3 rad,    is at the order of 10-5 ,     and    are at the 

order of 10-3  , from equation (1) the absolute error is at the order of 0.01  . Practically in our 

application, this error can be neglected. From equation (2) besides the above conditions, when    

is at the order of 10-5  , the relative error will be at the order of 10-3. When     compensates   , 

the relative error has no meaning but still the absolute error is acceptable.   

 

Next consider the damper rotation measurement using the differential laser function. From Fig.3.2, 

the differential laser measurement gives the relative vertical movement between point   
  and   

  

as         (In this coordinate system the rotation is positive when counterclockwise). The distance 

between the two projected points is  .  

 
Fig.3.3 Damper rotation measurement by differential laser function 

From Fig.3.3, it is convenient to get the relation: 
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                                                                    (3) 

 

The measurements of vertical movement at a point on the damper bottom and damper rotation 

can be used to reconstruct the total motion of the damper as a rigid body, which contains two 

translations and one rotation in plane. 

3.2.2 Reconstruction of damper motion and error factors 

 
Fig.3.4 Damper motion decomposition 

The dampers used in the experiments have a curved surface on the right side, which provides a 

known contact region on this surface.  

We assume that the damper is always in contact with the right-platform, which can be verified by 

the experiment if there is no pure decay interval in the measured force signal. In this sense, the 

relative movement between contact point on the damper right surface and contact point on the 

right-platform comprises from two parts: pure rolling and pure translation. 

In Fig.3.3, before movement point    is the point where laser beam is projected on the damper to 

get   direction movement component; point    is the point as the reference on the damper to 

measure rotation; point     is the center of the curved surface line;    is the contact point.   is the 

distance between    and   .   is the angle between line             and the horizontal line.   is the 

inclination angle of the platform edge. Notice that in this section the definition of angle   and   

will be different from last section. 

To demonstrate the relations between measured quantity and induced quantity, introduce the 

following coordinates:          ,            ,          ,          . 

For rolling, from Fig.3.3, the contact point changes from    to    with a rotation angle of   , the 

curve center    moves to   , the auxiliary line     
         is translated from the line             and line             

is rotated counterclockwise by    from     
         . From the geometric relations we have : 

                     

and further                       
1 0

1 0

cos( ) cos( ) cos( )

sin( ) sin( ) sin( )

A A

A A

x x R l l

z z R l l

    

    

         


                                       

    (4)  
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When the displacements are small, the relation is simplified as:                                                              

                                                 
1 0

1 0

cos( ) sin( )

sin( ) cos( )

A A

A A

x x R l

z z R l

   

   

      


      
                                                 (5) 

For the translation, the contact point moves from    to    covering a distance of   , the curve 

center    moves to    and the line             is translated from line            . From the geometric 

relations we have:    

                                                                   

2 1

2 1

cos( )

sin( )

A A

A A

x x ds

z z ds





  


  
                                                                 (6)  

The total movement is composed by the two parts, giving: 

                      

2 0 1 0 2 1

2 0 1 0 2 1

( ) ( ) cos( ) sin( ) cos( )

( ) ( ) sin( ) cos( ) sin( )

A A A A A A

A A A A A A

x x x x x x R l ds

z z z z z z R l ds

    

    

            


                    

   (7)  

 

Let            . Denote the   direction displacement point    as    , the   direction 

displacement of point    as    , the differential vertical movement between point    and 

reference point    as       . The horizontal distance between point    and    is  . The 

horizontal distance between point    and    is  .     and        are measured movement 

quantities.   and   are measured geometric quantities. 

The correspondence between the quantities formulated in (5)-(7) and the measured quantities are: 

                                                                           2 0 0A A Az z w                                                                         (8) 

                                                                               
      

 
                                                                          (9) 

                                                                         
                

    
                                                              (10)                     

From (10) and the first equation in (7) the   direction movement of point    is also deduced. 

When the damper motion is reconstructed from the measured quantities, the parallax error 
discussed in the last section is negligible, but there is another error factor: measurement 
uncertainty of laser projection position.  

 

Fig 3.5 Laser beam projection position measurement uncertainty 

As shown in Fig.3.5, the real distance between point    and    is  , the corresponding measured 

distance is    and express their relation as        ; the real distance between point    and 

   is  , the corresponding measured distance is    and express their relation as        . 

Denote the measurement of        as    for short. Maximally the circle area of laser spot on the 

damper bottom has a radius of      , from which reasonably    is set to      and    is set to 

      . 
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From equation (9), (10) and the uncertainty propagation formulation used in the previous chapter, 

the measurement uncertainties of the rotation angle     and the surface translation distance    

are deduced as following: 

                                                                         
   

  
   

 

 
   

  
                                                    (11-1)  

                                                                             
  

  
                                              (11-2) 

                                            
   

  
   

 

  
   

   
    

 

                    

                                              
 

    
           

          

  

  

  
    

 

                                                (12) 

Notice that     is not dependent on the measured movement quantities, while     depends on 

measured quantities     and     . 

For example if        ,       , the relative uncertainty of    is     ; Besides if 

         and            , the absolute uncertainty of    is      . 

 

3.3 Force measurement error from static indeterminacy 

 
Fig.3.6 Sketch of the reaction force measurement structure 

From Fig.3.6, the resultant force on the interface between damper and regular octagon shaped 

platform may not pass through the center of the platform. In this case, the force produces a 

momentum to the measurement mechanism.  

In the structure, contact region A is the interface between horizontal rod end and support slot; 

contact region B is the interface between vertical rod end and support cave. In the real operation, 

a certain amount of preload is applied to the mechanism to prevent the slip at the contact region, 

so A and B can be regarded as two hinges. As we know, there are 3 equilibrium equations of the 

mechanism considering only x-y plane and there are 4 constraints from the two hinges. So the 

mechanism is not statically determined. 

 



43 

 

Due to the indeterminacy of the mechanism, it is necessary to make an analysis of the measured 

forces at contact region A and B caused by the interface resultant force. To make a feasible 

estimation, the cantilever beam model is adopted to simulate the two rods. Point O is the clamped 

end but movable, points A and B are the ends where reaction forces which play the role of 

external forces.   

Fig.3.7.1 is the sketch of force distribution of the statically indeterminate mechanism. To calculate 

the reaction forces, three degrees of freedom at the cross point O is considered separately. 

Fig.3.7.2 represents the system when there is only angular displacement  . Fig.3.7.3 represents 

the system when there is only displacement   . Fig.3.7.4 represents the system when there is only 

displacement   . The reaction forces caused by known deformation under these three cases are 

listed below each figure.  

 

 
 Fig.3.7.1 

 

 
Fig.3.7.2 

Am Bs Ox x xF F F 
, Bm As Oy y yF F F 

 

As Bs Oy xF L F L M   
 

Asy 3 2

3 3EI EI
F L

L L

     
 

Bsx 3 2

3 3EI EI
F L

L L

     
 

 

 

 
Fig.3.7.3 

 

 
Fig.3.7.4 

Amx

x EA
F x

L

  
, 

Bsx 3

3x EI
F x

L

  
 

Bmy

y EA
F y

L

  
, 

Asy 3

3y EI
F y

L

  
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Using the equilibrium equations listed below Fig.3.6.1 and reaction force components shown in 

Fig.3.6.2-4, the following set of equations is constructed. 

A B B O

B A A Oy

A B A B O

x x

mx sx sx x

y y

my sy sy

y x

sy sx sy sx

F F F F

F F F F

F L F L F L F L M

  

  

   

   


  
          

Substituting the value of each reaction force component into the equations above, we obtain the 

following set of equations. 

 

O3 2

Oy3 2

O2 2

3 3

3 3

3 3 3 3

x

EA EI EI
x x F

L L L

EA EI EI
y y F

L L L

EI EI EI EI
y x M

L L L L

  

  

   


     




     



       
                                                                                          (13)  

Denote a and b are the arms to the octagon center of force component    and    .  The sign of  

the moment is positive when the moment is counterclockwise. 

So the momentum is               . 

Solving  equations (13), the dimensionless displacement of each freedom is obtained. 

O O O Oy

1 1 1
[( 1) ( ) ( 1) ( ) ( ) ( ) ( ) ( )]

2 1 1
x y x

x a b
F F F F

L L L


   

 
         

                                         (14) 

O O O O

1 1 1
[( 1) ( ) ( 1) ( ) ( ) ( ) ( ) ( )]

2 1 1
x y x y

y a b
F F F F

L L L


   

 
         

                                         (15) 

O O

O O

1 1
(1 )( )

2 2

x y

x y

F F a b
F F

L L

 
  




     

                                                                                     (16) 

  The coefficient   
 

  
and   

  

   
.   represents the strain produced by one Newton’s 

compression.   represents a dimensionless quantity related to the geometry property of the rod.   

If the finite element procedure is applied, the same results can be obtained and additionally other  

unknown displacements are calculated.  

O
O O

1 3 1 3 1 1
( 1) ( 1) (1 ) ( )

2 2(1 ) 2 2(1 ) 2 2
B x y

M
F F

L


  

  
        

 
 

   

O
A O O

1 3 1 3 1 1
( 1) ( 1) (1 ) ( )

2 2(1 ) 2 2(1 ) 2 2
x y

M
F F

L


  

  
         

   
Then the reaction forces at the two hinges are obtained: 
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Am O O O O

1 1 1 1 1 1
( 1) ( 1)

2 1 2 1 2 2
x x y x y

x a b
F F F F F

L L L



  
            

   

O
As O O

1 1 1
[(1 ) (1 ) ]

2 1 1
y x y

M
F F F

L 
      

 
 

Bm O O O O

1 1 1 1 1 1
( 1) ( 1)

2 1 2 1 2 2
y y x x y

y a b
F F F F F

L L L



  
            

   

O
Bs O O

1 1 1
[(1 ) (1 ) ]

2 1 1
x x y

M
F F F

L 
      

   

Consider the real geometry of the right platform shown in Fig.3.8.   and   are the arm lengths to  

the octagon center of contact force component OxF and
OyF . 

The momentum applied to the center is:  O O Ox yM F a F b     

Note that the sign of the moment is positive when the moment is counterclockwise. 

 
Fig.3.8 Demonstration of resultant force application position  

The expression of measured and secondary forces at the joints now are expressed in matrix form: 

                                       

Am O

Bm O

1 1 1 1
( 1 ) ( 1 )

2 1 2 1

1 1 1 1
( 1 ) ( 1 )

2 1 2 1

x x

y y

a b

F FL L

F Fa b

L L

 

 

 
        

    
                                                 (17) 

                                       

1 2

Bs O

As O

1 2

1 1 1 1
( 1 ) ( 1 )

2 1 2 1

1 1 1 1
( 1 ) ( 1 )

2 1 2 1

x x

y y

F F

F F

 
 

 
 

 
          

    
                                                    (18)

 

Or inversely,  
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2 2

O Am1 2 1 2

O Bm1 1

1 2 1 2

(1 ) ( 1) 1 (1 ) ( 1) 1

2 2

(1 ) ( 1) 1 (1 ) ( 1) 1

2 2

x x

y y

F F

F F

   

   

   

   

        
       
    

           
                                    (19) 

In which, 
1

a

L
  and

2

b

L
  . 

The approximated sizes of the beam model are following: r=3.5mm(radius of the cross section), 

         (length of the rod).   is 210   . For a circular cross section rod, I=πr
4
/4. 

According to these data, 31.7 10   and 71.24 10   . 

The error caused by parasitic effect(represented by term
 

   
 )due to axial force is negligible 

compared to the influence(represented by 
 

 
 or 

 

 
)  due to applied momentum.  

After the damper is located between the platform, using real position of the contact point the 

corrections are made for each damper. 

Three-point damper: 

O Am

O Bm

0.959 0.053

0.041 0.947

x x

y y

F F

F F

    
    
      

Crossed curve-flat damper: 

O Am

O Bm

0.949 0.079

0.053 0.923

x x

y y

F F

F F

    
    
      

Non-crossed  curve flat damper: 

O Am

O Bm

0.961 0.056

0.041 0.946

x x

y y

F F

F F

    
    
      

3.4 Conclusions 

When the differential laser is used to measure a single point movement on one translational and 

relative movement for two translational bodies, the error due to a small inclination between the 

operation direction and ideal direction can be negligible.  

When the differential laser is used to measure a single point movement on one motive body with 

rotation, the parallax error is negligible when the motion amplitude is small(less than 100    

range). The measurement of rotation of a rigid body by the differential laser has an maximal 10% 

error due to measurement uncertainty of the distance between two projected distance. 

The force error caused by the mechanism indeterminacy is corrected by a simplified beam model. 

The total error of force measurement can be considered from the nonlinearity deviation of 

sensitivity which is 5% given in chapter 1. 
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Equation (16) can be used to estimate the rotation angle due to applied momentum, a better 

design of the platform can reduce this effect. 
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Chapter 4 Experimental results 

After the test rig is set up and measurement error analysis, measurements are taken to investigate 

damper behavior. Elaborations are made to show the damping characteristics, motion and 

equilibrium due to contact forces of the damper.  

 

4.1 Stiffness from measured hysteresis 

As mentioned in the previous chapter, the hysteresis between the measured force and relative 

movement of the corresponding platforms reflect the damping which happen on the dual 

interface. This hysteresis, not like the single contact interface hysteresis, does not give direct 

information on contact tangential stiffness, but gives information combining both normal and 

tangential stiffness of the two interfaces. Fig.4.1 shows a typical spherical-flat surface hysteresis 

under tangential relative movement, in which             represents the tangential contact 

stiffness of this contact pair. 

 
Fig.4.1 Typical spherical-flat hysteresis under tangential loading(from LAQ.AERMEC at Politecnico di Torino) 

Consider the case of out-of-phase motion(shown in Fig.4.2), where the relative movement 

between the two platform is only horizontal(along   direction). Assume the right platform is static 

and the relative movement is given by the left platform displacement   . Under the motion of left 

platform, the damper experiences a horizontal and vertical displacement as    and   . Denote 

the contact point on the left platform as   , the coupled contact point on the damper as   . 

Denote the contact point on the right platform as   , the coupled contact point on the damper as 

  . After the motion, the contact points move to   
 ,   

 ,   
  and   

  respectively. 
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Fig.4.2 Contact spring loading under out-of-phase condition 

  and   are the auxiliary points to determine the spring lengths. First find the coordinates of the 

auxiliary points. Take   for example. Line          is perpendicular to line         , implying: 

                                    

Additionally, the slope of line          is        , implying: 

                        

Combining the two relations,    and    are obtained: 

   
                                

          
 

   
                                

          
 

Denote         as   ,         as    and         as   . The spring lengths on the left interface are 

obtained: 

  
  

      
       

 
  
                      

     
    

 

  
  

      
       

 
                   

     
    

 

 

Similarly for the right contact interface, the following relations are expressed: 

   
                                

          
 

   
                                

          
 

Denote         as   ,         as    and         as   . The spring lengths on the right interface 

are obtained: 

  
  

      

       
 
  
                      

     
    

 

  
  

      
       

 
                   

     
    

 

After the motion of the left platform, new lengths of the contact springs are: 

   
  

  
                          

     
    

    
  

                       

     
    

 

   
  

  
                          

     
    

    
  

                       

     
    

 

And the relations between new and initial positions of contact points are: 
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Then the incremental loading caused by the left platform motion is: 
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For the sign definition in equation (1)-(4), the normal force increment is positive when it is 

increased, and the tangential force increment is positive when it is increased along the direction to   

the upper triangle vertex. 

When neglecting the inertial force of the damper, the total incremental load on the damper is zero. 

This equilibrium condition is expressed in   and   direction: 
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Substitute (1)-(4) into (5), two equations containing    and    are obtained: 
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From (5) the horizontal contact force component is: 
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So the visual stiffness obtained from the horizontal hysteresis curve has a value as: 
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Although    is complicatedly coupled by the normal and tangential stiffness of the two interfaces, 

it is a constant determined by the single contact stiffness and damper geometry. The actual 

contact stiffness on the two interfaces have the same magnitude level as   . 

When   
    

    ,    
    

    ,        , from equation (8) it is found: 
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When   
     

     ,    
     

     ,        , it is found: 
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When    
 

 
  , referred to [27], there is 
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                                                                           (11) 

Fig.4.3.1-4.3.4 are typical hysteresis obtained from independent experiments under the same 

condition above.   

Here the equivalent stiffness of    is not formulated, the analysis procedure is similar and 

normally       . 

4.2 Out-of-phase results of three-point damper 

4.2.1 Hysteresis characteristics  

motion type nominal amplitude excitation frequency dead weight 

Out-of-phase 60   10Hz 4.65kg 

 

Take the above condition as a start case. 

 

                  
Fig.4.3.1                                                                               Fig.4.3.2 

               
Fig.4.3.3                                                                               Fig.4.3.4 
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Fig.4.3.1-4.3.4 are typical hysteresis obtained from independent experiments under the same 

condition above.  By independent it means at the beginning of each test the damper is released to 

avoid initial condition set from the end of previous test . 

(1) In the beginning the hysteresis has a shape similar to single contact interface hysteresis 

(stick-slip) which contains both macro-slip and micro-slip phenomenon. There is a constant 

slope    as discussed in the section before. 

(2) With the time going, the hysteresis changes in the way that relative displacement 

amplitude reduces and reaction force amplitude increases. The proportion of the two 

quantities is constant. 

(3) A ‘shoe’ shape occurs after some time and this phenomenon is repeatable.  

Details from Fig.4.3.1 and Fig.4.3.4 are shown in Fig.4.4.1 and Fig.4.4.2. 
 
Here the equivalent stiffness of    is not formulated, the analysis procedure is similar and 

normally       . 

 

   
Fig.4.4.1                                                                               Fig.4.4.2 

The explanation of fact (2) readily is obtained if we note that the series of the two springs in the 
test rig,                ,                , implies a total horizontal spring value of 
the test rig itself at         .  
 
From the test rig stiffness distribution, with the following symbols: 
 
  : calibration factor of the piezoelectric stack actuator 
    : voltage applied to the actuator 
    : horizontal force through the damper 
   : compliance of the left spring, including the stack own compliance, calculated at          
           
   : compliance of the right spring, including the stack own compliance, calculated at          
           
  :   left platform horizontal displacement 
  :  right platform horizontal displacement 
   : horizontal relative platform displacement 
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, it is readily calculated that:                   ,            

                                                                                                                       

When      reaches the maximum     , the relative displacement will reach the maximum    
    

accordingly, denote       as the force at this moment. For two different values of    
    and 

    , the relation is expressed: 
                                              

        
                                                                (12) 

 
Fig.3.5 shows the plot of this formula. However, force sensors and laser and the acquisition system 

do not measure the total force   displacement     , they give instead the values    and      about 
the mean. When the diagram is symmetric, then the mean is in the symmetry center.  Therefore in 
the case of a symmetric cycle the lower-left and the upper-right ends of the diagram will lie, in 

axes           .  Although the measured hysteresis is not completely symmetric, the difference of 

different mean values is small. It is seen from the dashed line represented in Fig.4.4.1 and 
Fig.4.4.2, the slope which matches well with spring constant data obtained in the calibration stage.   
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Fig.4.5 Plot of symmetric hysteresis diagram in 
       “total” and in “about the mean” axes 

 

The visual contact stiffness from Fig.4.4.1 and Fig.4.4.2 shows that there is some difference 
between the condition when the damper moves out and in. The shaped labeled by red ellipse in 
Fig.4.4.2  is not present in the single contact hysteresis with constant normal load. 

Fig.4.6.1-Fig.4.6.6 show the different way of hysteresis evolution from three tests. Fig.4.6.1-4.6.2, 
Fig.4.6.3-4.6.4, and Fig.4.6.5-4.6.6 belong to one test respectively. 
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Fig.4.6.1                                                                               Fig.4.6.2 

                
Fig.4.6.3                                                                               Fig.4.6.4 

              
Fig.4.6.5                                                                               Fig.4.6.6 

In the first group, the ‘shoe’ shape disappears after some time and keep a quasi Coulomb shape 
going on. In the second group, the ‘shoe’ shape maintains to the end. While in the third group, the 
‘shoe’ shape happens after a relatively long period compared to the previous two. At this stage, it 
is difficult to explain the ‘shoe’ shape and the difference of evolution procedure. From 
phenomenological point of view, the evolution of transmitted force measurement are given as an 
observation reference. Fig.4.7.1-4.7.2, Fig.4.7.3-4.7.4, Fig.4.7.5-4.7.6 correspond to the case of 
Fig.4.6.1-4.6.2, Fig.4.6.3-4.6.4, and Fig.4.6.5-4.6.6 respectively and the colors follow the same 
arrangement. The solid line represent the horizontal force and the dashed line represent the 
vertical force.  
 

     
Fig.4.7.1                                                                               Fig.4.7.2 
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Fig.4.7.3                                                                               Fig.4.7.4 

      
Fig.4.7.5                                                                               Fig.4.7.6 

It is clear that both quasi-Coulomb shape and ‘shoe’ shape can happen under different contact 

force level. The increase of contact force can be due to the increase of traditionally defined 

parameter: friction coefficient by gradual moving in between the two platforms.  

 

4.2.2 Influence of excitation frequency  

Test conditions are listed below: 

motion type nominal amplitude excitation frequency dead weight 

out-of-phase 60   5Hz  (Fig.3.8.1-Fig.3.8.2) 

40Hz(Fig.3.8.3-Fig.3.8.4) 

80Hz(Fig.3.8.5-Fig.3.8.6) 

2.65kg 

 
Hysteresis are shown in Fig.4.8.1-Fig.4.8.6: 
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Fig.4.8.1                                                                               Fig.4.8.2 

         
Fig.4.8.3                                                                              Fig.4.8.4 

         
Fig.4.8.5                                                                               Fig.4.8.6 

Comparing the hysteresis in last section and this section, it can be summarized that under low 

frequency(5Hz, 10Hz respectively) the hysteresis is more precise representing the interface 

property due to less influence of higher frequency component in the signal. At this moment we 

are not sure whether the high frequency component is linked to the damper or interface or the 

test rig structure.  

The area of the hysteresis represents the total energy dissipated by the damper through the 

contact interfaces with the two platforms. Fig.4.9 shows this feature along with time.  
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Fig.4.9 Energy dissipation from the hysteresis 

Under high frequency, the transmitted force through the damper increases significantly within the 

test duration and the corresponding hysteresis gets into a micro-slip pattern, which consumes 

much less energy than the macro-slip scheme.  

Lower preload(dead weight 2.65kg) tends to increase the uncertainty of damper response, which 

can be interpreted as a consequence of contact parameters sensitivity. 
 

4.2.3 Contact force distribution  

To understand better the behavior of damper in operation, it is useful to explore the force 

distribution on the damper surfaces. As mentioned in Chapter 2, by neglecting the damper inertial 

force, the contact forces and simulated centrifugal force by deadweight preload are in equilibrium. 

And the absolute contact forces are obtained from deadweight lifting with certain error 

acceptable.  Fig.4.10 is typical load removal result in the test. 

             
Fig.4.10         

After knowing the real contact force(dynamic plus static part), damper equilibrium is constructed 

through the principle that contact force on the right surface, left surface and centrifugal force pass 

through one point. 

Fig.4.11.1-Fig.4.11.3, Fig.4.12.1-Fig.4.12.3, Fig.4.13.1-Fig.4.13.3, and Fig.4.14.1-Fig.4.14.3 are the 

results grouped(a,b,c,d) corresponding to each hysteresis shape obtained from section 4.1.1. The 

first diagram is the hysteresis, the second shows the proportion between tangential force(TF) and 

normal force(NF) on each surface and the third shows contact force distribution. 
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In group a, the hysteresis is similar to Coulomb cycle. The features are summarized: 

(1). From green to pink to green point, both interfaces are in stick state. 

(2). From pink to cyan point, the left interface is in stick state and the right interface is in positive 

slip state. 

(3). From cyan to red point, both interfaces are in slip state with some strain hardening effect. 

(4). From red to yellow point, both interfaces are in stick state. 

(5). From yellow to black point, the left interface is in stick state and the right interface is in micro-

slip state. 

(6). From black to green point, both interfaces are in slip state. 

(7). The resultant force on left side passes though the center of surface, which means that both 

curved surfaces on left side are in contact with left platform. 

Here experimentally it is verified that in the wedge shaped under-platform damper, each interface 

can have different states between stick and slip at the same time.  

               
Fig.4.11.1(group a)                                                           Fig.4.11.2(group a) 

    
Fig.4.11.3(group a)            

In group b, the largest difference from group a is in the part from pink to cyan point, where the left 

interface is in slip state reaching the friction limit while the right interface is in stick state but with a 

constant proportion between tangential and normal contact force, which happens normally when 

the interface reaches friction limit.  

From the force distribution diagram Fig.4.12.3, the resultant force application position moves 

down to the lower contact point where the pink and blue point locate near to. If the errors of force 

measurement and the real position of contact are considered, this demonstration of distribution 
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features is satisfactory. At this moment, the assumption that between pink and blue stage, the 

upper contact point loses the contact.  

               
Fig.4.12.1(group b)                                                         Fig.4.12.2(group b) 

 
Fig.4.12.3(group b) 

Group c is similar with group b except for the stage between cyan and yellow point. In this case, 

from Fig.4.13.2, the right surface does not slip when the two platforms move near.  

             
Fig.4.13.1(group c)                                                         Fig.4.13.2(group c) 
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Fig.4.13.3(group c) 

In group d, the resultant force on left surface passes near the center similar to group a and 

consequently no contact point loses contact. Fig.4.14.2 tells us that the nominal friction coefficient 

in this case reaches higher value. Here the results are not presented for all cases obtained from 

the experiment. By summarizing the results a conclusion can be made that force distribution 

influences and reflects the motion features of the damper and the friction coefficient is an 

important parameter which influences the equilibrium state of the amper. 

                
Fig.4.14.1(group d)                                                         Fig.4.14.2(group d) 

 
Fig.4.14.3(group d) 

4.2.4 Rotation features  

It is natural to investigate the complex hysteresis and force distribution patterns by observing the 

damper rotation which is neglected at the beginning when people considered this problem. There 

is a difficulty as mentioned before that we cannot measure damper rotation and relative 
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displacement between the two platforms at the same time from one differential laser, so the 

measured force is a reference signal to synthesize the results from different tests. 

Fig.4.15-Fig.4.18 show the results according to the condition below. 

motion type nominal amplitude excitation frequency dead weight laser beam distance 

out-of-phase 60   5Hz  (Fig.4.15-Fig.4.17) 

40Hz(Fig.4.18) 

4.65kg 11.3 0.1   

 

For Fig.4.15-Fig.4.17, sub diagram a and b are from one test while c and d are from the other 

independent test. Sub diagram b and d are the reference force signal, a shows the hysteresis, c 

shows damper rotation. 

In Fig.4.15 the hysteresis corresponds to a quasi Coulomb shape and the damper rotation is 

negligible small(relative displacement between the measured two points is less than 1  ). In 

Fig.4.16 the hysteresis begins changing to a ‘shoe’ shape and the damper rotation peak to peak 

amplitude is increased about 4 times. The hysteresis in Fig.4.17 is a ‘shoe’ shape with high contact 

force and the damper rotation amplitude increases about 20 times than in the case demonstrated 

by Fig.4.15. 

              
a                                                                                    b 

              
c                                                                                   d 

Fig.4.15  
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a                                                                                    b 

                                       
c                                                                                   d 

Fig.4.16  

                                     
a                                                                                    b 

               
c                                                                                    d 

Fig.4.17  

For Fig.4.18, only the rotation(sub diagram a, c, e), and correspondent measured force(sub 

diagram b, d, f) are shown. The case from c and d is similar with the case demonstrated in Fig.4.17 

even if the frequency is higher. The case from a and b is a transient stage similar with case in 

Fig.4.16. The case from e and f represents a state when the contact force is very high to prevent 

macro-slip and the rotation is less than the case when a macro ‘shoe shape’ happens. 
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a                                                                   b 

 

c                                                                  d 
 

 
e                                                                   f 

Fig.4.18  

4.3 In-phase results of three-point damper 

4.3.1 Hysteresis characteristics 

As mentioned in the literatures, the in-phase motion for a wedge-shaped under-platform damper 

is more critical due to potential rotation during the relative movement between two adjacent 

platforms, which can reduce energy dissipation significantly. The hysteresis is a direct clue 

demonstrating the energy dissipation on the interfaces, thus also reflecting the rotation level.  

Typical in-phase hysteresis of the three-point damper under following conditions are shown in 

Fig.4.19. 

motion type nominal amplitude excitation frequency dead weight 

in-phase 20    (Fig.3.19.a) 

60    (Fig.3.19.b-c) 

5Hz  (Fig.3.19.a-b) 

40Hz(Fig.3.19.c) 

4.65kg 
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       a-1                                                           b-1                                                            c-1 

 
 a-2                                                            b-2                                                          c-2 

Fig.4.19  

It can be observed from Fig.4.19 that under in-phase motion, the evolution of hysteresis does not 

follow the same principle as out-of-phase condition. The contact force excursion with time is not 

times increased from the initial value, which means the damper is not stuck at the final of tests. 

The possible macro-slip stage(labeled by the red ellipse in subplot a) shrinks during the test for 

both small and large motion amplitude. 

The visual stiffness    for in-phase is less than    and this is possibly due to rotation happened 

with the stick state.   

4.3.2 Damper motion reconstruction 

To better demonstrate the damper motion for certain hysteresis shape, the measurement of 

damper rotation and one point vertical motion are linked to reconstruct damper kinematics. The 

difficulty of lacking lasers measuring all the needed motion quantities at the same time is 

overcome by synchronizing the force signals measured at different time. So for constructing one 

motion picture, at least 3 tests are needed, which are denoted as PD for platform relative 

displacement, RD for damper rotation and VD for one point vertical displacement. 

Example 1: 
motion type nominal amplitude excitation frequency dead weight 

in-phase 60     40Hz   4.65kg 

  

Fig.4.20 is the force syncronized force signal from three tests, in which color blue is from test PD, 

color red is from test RD and color green is from test VD.  
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Fig.4.20 Force signal synchronization(the signals are averaged for the convenience of comparison) 

Take the PD measurement as reconstruction base. Fig.4.21 shows the hysteresis shape, 

corresponding measured force shape and measured motion quantities.  The color arrangement of 

subplot c follows Fig.4.20. 

  

Fig.4.21 Hysteresis shape and motion measurement from example 1 

The reconstructed motion is divided into 6 stages in this case according to the labeled points 

shown in the hysteresis. Here it is noted that for visual ability, in the motion plots of example 1-3, 

1   stands for 10   and the rotation is increased for 100 times. In example 4, 1   stands for 

5   and the rotation is increased for 200 times. 

 

 
Fig.4.22  

a b 

b c 

1 2 3 

4 5 6 

a 
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From Fig.4.22, it is convenient to understand what happens to the damper motion at each stage. 

For 1 and 6, the damper experiences large rotation; for 3 and 4, local rolling happens; for 2 and 5, 

the damper surfaces are in opposite stick state. 

Example 2: 
motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   4.65kg 

 

 

Fig.4.23 Hysteresis shape and motion measurement from example 2 

   

  

Fig.4.24 

 Example 3: 
motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   4.65kg 

The nominal operation condition of this example is the same as example 2, but they have different 

hysteresis shape.  The motion under this condition is similar with example 1, under different 

excitation frequency. Most rotations happen in the 1st and 6th stage. 

1 2 3 

4 5 
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Fig.4.25 Hysteresis shape and motion measurement from example 3 

   

 

   

Fig.4.26 

Example 4: 
motion type nominal amplitude excitation frequency dead weight 

in-phase 20     5Hz   4.65kg 

For small nominal excitation amplitude,  initially the hysteresis can have a traditional Coulomb like 

shape and damper rotation is small. 

 
Fig.4.27 Hysteresis shape and motion measurement from example 4 

1 2 3 

4 5 6 
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Fig.4.28 

At this stage the damper motion is clear and intuitive. Furthermore, because the right curved 

surface of the damper is always in contact with the right platform, the relative movement 

between the contact points pair can be deduced according to the way discussed in chapter 3. The 

results are shown in Fig.4.29 for example 1-4. Here the errors are not shown, the estimations can 

be referred to the value  in section 3.2.2. The word ‘sliding’ is not accurate actually, it means the 

displacement between the contact surfaces caused by damper translation, either spring loading in 

stick condition or sliding in slip condtion. 

 

  

Fig.4.29 

In example 1, the displacement due to sliding on the right contact point is very small, the contact 

point is used like a hinge during operation. Example 3 is similar to 1. In example2, there are two 

1 2 3 

4 

1 2 

3 4 
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stages in which one has mostly sliding and the other mostly rolling. In example 4, small rotations 

happen together with tangential spring loading.  The complex situations again show the difficulty 

to predict damper behavior.  

4.3.3 Contact force distribution 

In this section the force distribution diagrams(corresponding to example 1-4 from last section) are 

shown to provide more information investigating the damper performance. In each figure, subplot 

a is the hysteresis, b is the proportion between tangential and normal contact force on each 

surface, c is the force distribution demonstration. 

 

Fig.4.30 shows a case similar to example 1. It is clear that in the stage between green and pink 

point, between black and green point, the resultant force on the left surface passes through the 

lower contact point, implying the upper contact point loses the contact. When hysteresis moves to 

the red point, the lower contact point loses the contact and resultant force moves to the upper 

contact point.  From subplot b, it can be deduced that the right surface is always in stick state or 

small micro-slip while the left surface can experience some macro-slip. This information will be 

used in the numerical simulation by assigning certain value to the nominal parameter: friction of 

coefficient at the interface. 

 
a                                                         b                                                         c 

Fig.4.30 

Fig.4.31 shows a case similar to example 2. The resultant force on left surface does not reach 

upper contact point, which means the lower contact point is always in contact with left platform. 

There is a stage between blue and red point that both surfaces are in slip state. Between green 

and pink point, between black and green point, it is still difficult to predict what happens without 

further demonstration, which means a numerical model is needed.  

   

a                                                         b                                                         c 
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Fig.4.31 

Fig.4.32 shows a case similar to example 3. Like the description of Fig.3.30, here the right surface is 

always in stick or micro-slip state while the states of two contact points on left surface are not 

predicted.  There should be one point experiencing slip during operation because the hysteresis 

shows certain amount of energy dissipation. 

  

a                                                         b                                                         c 
Fig.4.32 

Fig.4.33 shows a case similar to example 4. In this case the resultant force does not reach the limit 

position of any contact point, which means both contact points are always in contact with 

respective platforms during the cycle. There is a regular mutual transition between stick and slip 

state for both surfaces. Micro-slip phenomena exist.  

  

a                                                         b                                                         c 
Fig.4.33 

4.4 In-phase results of crossed curve-flat damper 
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Fig.4.34 Configuration of the crossed curve-flat damper 

The tests made on the wedge shaped three point damper show that the damper is efficient under 

out-of-phase condition if the contact force amplitude can be controlled to prevent a final stuck 

state especially for high frequency excitation. Under in-phase condition this damper is not efficient 

due to large potent of rotation even at very low frequency. Based on the consideration to reduce 

damper rotation, a laboratory crossed curve-flat damper is designed as shown in Fig.3.34. The 

purpose of crossed shape is to make the contct point positions on two surfaces overlap and make 

the line between this overlapping position near to the mass center(here equivalently to centrifugal 

force application position) to avoid damper rotation.  

4.4.1 Typical hysteresis  

Hysteresis measurement is shown under different operating condtions listed below. The 

difference between the hysteresis of this damper and three-point damper is significant. Fig.4.35-

Fig.4.38 show 4 groups of measured hysteresis. 

Group1: 

motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   2.65kg 

 
Fig.4.35 Hysteresis sample of group 1 

Group2: 

motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   4.65kg 

 

  

Fig.4.36 Hysteresis sample of group 2 
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Group3: 

motion type nominal amplitude excitation frequency dead weight 

in-phase 60     40Hz   2.65kg(Fig.3.37.a,b) 

4.65kg(Fig.3.37.c) 
 

 

   

Fig.4.37 Hysteresis sample of group 3 

Group4: 

motion type nominal amplitude excitation frequency dead weight 

in-phase 20     5Hz   2.65kg(Fig.3.38.a) 

4.65kg(Fig.3.38.b) 

 
Fig.4.38 Hysteresis sample of group 4 

Here the features of crossed curve-flat damper in-phase hysteresis are summarized: 

Generally this damper gives good friction damping behavior for both low and high preload. The 

hysteresis has a Coulomb shape except for the part labeled by a red ellipse in Fig.4.35 and Fig.4.37. 

From the previous experience, the unsymmetric part arises from possible rotation, which can be 

found from the wear trace in Fig.4.39. The wear process contributes a lot to the variablity of 

measurement results by changing contact position and parameters. 

 

 
Fig.4.39 Wear trace on the flat surface of crossed curve-flat damper 

a b c 

a b 
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4.4.2 Contact force distribution 

By neglecting the damper inertial force and contact position variability, the contact force 

distribution is constructed. 

motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   2.65kg 

Two examples according the above conditon are shown in Fig.4.40 and Fig.4.41. 

 
Fig.4.40 Contact force distribution of example 1 

Combining above 3 subplots, the stages in one cycle are as follows(starting from green point): 

1 Both sides stuck(left surface unloaded upward, right surface unloaded downward). 

2 Left surface stuck, right surface slipping down, forces change. 

3 Both sides slipping(left surface up, right surface down), forces sustain. 

4 Both sides stuck(left surface unloaded downward, right surface unloaded upward). 

5 Left surface stuck, right surface slipping up, forces change. 

6 Both sides slipping(left  surface down, right surface up),  forces sustain. 

 
Fig.4.41 Contact force distribution of example 2 

In the case of Fig.4.41, the stages in one cycle are as follows(starting from green point): 

1 Both sides stuck(left surface unloaded upward, right surface unloaded downward), forces 

change. 

2 Left surface stuck(unloaded upward), right surface slipping down, forces change. 

3 Both sides slipping(left surface up, right surface down) 

4 Left surface slipping up, right surface stuck(unloaded upward). 

5 Left surface stuck(unloaded downward), right surface slipping up, forces change. 
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6 Left surface stuck(unloaded downward), right surface slipping up, forces sustain(possible lost of 

contact points). 

7 Stage 6 continues. 

8 Both sides slipping (left surface down, right surface up), forces sustain. 

It is clear that when the surface condition in contact has great variability during operation, the 

damper equilibrium and motion will be complex.  

4.5 Out-of-phase results of crossed curve-flat damper 

Hysteresis obtained under the following conditions are shown in Fig.4.42. 

motion type nominal amplitude excitation frequency dead weight 

out-of-phase 20  (Fig.4.42.1-3) 

60   (Fig.4.42.4-6)  

5Hz(Fig.4.42.1, Fig.4.42.4)   

40Hz(Fig.4.42.2, Fig.4.42.5) 

80Hz(Fig.4.42.3, Fig.4.42.6) 

2.65kg(Fig.4.42.1-3) 

4.65kg(Fig.4.42.4-6) 

 

 

 
Fig.4.42 Hysteresis examples for crossed curve-flat damper  

The examples shown in Fig.4.42 are regular measured hysteresis, but in some tests irregular 

hysteresis is found like in Fig.4.43.  

 

1 2 3 

4 5 6 
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Fig.4.43 Irregular hysteresis example(60  ,40Hz,2.65kg) 

The irregularity is caused by the contact condition change, which is difficult to control. Fig.4.44 

show the energy dissipation under different operation conditions from a group of tests. 

 
Fig.4.44 Energy dissipation(black color:4.65kg  grey color:2.65kg)  

 O - 60  m nominal           - 40  m nominal          * - 20  m nominal       

The results clearly show the hysteresis evolves to micro-slip stage which dissipates small energy 

during the cycle.  

4.6 In-phase results of non-crossed curve-flat damper 

Initially this damper is expected to tend to rotate a lot during in-phase motion because the long 

distance between the two contact position on each surface. Fig.4.45 shows the features of 

hysteresis and corresponding distribution. 

 

 
Fig.4.45 Typical in-phase hysteresis and force distribution for non-crossed curve-flat damper 

Left: 5 Hz, 20  m, 4.65kg  Right: 5 Hz, 60  m, 4.65kg 

The experiment verifies that this configuration of curve-flat damper is not efficient under in-phase 

condition. After many cycles of in-phase motion(both low and high frequency), there is no wear 

trace on the contact surfaces. 

 

5Hz 40Hz 80Hz 

1 2 

3 4 
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4.7 Conclusions 

Three dampers with different geometries are tested. 

 

The three-point damper is investigated in detail to understand more about normal wedge-shaped 

under-platform damper behavior in the sense of kinematics and equilibrium. 

The meaning of visual stiffness given by the measured hysteresis slop when both sides are in stick 

stated is demonstrated. 

In the operational frequency range, the three-point damper works in a mutual stick-slip influence 

between the two interfaces, which is predicted in literature and now experimental verified. The 

scheme of this mutual influence lead to different shapes of hysteresis cycle and damper 

equilibrium and in consequence the damper kinematics show different features. Friction 

coefficient is an important parameter which may influence the complexity of this scheme. When 

the friction coefficient is changed, the contact points on left surface may experience absence of 

contact for both out-of-phase and in-phase condition. 

Under out-of-phase condition, the final hysteresis shows a micro-slip state with high friction 

coefficient and contact force. Under in-phase condition, the final hysteresis keeps a state with 

large rotation and relatively low friction coefficient and contact force.  

The increase of simulated centrifugal force can accelerate the evolution of contact condition. 

From the current experimental device and methods, damper motion is reconstructed with marked 

accuracy.   

 

The crossed curve-flat damper is designed intentionally to reduce the rotation effect from the 

common wedge-shaped damper. The experiments verify this advantage. But due to the contact 

surface wear, there can happen possible rotations shown in the hysteresis. Due to the 

experimental limitation, the damper motion is not reconstructed. Under out-of-phase condition 

especially when higher preload is applied, the hysteresis evolves to micro-slip stage fast.  

The non-crossed curve-flat damper is intentionally to be compared with the previous two dampers 

under in-phase motion. The results show it slips very little and mostly rolls. The imperfection of 

the left flat surface(might have a large curvature) can promote the rotation effect. So in practice, 

this shape should not be used. 

 

The test rig show limitations when high frequency excitations are imposed due to the flexibility of 

the structure. 
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Chapter 5 Numerical simulation of damper motion with 

direct time integration  

Apart from remarkable repeatability and reasonable intuitive demonstrations, the experimental 

results also show great complexity and uncertainty of damper behavior, which leads to the need 

of system modeling to understand better what happens in detail and predict new types of damper 

behavior reliably.  

5.1 Overview of Den Hartog’s solution 

In 1931 J.R.Den Hartog published his paper on steady state of forced vibration of a SDOF 

mechanical system with Coulomb friction or combined Coulomb friction and viscous damping.  

                                                                   
Fig.5.1 SDOF system considered by Den Hartog 

Considering only dry friction, the differential equation of motion of the mass in Fig.5.1 is: 

                                                              cos( )mx kx F P t                                                                  (1) 

Where the + sign holds when the mass moves in the    direction and vice versa. The phase angle 
  is included for the purpose of subsequently writing the boundary condition in a convenient form.  
Den Hartog proposed two possible steady state motion patterns, one without stop during 
motion(case (a)) and one with one stop during half a cycle(case (b)), which are shown in Fig.5.2. 
  
In case (a) during the half-cycle of the motion 0 /t    the velocity is always negative so that (1) 

holds with  sign before  . Using the abbreviations: /P k a , / fF k x , 2/ nk m  , the 

differential equation in that interval is rewritten as:  

                                                            2 2( ) cos( )n f nx x x a t                                                              (2) 

 

P

F

N

kx
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Fig.5.2 Two possible patterns of a SDOF motion with friction 

 

Denote the response amplitude as   . A steady-state solution corresponding to case (a) has to 

fulfill the following boundary conditions(consider half a  cycle due to the symmetry): 

                                                                0

0

0 0

/ 0

t x x x

t x x x 

  

   

                                                           (3) 

In case (b) there is motion during the interval 00 t t  and standstill during 0 /t t    . During 

the interval of motion the equation (2) holds, while the boundary conditions are: 

                                                                0

0 0

0 0

0

t x x x

t t x x x

  

   

                                                                 (4) 

Then the equations can be solved with respective boundary conditions. Fig.5.3 shows the 

boundary line between no stop and one stop motion in the frequency response diagram. 

 
Fig.5.3 Boundary line of no stop motion and one stop motion from Den Hartog 

The motion pattern proposition is not intuitive because naturally people do not consider that the 

movement of a body under a periodic excitation have one or more stops in half a cycle. His 

analysis tells us some interesting properties due to friction in vibration. For example, in a vibration 

only with dry friction damping , when the friction ratio     is smaller than /4, the amplitude of 

vibration at resonance still extend to infinity. But if the value has a tiny increase(larger than /4), 

the amplitude will immediately be decreased to a finite. Meanwhile there is the associated feature 

that the phase-frequency diagram is discontinuous when passing the resonance frequency. This 

phenomenon is different from viscous damping which suppresses the amplitude to finite value 

even at resonance. In some means the system dynamical behavior is not stable at resonance 

frequency when the friction coefficient is around /4.  His solution of motion equation with one 

stop or more than one stop in half a cycle was found in his experiments. 

(a) (b) 
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Den Hartog did not consider the stiffness between the two contact surfaces, which is satisfactory 

for most macro motions where the contact stiffness is rather high. Den Hartog’s analytical solution 

is a base for comparing numerical calculation. 

5.2 Direct time integration for motion equations with dry friction 

In complex mechanical systems it is difficult to obtain analytical solution (or closed form) of 

motion with dry friction due to the nonlinear behavior of friction force, which is from the mutual 

dependence of friction force and relative movement, especially when there are more than one 

contact interfaces. HBM(Harmonic Balance Method) is usually used in approximate analytical 

solution of such systems and in most cases the result is satisfactory. But HBM is not sufficient to 

predict the whole features because one harmonics or even more are not enough to represent the 

dynamics when friction dominantly influences the system.  

In this thesis, the main purpose is to understand better the damper kinematics and dynamics with 

certain geometry under certain excitation type. Except the centrifugal force as an external force, 

the left forces applied on the damper are from contact surfaces, which show great nonlinearity 

due to friction and geometry coupling. So it is necessary to find a reliable direct integration 

scheme to get the main features of a dynamic system with dry friction. Based on this idea, 

Newmark- method is studied to perform this numerical integration. 

Newmark- method was developed based on acceleration interpolation in structural dynamics in 

the 1960s. It has some favorable properties such as unconditionally stable when the parameters 

are chosen properly and having enough precision. A short description of Newmark- method is as 

following. 

For an time interval t , apply Taylor series and linear combination of accelerations at time t and 

t+ t and choose two different control constants  and , the following relations are derived.  

                                                               
     

t t t
x x x t


  

                                                             (5) 

                                                           
       ( )

t t t t
x x x x


  

                                                        
(6) 

                                               
       (1 )

t t t t t t
x x t x t x 

 
      

                                              
(7) 

                                                    
        21

2

t t t t
x x x t x t


    

                                                     
(8) 

                                                        
       2 ( )

t t t t
x x x x


  

                                                        
(9) 

                                  
         2 21

2
(1 2 )

t t t t t t t
x x t x t x t x 

 
       

                            
(10) 

Referring to (10) , we have 
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         2

1 1 1
2

( ) ( 1)
t t t t t t t

tt
x x x x x

 

 


    

                                  
(11)

    
 

Then the variables at time t+t should satisfy the equilibrium equation. 

To solve the nonlinear motion equations with dry friction, because the state variables are inter-

dependent on friction force, it is necessary to bring in iteration scheme(like Newton-Raphson 

Method) to find the nonlinear equilibrium point.  

According to the way that starts the iteration, there are force-based and displacement-based 

schemes.  

                                                 
1 1 1 1 1

M C K F Fc en n n n n n n n n n n
x x x

       
   

                             
(12) 

The force-based scheme follows classical Newmark procedure and performs as follows. 

2

1
0 


t
a

, 1






t
a

, 
1

2 


t
a

, 
1

3 2
1


 a

, 4 1



 a

,  5 2
2




 ta

 

 6 1   a t
,  7  a t

 

     0 1K K M C  eff a a
 

1 For integration step    : 

Assume contact forces   
1,

F F
i k i

c c


 . 

2 For iteration  : 

2.1 Impose contact forces  
1,

F
i k

c


and excitation forces  

1
F

i

e


 and get total forces  

                                                         
1, 1, 1

F F F
i k i k i

total c e

  
   

and form the effective load 

                   
1, 1,

6 2 3 1 4 5F F M ( ) C ( )
i k i k i i i i i i

eff total a x a x a x a x a x a x
 

        

2.2 Calculate the displacement 

   
1,1,

K \ F
i ki k

eff effx


  

and find the acceleration and velocity 

         
1, 1,

0 2 3( )
i k i k i i i

x a x x a x a x
 

     

       
1, 1,

0 6 7

i k i i i k
x a x a x a x

 
    
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2.3 Calculate the new contact forces  
1, 1

F
i k

c

 
 with the displacements above according to contact 

state. 

2.4 Check if  
1,

F
i k

c


 satisfies the tolerance requirement: norm( 

1,
F

i k

c


 )<tol, 

If yes, stop iterations and set the calculated state variable values as the values for current step and 
go to next step from 1,      . 

If no,  go to 2.1,      . 

The force based iteration scheme is simple to be implemented but the update of contact force has 
less physical interpretation as displacement based scheme. 

The displacement-based Newmark method starts the iteration from assumption of state variables 

and the scheme is as follows. 

1 For integration step    : 

option 1 : Assume    
1,i k i

x x


 , then from Newmark relation we have 

     
1,

2
( 1) ( 1)

i k i i
x x t x

 

 


      and      

1, 1 1
2

( 1)
i k i i

t
x x x

 



 
     

Option 2: Assume    
1,i k i

x x


 , then we have 

     
1,i k i i

x x t x


    and        
2

1,

2

i k i i it
x x t x x

 
      

2 For iteration  : 

2.1 Impose displacements  
1,i k

x


and calculate the contact forces  
1,

F
i k

c


 according to contact 

state. 

2.2 According to the equilibrium equation 

            
1, 1, 1, 1, 1

M C K F F
i k i k i k i k i

c ex x x x x x
    

        

we can calculate the unbalanced force: 

            
1 1, 1, 1, 1,1,R F F K C M

i i k i k i k i ki k

eff e c x x x
           

And according to Newmark relation the effective stiffness matrix is obtained as: 

     2

1, 1K K M Ci k

eff tt








    

2.3 Calculate the incremental displacement: 

 
1, 1, 1,K \ R

i k i k i k

eff effx
     

2.4 Check if  
1,i k

x


 satisfies the tolerance requirement: norm( 
1,i k

x


 )<tol: 
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If yes, stop iterations and set the calculated state variable values as the values for current step and 
go to next step from 1,      . 

If no, update the displacement, velocity and acceleration as follows 

     
1, 1 1, 1,i k i k i k

x x p x
   

     

     
1, 1 1, 1,i k i k i k

t
x x p x





   


     

     2

1, 1 1, 1,
1

i k i k i k

t
x x p x



   


     

and go to 2.1,      . In the formulations   is a penalty number to control computation 
stability and accelerates the convergence, which is normally set 1 without specifications. 

To better demonstrate the process of operating the displacement based iteration scheme, a flow 
chart is shown in Fig.5.4. 
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x

 

 

 F
i

c
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i

e

 

 
i

w

 

time  i 

 
1, 1,i k

x
  

 
1, 1,i k

x
  

 
1, 1,i k

x
  

 

 
 

1, 1,i k
w

  

 

 
1, 1,

F
i k

c

  

 
1

F
i

e


 

motion equation 

at time i+1 

Newmark relation unbalanced force

1,R i k

eff


 

 
effective stiffness 

matrix 
1,Ki k

eff


 

 
1, 1i k

x
 

 
1, 1i k

x
 

 
1, 1i k

x
 
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Fig.5.4 Procedure of displacement based iteration with Newmark method 

 

5.3 Contact model description 

As discussed in section 5.2, when the numerical procedure is implemented, the contact forces 

need to be calculated and contact states need to be checked according to the contact model.  In 

this section the contact model which accomplishes the above said task in the simulation is 

described. 

Consider a general 2-D macro contact model with normal and tangential stiffness demonstrated 

by Fig.5.5.   ,    represent two bodies in contact;   ,    are tangential and normal displacement 

at the contact point on body   ;   ,    are tangential and normal displacement at the contact 

point on body   ;  ,   are tangential and normal contact forces applied on body   ;   ,    are 

tangential and normal contact stiffness;   is the slider displacement between the contact pair. The 

sign definition is shown in the figure. 

                                                               

Fig.5.5 General 2-D macro contact model 

The relation between the state at current time step and corresponding parameters are listed 

below(the right superscript 0 means at previous time step, 1 means at current step): 

Table 5.1 Contact state and related parameters 

           parameters 
state 

slider displacement:  s  tangential force on 2m :T  normal force on 2m : N  

stick         1 01 0

2 2( )s s t t         

       

11 1

1

1 1 00

1 2 2

( )

( ( ))

t

t

T k t s

k t t s t

  

    

 

     1 11

2 1( )nN k n n    

positive slip    
 1

11

1
t

N
s t

k


   

   1 1
T N        1 11

2 1( )nN k n n    

negative slip    
 1

11

1
t

N
s t

k


   

   1 1
T N         1 11

2 1( )nN k n n    

separation    11

1s t  0 0 

1m

2m

1t

2t

1n 2n

nk
tk

s T

N
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The procedure to determine contact state and contact forces at current time step follows a 

Predictor-Corrector method: 

1. Assume the current state as stick state.  

Get normal force      1 1 1

1 2max( ( ),0)nN k n n  . 

Get tangential force        1 1 1 0

1 2( )tT k t t s


   . 

Update    1 0
s s
 

 . 

If  1
0N  and  1

1T N  ,  go to 2.1. 

If  1
0N  and  1

1T N   ,  go to 2.2. 

If  1
0N  , go to 2.3. 

2. Update according to transition to different states. 

2.1 Set  1

1T N  , update      
 1

1 1 1

1 2

t

N
s t t

k

 
   . (positive slip) 

2.2 Set  1

1T N   , update      
 1

1 1 1

1 2

t

N
s t t

k

 
   . (negative slip) 

2.3 Set  1
0T  , update      1 1 1

1 2s t t


  . (separation) 

 

After these preparations are done, take Den Hartog’s analytical solution as benchmark of the 

numerical simulation . Consider the SDOF in Fig.5.6, which is similar to Den Hartog’s system except 

the addition of tangential contact stiffness and also is a special case of the general contact model 

described above.   

                                                                    
Fig.5.6 SDOF with tangential stiffness 

From section 5.1, Fig.5.7 is plotted to demonstrate a response obtained by Den Hartog. 

 

 

 

 

 

 

 

                Fig.5.7 Response amplitude variation with                                Fig.5.8 Response when     
 

 
 

To be compared with Den Hartog’s solution, a test case is chosen from Fig.5.7 as following:  

kxP

N

F s
tk

0t
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    ,     

 

 
, and respectively 

  

 
       , 

  

 
       ,          

The friction force, motion and excitation force are plotted in Fig.5.8.  And correspondingly perform 

the time integration using: 

                                                    

Fig.5.9 shows the results when steady state cycles are reached. 

 
Fig.5.9 Response by DTI (b is a detail from a)  

The numerical response amplitude is 0.03% less than the analytical value. The significant 

difference between this numerical and analytical result is that the mass motion has high frequency 

interfacial oscillations when the slider stops moving, which is not present when tangential contact 

stiffness is not considered. This oscillation may be not physical due to local damping factor, [42] 

discussed the method to eliminate this problem stabilizing the contact force calculation. 

 

It is observed what happens to the response when tangential stiffness is changed. The response in 

the results table below is convergent to the value analytically obtained by Den Hartog as the 

stiffness increases. The constants used in the numerical calculation are: 

 

                               
Results: 
 
 
 
 
 
In this case ,when tangential stiffness reaches       , the response is already convergent. This is 

not true for any case. The convergent speed according to increase of tangential stiffness depends 

on excitation frequency and friction level. For example, under the condition / 0.9  n and 

        ,  the convergence speed is shown in Fig.5.10, which is much slower than the previous 

case. 

tol=1e-12  =1e-6 t=1e-4        

tangential stiffness (   ) 1e2 1e3 1e4 1e5 1e6 1e7 

response factor (      0.0898 0.1088 0.1106 0.1106 0.1106 0.1106 

number of cycles for steady state 20 22 16 16 16 17 

a b 
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Fig.5.10 Response convergence with tangential stiffness(low speed case)  

In reality the contact stiffness between two elastic contact bodies is quite large, like what is 

obtained from the experiment in Chapter 4, to the level of       . 

It is also noticed that for this nonlinear motion equation, Newmark method is not unconditionally 

stable. Take the example shown in Fig.5.8, when the time step increased 10 times longer, which is 

still much smaller than the excitation period, the calculation diverges immediately within certain 

tolerance and iteration number limitation. This feature also brings in a problem of contact high 

frequency oscillation which may not be physically existent. The reason for this problem is not clear 

at this stage. [44] also reports that unconditional stability of Newmark scheme may be lost in the 

nonlinear regime.  

5.4 Formulation of damper motion in the test rig 

The Newmark procedure and contact model are now integrated to simulate the test system 

demonstrated in Fig.5.11. 

 

                                    

Fig.5.11 Damper-platform system in the test rig 

Excitations are given by the piezoelectric actuator displacement      and      to the left platform. 

By neglecting the platform rotation, both platforms have 2 degrees of freedom, representing two 

translational motions. The damper has 3 degrees of freedom including rotation.  Take the three-

 

LP RP 

damper 

uLk

wLk

uRk

wRk

d x

d z
G X

G Z

LP x

LP z RP x
RP z

L R

1OL

2OL

OR

uRc

wRcwLc

LP x

LP z

RP x

RP z

uLc

d 

volu

volw

C
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point damper as an example to formulate the system. Then the formulations can be extended to 

other types of damper by changing geometry relations and contact points. 

In the following formulations,    represents left platform or left platform surface coordinate 
system;    represents right platform or right platform coordinate system;   represents global 
coordinate system;    represents the contact point on damper right surface;      represents the 
upper contact point on damper left surface;     represents the lower contact point on damper 
left surface;    ,    

  and    
  represent the corresponding contact points on the platform 

surfaces. 

Express the damper geometry with adjacent platforms using transposition matrices: 

cos sin

sin cos

L LLPG

L L

A
 

 

 
  
 

, 
cos sin

sin cos

R RRPG

R R

A
 

 

 
  

 
, GLP LPG TA A , GRP RPG TA A  

Express the damper equilibrium in matrix form: 

     

1 2

1 2

1 1 1 1 2 2 2 2

d d X OR X OL X OL X ud d

d d Z OR Z OL Z OL Z C Z wd d

d d C OR X OR d OR Z OR d OL X OL d OL Z OL d OL X OL d OL Z OL d

C Z rd d

m u F F F F k u

m w F F F F F k w

I M F z F x F z F x F z F x

F x k



 

    

     

             

 





 

OR X ORGRP

OR Z OR

F T
A

F N

   
    

   
, 1 1

1 1

OL X OLGLP

OL Z OL

F T
A

F N

      
    

      

, 2 2

2 2

OL X OLGLP

OL Z OL

F T
A

F N

      
    

      

 

1

1
1 1 2 2

2

2

0 0 0 0

0 0 0 0

0 0 0 0

OR

OR

GRP GLP GLP
OL

GRP GLP GLP
OLOR d OR d OL d OL d OL d OL d

OL

OL

d d ud d

d d wd d

d d rd d

T

N

TA A A

Nz x A z x A z x A

T

N

m u c u

m w c w

I c 

  

 
 
 
  
    

             
 
 
 
 

      
    

    
         

0 0 0

0 0

0 0

ud d

wd d C Z

rd d C Z

k u

k w F

k x F 

      
      

       
               
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1 1 2

1 1 2

cos sin cos sin cos sin

sin cos sin cos sin cos

cos sin coscos sin

sin cos sin cos si

R R L L L L

R R L L L L

OL d L OL d L OL d LOR d R OR d R

OR d R OR d R OL d L OL d L OL d

z z zz z

x x x x x

     

     

   

   



    



 

         
                     

1

1

2

2

2

2

sin

n cos

0 0 0 0 0 0

0 0 0 0

0 0 0 0

OR

OR

OL

OL

OL d L
OL

L OL d L
OL

d d ud d ud

d d wd d

d d rd d

T

N

T

N
z

T
x

N

m u c u k

m w c w

I c



 

 



 
   
   
   
   

  
           
     

      
 

       
      

       
             

0

0 0

0 0

d

wd d C Z

rd d C Z

u

k w F

k x F 

     
    

    
              (13) 

Express the left platform equilibrium in matrix form: 

1 2

( )LP LP X X X uL vol LP uL LPOL OL
m u F F F k u u c u      

 

1 2

( )LP LP Z Z Z wL vol LP wL LPOL OL
m w F F F k w w c w      

 

11
X OL XOL

F F   , 
11

Z OL ZOL
F F   ,

22
X OL XOL

F F   ,
22

Z OL ZOL
F F  

 

1

1

2

2

0 0 0

0 0 0

OL

OL uL vol uL uL uLLP LP LPGLP GLP

wL vol wL wL wLLP LP LPOL

OL

T

N k u m k cu u u
A A

k w m k cw w wT

N

 
 

              
                                    

 
                  (14)       

 

Express the right platform equilibrium in matrix form: 

RP RP X X uR RP uR RPOR
m u F F k u c u   

 

RP RP Z Z wR RP wR RPOR
m w F F k w c w     

X OR XOR
F F   , Z OR ZOR

F F    

0 0 0

0 0 0

OR uR uR uRRP RP RPGRP

OR wR wR wRRP RP RP

T m k cu u u
A

N m k cw w w

            
               

                                                                  (15)
 

Total equilibrium is obtained: 

contact externalB F F M U K U C U                                                                                                               (16) 

 

   

1 1 2 2

2 2

2 2 2 2 7 6

0

0 0

RPG LPG LPG

GRP GLP GLP
OR d OR d OL d OL d OL d OL d

LPG LPG

RPG

A A A

z x A z x A z x A
B

A A

A

  



  

 
 

           
  
 
 
 
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1 1 2

1 1 2

cos sin cos sin cos sin

sin sin sin cos sin cos

cos sin coscos sin

sin cos sin cos s

R R L L L L

R R L L L L

OL d L OL d L OL d LOR d R OR d R

OR d R OR d R OL d L OL d L OL d

z z zz z

x x x x x

     

     

   

   



 

          
                          

2

2

sin

in cos

0 0 cos sin cos sin

0 0 sin cos sin cos

cos sin 0 0 0 0

sin cos 0 0 0 0

OL d L

L OL d L

L L L L

L L L L

R R

R R

z

x



 

   

   

 

 

 
 
 
    
    

      
   

 
    

 
 

 
 
 

 

 

d

d

d

PL

PL

PR

PR

u

w

U u

w

u

w



 
 
 
 
 

  
 
 
 
 
 

, 
1

1

2

2

OR

OR

OL

contact
OL

OL

OL

T

N

T

F
N

T

N

 
 
 
 
 

  
 
 
 
 
 

, 

0

0

0

C Z

C Z

external uL vol

wL vol

F

x F

F k u

k w



 
 
 
  
 

  
 
 
 
 
 

, 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

d

d

d

LP

LP

RP

RP

m

m

I

M m

m

m

m

 
 
 
 
 

  
 
 
 
 
 

 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ud

wd

rd

uL

wL

uR

wR

c

c

c

C c

c

c

c

 
 
 
 
 

  
 
 
 
 
 

, 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ud

wd

rd

uL

wL

uR

wR

k

k

k

K k

k

k

k

 
 
 
 
 

  
 
 
 
 
   

Here    ,    ,     is respectively the stiffness of horizontal, vertical and rotational spring 
connected between damper and ground, which are not shown in Fig.5.11. They are put in the 
equations with potential function of making integrations convergent. In reality    ,     and     
do not exist because the damper is free.     ,    ,     is equivalent viscous damping factor of the 
viscous element connected to the damper. Not only for numerical convergence, but also from 
physical point of view,    ,    ,     are necessary parameters in the simulation.  
 
Since there is manufacturing uncertainties,    is the distance between dead weight application 
line and damper real mass center.  
 
Kinematic relations are built up as following. 
For instant velocities, we have: 
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1 0

0 1

OR dORC

OR d

z
D

x

 
  

 
, 11

1

1 0

0 1

OL dOL C

OL d

z
D

x

 
  

  

, 22

2

1 0

0 1

OL dOL C

OL d

z
D

x

 
  

  

, 
1

1

1 2

2

2

G
OR

G
OR

ORC
G

d
OL

OL CG
dG

OL OL C
d

G
OL

G
OL

u

w

D uu
u D w

w
D

u

w



 
 
 
     
      

      
    

     
 
 
  

 

   

   

   

   

   

   

1
1

1 2

2

2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0 0 0

0 0 0 0

0 0 0 0

RP
OR

RP
OR RPG RPG ORC
LP

d
OL

OL CP LPG G LPG

LP
OL OL CLPG LPG

LP
OL

LP
OL

t

n
A A D ut

u A u A D
n

DA A
t

n

   

   

   

 
 
 

      
                
      
           

 
 
  

1

2

RPG ORC

d
OL CLPG

d d

OL CLPG
d d

A D u

w A D w

A D 

    
    

     
    

     

 

1

d
P

d

d

u

u E w



 
 

  
 
 

,  

1

1

1

1

1

1

1

cos
cos sin

sin

sin
sin cos

cos

cos
cos sin

sin

sin
sin cos

cos

cos
cos sin

sin

OR d R
R R

OR d R

OR d R
R R

OR d R

OL d L

L L
OL d L

OL d L

L L
OL d L

OL d L

L L
OL d L

z

x

z

x

z

x

E
z

x

z

x


 




 




 




 




 



 
 
  

  
  

  

 
  

  
 


 

 
  
 


 

  


1

1

sin
sin cos

cos

OL d L

L L
OL d L

z

x


 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  
  

   
  

 

If the variations of positions of contact points in the local damper coordinate system are small 
quantities relative to the distance between contact point and mass center, the position can be 
regarded as constant during the motion. 

By integrating with time, we can have the relation of displacements as: 

                                                                            

1

d
P

d

d

u

u E w



 
 

  
 
                                                                            (17)

 

Similarly, for left platform mass center and contact points , and for right platform mass center and 
contact points we have: 
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, 3
RPGE A                                                    (19) 

After the system equilibrium and kinematic relations are built up, a numerical program is worked 

out to combine the integration method, contact model and system parameters to simulate the 

experimental outcome. 

It should be noted that to start the numerical calculation, the initial conditions of the system 

should be determined. Equation (16) can be changed to static equilibrium expression by 

eliminating the inertial and damping forces, that is: 

                                                                                                                                       (20) 

When          is expressed by the function of contact stiffness, there exist different solutions due 

to the nonlinearity of friction force, which means the initial conditions can be not unique. 

5.5 Simulation results of out-of-phase motion for three-point damper 

The detailed mass, stiffness and damping distribution are not known from the test rig. But the 

values of these parameters do not influence the damper response when the excitation frequency 

is low. For all the following simulations, the common values assigned are:  

             ,                        

         ,                   

5.5.1 Steady state response and comparison with experimental results 

First the contact tangential stiffness used in the simulation can be obtained from equation (10) in 

Chapter 4 and Fig.4.4.1, about 13*56/45 16    . 

Consider the experimental example shown in Fig.4.12 when a ‘shoe’ shape hysteresis happens. 

Assign        ,              , which are rough friction coefficient values from Fig.4.12.2. 

Other parameters are the same with experiment. When the initial conditions are set as      , 

      ,       , the numerical steady state response is  as follows in Fig.5.12.  
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Fig.5.12 Case of simulation of hysteresis, force distribution and rotation 

In general, this simulation result is consistent with the experimental outcome except local micro 

stick slip phenomenon. The details on each contact pair is plotted in Fig.5.13. 

From subplot 1, 2, 3 of Fig.5.13, the energy dissipated at each contact pair is known. Subplot 4, 5, 

6 demonstrate the relative motion between platform contact point and damper contact point. 

When the relative displacement between platform slider and damper contact point(denoted as   ) 

is equal to the relative displacement between platform contact point and damper contact 

point(denoted as   ), the contact pair loses contact. When    keeps constant, the contact pair is 

in stick condition. When    is changing, the contact pair is in slip condition. 

         

 

1 2 

4 

1 2 3 

4 5 6 
two 

different 

stick 

state  

3 
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Fig.5.13 Hysteresis and relative movement at each contact pair  

Consider the definition of friction coefficient, when the proportion between tangential force(TF) 
and normal force(NF) reaches one limit, the contact surface will slip. Fig.5.14 gives the details of 
proportion TF/NF for left two contact points. 

 

Fig.5.14 Proportion between tangential and normal contact force of left surface contacts 
 

With the help of Fig.5.13 and Fig.5.14, each stage in one cycle is demonstrated: 

(1) From labeled green to pink point, contact point    moves up relative to    in stick state; 

contact point    
  loses contact with    ; contact point    

  moves up relative to    in 

stick state. Damper rotation is small. 

(2) From pink to cyan point,     keeps a constant position relative to    in stick state;    
  

loses contact with    ;    
  slips up relative to    . Damper rotation is large. Point     in 

this stage is like a pivot axis. 

(3) From cyan to yellow point,    moves up relative to    in stick state;    
  begins having 

contact with     and slips up relative to    ;    
  slips up relative to    . Damper 

rotation is small. 

(4) From yellow to red point,    slips up relative to   ;    
  slips up relative to    ;    

  slips 

up relative to    . There is no damper rotation. 

(5) From red to black point,    moves down relative to    in stick state;    
  moves down 

relative to     in stick state;    
  moves down relative to     in stick state. There is no 

damper rotation. 

(6) From black to blue point,    moves down relative to    in stick state;    
  slips down 

relative to     and begin losing contact with    ;    
  slips down relative to    . Damper 

rotation is small. 

(7) From blue to green point,    slips down relative to   ;    
  loses contact with    ;    

  

slips down relative to    . Damper rotation is large. 

If we check the slope of the hysteresis line which represents a dual-stick state, the value when 

fitted is 12.80 from this example shown in Fig.5.15, which is in accordance with the theory 

developed in chapter 4, based on the values assigned to normal and tangential stiffness in the 

simulation. 
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Fig.5.15 

5.5.2 Solution from different initial conditions 

In the previous section, the initial conditions are set as      ,       ,       . When the 

initial conditions are changed, it is necessary to check whether the steady state response is 

influenced. 

Set static friction coefficient as        ,          ,         .  

Four possible initial conditions are calculated: 

Initial conditions 1      ,       ,        

Initial conditions 2           ,                ,                

Initial conditions 3             ,               ,               

Initial conditions 4            ,        ,                

The steady state response(the 20th cycle from each simulation) shown in Fig.5.16 implies that the 

solution for these initial conditions is unique. 

 

initial 

condition1 

initial 

condition2 
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Fig.5.16 Steady state response from 4 different initial conditions 

At this stage it is not clear whether the steady state response is always unique for different initial 

conditions. 

5.5.3 Influence of excitation frequency and test rig stiffness 

In practice, the under-platform damper works in high frequency range, which beyond the ability of 

current test rig due to its flexibility. It is useful to implement high frequency excitation in the 

simulation to check how the damper behavior is changed with frequency. 

Under the same other conditions of example in 5.4.1, three frequencies are used: 10Hz, 40Hz and 

100Hz. 

 

Fig.5.17 Steady state response under excitation of different frequencies 

The basic hysteresis features are similar for the three frequencies, but the part labeled by red 

ellipse has quite large high frequency interfacial oscillations due to contact stiffness, which is 

critical for the simulation. Improvements shall be found to solve this problem. 

Ideally, when the parts that impose motion and measure force are infinitely stiff, the damper 

behavior under certain excitation is only determined by its own parameters such as mass, 

geometry and the contact parameters. Due to the flexibility of the test rig, there is some external 

influence to damper dynamics. In simulation the mass of platforms can be reduced and the 

stiffness related to platforms can be increased to reduce the external influence. In Fig.5.18, one 

case with 100 times higher test rig stiffness is simulated with the conditions adopted in the 

example in section 5.4.1. 

initial 

condition3 

initial 

condition4 

10Hz 40Hz 100Hz 
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Fig.5.18 Steady state response with different test rig stiffness 

The result shows the compliance of current test rig is not critical to disturb the measurement of 

damper behavior(still in the simulation interfacial high frequency oscillations exist).  

5.5.4 Response sensitivity to friction coefficient 

From the hysteresis measurement, typically as demonstrated in Fig.4.6, the hysteresis evolution is 

significant.  From the measurement of transmitted force, the parameter which changes according 

to the evolution is the proportion limit between tangential and normal contact surface, namely 

friction coefficient. The response sensitivity is checked under the same other conditions with 

different groups of friction coefficients. Fig.5.19.a-b are the hysteresis given by the damper.  

 

     

Fig.5.19 Steady state response sensitivity to friction coefficient variation 

As shown in Fig.5.19, different ‘shoe’ shapes in the experiment can be obtained in the simulation 

by changing the values of friction coefficient. Fig.5.19-a is the synthetic demonstration of a 

solution region which is very sensitive to the change of respective friction coefficients and 

Fig.5.19-b is the synthetic demonstration of a solution region which is not so sensitive to the 

friction coefficient variations. This phenomenon may explain the complex uncertain behavior of 

under-platform damper from one aspect. 

 

        

         

                

                

a b 
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5.6 Simulation results of in-phase motion for three-point damper 

5.6.1 Steady state response and comparison with experimental results 

Two examples under the following conditions are shown in Fig.5.20 and Fig.5.21 comparing 

hysteresis, force distribution and damper rotation. 

motion type nominal amplitude excitation frequency dead weight 

in-phase 60     5Hz   4.65kg 

 

The friction coefficients used in the simulation are set according to Fig.4.31b and Fig.4.32b 

respectively as: 

       ,          ,          (example 1) 

       ,          ,          (example 2) 

 

 

 

 

experiment simulation 
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Fig.5.20  Comparison demonstration example 1 

 

 

 

Fig.5.21  Comparison demonstration example 2 

There is good consistency between experiment and simulation. For example 2, the local hysteresis 

are shown in Fig.5.22. 

 

Fig.5.22  Comparison demonstration example 2 

Denote the total hysteresis area as       , the area of local hysteresis is   ,    ,     respectively, 

it is found: 
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The details on each contact pair of the simulation of example 2 are demonstrated in Fig.5.23. 

 

 

Fig.5.23 Details on contact pair in simulation of example 2 

 

It is clear from Fig.5.23 that both of left contact pair lose contact in one cycle. The upper contact 

pair is in separation state more than half period of one cycle. The hysteresis for each contact pair 

is not symmetric.  

5.6.2 Influence of damper angle 

In literature (Yang and Meng,1998) pointed out that the damper rotation can be prevented by 

properly design the damper angle. Here a damper configuration with           and left two 

contact points are more separated than the tested one. The simulation is performed under the 

same conditions as in section 5.5.1. The comparisons for example 1 and 2 are put in Fig.5.24 and 

Fig.5.25 respectively. 
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Fig.5.24  Comparison 1- demonstrating damper angle influence 

 

 

Fig.5.25  Comparison 2- demonstrating damper angle influence 

In the first case, the resultant force on the left surface of the     damper never reaches the 

position of two contact points, which means two contact pairs are always in contact. In the second 

case, the resultant force sometimes reaches the lower contact point position but the force 

distribution is still much better than the     damper. It is predicted that large base angle  

configuration of three-point damper is much more effective in in-phase motion than the ones with 

small base angle. 

5.7 Exception case of unique steady state solution 

Some literatue proposed that the steady state response of an under-platform damper may be not 

unique when initial conditions are different. In the simulation, if there exists one contact interface 

always in stick condition, the steady state solutions can be non-unique. An example is 

demonstrated in Fig.5.26 and Fig.5.27. 

The common parameters for the two groups are: 
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motion type nominal amplitude excitation frequency dead weight 

out-of-phase 20     5Hz   4.65kg 

 

For first group the initial condition and friction parameters are: 

   
        

 ,      
         

 ,     
         

  

      ,        ,         

 
Fig.5.26  Solution 1 of damper response 

For second group the initial condition and friction parameters are: 

   
   ,      

   ,     
    

      ,        ,         

 
Fig.5.27 Solution 2 of damper response 

At this stage, a theoretical understanding of the non-unique solutions is not included in this thesis. 

5.8 Conclusions  

A time integration procedure is used to simulate damper response in the test rig.  

The time integration procedure is based on Newmark method and numerical results from a SDOF 

system are compared with Den Hartog’s solution to verify the reliability of integration method. 

There are two features of the current time integration method, first it is not unconditionally stable 

like the traditional Newmark method in linear structural dynamics, second the interfacial high 

frequency oscillations due to contact stiffness may be not physical. 



102 

 

The time integration procedure is then combined with 2D macro contact model to simulate the 

three-point damper response. The formulation can be extended to other types of damper 

conveniently by changing the contact element position and number of contact elements. 

The simulation results show good consistency with the experimental results. The force distribution 

and damper rotation(shape and amplitude) are well predicted. It is verified that when local friction 

coefficient changes, the damper response can change sensitively.  The interfacial high frequency 

oscillations become critical when the system operation frequency increases. The compliance of 

the current test rig is not critical to influence the damper response. The steady state solution is 

checked under different initial conditions and in most test cases it is unique. Potentially if one 

contact surface is always in stick condition, the solution can be not unique. 

The simulation tool is also used to predict the behavior of a three-point damper with different 

angles. Results show a great influence of this geometry factor to the damper behavior. It is 

expected in the future this tool can be used to optimize the damper angle and guide the 

experiments to test this important factor. 
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Closure 

This thesis discusses the experimental and numerical investigations of laboratory under-platform 

dampers to have better understanding of the damper  kinematics and dynamics.  

Although the designed test rig has performance limitations after the manufacturing, some 

experimental results with good repetitions are observed. The experimental hysteresis provides 

information about contact stiffness and stick-slip state coupled by the two interfaces. The visual 

stiffness shown in the hysteresis is a coupled quantity from the contact stiffness of both interface. 

Micro-slip phenomenon is clear in some stages of the hysteresis but in this thesis it is not studied.    

Under out-of-phase condition the damper tends to reach a stuck state with pure micro-slip under 

high friction coefficient. This happens much more quickly when high frequency excitation is 

applied. This phenomenon is not understood clearly by the author yet. But what can be observed 

is when rotation dominates like in the in-phase motion, the friction coefficient can be kept 

relatively low. 

A clear motion picture of the damper is reconstructed by measuring translation and rotation of the 

damper. This does not provide a theoretical modeling of the damper performance but gives 

people intuitive idea about the damper efficiency. 

The numerical procedure built in this thesis gives consistent simulations compared with the 

experimental results for three-point damper.  The simulation tool is helpful to understand what is 

going on in detail of the damper and contact points. When new types of damper are to be tested, 

the simulation can provide an prediction giving guidelines. But before applying this numerical tool 

to a general damper geometry, the local interfacial oscillations should be solved, which is critical 

especially for high frequency excitation. Micro-slip model can be introduced to the procedure 

conveniently.  

Improvements can be done to the test rig from several aspects: 

1 Make the structure stiffer without increasing mass along the operation chain.  

2 Modify the right platform to locate the contact force application point near to the axial center of 

the perpendicular guiding rods. 

3 Find a way to test different damper angles at low cost. 

4 Change the force sensor to a type which is capable of measuring static force component. 
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5 Put close-loop control to the piezoelectric actuator. 

6 Design new laser support for fine tuning the projection position. 
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