
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in

Information and System Engineering � XXV ciclo

Tesi di Dottorato

General Purpose Computation on
Graphics Processing Units using

OpenCL

Fiaz Gul Khan

Student ID 169507

Tutore Coordinatore del corso di dottorato

Dr. Bartolomeo Montrucchio (DAUIN)

Prof. Carlo Ragusa (DENERG) Prof. Pietro Laface

March 2013

Acknowledgements

It is di�cult to overstate my gratitude to my supervisor, Dr.Bartolomeo Montruc-

chio and Prof. Carlo Ragusa, for their expert guidance and support throughout

the thesis work. Their suggestions and invaluable ideas provided the platform to

the whole thesis work. In spite of their extremely busy schedule, I have always

found them accessible for suggestions and discussions. I look at them with great

respect for their profound knowledge and relentless pursuit for perfection. Their

ever-encouraging attitude and help has been immensely valuable. Throughout my

thesis-writing period, they provided encouragement, sound advice, and lots of good

ideas. I would have been lost without them.

I wish to convey my sincere thanks to my parents and my family members;

who have given me an endless support and love and who also provided me with the

opportunity to reach this far with my studies. I would also like to express my thanks

to all my colleagues at Politecnico di Torino Italy for their support during this thesis,

especially Mr Usman Shahid for letting me to use his GPU for experimental work.

This work could not have been accomplished without their support. I also want to

express my thanks to Department of Computer and Control Engineering Politecnico

di Torino for providing me the logistic support for my work.

Last but not he least special thanks to HEC (Higher Education Commission of

Pakistan) for providing me the �nancial support for my higher educations over here

in Italy.

In the end I would like to dedicate this thesis to wonderful parents, especially

to my mother, who have raised me to be the person I am today. You have been

with me every step of the way, through good times and bad. Thank you for all the

unconditional love, guidance, and support that you have always given me, helping

me to succeed and instilling in me the con�dence that I am capable of doing anything

ii

I put my mind to. Thank you for everything. I love you!

iii

Summary

Computational Science has emerged as a third pillar of science along with theory

and experiment, where the parallelization for scienti�c computing is promised by

di�erent shared and distributed memory architectures such as, super-computer sys-

tems, grid and cluster based systems, multi-core and multiprocessor systems etc. In

the recent years the use of GPUs (Graphic Processing Units) for General purpose

computing commonly known as GPGPU made it an exciting addition to high per-

formance computing systems (HPC) with respect to price and performance ratio.

Current GPUs consist of several hundred computing cores arranged in streaming

multi-processors so the degree of parallelism is promising. Moreover with the devel-

opment of new and easy to use interfacing tools and programming languages such as

OpenCL and CUDA made the GPUs suitable for di�erent computation demanding

applications such as micromagnetic simulations.

In micromagnetic simulations, the study of magnetic behavior at very small

time and space scale demands a huge computation time, where the calculation of

magnetostatic �eld with complexity of O (NlogN) using FFT algorithm for discrete

convolution is the main contribution towards the whole simulation time, and it

is computed many times at each time step interval. This study and observation of

magnetization behavior at sub-nanosecond time-scales is crucial to a number of areas

such as magnetic sensors, non volatile storage devices and magnetic nanowires etc.

Since micromagnetic codes in general are suitable for parallel programming as it can

be easily divided into independent parts which can run in parallel, therefore current

trend for micromagnetic code concerns shifting the computationally intensive parts

to GPUs.

My PhD work mainly focuses on the development of highly parallel magneto-

static �eld solver for micromagnetic simulators on GPUs. I am using OpenCL for

iv

GPU implementation, with consideration that it is an open standard for parallel

programming of heterogeneous systems for cross platform. The magnetostatic �eld

calculation is dominated by the multidimensional FFTs (Fast Fourier Transform)

computation. Therefore i have developed the specialized OpenCL based 3D-FFT

library for magnetostatic �eld calculation which made it possible to fully exploit

the zero padded input data with out transposition and symmetries inherent in the

�eld calculation. Moreover it also provides a common interface for di�erent ven-

dors' GPU. In order to fully utilize the GPUs parallel architecture the code needs

to handle many hardware speci�c technicalities such as coalesced memory access,

data transfer overhead between GPU and CPU, GPU global memory utilization,

arithmetic computation, batch execution etc.

In the second step to further increase the level of parallelism and performance,

I have developed a parallel magnetostatic �eld solver on multiple GPUs. Utilizing

multiple GPUs avoids dealing with many of the limitations of GPUs (e.g., on-chip

memory resources) by exploiting the combined resources of multiple on board GPUs.

The GPU implementation have shown an impressive speedup against equivalent

OpenMp based parallel implementation on CPU, which means the micromagnetic

simulations which require weeks of computation on CPU now can be performed very

fast in hours or even in minutes on GPUs.

In parallel I also worked on ordered queue management on GPUs. Ordered

queue management is used in many applications including real-time systems, oper-

ating systems, and discrete event simulations. In most cases, the e�ciency of an

application itself depends on usage of a sorting algorithm for priority queues. Lately,

the usage of graphic cards for general purpose computing has again revisited sorting

algorithms. In this work i have presented the analysis of di�erent sorting algorithms

with respect to sorting time, sorting rate and speedup on di�erent GPU and CPU

architectures and provided a new sorting technique on GPUs.

v

Contents

Acknowledgements ii

Summary iv

I Introduction 1

1 Introduction 2

1.1 Main Contributions . 4

1.2 Organization of the thesis . 5

2 GPU Computing 7

2.1 High Performance Computing (HPC) 7

2.2 Parallel and Distributed Architectures 8

2.2.1 Multicore shared memory architectures 8

2.2.2 Distributed Memory Architectures 9

2.2.3 Many core Architectures . 10

2.3 General-purpose computing on graphics processing units (GPGPU) . 11

2.3.1 Why GPGPU . 12

2.3.1.1 Performance . 13

2.3.1.2 Architecture . 14

2.3.1.3 Memory Bandwidth 15

2.3.1.4 Economical . 15

2.3.1.5 Limitations . 17

2.4 GPU Programming . 18

2.4.1 Open Computing Language (OpenCL) 18

vi

2.4.1.1 Platform Model . 19

2.4.1.2 Execution Model . 20

2.4.1.3 Memory Model . 22

2.4.1.4 Programming Model 23

2.4.2 CUDA . 25

II Parallel Magnetostatic solver on GPUs 27

3 Parallel magnetostatic �eld computation on GPUs using Open Com-

puting Language 28

3.1 GPU Based Parallelization . 29

3.1.1 Magnetostatic �eld computation on GPUs 29

3.2 Micromagnetic Model . 31

3.2.1 Micromagnetics . 31

3.2.2 Continuum hypothesis . 31

3.2.3 Micromagnetic free energy . 32

3.2.4 The Dynamic Landau-Lifshitz-Gilbert Equation 33

3.2.5 E�ective Magnetic Fields . 36

3.3 Magnetostatic Field Computation . 38

3.4 FFT discrete convolution method . 40

3.4.1 Compute Complexity . 43

3.5 Current state of the art of micromagnetic solvers 44

3.5.1 GPU based solvers . 45

3.5.2 Limitations of current solvers 46

3.6 OpenCL based GPU implementation 47

3.6.1 Symmetry Properties of Components 47

3.6.1.1 Demagnetizing Tensor 48

3.6.1.2 Magnetization and magnetostatic �eld 48

3.7 Implementation Approaches . 49

3.7.1 GPU-Optimized Implementation 49

3.7.1.1 Minimizing Data Transfer Between CPU and GPU . 50

3.7.1.2 Coalesced Memory Access 51

3.7.1.3 Minimizing GPU memory Utilization 53

vii

3.7.1.4 Minimizing the Arithmetic Computation 54

3.7.1.5 Batch Execution . 54

3.7.2 FFTs Based Optimizations . 55

3.7.2.1 OpenCL Based 3-D FFT library on GPUs 55

3.7.2.2 Savings in Forward 3-D FFT of Magnetization Vectors 55

3.7.2.3 Savings in Inverse 3-D FFT of Magnetostatic Field

Vectors . 57

3.7.2.4 Savings in 3-D FFT of Demagnetization Tensor . . . 58

3.8 Performance evaluation . 59

3.8.1 Experimental setup . 61

3.8.2 Results and discussion . 62

3.8.2.1 Computation Time 62

3.8.2.2 SpeedUp . 64

3.8.3 Conclusion . 67

4 Magnetostatic �eld computation on multiple GPUs 70

4.1 Why parallel GPUs . 70

4.1.1 Limitations of single GPU implementation 71

4.1.2 Multiple GPUs advantages . 71

4.2 Di�erent architectural approaches . 72

4.2.1 Shared system GPUs . 72

4.2.2 Distributed system GPUs . 73

4.3 Magnetostatic �eld computation on multiple GPUs 74

4.3.1 Execution model on multiple GPUs 76

4.3.1.1 Single Context Multiple Devices 76

4.3.1.2 Multiple Contexts Multiple Devices 77

4.3.2 Work division on multiple GPUs 78

4.3.3 Sharing memory objects on multiple GPUs 79

4.3.4 Performance evaluation on multiple GPUs 80

4.3.4.1 Experimental setup 80

4.3.4.2 Computation Time 80

4.3.5 Conclusion . 82

viii

III Queue Management on GPUs 84

5 Fast parallel sorting algorithms on GPUs 85

5.1 Introduction . 85

5.2 Related Work . 86

5.3 Butter�y structure . 87

5.3.1 Min-Max Butter�y . 87

5.3.2 Full Butter�y Sorting . 87

5.4 Performance Analysis . 91

5.4.1 Experimental Setup . 91

5.4.2 Results . 92

5.4.2.1 Sorting Time . 92

5.4.2.2 Sorting Rate . 93

5.4.2.3 Speedup . 95

5.5 Conclusion . 97

6 Conclusion 98

Bibliography 101

ix

List of Figures

2.1 Shared Memory CPU Architecture 9

2.2 Distributed Memory Architecture . 10

2.3 Nvidia GTX-260 Device Architecture (LM: Local Memory, PE: Pro-

cessing Element, PM: Private Memory) 11

2.4 New Moore's law (source CMSC828E Spring 2009 lectures) 13

2.5 GPU performance in �oating point operations per second against

CPU over the years . 14

2.6 Architectural di�erence between CPU and GPU where CPU contains

a few high functionality cores while GPU contains 100's of basic cores 15

2.7 Memory Bandwidth GPU vs CPU over the years 16

2.8 OpenCL Programming FrameWork (source opencl overview by khronos

group,2011) . 19

2.9 OpenCL Platform Model (where PE is Processing Elements) 20

2.10 2-D Addressing Scheme for Work Items or Threads 22

2.11 Hierarchy of OpenCL memory model 23

3.1 Short and long range magnetic interactions 32

3.2 (a)Undamped gyromagnetic precession, (b) Damped gyromagnetic

precession . 35

3.3 Ferromagnetic body discretization alongX, Y andZ direction with num-

ber of cell nxalong X direction, nyalong Y direction and nzalong Z

direction in the Cartesian coordinates 42

3.4 Demagnetization Tensor N(i−i′,j−j′,k−k′) 43

3.5 2-D magnetization Vector Zero Padding 47

3.6 NVIDIA GTX-260 GPU Architecture 50

x

3.7 Complex Number Coalesced Memory Access 52

3.8 Memory Coalescing in Transforms . 53

3.9 Improvement by changing order of inverse. The plot shows the ratio

of improvement for two graphic cards. The presence of the trenches

is due to memory coalescing factors. GTX-260, a relatively old card,

performs less memory coalescing compared to the Quadro 6000. As

a result, the Quadro 6000 appears to be more stable. 59

3.10 Reductions in the demagnetization tensor for the forward transform . 59

3.11 Reductions in the magnetization vector for the forward transform . . 60

3.12 Reductions in the inverse for the magnetization vector using the same

3D FFT routines . 60

3.13 Reductions in the inverse for the magnetization vector using a di�er-

ent order of FFT's . 61

3.14 Double Precision Computation Times 63

3.15 Single Precision Computation Times 63

3.16 Double Precision GPU/CPU(oommf) SpeedUp where CPU code is

running on 4 cores . 65

3.17 Single Precision GPU/CPU(oommf) SpeedUp where CPU code is run-

ning on 4 cores . 65

3.18 Double Precision GPU/CPU(Equivalent CPU Implementation) SpeedUp

where CPU code is running on 4 cores 66

3.19 Single Precision GPU/CPU(Equivalent CPU Implementation) SpeedUp

where CPU code is running on 4 cores 66

4.1 Shared System Multiple GPUs on multicore CPU system and sharing

same CPU memory . 73

4.2 Distributed System Multiple GPUs where each CPU node contains

one GPU and connected to each other through underlying communi-

cation network . 74

4.3 The data communication among multiple GPUs using single context

multiple devices approach . 77

4.4 The data communication among multiple GPUs using multiple con-

text multiple devices approach . 77

xi

4.5 Data division among multiple GPUs 79

4.6 Magnetostatic �eld computation time on single GPU against four

GPUs in parallel for di�erent input problem sizes 81

4.7 The speedup of Magnetostatic �eld computation on four parallel GPUs

against single GPU implementation for di�erent input problem sizes 82

5.1 Min-Max Butter�y . 89

5.2 Butter�y Sorting . 91

5.3 Sorting Time Min-Max Butter�y . 92

5.4 Sorting Time Full Butter�y Sort . 93

5.5 Sorting Rate Min-Max Butter�y . 94

5.6 Sorting Rate Full Butter�y Sort . 94

5.7 SpeedUp Full Butter�y Sort Against Bitonic Sort 95

5.8 SpeedUp Full Butter�y Sort Against Di�erent Sorting Algorithms . . 96

5.9 SpeedUp Serial Butter�y Sort Against Di�erent Sorting Algorithms . 96

xii

List of Tables

2.1 Comparison of current state of the art of di�erent GPUs and CPUs

with respect to architecture, price performance ratio and memory

bandwidth . 17

2.2 Di�erent memory regions de�ned in OpenCL speci�cation and their

access types and allocation by the kernel function and the host program 24

2.3 Di�erent terminologies used in OpenCL and CUDA 26

3.1 Architecture details of GPUs and CPU Used 30

3.2 Classi�cation of current Micromagnetic Solvers based on numerical

methods, Architectures (Shared Memory/ Distributed Memory/ GPU)

and Language/ API . 45

3.3 Symmetry Properties of Fourier Transform 48

3.4 Computation Time of OOMMF CPU Implementation and GPU With Sin-

gle Precision GPU Implementation Against Di�erent Problem Sizes and

GPU/CPU 4-cores Speed Up Factor . 64

3.5 Computation Time of Our CPU Implementation and GPU With Single

Precision GPU Implementation Against Di�erent Problem Sizes and GPU/CPU

4-cores Speed Up Factor . 64

3.6 Computation Time of CPU (OOMMF) and GPU With Double Precision

GPU Implementation Against Di�erent Problem Sizes and GPU/CPU 4-

cores SpeedUp Factor . 67

3.7 Computation Time of CPU (Our Implementation) and GPU With Dou-

ble Precision GPU Implementation Against Di�erent Problem Sizes and

GPU/CPU 4-cores SpeedUp Factor . 68

4.1 Architecture details of GForce GTX 295 80

xiii

Part I

Introduction

Chapter 1

Introduction

With the advent of fast and sophisticated computers and the development in the

�eld of numerical methods helped to solve the small computational problems very

fast. Hence it encouraged the computational scientist to move towards the solutions

of problems which require excessive amount of computation time. They have de-

veloped di�erent solutions in the �eld of parallel and distributed computing, where

the parallelization for scienti�c computing is promised by di�erent shared and dis-

tributed memory architectures such as, super-computer systems, grid and cluster

based systems, multi-core and multiprocessor systems etc. However, factors such as

heat dissipation, power consumption and small chip sizes limit the number of mi-

croprocessors on a single chip, which also a�ects the number of parallel threads. On

the other hand, in case of distributed memory architectures parallel threads can be

very large but the performance of overall system heavily depends on the underlying

communication network. Secondly such systems can be very expensive with respect

to both cost and power consumption.

In this context the use of GPUs (Graphic Processing Units) for General purpose

computing commonly known as GPGPU made it an exciting addition to high per-

formance computing systems (HPC) with respect to price and performance ratio.

The GPU itself is a many-core processor where dozens of streaming processors with

hundreds of cores support thousands of threads running concurrently on single chip.

Since the GPU hardware can be classi�ed as SIMT (single instruction, multiple

threads), therefore general purpose CPU-bound applications which have signi�cant

2

1 � Introduction

data in-dependency are well suited for such devices. Performance evaluation with

respect to GFLOPS shows that GPUs outclass its CPU counterparts by manifolds.

A high-end Core-I7 Desktop processor (3.46 GHz) can deliver a peak of 55.36 GFlops

as compared to Nvidia Quadro 6000 which gives peak performance of 1030 GFlops.

Moreover with the development of new and easy to use interfacing tools and

programming languages such as OpenCL and CUDA made the GPUs suitable for

di�erent computation demanding applications such as micromagnetic simulations.

Micromagnetism is a generic term used to study the fundamental magnetiza-

tion processes (the interactions between the magnetic moments) on a microscopic

space and time scale. These interactions are managed by di�erent competing short

and long range energy terms. All short range components can be calculated using

interactions between direct neighbors to a point of interest, resulting in compute

complexity of O(N). On the other end, long range components are calculated for

each element of interest against all points in the grid. These are essentially convolu-

tion operations corresponding to a complexity of O(N2)and is the main contribution

towards the total simulation time. By shifting the convolution to be performed in

frequency domain, the complexity can be reduced to O(NlogN). The main contri-

butions here are the forward and inverse multidimensional Fourier transforms.

This study and observation of magnetization behavior at sub-nanosecond time-

scales is crucial to a number of areas such as magnetic sensors, non volatile storage

devices and magnetic nanowires etc. Since micromagnetic codes in general are suit-

able for parallel programming as it can be easily divided into independent parts

which can run in parallel, therefore current trend for micromagnetic code concerns

shifting the computationally intensive parts to GPUs. All the current micromag-

netic solvers on GPU are CUDA based and uses the general-purpose FFT library

(cu�t) for the computation of magnetostatic �eld. This limits the current GPU

based magnetostatic solver to NVIDIA based hardware only. Secondly by the use of

general-purpose FFT library they cannot fully exploit the zero padded input data

without transposition and symmetries inherent in the �eld calculation. Their de-

sign approach limits them to certain size of input problems depending on the global

memory of GPU being used.

3

1 � Introduction

1.1 Main Contributions

The main goal of this thesis is to develop the highly optimized parallel magne-

tostatic �eld solver on GPUs by exploiting the symmetries inherited in the �eld

calculation using specialized multidimensional FFT library on GPUs. I have used

OpenCL on GPUs, with consideration that it is an open standard for parallel pro-

gramming of heterogeneous systems for cross platform. It targets di�erent devices

such as GPUs by di�erent vendors such as Nvidia, ATI and Intel etc, along with

CPU and other processing hardware which conform to its speci�cation. The magne-

tostatic �eld calculation is dominated by the multidimensional FFTs (Fast Fourier

Transform) computation. Therefore I have developed the specialized OpenCL based

3D-FFT library for magnetostatic �eld calculation which made it possible to fully

exploit the zero padded input data without transposition and symmetries inher-

ent in the �eld calculation. As a result the complexity of overall system reduced

signi�cantly compared to current GPU based solvers. Moreover it also provides a

common interface for di�erent vendors' GPUs. In order to fully utilize the GPUs

parallel architecture my solver handles many hardware speci�c technicalities such

as coalesced memory access, data transfer overhead between GPU and CPU, GPU

global memory utilization, arithmetic computation, batch execution etc. For the

accuracy and performance evaluation I have compared the results with the CPU-

based parallel OOMMF program developed at NIST and with an equivalent parallel

implementation on CPU and shown an impressive speedup.

In the second step to further increase the level of parallelism and performance

and to avoid the limited memory resources on single GPU, I have developed a

parallel magnetostatic �eld solver on multiple GPUs. Utilizing multiple GPUs avoids

dealing with many of the limitations of GPUs (e.g., on-chip memory resources) by

exploiting the combined resources of multiple on board GPUs. I have shown the

implementation of magnetostatic �eld solver on multiple GPUs and the speedup

against single GPU implementation.

In parallel I also worked on ordered queue management on GPUs. Ordered

queue management is used in many applications including real-time systems, oper-

ating systems, and discrete event simulations. In most cases, the e�ciency of an

application itself depends on usage of a sorting algorithm for priority queues. Lately,

4

1 � Introduction

the usage of graphic cards for general purpose computing has again revisited sorting

algorithms. In this work I have presented the analysis of di�erent sorting algorithms

with respect to sorting time, sorting rate and speedup on di�erent GPU and CPU

architectures and provided a new sorting technique on GPUs.

In short the most relevant outcomes of my work are

� Highly optimized OpenCL based multidimensional FFT library for magneto-

static �led calculation.

� OpenCL based magnetostatic �eld solver on multiple GPUS.

� Saving the memory and computation time by avoiding the transposition over-

head in multidimensional FFT on GPUs.

� Reducing the complexity of both forward and inverse multidimensional FFT

on GPU by considering the symmetries and zero padded input data in mag-

netostatic �eld solver.

� Reducing the memory transactions on GPU by coalesced memory access.

� Reduction in the data transfer overhead between CPU and GPU by utilizing

the symmetries in the input data, with the development of specialized FFT

library for magnetostatic �eld calculation on GPUs.

� Developed a CPU based parallel magnetostatic �eld solver for comparison with

GPU results.

� Implementation and comparison of di�erent sorting algorithms on di�erent

GPUs architecture.

1.2 Organization of the thesis

Rest of the thesis is organized as follows. In chapter 2 I have described the emerging

importance of GPU computing in the �eld of high performance computing. I have

discussed the importance of GPUs for general purpose computing and the program-

ming methodology for general purpose application on GPUs.

5

1 � Introduction

In chapter 3 I have discussed the parallel implementation of micromagnetic sim-

ulation on GPUs architecture. I have discussed the micromagnetic model with

respect to computational complexity. Then I have magnetostatic �eld calculation

which is the most time and memory consuming part of magnetostatic �eld solvers.

As the computation of magnetostatic �eld is dominated by the FFTs computation

therefore I have developed the specialized multidimensional FFT library on GPUs

using OpenCL which fully exploits the zero padded input data and the symmetries

inherited in the input data.

In chapter 4 in order to further increase the performance and to over come the

limited memory resources on single GPUs I have discussed the parallel implementa-

tion of magnetostatic �eld solver on multiple GPUs. I have discussed the di�erent

architectural approaches to use multiple GPUs along with their pros and cons. I

have discussed the load division on multiple GPUs and the communication overhead

while working on multiple GPUs along with the savings in the computation time.

Sorting algorithms have been studied extensively since past three decades. Their

uses are found in many applications including real-time systems, operating systems,

and discrete event simulations. In most cases, the e�ciency of an application itself

depends on usage of a sorting algorithm. Lately, the usage of graphic cards for

general purpose computing has again revisited sorting algorithms. In chapter 5 I

have presented a novel Butter�y Network Sorting algorithm (BNS) for sorting large

data sets on GPUs. A minimal version of the algorithm Min-Max Butter�y is also

shown for searching minimum and maximum values in data. Both algorithms are

implemented on GPUs using OpenCL exploiting data parallelism model and their

results are compared to di�erent serial and parallel sorting algorithms on CPUs and

GPUs respectively.

At the end in chapter 6 I have provided the conclusion of my PhD work and the

expansion of my work in the future.

6

Chapter 2

GPU Computing

2.1 High Performance Computing (HPC)

High-performance computing (HPC) is the fast, e�cient and reliable execution of

computational intensive problems with di�erent parallel processing techniques. Par-

allelism is the future of computational science, which has emerged as a third pillar

of science along with theory and experiment.

Parallelization for scienti�c computing is promised by architectures such as,

super-computer systems, grid computers [1, 2], cluster based systems, and di�er-

ent shared memory architectures. In recent years multi-core and multi-processor

computers have become very common [3]. However, factors such as heat dissipa-

tion, power consumption and small chip sizes limits the number of microprocessors

on a single chip, which also a�ects the number of parallel threads. On the other

hand, in case of distributed memory architectures parallel threads can be very large

but the performance of overall system heavily depends on the underlying communi-

cation network. Secondly such systems can be very expensive with respect to both

cost and power consumption and scalability can also be the issue. In this context

the use of GPUs (Graphic Processing Units) [4, 5, 6] for General purpose computing

made it an exciting addition to high performance computing systems with respect

to price and performance ratio[7, 8].

7

2 � GPU Computing

2.2 Parallel and Distributed Architectures

Flynn's taxonomy classi�es serial, parallel and distributed computers architecture

according to how the instruction is being executed on available processors. Like in

SIMD (single instruction/multiple data) executes the same instructions on all avail-

able processors at same time, or each processor executes di�erent instructions like in

MIMD (multiple instruction/multiple data). The second way to distinguish between

these mode of computing is how di�erent processor communicate among each other.

Distributed memory machines communicate by explicit message passing, using tools

such as MPI, while shared memory machines have a global memory address space,

and tools such as OpenMP can be used to read and write the global memory by the

various processors. Beside these CPU based parallel and distributed computer archi-

tectures with the advent of new hardware architecture such as graphics processing

units (GPUs) provided exciting opportunities in the �eld of parallel and distributed

computing. Each node in such systems comprises hundreds or even thousands of

high-performance stream processors. We can summarize these architecture like

� Multicore shared memory architectures.

� Distributed memory architectures.

� Many core architectures.

2.2.1 Multicore shared memory architectures

In recent years multi-core and multi-processor computers have become very common.

Multi-core processor have two or more cores on a single chip with their own level-

1 cache and can run multiple tasks simultaneously by sharing the common global

memory, decreasing the computation time of parallel program as depicted in �gure

2.1. The programming languages for multi-core CPUs ranges from low-level multi-

tasking or multi-threading libraries like POSIX (pThreads), to high level libraries

such as Intel Threading Building Block (TBB).

However, factors such as heat dissipation, power consumption and small chip

sizes limits the number of microprocessors on a single chip, which also a�ects the

number of parallel threads. The communication cost in case of multicore processors

8

2 � GPU Computing

is much less as they share the same memory through system bus as compare to

distributed memory architecture where communication between nodes takes place

over an underlying network.

Multi core Shared Memory Architecture

Main Memory

System Bus

Processor - 0

Level 2 cache

CPU

Level 1
cache

Core - 0

CPU

Level 1
cache

Core - 1

Processor - 1

Level 2 cache

CPU

Level 1
cache

Core - 3

CPU

Level 1
cache

Core - 4

Figure 2.1. Shared Memory CPU Architecture

2.2.2 Distributed Memory Architectures

A distributed memory architecture also know as a message passing multiprocessor

or multi-computer as it connects computers which have their own private memory

together via underlying communication network as shown in �gure 2.2. It becomes

indispensable to move on to distributed memory systems such as clusters and super

computers when both memory and time becomes problematic on shared memory

systems.

There are number of issues while programming for distributed memory systems.

The most prominent one is how to distribute the data over the memories as the

cost to send data on communication network is much high, so in designing a par-

allel algorithm for distributed system one must have to divide the data e�ciently,

otherwise it can degrade the performance of your problem.

9

2 � GPU Computing

Distributed Memory Architecture

Communication Network

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Figure 2.2. Distributed Memory Architecture

2.2.3 Many core Architectures

The graphics processing unit (GPU), which initially was designed for manipulating

computer Graphics, now with the development of high level libraries and easy to use

interfacing tools such as OpenCL and CUDA can be used as co-processor to speed up

wide range of computation intensive applications. The GPU in particular is a many-

core processor with support for thousands of concurrently running threads[9]. This

is made possible through a particular alignment of dozens of streaming processors

including hundreds of cores as shown in Figure2.3. Thread management at hardware

level implies that context-switching time is close to none. In addition to high-end

games, general purpose applications which are heavily CPU-bound or which have

considerable data in-dependency are ideally suited for these devices. Data parallel

codes are particularly suited as the hardware can be classi�ed as SIMT (single-

instruction, multiple threads). Performance evaluation with respect to GFLOPS

shows that GPUs outclass its CPU counterparts by manifolds. A high-end Core-I7

Desktop processor (3.46 GHz) can deliver a peak of 55.36 GFlops as compared to

Nvidia Quadro 6000 which gives peak performance of 1030 GFlops.

10

2 � GPU Computing

COMPUTE DEVICE (GPU)

Global Memory

PMPECompute
Unit -1
LOCAL

MEMORY PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPECompute
Unit -27

LOCAL
MEMORY PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

HOST (CPU)

(RAM) Host Memory

PCI Express Bus

Figure 2.3. Nvidia GTX-260 Device Architecture (LM: Local Memory, PE: Pro-
cessing Element, PM: Private Memory)

2.3 General-purpose computing on graphics process-

ing units (GPGPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units,

some times also referred as GPU Computing. The name GPGPU (General Purpose

computation Graphic Processing Units) [10, 11, 12] was �rst coined by M.J Harris

in 2002 [13]. The GPU itself is a many-core processor where dozens of streaming

processors with hundreds of cores support thousands of threads [9] running con-

currently on single chip as depicted in �gure 2.3. Since the GPU hardware can be

classi�ed as SIMT (single-instruction, multiple threads), therefore general purpose

CPU-bound applications which have signi�cant data in-dependency are well suited

for such devices. Secondly with the development of high level libraries and easy

to use interfacing tools such as OpenCL and CUDA made it easy to use GPU as

co-processor to speed up wide range of applications in di�erent areas of scienti�c

computing such as

11

2 � GPU Computing

� Computational Physics

� Image Processing

� Computational Modeling

� Computational Biology

� Computational Geo Science

� Computational Chemistry and many more

2.3.1 Why GPGPU

When we talk about general purpose computation on graphic processing units the

�rst question that most frequently arises is that why GPU is so faster than CPU.

In this section I would brie�y discuss the motivation behind the use of GPUs for

general purpose computation, which were initially designed speci�cally for graphic

applications. According to new Moore's law �computers no longer get faster but

just wider so you must be rethinking of your algorithms to be parallel�. The cur-

rent trend of microprocessor industry also endorses the new Moore's law by adding

number of cores instead of increasing the clock frequency of single core. According

to Herb Sutter of Microsoft in Dr. Dobbs' Journal says �The free lunch is over,

software performance will no longer increase from one generation to the next as

hardware improves unless it is parallel software�. Therefore Parallelism is the future

of computational science. The performance of parallel software is heavily dependent

on the hardware architecture which you are using for your application. The reasons

behind the use of GPUs for general purpose computation are many folds here are

some of the most important factors for using GPUs for general purpose applications

are in the following sections.

12

2 � GPU Computing

Figure 2.4. New Moore's law (source CMSC828E Spring 2009 lectures)

2.3.1.1 Performance

Computer performance can be measured with FLOPS (i.e. �oating point operations

per second) specially in the case of computational science where di�erent applica-

tions heavily use �oating point calculations in their computation. Performance eval-

uation with respect to GFLOPS shows that GPUs outclass its CPU counterparts

by manifolds. For example A high-end Intel Core i7 3960-X (3.30 GHz) can deliver

a peak of 141.09 GFlops as compared to ATI Radeon HD 6990 which gives peak

performance of 5099 GFlops which is more than 36x faster than its CPU counter-

part. Figure 2.5 shows the performance in �oating point operations per second of

GPUs by di�erent vendors like Nvidia and ATI against CPU over the years. Sec-

ondly with respect to speed evolution since the 1990s [14] the GPU performance

on average doubled every six months compare to its counterpart CPU whose per-

formance according to Moore's law approximately doubles every eighteen months.

This trend is expected to continue in case of GPU technology but on the other hand

over the last few years clock frequency of CPU is not getting faster. With respect

to power e�ciency the current GPUs over the last few years grows even faster than

the Moore's law and are most e�cient as compared to their counterpart CPUs, for

example the ATI's Radeon HD 5870 gives 14.47 GFLOPs/Watt compared to Intel's

Core i7-3960X Processor Extreme Edition which gives roughly 1.17 GFLOPs/Watt.

13

2 � GPU Computing

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2004 2005 2006 2007 2008 2009 2010 2011 2012

G
FL

O
PS

Years

GPU Vs CPU Performance

NVIDIA

-
-

- -

-
-

-

GeForce-GTX-590

GeForce-GTX-680

ATI

-

-

- Radeon-HD-6970

Radeon-HD-6990

CPU

- - - - - - - Corei7-3960X XeonE5-1660

Figure 2.5. GPU performance in �oating point operations per second
against CPU over the years

2.3.1.2 Architecture

Now the question arises that why GPUs are so fast as compared to CPU. The simple

answer to this question is the di�erence in the architecture of both GPU and CPU.

CPU is designed for di�erent kinds of input data especially in consideration with

the sequential data. Therefore on CPU a large number of transistors are involved in

performing the non computational tasks such as branch prediction, scheduling oper-

ations and data transfer etc which limits the number of transistors for computational

tasks. On the other hand in case of GPU, it is specially designed for applications

with high level of data parallelism and performs the closely de�ned tasks so there

is no communication between the data elements running on the separate processing

units of GPU. In this way with the same number of transistors GPU outperforms it

counterpart CPU by assigning more number of transistors for computation rather

than other purposes as in CPU. Figure shows the di�erence between the architecture

of both GPU and CPU.

14

2 � GPU Computing

CPU

DRAM

Cache

Control

GPU

DRAM

ALU ALU

ALU ALU

DRAM

ALU
Control

Cache

Figure 2.6. Architectural di�erence between CPU and GPU where CPU contains
a few high functionality cores while GPU contains 100's of basic cores

2.3.1.3 Memory Bandwidth

The performance of an application on GPU mainly depends on the memory band-

width. Infect the most important factor for the optimization of a code on GPUs

is the e�ective use of the memory bandwidth. GPU have di�erent memory hier-

archy and the location of your data on di�erent hierarchy of memory and the way

you access this data e�ects the overall performance of an application dramatically.

The detailed description of these di�erent memory hierarchies and the methods to

access the data from these memories are explained in detailed in the respective sec-

tions. Most of the recent GPUs have their own dedicated Global memory with high

bandwidth like for example ATI's Radeon HD 7970 have 288 GBps global memory

bandwidth. Figure 2.7 show the comparison of memory bandwidth between di�erent

high end CPUs and GPUs over the years. From �gure 2.7 we can see a huge di�er-

ence between the bandwidth of CPU and GPU and this gap is constantly increasing

over the years, this is made possible through large memory bus width on GPU.

2.3.1.4 Economical

The high computational power provided by the GPU is also inexpensive with re-

spect to CPU. Graphic Processing Units came out as an alternative for parallel

computing with respect to price and performance ratio compared to current shared

15

2 � GPU Computing

 0

 50

 100

 150

 200

 250

 300

 2004 2005 2006 2007 2008 2009 2010 2011 2012

B
an

dW
id

th
 G

B
/S

ec

Years

GPU Vs CPU Memory Bandwidth

NVIDIA

-

-

-

-
-

-

-

GeForce-GTX-590

GeForce-GTX-680

ATI

-

-

-

-

Radeon-HD-6990

Radeon-HD-7970

CPU

- -
-

-
- - -

Corei7-3960X XeonE5-1660

Figure 2.7. Memory Bandwidth GPU vs CPU over the years

and distributed memory systems. The average cost of typical GPU when it releases

is between four hundred to six hundred dollars. Comparing GFLOPS per dollar,

the Core i7 980X costs $999 and gets roughly 0.1 GFLOPS/$, whereas the HD

5970 costs $599 and gets 1.5 GFLOPS/$ at double precision and 7.7 GFLOPS/$

at single precision. This high performance at very low cast has also force the high

performance computing industry to the use GPUs as an accelerator. In the statistics

published for top 500 supercomputers on November 2011, thirty nine systems were

using GPUs as an accelerator which was increased from seventeen just in six months

and this trend is expected to continue more rapidly in the future.

Table 2.1 Summarizes the current state of the art of di�erent GPUs by Nvidia

and ATI and their counterpart CPU with respect to di�erent parameters such as

number of cores, memory bandwidth and price performance ratio. In all �elds GPUs

outclass its CPU counterparts by manifolds.

16

2 � GPU Computing

NVIDIA Cards ATI Cards Intel CPU

Speci�cation
GeForce

GTX 680

GeForce

GTX 590

Radeon

HD 7970

Radeon

HD 6990

Intel Xeon

E5-1660

Core i7

3960X

Release date
March 22,

2012

March 24,

2011

Jun 22,

2012

March 8,

2011

Quarter 1,

2012

Quater 1,

2011

Total Cores 1536 2*512 2048 2*1536 6 6

GFLOPS 3090.4 2488.3 4300 5099 149.16 141.09

Price in $ 499 699 499 699 1080 1059

GFLOPS/$ 6.19 3.56 8.62 7.3 0.13 0.133

Mem. Bandwidth (GB/s) 192.256 163.87 288 160 51.2 51.2

Table 2.1. Comparison of current state of the art of di�erent GPUs and CPUs
with respect to architecture, price performance ratio and memory bandwidth

2.3.1.5 Limitations

Despite the huge raw computational power of GPU for general purpose applications

and the support for new easy to use programming languages and interfaces it has

still many limitations As the GPU hardware is classi�ed as SIMT therefore it is

still limited to certain class of parallel applications where there is no or very little

data dependency. Secondly GPU programming is not just about learning a new

programming language, in order to fully utilize the GPUs parallel architecture the

programmer must understand the underlying hardware design and have to modify

problem accordingly. Moreover the latency in the data transfer between GPU and

CPU is another big issue. The applications which involve lot of data communication

between CPU and GPU even running on GPU do not show any improvement or even

get worst performance. Therefore it is the single most important consideration while

designing an algorithm for GPU. The support for double precision �oating point

accuracy is another issue on GPUs. Most of the current GPUs lack the support for

double precision while the others sacri�ces IEEE compliance. In scienti�c computing

accuracy of the results many applications is of primary importance. Therefore the

lack or limited support of double precision accuracy on GPUs limits its usage for

many scienti�c problems. As the GPUs technology is rapidly changing therefore

there is no well de�ned standard for GPU computing. In this regards by collective

e�ort of many di�erent companies like Nvidia, ATI, Intel etc., OpenCL came out as

remedy but is still in its developing stages.

17

2 � GPU Computing

But despite all these challenges, the potential bene�ts as discussed above and

the growth curve with respect to its counterpart CPUs it is hard to ignore to use it

for general purpose applications.

2.4 GPU Programming

In the recent years Graphic Processing Units (GPUs) emerged as a strong candidate

for parallel computing with respect to price performance ratio compared to current

shared and distributed memory systems. As a result of collective e�orts by indus-

try and academia, modular and specialized hardware in the form of sound cards or

graphic accelerators now can be used for general purpose applications. Earlier cred-

its to NVIDIA by adding programmable graphics pipeline to GPUs and AMD/ATI

introducing �oating point math capability, has led GPUs for general purpose com-

putation. Recent developments in dedicated parallel programming model and APIs

like NVIDIA-CUDA [15] and OpenCL speci�cation [16] by Khronos Group enabled

GPUs to o�oad CPU burden for fast numerical crunching working as co-processor

[17]. In this section I would brie�y explain both the CUDA and OpenCL and the

key di�erence between these two languages.

2.4.1 Open Computing Language (OpenCL)

In the recent years di�erent vendors provided GPU programming API's such as

CUDA by NVIDIA and ATI's FireStream . The GPU code developed using these

APIs is usually not portable among GPU devices developed by di�erent vendors.

Secondly the scalability of parallel processor on a single chip is also becoming a

great challenge due to many di�erent reasons like, space on chip, heat dissipation,

power consumption etc. Therefore in order to increase the parallel performance one

have to utilize all the available resources present on a system such as GPU, CPU

and other processing architecture present on a system. Open Computing Language

(OpenCL) by Khronos group seems to be remedy for these challenges.

OpenCL is a standard for general purpose parallel programming for heteroge-

neous processors. It allows the development of parallel code that takes advantage

of computing power of di�erent computing devices present on a system such as

18

2 � GPU Computing

CPU, GPU, cell broadband engine and other processing devices which conform to

its speci�cation[18, 19]. OpenCL is based on ISO C99 with some extensions for par-

allel programming and can support both task and data based parallel programming

models.

Figure 2.8. OpenCL Programming FrameWork (source opencl overview
by khronos group,2011)

The working of OpenCL can be explained by using the following models' hierar-

chy

� Platform Model

� Execution Model

� Memory Model

� Programming Model

2.4.1.1 Platform Model

The OpenCL environment is de�ned by the platform, where there can be di�erent

devices which are controlled from platform. These devices are managed by creating

the context where each device can have its own separate context or di�erent devices

19

2 � GPU Computing

may have one single context. Inside each context di�erent tasks are scheduled to

execute on OpenCL devices through command queue.

The OpenCL platform model consists of two parts that are host and device.

In OpenCL the processor which executes the main code is referred as host while

the processor which run the kernel written in OpenCL programming language is

referred as device. One or more devices which conform to OpenCL speci�cation are

connected to Host. The device is comprises of di�erent compute units like one of the

GPU device which I am using that is Nvidia GTX-260 has twenty seven compute

units and each compute unit have di�erent processing elements which are eight in

case of GTX-260. The application running on the host side controls the execution of

commands on device side. The di�erent components of OpenCL platform are shown

in �gure 2.9

HOST

COMPUTE DEVICE

Compute
Unit

PE

PE

PE

PE

PE

Compute
Unit

PE

PE

PE

PE

PE

Compute
Unit

PE

PE

PE

PE

PE

COMPUTE DEVICE

Compute
Unit

PE

PE

PE

PE

PE

Compute
Unit

PE

PE

PE

PE

PE

Compute
Unit

PE

PE

PE

PE

PE

Figure 2.9. OpenCL Platform Model (where PE is Processing Elements)

2.4.1.2 Execution Model

The way in which the host program is to be executed and executes the kernel on the

OpenCL device is de�ned by the execution model. The OpenCL program executes

in two parts

1. Kernel program

20

2 � GPU Computing

2. Host program

The kernel program, also called device program is a speci�c piece of code running

on device (s) and is executed concurrently by several threads and this is where

data/task parallelism takes place. The other, called a host program, runs entirely

on host side that launches kernels i.e. SIMT based programs and manages the

execution of kernel on device side.

The host program manages the whole problem size to be executed on device by

creating the index space. The indexed space which is in OpenCL called ND-Range

can be an N dimensional ND-Range, where N can be 1, 2 or 3. The host program

when submits the kernel to be executed on the device side with de�ned ND-Range;

the device executes the kernel for each point of ND-Range. Each instance of kernel

in the ND-Range is known as work item. Work items are divided into work groups.

A work item is the basic execution unit in the ND-Range.

Each work-item or thread within the NDRange is identi�ed by a global and local

addressing scheme, both of which are based on the dimensional sizes of NDRange and

its work-groups. Work items inside a work-group are addressed by local addressing

with scope only to current work-group. Work items belonging to di�erent work-

groups can have same local addressing but not global one. This scheme is outlined

in �gure 2.10 for a two dimensional problem. A single dimensional address can be

computed as

globalid = (workgroupid ∗ workgroupsize)

provided that it ful�lls the following condition

0 ≤ localid ≤ workgroupsize

and ND-Range can be calculated by the following expression

ND −Range = max(workgroupid) ∗ workgroupsize

ND −Range
max(workgroupid)

%2 = 0

here the workgroupsize and the ND-Range is de�ned by the programmer.

21

2 � GPU Computing

Figure 2.10. 2-D Addressing Scheme for Work Items or Threads

2.4.1.3 Memory Model

OpenCL memory model de�nes four di�erent types of memory that a kernel function

running on OpenCL device can access. The memory model also speci�es the access

to these memory regions. These four di�erent memory regions are:

Global Memory On OpenCL device global memory region is the largest memory

region and is accessible to all threads running on the device. It provides both

read and write access to all work items running on the OpenCL device. Among

four di�erent types of memory region the read / write access to global memory is

considered to be the slowest. In order to achieve the best performance the global

memory must be access in a coalesced way to exploit the full memory bandwidth.

The coalesced memory access would be discussed in detail in the later on sections.

Constant Memory Constant memory is the read only section of the global

memory for the kernel and the data on constant memory remains constant during the

kernel's execution. Constant memory region is considered to be good for broadcast

data.

Local Memory Local memory is generally an on chip memory and is faster than

global memory. As shown from its name it is local to work-group running on a

22

2 � GPU Computing

compute device as shown in �gure 2.11.

Private Memory The concept of private memory is similar to register on CPU.

It is the faster among all four memory region and is private to the work item running

on speci�c processing element. The work items running on di�erent compute units

have no access to private memory of other compute units.

HOST Memory

COMPUTE DEVICE

Compute Unit

Private Memory

Local
Memory

Processing
Element

Local
Memory

Local
Memory

Global/Constant memory

Compute Unit

Private Memory

Processing
Element

Compute Unit

Private Memory

Processing
Element

Figure 2.11. Hierarchy of OpenCL memory model

2.4.1.4 Programming Model

As OpenCL targets di�erent processing hardware which conform to its speci�cation

such as GPU and CPU, therefore it supports both data and task parallel program-

ming model. Where task parallel execution mode enables it to use CPU. On the

other hand as CUDA supports only GPUs therefore it is not available in CUDA.

23

2 � GPU Computing

Kernel function Host Program

Type of Memory Allocation Type Access Allocation Type Access

Global Memory No Allocation
Read / Write

access

Dynamic

Allocation

Read / Write

access

Constant Memory Static Allocation Read only access
Dynamic

Allocation

Read / Write

access

Local Memory Static Allocation
Read / Write

access

Dynamic

Allocation
No Access

Private Memory Static Allocation
Read / Write

access
No Allocation No Access

Table 2.2. Di�erent memory regions de�ned in OpenCL speci�cation and their
access types and allocation by the kernel function and the host program

Data Parallel Programming Model In data parallel programming model dif-

ferent threads follows same instruction on di�erent elements of data. In OpenCL

threads are organized in ND-Range and these threads are mapped to the data to

be processed. The data mapping to threads can be of two types that is strict or

relaxed data mapping. The strict data mapping follows the one to one mapping

of threads and the data elements to be processed, while on the other hand like in

OpenCL where there is relaxed version of data mapping in which one to one mapping

between the threads and the data elements is not required.

Along with relaxed data parallel programming model OpenCL data parallel pro-

gramming model is also hierarchical, which means at �rst level divide the data to

be processed among the threads or work items and at second level these work items

are organized into work groups to execute in parallel. The division of work items

into work-groups can be either implicit or explicit. In implicit division the program-

mer only speci�es the total number of work items and the OpenCL implementation

manages the division of these work items into work-groups. While in explicit par-

allel model both the number of work items and the size of work group is de�ned

by the programmer. The choice of hierarchical model depends on the nature of the

application.

Task Parallel Programming Model In task parallel programming model gen-

erally di�erent threads follows di�erent instructions on same or di�erent data ele-

ments. In OpenCL instructions are executed in the form of kernel function and in

24

2 � GPU Computing

task parallel model for each task single instance of kernel executes and parallelism

can be achieved by executing multiple kernels for di�erent instructions. In other

words we can say that each work group on a compute unit contains only one work

item.

Synchronization In OpenCL the synchronization among the parallel execution

of threads can be achieved at two di�erent levels

1. Work-group level

2. Command Queue level

Work-group level synchronization The synchronization among di�erent

work items belonging to same work group is achieved by using work group barrier.

The work group barrier ensures that all the work items in a work group would

not proceed further before each work item in a work group reached that point of

execution. On the other hand we can not perform synchronization among di�erent

work items belonging to di�erent work-groups in an OpenCL application.

Command-Queue level synchronization The second level of synchroniza-

tion in OpenCL is at command queue level, where we can use �command queue bar-

rier� or �clWaitForEvents� to perform synchronization among di�erent commands

belonging to a same command queue.

2.4.2 CUDA

CUDA (Compute Uni�ed Device Architecture) is a platform and programming

model for parallel computing on CUDA enabled devices by NVIDIA. As the CUDA

architecture is similar to the OpenCL architecture explained in section 2.4.1 [20]

that's why I would not go into its detailed architecture. Here in this section I would

only explain one of the some major di�erences between the OpenCL and the CUDA

that is Homogeneous vs Heterogeneous and the table 2.3 provides the di�erence

between the terminologies used in both platforms.

25

2 � GPU Computing

Homogeneous vs Heterogeneous The GPU is programmable using di�erent

GPU computing platforms such as NVIDIA's CUDA and OpenCL by Khronos

group. Where CUDA only targets GPU devices by Nvidia (homogeneous), OpenCL

targets di�erent devices such as GPUs by di�erent vendors such as Nvidia, ATI and

Intel etc, along with CPU and other processing hardware which conform to its spec-

i�cation (very heterogeneous). Despite the reason that CUDA is more developed

and matured than OpenCL, heterogeneous property of OpenCL make it superior

and more futuristic and is forcing the developers to choose OpenCL.

There is a famous quote by Senior Mathematician Je� Lait at Side E�ects Soft-

ware talk that is �Volume simulation like Houdini's PyroFX involves highly parallel

operations on large datasets: exactly what GPUs are best at. Our original tests were

performed in CUDA, but as we are not in the position to dictate the hardware used

by our customers, we wanted the �nal version to be as hardware-agnostic as possible.

OpenCL �tted this requirement.�

OpenCL Terminologies CUDA Equivalent

Device GPU

Compute Unit Multiprocessor

Processing

Element
Scalar Core

Global Memory Global Memory

Local Memory Shared Memory

Private Memory Local Memory

ND-Range Grid

Work-Group Block

Work-Item Thread

Table 2.3. Di�erent terminologies used in OpenCL and CUDA

26

Part II

Parallel Magnetostatic solver on

GPUs

Chapter 3

Parallel magnetostatic �eld

computation on GPUs using Open

Computing Language

Recent Graphic Processing Units (GPUs) have remarkable raw computing power,

which can be utilized for high computational challenging problems. This is the case

of micromagnetic simulations, where the study of magnetic behavior at very small

time and space scale demands a huge computation time. Here the calculation of

magnetostatic �eld with complexity of O (NlogN) using FFT algorithm for discrete

convolution is the main contribution towards the whole simulation time. In this

chapter I will present a magnetostatic �eld solver for micromagnetic simulators on

GPUs. For my implementation I am using OpenCL for GPU implementation, with

consideration that it is an open standard for parallel programming of heterogeneous

systems for cross platform. Secondly, I have developed a specialized OpenCL based

3D-FFT library for magnetostatic �eld calculation made it possible to fully exploit

the symmetries inherent in the �eld calculation and other optimizations speci�c

to GPU architecture. I have implemented this magnetostatic �eld solver for both

single and double precision �oating point accuracy on di�erent GPU architectures.

For the accuracy and performance evaluation I compared my results with the CPU-

based parallel OOMMF program developed at NIST and with an equivalent parallel

implementation on CPU. I �nd out a speedup of up to 94x for single and 45x

28

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

for double precision �oating point accuracy against my equivalent OpenMp based

parallel CPU implementation. Against OOMMF I am getting the speedup of up to

8.6x for single and 4.4x for double precision �oating point accuracy.

3.1 GPU Based Parallelization

Chip level parallelism is a driving force in recent advancements in microprocessor

architectures, as a result of which multi-core CPUs [3] are commonly available in

the market. But since most of today's personal computers are used for gaming

and entertainment purpose, the core processors were not su�cient. As a result,

modular and specialized hardware in the form of sound cards or graphic accelerators

are increasingly present in most personal computers. These devices provide better

experience as compared to traditional on-board mechanisms. Over the years, they

have improved with respect to sophistication and recently, graphics cards or graphics

processing units (GPU) in addition to high-end gaming can also be used as a co-

processor to the CPU for general purpose computing.

3.1.1 Magnetostatic �eld computation on GPUs

The emergence of GPUs for general purpose computing, opened the gates for re-

searchers to use GPUs for wide range of computational challenging problems such

as micromagnetic simulations. Applications involving massive data-parallelism are

ideally �tted to the GPU architecture. Since micromagnetic codes in general are

suitable for parallel programming as it can be easily divided in to independent parts

which can run in parallel [21], therefore current trend for micromagnetic code con-

cerns shifting the computationally intensive parts to GPUs. The magnetostatic �eld

computation is the most time and memory consuming part of the simulation [22, 23]

and is iteratively obtained for each time interval. The magnetostatic �eld at a given

point is calculated by taking considerations from the complete magnetization vector

�eld, which involves interactions performed over a long range. This results in an

asymptotic complexity of O (n2) where n is the number of �eld points. For regular

grids, the calculations correspond to a convolution operation, and thus by shifting

the convolution to be performed in the frequency domain, the complexity can be

29

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

reduced to O (n log n). This is the standard approach taken by most current sim-

ulators, which make use of various general purpose FFT libraries to perform the

transformations. The transformation process is the main contributor to the �eld

calculation time.

In this chapter I would discuss the highly optimized OpenCL based magnetostatic

�eld solver on GPU. Hardware vendors usually provide a set of high-performance

general purpose FFT routines optimized for their hardware like clAmdFft by AMD,

clFFT by Apple, and cu�t by Nvidia and their interfaces to FFT routines are also

di�erent. Therefore in my implementation for performing the transforms, I have

developed my own specialized OpenCL based 3-D FFT library for magnetostatic

�eld solvers on GPUs. The OpenCL based 3-D FFT library for GPUs provides us

the freedom to fully exploit the symmetric and zero padded input data, optimizations

speci�c to GPU hardware and also provides a common interface for di�erent vendors'

GPUs.

Table-1 reports some architecture details of GPUs and Intel Core2 Quad system

that I have used for my implementation of magnetostatic �eld solver. The devices

include a high-end graphics card like Quadro 6000 comprising of 14 stream processors

with 32 cores each, and NVIDIA GTX 260 with 27 processors having 8 cores each

[24].

Architecture Details NVIDIA Intel

Quadro 6000 GTX 260 Core2 Quad Q8400

Total Cores 448 216 4

Micro Processors 14 27 1

Clock Rate (MHz) 574 576 2660

GFLOPS 1030.4 874.8 42.56

Mem. Bandwidth (GB/s) 144 91.36 -

Table 3.1. Architecture details of GPUs and CPU Used

30

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

3.2 Micromagnetic Model

3.2.1 Micromagnetics

Micromagnetism [25, 26, 27] is a generic term used to study the fundamental magne-

tization processes (the interactions between the magnetic moments of ferromagnetic

body) on microscopic space and time scale[28]. In general these interactions under

di�erent conditions govern the behavior of a magnetic body.

3.2.2 Continuum hypothesis

Let us consider a small volume dV r on a body having magnetic region Ω where rεΩ

and it represents the position vector in the volume dV r. The region dV r contains

N number of magnetic moments µj where j= 1,N , while dV r is small enough

that the average magnetic moment varies smoothly. The product of Magnetization

vector �eld M(r) and the elementary volume dV r gives the net magnetic moment

of elementary volume dV r, M(r) gives the average of total magnetic moments in

the small volume dV r in a ferromagnetic body. According to continuum hypothesis

we can see that

M(r) =

∑N
j µj

dVr
(3.1)

Moreover, magnetization is also a function of time t,[29].

M = M(r,t) (3.2)

31

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Long Range

Short Range

dV-1 dV-2

dV-1 dV-2

Figure 3.1. Short and long range magnetic interactions

3.2.3 Micromagnetic free energy

The interactions between the magnetic moments in a ferromagnetic body are man-

aged by di�erent competing short and long range energy terms among them the

four important contributions to the Landau free energy of a ferromagnetic body are

the exchange energy, the magneto crystalline anisotropy energy, the magnetostatic

energy, and the Zeeman energy in an external �eld[30].

According to second law of thermodynamics the change in the Gibs free energy

of a ferromagnetic body must hold the following inequality

4E = Efinal − Einitial ≤ 0 (3.3)

Where Einitial and Efinal are the initial and �nal Gibs free energy in a ferro-

magnetic body respectively. Equation 3.3 shows that Gibbs free energy in a ferro-

magnetic body tends to be decrease towards zero and is minimum at equilibrium

condition. In a ferromagnetic body the Gibbs free energy is important to determine

the behavior of magnetization vector M for example as discuss above at equilibrium

state in a ferromagnetic body the Gibbs free energy of the system is at its minimum.

As shown in �gure 3.1 we can categorize the magnetic interaction between the

magnetic moments in to two main groups.

32

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

� Short range (maxwellian) interactions between magnetic moments.

� Long range (maxwellian) interactions between magnetic moments.

Short range interactions between magnetic moments

Exchange and Anisotropy interactions come in the category of short term (maxwellian)

interactions. The energy of the short range interaction depends only on the electron

spins of neighboring elements [31]. The compute complexity of all the short range

interactions is O(N) therefore their computation is not a big problem with respect

to both time and memory consumption.

Long range interactions between magnetic moments

On the other end, long range components are calculated for each element of interest

against all points in the discretized magnetic body. These are essentially convolu-

tion operations corresponding to a complexity of O(N2) and is the main contribution

towards the total simulation time. By shifting the convolution to be performed in

frequency domain, the complexity can be reduced to O(NlogN). The main contri-

bution here is the forward and inverse multidimensional Fourier transforms.

3.2.4 The Dynamic Landau-Lifshitz-Gilbert Equation

Classical iterative methods [32, 33] can be applied to solve numerically the Brown's

equations [26] which are used to �nd the equilibrium con�guration of the magne-

tization within the body. But the issue in solving these equation using classical

iterative methods is that they do not re�ect the actual evolution of magnetization

during time. Hence in order to �nd that how this equilibrium reaches over time we

require new equation which describes the motion of the magnetization over time.

The dynamic model was �rst given by landau and Lifshitz [25] and later on modi-

�ed by Gilbert [34, 35]. The LLG (Landau-Lishitz-Gilbert) equation is the dynamic

model for the precessional motion of the magnetization M which is exposed to an

e�ective �eld Heff over time.

when a magnetic �eld
−→
H is applied to magnetic material it exerts a on magnetic

moment
−→
M , which is equal to

33

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

M =
−→
M × µ0

−→
H (3.4)

In a non equilibrium condition that is when (M /= 0) the magnetic moment
−→
M

has a gyroscopic reaction which is described by the equation

∂
−→
M

∂t
= −γµ0(

−→
M ×−→H) (3.5)

where, γ represents the gyromagnetic factor, its absolute value is = 2.21 ×
105mA−1s−1of the ratio

γ =
g | e |
2mec

(3.6)

where g is the Lande splitting factor whose value is w 2, e is the electron charge

whose value is e = −1 .6 × 10−19C ,me = 9 .1 × 10−31kg is the electron mass and

c is the speed of light whose value is c = 3 × 10 8m�s .

Equation 3.5 describes the precession of the magnetization
−→
M around the ef-

fective �eld
−→
H as shown in �gure 3.2. If the external applied �eld is su�ciently

large, the magnetization tends to align parallel to the �eld regardless of the initial

magnetic state and with the passage of time saturation reaches and the precession

stops as
−−→
Heffand

−→
M becomes parallel and

−→
M ×−→H = 0 (3.7)

34

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

M

Heff

-M * Heff

(a)

M

Heff

-M * Heff

(b)

Precession
damping

Figure 3.2. (a)Undamped gyromagnetic precession, (b) Damped gyro-
magnetic precession

From equation 3.5 we cannot deduce the change in the slope of magnetization

relative to the �eld. Hence a Rayleigh dissipative term is introduced in a phe-

nomenological way.

∂
−→
M

∂t
= −γ(

−→
M × µ0

−→
H) +

α

Ms

(
−→
M × ∂

−→
M

∂t
) (3.8)

Equation 3.8 is known as the Gilbert equation, where α is the damping coe�cient

which shows the rate of energy loss, It comprising all the energy loss and its value

depends on the material. By applying the limit of low damping on Gilbert equation

3.8 as proposed by Landau and Lifshitz [33] we get Landau and Lifshitz in Gilbert

form

(1 + α2)
∂
−→
M

∂t
= −γ(

−→
M × µ0

−→
H) +

αγ

Ms

[
−→
M × (

−→
M × µ0

−→
H)] (3.9)

Equation 3.9 is valid for external �eld
−→
H , and can be generalized in case of the

local �eld Heff in equation 3.12, so the equation 3.9 reduced to

∂−→m
∂t

= −(−→m ×−−→Heff)− α[−→m × (−→m ×−−→Heff)] (3.10)

35

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Similarly (LLG) equation 3.8 would also be reduced to equation 3.11 which is

normalized form of LLG equation.

∂−→m
∂t

= −−→m ×−−→Heff + α−→m × ∂−→m
∂t

(3.11)

The damping coe�cient α, describes the overall decrease in the total energy

of the ferromagnetic system through various relaxation mechanisms. In case of

ferromagnetic materials α has no constant value and may depend on non-linear

magnetization. Usually, in calculations, simplifying assumptions �x the value of

α between 0.1 and 1. A value of α close to critical damping contributes to the

increase in computing speed. While when the problem is reduced to micromagnetic

equilibrium states the term drift is neglected and we �nd the approximation of

in�nite damping. This approximation has been implemented as an algorithm for

energy minimization [33, 36].

3.2.5 E�ective Magnetic Fields

The change of the magnetization is due to the e�ective magnetic �eld[37] Heff which

can have several contribution as shown in equation 3.12 .

Heff = Hexc + Hanis + Hext + Hm (3.12)

In equation 3.12 all short range components can be calculated using interactions

between direct neighbors to a point of interest, resulting in complexity of O(N).

On the other end, long range components are calculated for each element of interest

against all points in the grid. These are essentially convolution operations corre-

sponding to a complexity of O(N2) and is the main contribution towards the total

simulation time.

In micromagnetic simulation, the magnetostatic �eld Hm is typically a long-

range interaction because its computation at a given point involves contribution of

the whole magnetization vector �eld and it holds the following equation.

36

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Hm(r) =
1

4π

ˆ
V

(r − r′)
|r − r′|3 .(−∇.M(r′))dVr′ +

1

4π

ˆ
∂V

(r − r′)
|r − r′|3 .[M(r′).n′(r′)]dSr′

(3.13)

Where the integration domain V corresponds to the ferromagnetic body and ∂V

is the body surface. After spatial discretization, equation 3.13 can be numerically

computed and the �eld at each element/cell is evaluated as a function of the N

point/cell magnetization. This results in O(N2) operations.

Equation 3.13 involves a convolution operations and by shifting the convolution

to be performed in frequency domain, the complexity can be reduced to O(NlogN).

The main contribution here is the forward and inverse multidimensional Fourier

transforms.

In micromagnetic simulations, very �ne time and space dicretization, makes it

very large numerical problem, but fortunately micromagnetic codes in general are

suitable for parallel programming as it can be easily divided in to independent parts

which can run in parallel[21]. GPUs provide the best solution for such problems

with respect to price performance ratio.

The study and observation of magnetization behavior at sub-nanosecond time-

scales is crucial to a number of areas such as magnetic sensors, non volatile storage

devices and magnetic nanowires etc. Since micromagnetic codes in general are suit-

able for parallel programming as it can be easily divided into independent parts

which can run in parallel, therefore current trend for micromagnetic code concerns

shifting the computationally intensive parts like the magnetostatic �eld calculation

as discussed above to GPUs.

All the current micromagnetic solvers on GPU are CUDA based and uses the

general-purpose FFT library (cu�t) for the computation of magnetostatic �eld. This

limits the current GPU based magnetostatic solver

1. To NVIDIA based hardware only

2. By the use of general-purpose FFT library they can not fully exploit the zero

padded input data with out transposition and symmetries inherent in the �eld

calculation

3. On single GPU the input problem size is also an issue.

37

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

My PhD work mainly focuses on the development of highly parallel magnetostatic

�eld solver for micromagnetic simulators on GPUs. I am using OpenCL for GPU

implementation, with consideration that it is an open standard for parallel pro-

gramming of heterogeneous systems for cross platform. It targets di�erent devices

such as GPUs by di�erent vendors such as Nvidia, ATI and Intel etc, along with

CPU and other processing hardware which conform to its speci�cation. The magne-

tostatic �eld calculation is dominated by the multidimensional FFTs (Fast Fourier

Transform) computation. Therefore I have developed the specialized OpenCL based

3D-FFT library for magnetostatic �eld calculation which made it possible to fully

exploit the zero padded input data with out transposition and symmetries inher-

ent in the �eld calculation. As a result the complexity of overall system reduced

signi�cantly compared to current GPU based solvers. Moreover it also provides a

common interface for di�erent vendors' GPUs. In order to fully utilize the GPUs

parallel architecture my solver handles many hardware speci�c technicalities such

as coalesced memory access, data transfer overhead between GPU and CPU, GPU

global memory utilization, arithmetic computation, batch execution etc.

In the second step to further increase the level of parallelism and performance,

I have developed a parallel magnetostatic �eld solver on multiple GPUs. Utilizing

multiple GPUs avoids dealing with many of the limitations of GPUs (e.g., on-chip

memory resources) by exploiting the combined resources of multiple on board GPUs.

3.3 Magnetostatic Field Computation

The concept that how the magnetic moments in a magnetic body interacts over a

long distance comes from the magnetostatic interactions. The magnetic �eld at a

given point P1 does not depends only on magnetization vector �eld at that point,

rather it depends on a all the magnetization vector �eld distribution in a magnetic

body. The property of magnetic material to lift the object against the force of

gravity is due to magnetostatic energy [38]. The concept of magnetostatic �eld Hm

can be explained with the help of Maxwellian's equations for magnetized media.

∇.Hm = −∇.M inside V olume

38

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

∇.Hm = 0 outside V olume (3.14)

∇×H = 0

and at the body discontinuity surface i.e.

n.[Hm]∂V = n.M (3.15)

n.[Hm]∂V = 0

In equation 3.14 and equation 3.15 n is the outward normal to the boundary ∂V

of the magnetic body, and [Hm]∂V is the jump of the vector �eld Hmover the ∂V .

Maxwellian's equations for magnetized media 3.14 and 3.15 shows the relation-

ship between magnetostatic �eld and the magnetization in a ferromagnetic body

which we can summarize as follow.

From these equations one can deduce that the magnetostatic �eld at any given

point �r� in a ferromagnetic body depends on the magnetization �M� of all the points

in a discretized ferromagnetic body. Thus the magnetostatic �eld is a consequence

of long range maxwellian interaction in a magnetic body. From the point of view of

computational complexity, let us consider a magnetic body discretized into N cells

then the magnetostatic �eld computation for N cells would require N2 operations.

While all other terms in e�ective magnetic �eld as discussed above requires N oper-

ations. Therefore in micromagnetic simulations the computation of magnetostatic

�eld due to its complexity is the most time consuming part of the simulation. Sec-

ondly with respect to memory consumption, magnetostatic �eld computation is also

a huge memory demanding problem.

Secondly maxwellian equation 3.14 and 3.15 suggest that magnetostatic �eld

39

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

computation is an open boundary problem. This means that for calculating the

magnetostatic �eld at a given point depends on the all the points in the whole

space, which is obviously not possible. Therefore quoting Aquino [29] �Nu-

merical methods consistent with the continuum model have to be used in numerical

simulations�, like the FFT discrete convolution method which I am using for the

magnetostatic �eld computation on GPUs.

3.4 FFT discrete convolution method

When we talk about solving the partial di�erential equations we come across two

well know methods that are

1. Finite Di�erences Method

2. Finite Element Method

The main di�erence between these two method is that �nite di�erence method is

mainly used for regular shapes or structured meshes where the observing sample can

be discretized into equal cuboid cells, but by using di�erent techniques it can also

be used for irregular shapes as well. While on the other hand �nite element method

can be used for both structured and un-structured meshes.

FFT discrete convolution method is used in the case of regular meshes approach,

based on �nite di�erence method. Regarding the magnetization in each discretized

cell, in literature there exist two approaches. In the �rst approach the magnetization

within each cell is considered to be constant, this approach is referred as constant

volume charges. While in the second approach the magnetization M within each

discretized cell of ferromagnetic body is assumed to be uniform which means.

∇.M(r′) = 0 (3.16)

McMichael in [39] gives the comparison of these two approaches.

Now in order to explain the FFT discrete convolution method lets start from the

integral form of magnetostatic �eld as discussed by H. Neil Bertram in [40] that is

40

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Hm(r) =
1

4π

ˆ
V

(r − r′)
|r − r′|3 .(−∇.M(r′))dVr′ +

1

4π

ˆ
∂V

(r − r′)
|r − r′|3 .[M(r′).n′(r′)]dSr′

(3.17)

In equation 3.17 r′ is the source point in a discretized magnetic body while the r

is the observation point. The magnetostatic �eld Hm(r) is directed from source to

observation point in a discretized magnetic body with magnitude (−∇.M(r′))dVr′for

the volume and [M(r′).n′(r′)]dSr′for the surface of magnetic body divided by the

square of distance.

Where in the equation 3.17 the �rst part calculates the integral over the volume

V of magnetic body while the second part calculates the integral over the surface

∂V . The n′ is the outward normal to the surface ∂V of the magnetic body at the

source point r′ hence the magnetic surface charge density is

M(r′).n′(r′)] (3.18)

As discussed above there exist two approaches for magnetostatic �eld calculation.

In the �rst approach the magnetization within each cell is considered to be constant,

this approach is referred as constant volume charges. While in the second approach

the magnetization M within each discretized cell of ferromagnetic body is assumed

to be uniform which means ∇.M(r′) = 0, therefore the magnetostatic �eld at each

point of discretized magnetic body can be evaluated due to surface charge densities

of all other cells in a discretized magnetic body.

For a discretized magnetic body the equation 3.17 remains unchanged [29]. As

shown in �gure 3.3 for a discretized ferromagnetic body sample let us consider that

total number of discretized cells in a ferromagnetic body are N with with number

of cell nxalong X direction, nyalong Y direction and nzalong Z direction in the

Cartesian coordinates (i.e.N = nx × ny × nz). The combination of three indexes

i.j, k uniquely represents each cell in a discretized magnetic body where

41

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

i = (0,1,2.......nx − 1) and j = (0,1,2.......ny − 1) and k = (0,1,2.......nz − 1)(3.19)

now with these assumptions the expression for a magnetostatic �eldHm for a cell

(i, j, k) in a discretized magnetic body can be represented as a discrete convolution

like

Hm(i, j, k) =
nx−1∑
i′=0

ny−1∑
j′=0

nz−1∑
k′=0

= N(i−i′,j−j′,k−k′) .M(i′,j′,k′) (3.20)

(i,j,k)

Z

X

Y

nx

ny

nz

Figure 3.3. Ferromagnetic body discretization alongX,Y andZ direction with
number of cell nxalong X direction, nyalong Y direction and nzalong Z direc-
tion in the Cartesian coordinates

In equation 3.3 N(i−i′,j−j′,k−k′) is a demagnetization tensor. It depends on the

shape or geometry of magnetic body and the relative position of two cells n(i,j,k) and

n(i′,j′,k′)in a whole discretized magnetic body as shown in �gure 3.4. In literature

di�erent methods have been proposed for the calculation of demagnetization tensor

[41, 42, 43] but the most accurate and widely used method is given by Newell [42]. In

Cartesian coordinates (X, Y, Z) the demagnetization tensor is represented by 3× 3

matrix for three dimensional discretized magnetic body.

42

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

N(i−i′,j−j′,k−k′) =

 Nxx′ Nxy′ Nxz′

Nyx′ Nyy′ Nyz′

Nzx′ Nzy′ Nzz′

 (3.21)

In expression 3.21 each component in the demagnetization tensor matrix is cal-

culated by the interaction between two pairs of rectangular surfaces one from each

source point and the observation point, which are perpendicular to the considered

direction of the component in Cartesian coordinates [42]. For example if we want

to calculate the Nxx′ component, the surfaces which are perpendicular to x and x′

in both source point and the observation point are the yz surfaces. Therefore the

computation of Nxx′component would only involve the interaction between the yz

surfaces of the source point and the observation point. Similarly the computation

of Nxy′component would involve the yz surfaces in the observation point and xz

surfaces in the source point.

Z
X

Y

N(i-
i/ ,j-

j/ ,k-
k
/) Cell [n(i,j,k)]

Cell [n(i/,j/,k/)]

Source Point

Observation Point

Figure 3.4. Demagnetization Tensor N(i−i′,j−j′,k−k′)

3.4.1 Compute Complexity

Based on equation 3.20 if we want to compute the magnetostatic �eld for each point

of a discretized magnetic body it would require a compute complexity of O(N2).

The O(N2) is required because each element in magnetostatic computation requires

a contribution from N (where N = nx × ny × nz as shown in �gure 3.3) cells which

43

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

is the total number of cells in a discretized magnetic body. The performance of

micromagnetic solver heavily depends on the method used to calculate the demag-

netization �eld Hm given in equation 3.20. It is a discrete convolution problem and

can be solved using discrete fourier transform by implementing the e�cient and well

established Fast Fourier Transform (FFT) algorithm.

Therefore in my implementation I used Fast Fourier Transform based method to

solve the discrete convolution equation. By shifting the convolution to be performed

in frequency domain, the complexity can be reduced from O(N2) to O(N logN)

where N is the number of simulation cells.

The expanded form of discrete convolution theorem in equation 3.20 is

H̃x(i,j,k) = Ñxx′(i,j,k)M̃x(i,j,k) + Ñxy′(i,j,k)M̃y(i,j,k) + Ñxz′(i,j,k)M̃z(i,j,k)

H̃y(i,j,k) = Ñyx′(i,j,k)M̃x(i,j,k) + Ñyy′(i,j,k)M̃y(i,j,k) + Ñyz′(i,j,k)M̃z(i,j,k)

H̃z(i,j,k) = Ñzx′(i,j,k)M̃x(i,j,k) + Ñzy′(i,j,k)M̃y(i,j,k) + Ñzz′(i,j,k)M̃z(i,j,k) (3.22)

In above equation, the FFT quantities are with tilde sign. The steps to calculate

the demagnetizing �eld Hmcan be summarized as follows:

� First of all, the FFTs of six instead of nine (due to symmetries e.g Nx,y =

Ny,x) demagnetizing tensors instead of nine given in equation 3.21 have to be

performed and stored in the memory.

� For each computation of the demagnetizing �eld, six FFTs has to be computed,

three related to magnetization vectors, (Mvec) namely Mx, My and Mz and

three inverse FFTs of the (Hvec) components Hx , Hy and Hz and these have

to be computed for each time step.

3.5 Current state of the art of micromagnetic solvers

In this section I would discuss the current state of the art of micromagnetic solvers

mainly focusing on GPUs based solvers. In micromagnetic simulations, the mag-

netostatic �eld calculation is the most time and memory consuming part of the

simulation [22, 23] and is computed many times at each time step interval. Hence

44

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

even with the fast computing methods for magnetostatic �eld calculation, such as

FFT are limited in their performance when implemented on single CPU or even on

multiple CPUs only for very large input problem sizes. Hence the parallel techniques

are required in order to perform the large micromagnetic simulations. Therefore all

of the current micromagnetic solvers in one or other way uses di�erent parallel ar-

chitectures discussed in section 2.2 to design e�cient parallel algorithms as shown

in Table 3.2 [44].

3.5.1 GPU based solvers

Recently, di�erent groups developed micromagnetic simulators on graphics hardware

and shown a substantial speedup compared to CPU based simulators such as [45,

46, 47, 48].

Mu-Max [45] is CUDA based general purpose micromagnetic solver and it works

only for single precision �oating point. It uses CUDA based cu�t library for the

computation of magnetostatic �eld. It shows a speedup of over a factor 100x com-

pared to CPU-based OOMMF running on a single core CPU. In the case of Mu-Max

the high speedup is achieved at the cost of small micromagnetic input problem sizes.

The global memory on GPU is a scarce resource. Small problem sizes which can

�t on a whole in to global memory of GPU mitigates the expensive intermediate

Table 3.2. Classi�cation of current Micromagnetic Solvers based on nu-
merical methods, Architectures (Shared Memory/ Distributed Memory/
GPU) and Language/ API

Name Numerical Method Architecture Language/API

Mu-Max [45] Finite Di�erence GPU CUDA/cu�t

FastMag [46] Finite Element GPU CUDA/cu�t

GPMagnet[47] Finite Di�erence GPU CUDA/cu�t

TetraMag[[48] Finite Element GPU CUDA

OOMMF[23] Finite Di�erence SM C++/TCL

Nmag [49] Finite Element DM Python/MPI

Magpar [50] Finite Element DM C++/MPI

M3[51] Finite Di�erence SM Matlab

45

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

data transfer cost between GPU and CPU. Secondly it also reduces the overhead of

multiple invocation of the kernel side code on GPU. As a result shows a tremendous

performance by compromising on input problem size. On the other hand in most of

the cases like in micromagnetic simulation, when the problem size becomes so large

not to accommodate as a whole on GPU memory, we have to perform expensive (

with respect to time) data transfer between CPU and GPU and kernel calls. While

my implementation can handle very large problem sizes by dividing the whole prob-

lem in to independent parts so that at a time the whole global memory of GPU is

available only to that part. I am using di�erent optimization strategies as discussed

in section 3.7 to mitigate the overhead of CPU to GPU data transfer time.

The FastMag [46] (Fast Micromagnetic simulator) is �nite element based general

purpose micromagnetic solver developed at center for Magnetic Recording research

and Department of electrical and computer engineering, university of California,

San Diego. It uses nonuniform grid interpolation method (NGIM) to compute the

magnetostatic �eld with complexity O(N). It shows a GPU to CPU speedup of two

order of magnitude.

GPMagnet [47] is also general purpose �nite di�erence based GPU micromag-

netic solver. It also uses CUDA based cu�t library and have shown a speedup of

two orders of magnitude with respect to its equivalent serial implementation.

TetraMag [48] like FastMag is �nite element micromagnetic simulation tool for

GPUs. It works with double precision �oating point accuracy and is based on

CUDA architecture. It demonstrates a speedup factor of up to four on single GPU

compared to equivalent CPU implementation using eight cores. All these above

mentioned GPU based micromagnetic solvers are heavily dependent on the CUDA

based cu�t library which limits the usage of these codes to NVIDIA based hardware

only.

3.5.2 Limitations of current solvers

On the other hand I have developed OpenCL based magnetostatic �eld solver, where

OpenCL works across heterogeneous platforms consisting of CPUs, GPUs, and other

processors which conform to its speci�cation[18, 19]. Where CUDA speci�cally

targets GPU devices only. Secondly I have developed my own OpenCL based 3-D

46

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

FFT library which gives the freedom to deeply manipulate the transform according

to the requirements to handle the speci�c properties of input data, which cannot be

done with general purpose FFT library such as cu�t library. At the time of writing

and in best of my knowledge it is the �rst OpenCL based magnetostatic �eld solver.

3.6 OpenCL based GPU implementation

3.6.1 Symmetry Properties of Components

Since the FFT is well suited for periodic input, the initial data structure is modi�ed

to include zero-padding to avoid the e�ect of circular convolution. In fact zero

padding (Figure3.5) is also necessary to get the correct out put in real space after

performing the inverse FFT. With zero padding the input size to micromagnetic

solver increases eight times, as if you have a initial grid dimensions as Nx×Ny×Nz,

after zero padding it would become 2Nx× 2Ny × 2Nz, therefore at the end the each

FFT size would be double the initial size and the total number of FFTs would be

eight times the initial value.

2Ny
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Ny 0 0 0 0 0 0 0 0
M M M M 0 0 0 0
M M M M 0 0 0 0
M M M M 0 0 0 0
M M M M 0 0 0 0

0 Nx 2Nx

Figure 3.5. 2-D magnetization Vector Zero Padding

There are present a few symmetries inside both the demagnetizing tensor and

the magnetization vector. Since the input data is real, conjugate symmetries are

present in the output. In addition, the demagnetizing tensors are either odd/even

symmetric. Details of these are discussed in each section. These are listed in Table-

3.3.

47

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Input x (n) Output Properties X (n)

real X∗ (−n)
real & even X (−n) pure real
real & odd X∗ (−n)
imag & even X (−n) pure imag
imag & odd −X (−n)

Table 3.3. Symmetry Properties of Fourier Transform

3.6.1.1 Demagnetizing Tensor

The tensor components outlined in Eq-3.21 consist of either odd or even symme-

tries. The diagonal consisting of the xx, yy, and zz contain pure even symmetries,

whereas the non-diagonals contain mixed symmetries. For the diagonals, e.g., the xx

component, based on the list of symmetry properties listed in Table-3.3, we obtain

the following after each transform:

X (I, j, k) = X (−I, j, k) Real + Even

Y (I, J, k) = Y (−I,−J, k) Real + Even

Z (I, J,K) = Z (−I,−J,−K) Real + Even

For the non-diagonals, e.g., the xy component, containing odd symmetries along

x and y but even in z, we obtain the following:

X (I, j, k) = X∗ (−I, j, k) Imag +Odd

Y (I, J, k) = −Y (−I,−J, k) Real +Odd

Z (I, J,K) = Z∗ (−I,−J,−K) Real + Even

Following the same approach for other components gives the result that the trans-

form of the demag tensor is purely real, and contains the same odd/even symmetries

as that of its input.

3.6.1.2 Magnetization and magnetostatic �eld

The magnetization vector contains the zero-padded magnetization vector (Fig-3.5).

Since the initial data is real, we obtain the following symmetries in the output:

48

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

X (I, j, k) = X∗ (−I, j, k) in Strip

Y (I, J, k) = Y ∗ (−I,−J, k) in P lane

Z (I, J,K) = Z∗ (−I,−J,−K) in V olume

The symmetries are translated to the magnetostatic �eld as well. Section 3.7de-

scribes in detail the complexities and the savings in each axis transform based on

zero padded input data and the symmetries inside the demagnetizing tensor, mag-

netostatic �eld and the magnetization vector.

3.7 Implementation Approaches

3.7.1 GPU-Optimized Implementation

Over the past few years, graphic cards have started to be used for general purpose

computing in addition to computer graphics. The massive parallelism o�ered by

these cards are exploited by applications involving large number of calculations.

Scienti�c applications are amongst the greatest bene�ciaries.

The GPU itself is a many-core processor where dozens of streaming processors

with hundreds of cores support thousands of threads [52], all of which run con-

currently running concurrently on single chip. The core hierarchy is depicted in

Figure-3.6, showing a medium-range NVIDIA based graphics card. Thread manage-

ment at such hardware level requires context-switching time close to null otherwise

penalizing performance. Since the GPU hardware can be classi�ed as SIMT (single-

instruction, multiple threads), therefore general purpose CPU-bound applications

which have signi�cant data in-dependency are well suited for such devices. Per-

formance evaluation with respect to GFLOPS shows that GPUs outclass its CPU

counterparts by manifolds. A high-end Core-I7 Desktop processor (3.46 GHz) can

deliver a peak of 55.36 GFlops as compared to Nvidia Quadro 6000 which gives peak

performance of 1030 GFlops. Table-1 reports some architecture details of GPUs and

Intel Core2 system that we have used for our implementation of magnetostatic �eld

solver. The devices include a high-end graphics card like Quadro 6000 comprising of

14 stream processors with 32 cores each, and NVIDIA GTX 260 with 27 processors

having 8 cores each [24].

49

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

COMPUTE DEVICE (GPU)

Global Memory

PMPECompute
Unit -1
LOCAL

MEMORY PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPECompute
Unit -27

LOCAL
MEMORY PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

PMPE

HOST (CPU)

(RAM) Host Memory

PCI Express Bus

Figure 3.6. NVIDIA GTX-260 GPU Architecture

3.7.1.1 Minimizing Data Transfer Between CPU and GPU

One of the major concerns for the performance of an application on GPU is the

data transfer between host (CPU) and device (GPU). Most of the recent GPUs have

their own dedicated Global memory with high bandwidth like for example Nvidia

GTX 280 have 141 GBps global memory bandwidth while on the other hand the

communication between the GPU and CPU takes place on PCI express bus which

has normally a bandwidth typically a few GBps a sketch of general GPU memory

hierarchy is depicted in �gure3.6. In our magnetostatic �eld solver on GPU we

specially considered this constraint. We transfer all the data of each component of

magnetization matrices and the inverse FFTs given in equation 3.22 at the beginning

of simulation to global memory of GPU and perform 3-D FFT while keeping the

intermediate results of each 1-D transform on GPU global memory and from CPU

side we only generates the instruction to control the execution sequence, and �nally

copy backs the results at the end of each 3-D FFT.

As discussed in 3.4.1 For each computation of the demagnetizing �eld, six FFTs

50

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

has to be computed, three related to magnetization matrices, namely Mx, My and

Mz and three inverse FFTs of the components Hm,x , Hm,y and Hm,z and these

have to be computed for each time step. Therefore we would mainly focus on the

optimization of these components. While the six demagnetization tensor values

given in equation 3.21 have to be calculated only once in the simulation and stored

in the memory.

In order to avoid the end e�ect of circular convolution the initial data structure

is modi�ed to include zero padding, as a result the input size of a problem to

micromagnetic solver increase by a factor of eight, for simplicity zero padding of 2-

D grid is shown in �gure3.5. It is completely useless to transfer the zero padded data.

In our implementation we do this zero padding at GPU side before performing the

FFTs on magnetization vector. Secondly the input data in case of magnetization

vector is real. Therefore the input imaginary values are always zero. For these

imaginary values we just assign a memory location on GPU side and initialize it

with zero values. As a result we reduces the input data transfer to GPU in case of

magnetization vector by half. On the other hand in the inverse FFTs of Hm Vectors

the data transfer is reduced by half by considering the complex conjugate symmetries

present in the data. Our results show the signi�cance of this data transfer overhead

in the overall performance of the simulation.

3.7.1.2 Coalesced Memory Access

The coalesced memory access is the most important consideration for performance

while programming on GPUs. The NVIDIA Quadro 6000, built on innovative

NVIDIA fermi architecture, supports 14 microprocessors having 32 cores each, thus

resulting into 448 cores in total, arranged as array of streaming multi-processors.

This means that on Quadro 6000 GPU can run 448 concurrent threads. In order to

exploit this huge parallelism that can be achieved on GPU architecture, the global

memory on GPU must be accessed in a coalesced way. On GPU each thread does

not access the global memory individually rather group of treads called half wrap

(16 threads) access the global memory simultaneously as shown in �gure 3.7 (a),

resulting in a single memory transaction under certain access requirements. On the

other hand as shown in �gure 3.7 (b) when there is a stride (stride of one in this

51

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

case) in the data then the data required by the half of the active threads is not in

the fetched 64B aligned data segment therefore second memory transaction would

be performed. In worst case when the stride is greater than the half warp size,

16 di�erent memory transactions would be required resulting a overall performance

degradation. Rest of this section explains that how we achieved the coalesced global

memory access in our implementation.

64B Aligned data
Segment

128B Aligned data
Segment

Half Warp of
threads

X X X X X X X X

64B Aligned data
Segment

128B Aligned data
Segment

Half Warp of
threads

(a) Coalesced Memory Access (Requires 1 memory transaction to read 64B Aligned data segment)

(b) Non Coalesced Memory Access with stride of 2 (Requires 2 memory transaction to read 64B Aligned data segment)

Figure 3.7. Complex Number Coalesced Memory Access

Memory Coalescing In 3-D FFT Transforms: Figure 3.8 depicts the arrangement

of input data to 3-D FFT in global memory of GPU. As we can see from the �gure

3.8 while performing the transform along x-axis the stride in accessing the data from

global memory is zero therefore no need to change the data arrangement. On the

other hand while performing the transform along y-axis the stride in the data in equal

to the x-range of 3-D input data. In this case when the x-range becomes greater

than the size of half warp, 16 di�erent memory transactions would be performed to

access the required data to perform single transform along y-axis. While in case of

transform along z-axis the situation is even more worst where the stride is equal to

xy-plane. There can be di�erent solutions to avoid the strided memory access. In

general 3-D FFT uses transposition to perform set of 1-D FFT separately on x, y and

z direction by rearranging the data along x-axis. In this case transposition is extra

52

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

overhead on the performance, but the data becomes contiguous in the global memory

for coalesced access. In the current implementations of micromagnetic solvers where

they are using cu�t library to achieve the coalesced memory access, the transposition

of the data becomes unavoidable. In our implementation by developing our own 3-D

FFT library for GPU we are able to avoid the overhead of transposition and also

accessing the global memory in a coalesced way, resulting a very high performance.

Consider the transform along y-axis while keeping the current arrangement of the

data. For a simplicity lets take an example of 2-D grid as shown in �gure 3.5. Instead

of non coalesced fetching of data along y-axis, we move along x-axis to access the

data in coalesced way and perform the computation of all FFTs along y-axis on the

data that is along x-axis. The same procedure in adopted for z-axis transform.

GPU - GLOBAL MEMORY

X - axis

Y
 -

ax
is

Stride in Global memory is
equal to X - Range

Stride in Global memory is
equal to Zero

Stride in Global

memory is equal to

XY- Plane

Coalesced Memory Access
in X -Transform

Non-Coalesced Memory
Access in Y -Transform with

stride equal to X-Range

Non-Coalesced Memory
Access in Z -Transform with

stride equal to XY-Plane

Figure 3.8. Memory Coalescing in Transforms

3.7.1.3 Minimizing GPU memory Utilization

Memory on GPUs is normally a scarce resource typically for micromagnetic simu-

lations where the inputs sizes are normally very large to �t into the GPU memory.

In our implementation we perform in-place bit reversal as well as the FFTs which

drastically reduce the memory consumption. Secondly we also save the memory

53

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

by avoiding the transposition which is necessary in case of using CUDA 1-D FFT

library. As the result of micromagnetic simulation is real hence in an inverse trans-

form we only save the real values, which do not only save the memory but also the

data transfer overhead from device to host.

3.7.1.4 Minimizing the Arithmetic Computation

In CUDA and OpenCL two types of math operations are supported. Functions using

native as a pre�x map directly to the hardware level. Native functions are faster but

are less accurate. While the regular functions are slower but have higher accuracy.

The throughput of native sin and cos functions is 1 operation per clock cycle, while

regular sin and cos functions are much more expensive and become even more ex-

pensive when the absolute input value to these functions is very small[53], which is

common in micromagnetic simulations. On CUDA architecture only single precision

�oating point native functions are supported hence in my case of double precision we

cannot use these native functions, and even in single precision implementation we

cannot compromise on accuracy. But we can reduce the use of these slow functions

as much as possible. In my implementation I calculate the sin and cos values for

only 1 FFT call in x, y and z directions only once at the beginning of the simulation,

and then pass these single time calculated values to the kernel performing FFTs on

whole data in each time step, resulting a very high performance.

3.7.1.5 Batch Execution

By considering the data dependency problem, one can execute multiple FFTs in

Parallel, infect we executes all the FFTs in any dimensions in a single GPU call.

By doing so one can save the overhead of invoking kernel for individual FFT call

which can have drastic e�ect with respect to total simulation time for very large

3-D problem sizes where the number of FFTs are large in number. For example let

us consider a 3-D problem size of 323 if our program does not supports the batch

execution it will require 323 times the kernel invocation.

54

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

3.7.2 FFTs Based Optimizations

For a given volume, the FFT's are performed in batches of 1D FFT's along X,

Y, and Z axes in sequence. Based on the symmetry properties outlined in Table-

3.3, and due to zero-padded input, reductions in these batches are possible in both

computation of the demagnetizing tensor, as well as the magnetization vector �eld.

For computing the demagnetization �eld at each time step the six FFTs has to be

computed, three related to magnetization vectors, (Mvec) namely Mx, My and Mz

and three inverse FFTs for demagnetization �eld (Hvec) components Hm,x , Hm,y

and Hm,z. Any saving in the computation of these FFTs would have an huge e�ect

on the performance gain in overall micromagnetic simulation. The general idea is to

minimize the number of batches, and when required, copy the missing information

from the present symmetries. In the general case of FFT libraries, which may deal

with any kind of input data, the reductions are not in so much detail.

3.7.2.1 OpenCL Based 3-D FFT library on GPUs

3.7.2.2 Savings in Forward 3-D FFT of Magnetization Vectors

As discussed above for three dimensional FFT's zero padding increases the input

problem size by a factor of eight (i.e 2Nx×2Ny×2Nz), where Nx, Ny, Nzare the orig-

inal dimensional lengths of input array. Since the complexity of FFT is O(NlogN),

therefore overall complexity without any optimization on this zero padded data

would be O(8NxNyNz log 8NxNyNz). Let the new dimensional sizes after zero

padding are dx, dy, dz then the overall complexity would be O(dxdydz log dxdydz).

The FFT of entirely zero padded sequence is zero, hence there is no need to

perform transform on zero padded sequence. Secondly because of the real input

there also exist some symmetries as discussed in section 3.6.1 in the input data

which can be exploited to reduce the overall number of transforms. For X − Axis
transform due to zero padding we would require dy

2
FFT's along Y − Axis instead

of dy and dz
2
FFT's along Z − Axis instead of dz of size dx. The complexity of

transform along X − Axis would be reduced to dy
2

dz
2

(dx log dx). Hence this would

reduces the cost of X − Axis transforms by 75% when dx = dy = dz.

As the input data to X − Axis transforms is real hence the output would be

conjugate symmetric. Therefore for Y − Axis transforms in order to reduce the

55

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

overall complexity we would exploit both the zero padded input data along Z−Axis
and the conjugate symmetric data alongX−Axis. Therefore for Y −Axis transform
due to zero padding we would require dz

2
FFT's along Z − Axis instead of dz and

dx
2

+1 FFT's due to conjugate symmetry along X−Axis instead of dz of size dy. The
complexity of transform along Y −Axis would be reduced to (dx

2
+1) (dz

2
) (dy log dy).

Hence this would reduces the cost of Y − Axis transforms by almost 75% when

dx = dy = dz.

Now for Z −Axis transforms the reductions are on the basis of symmetry prop-

erties for magnetization vector discussed in section 3.6.1. For Z − Axis transform
we would require dx

2
+ 1 FFT's along X − Axis instead of dx and dy FFT's along

Y −Axis of size dz. The complexity of transform along Z −Axis would be reduced

to (dx
2

+ 1) dy (dz log dz). Hence this would reduces the cost of Z −Axis transforms
by almost50% when dx = dy = dz and it would be even more when dx > dy > dz.

Finally the total reduction in three dimensional transforms for forward magne-

tization vector (Figure-3.11) would be given as:[
dy
2

dz
2

]
x

+

[(
dx
2

+ 1

)
dz
2

]
y

+

[(
dx
2

+ 1

)
dy

]
z

(3.23)

and the overall reduction in the complexity would be

dy
2

dz
2

(dx log dx) + (
dx
2

+ 1) (
dz
2

) (dy log dy) + (
dx
2

+ 1) dy (dz log dz) (3.24)

if dx = dy = dz then the overall saving in the forward transform of magnetization

vector would be at least 66.6% and it can be much more for �atter surfaces when

dx > dy > dz.

On the other hand if we use generalized FFT library such as cu�t of CUDA on

GPU. In this case in order to avoid the FFTs of zero padded data, we have to use

1-D FFT instead of direct 3-D FFT library of CUDA. As a result we have to perform

2D and 3D matrix transposition after �X� and �Y � transforms respectively. Trans-

position cost of very large data even on GPU is not negligible in overall performance

of an application and it also requires additional memory. Secondly the generalized

FFT libraries do not cater the speci�c case like the symmetries present in the input

56

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

data of micromagnetic simulations for the reduction of batches. With generalized

FFT library the overall reductions that can be achieved are because of zero padded

input data and it would be[
dy
2

dz
2

]
x

+

[
(dx)

dz
2

]
y

+ [dxdy]z (3.25)

In this case the overall saving in the forward transform of magnetization vector

would be 41.6% when dx = dy = dz with an overhead of transposition and more

memory utilization.

3.7.2.3 Savings in Inverse 3-D FFT of Magnetostatic Field Vectors

Now in the inverse 3-D FFT of magnetostatic �eld for X−Axis transform we would

require dy FFT's along Y −Axis and dz
2

+ 1 FFT's along Z −Axis instead of dz of

size dx. But in this case we also need a copy operation to get the missing data along

X − Axis before the X − Axis transform as shown in �gure 3.13. The complexity

of transform along X − Axis would be reduced to C(dy)(
dz
2

+ 1) (dx log dx) where

C is copying time required to get the missing data in X − Axis transform. Hence
this would reduces the cost of X −Axis transforms by 50% when dx = dy = dz plus

the copying time C. For copying the missing data the same kernel for X − Axis

transform performs the copying operation before performing the transform, in this

way we can reduce the overhead of extra kernel call for copying operation.

Similarly the complexity for Y − Axis transform and for Z − Axis transform

would be (dx
2

) (dz
2

+1) (dy log dy) and C(dy
2

dz
2

) (dx log dx) respectively and the savings

would be almost 75% in both cases along with the copying time in case of Z −Axis
transform when dx = dy = dz.

The overall reductions for the inverse (Figure-3.13), transforms would be given

as:

copy (−I,−J,−K)

[
dy

(
dz
2

+ 1

)]
x−1

+

[
dx
2

(
dz
2

+ 1

)]
y−1

+ copy (−K)

[
dx
2

dy
2

]
z−1

57

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

while the overall reduction in the complexity would be

C(dy)(
dz
2

+ 1) (dx log dx) + (
dx
2

) (
dz
2

+ 1) (dy log dy) + C(
dy
2

dz
2

) (dx log dx)

if dx = dy = dz then the overall saving in the Inverse transform of magnetization

vector would be at least 66.6% plus the copying time in X − Axis and Z − Axis
transforms and it can be much more for �atter surfaces when dx > dy > dz. While

these reductions are not being catered in generalized 3-D FFT library.

Here, the copy operations extract conjugate symmetries from the volume, plane,

or strip. The order of inverse is the same as that of the forward, i.e., in the forward

it was x, y, z and the inverse is also x, y, and z. Some implementations use the

same FFT routines for both forward and inverse transforms. If, however, the order

of the inverse is to be reversed (Figure-3.12), the number of copy operations can be

reduced further to the following, resulting in around 5% decrease in simulation time

(Figure-3.9):

[
dy

(
dx
2

+ 1

)]
z−1

+

[
dz
2

(
dx
2

+ 1

)]
y−1

+copy (−I)

[
dz
2

dy
2

]
x−1

(3.26)

3.7.2.4 Savings in 3-D FFT of Demagnetization Tensor

For the demagnetizing tensor however, further reductions are possible due to the

presence of odd/even symmetries within the tensor components. While the copy

operation is required after each transform to get the missing data. Thus, the forward

transform (Figure-3.10) can be reduced to:

[
dy
2

dz
2

]
x

+ copy +

[(
dx
2

+ 1

)
dz
2

]
y

+ copy +

[(
dx
2

+ 1

)(
dy
2

+ 1

)]
z

+ copy,(3.27)

58

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 0 1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

 R
at

io

Size (Million)

GTX 260
Quadro 6000

Figure 3.9. Improvement by changing order of inverse. The plot shows the
ratio of improvement for two graphic cards. The presence of the trenches is
due to memory coalescing factors. GTX-260, a relatively old card, performs
less memory coalescing compared to the Quadro 6000. As a result, the Quadro
6000 appears to be more stable.

z
2

z
2

y
2

y
2

z
2
+ 1

x
2
+ 1

x
2
+ 1

y
2

x
2
+ 1

z
2
+ 1

x
2
+ 1

a b c

cba

Figure 3.10. Reductions in the demagnetization tensor for the forward transform

3.8 Performance evaluation

In this section I examine the performance of my OpenCL based magnetostatic �eld

calculation on di�erent GPUs architecture. I �rst validated my results by compar-

ing with those of OOMMF[54, 23] program developed at NIST, which is well-known

59

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

z
2

z
2

y
2

y
2

z
2
+ 1

x
2
+ 1

x
2
+ 1

y
2

x
2
+ 1

z
2
+ 1

x
2
+ 1

a b c

cba

Figure 3.11. Reductions in the magnetization vector for the forward transform

a b c

cba

z
2

x
2
+ 1 x

2
+ 1

z
2

y
2

z
2
+ 1

x
2

x
2

y
2

z
2
+ 1

−K

−I
−J
−K

−I

Figure 3.12. Reductions in the inverse for the magnetization vector using
the same 3D FFT routines

and widely used CPU based micromagnetic solver. Then, a performance analysis is

conducted by comparing the execution times of our GPU enabled code with CPU

based shared memory parallel OOMMF, running on four CPU cores and with an

equivalent parallel implementation on CPU. In general current generation of GPUs is

better suited for single precision than double precision arithmetic. Due to GPUs ar-

chitecture, having smaller number of arithmetic units, not only the double precision

performance is slow, but also requires double the memory as compared to single

precision [45]. This limitation of current GPUs force most of the micromagnetic

simulators working on GPUs such as Mu-Max to use single precision �oating point.

In order to elaborate this phenomenon I have implemented my program in both

60

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

a b c

cba

z
2

x
2
+ 1 x

2
+ 1

z
2

y
2

z
2
+ 1

x
2

x
2

y
2

z
2
+ 1

−K

−I
−J
−K

−I

Figure 3.13. Reductions in the inverse for the magnetization vector using
a di�erent order of FFT's

double and single precision and shown the results for both the computation time

and memory transfer time. Unlike most of the current GPU based micromagnetic

solvers I am not using CUFFT library. Rather I have development my own OpenCL

based 3D-FFT library. In this way I can easily avoid the calculation of FFTs of

arrays containing only zero values, which comes as a result of zero padding in mi-

cromagnetic simulation with out using transposition. Furthermore with my own

FFT library gives me the freedom to fully exploit the symmetries and as a result to

avoid the redundant data copying between CPU and GPU which is a big bottleneck

in GPU computing, and other optimization in magnetostatic �eld calculation such

as memory coalescing which are speci�c to GPU architectures.

3.8.1 Experimental setup

I evaluated the performance of my 3-D FFT implementation for magnetostatic �eld

calculation using two di�erent GPU devices, NVIDIA Quadro 6000 and NVIDIA

GeForce GTX 260. Table 1 shows the con�guration of the GPUs and CPU used

for performance evaluation. The GTX260, is a high-end graphics card with large

number of cores, 216 in number and 895MB of global memory. The NVIDIA Quadro

6000, built on innovative NVIDIA fermi architecture, supports 14 microprocessors

having 32 cores each, thus resulting into 448 cores in total, arranged as array of

streaming multi-processors. For comparison with CPU I have used Intel Core2Quad

CPU Q8400 with 2.66 GHz processor and 4GB of random memory. To test the

61

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

performance of our magnetostatic �eld solver I have used 2000 nm Ö 1000 nm Ö 32

nm magnetic slab, with varying the size of cubic cells, I got di�erent input problem

sizes ranges from half million to eight million spins with same x, y and z dimensions

of magnetic slab for both CPU and GPU version

3.8.2 Results and discussion

In table 3.4 and 3.5, I have reported the single step computation time for magne-

tostatic �eld calculation (averaged over 5 steps) in seconds for both the OOMMF

and my equivalent parallel implementation on CPU respectively against the GPU

based micromagnetic solver on di�erent GPU architectures. The computation time

is reported for di�erent input sizes from half million to eight million cells. For two

di�erent GPUs that are GTX 260 and Quadro 6000 I have shown the total com-

putation time with and without data transfer overhead in GPU computing, along

with respective speedups. Column 4 (Total Demag_m) represents the total compu-

tation time with data transfer overhead and column 3 (Total Demag) represents the

computation time without data transfer overhead. Similarly column 5 and 6 shows

the speedup with and without data transfer overhead respectively. Table 3.4, 3.5

and Table 3.6, 3.7 shows all the times and speedups for single and double precision

�oating point accuracy input data respectively.

3.8.2.1 Computation Time

In Figure 3.14 and 3.15 I have demonstrated the average computation time required

in seconds by magnetostatic �eld in one time step of the micromagnetic simula-

tion with double and single precision �oating point accuracy respectively. I have

shown the computation time both with and without memory transfer time in order

to demonstrate the e�ect of memory transfer overhead on overall performance of

the problem. The phenomenon that GPU architecture is better suited for single

precision than the double precision �oating point accuracy is clearly depicted by

our results. The single precision implementation is almost two order of magnitude

faster than double precision implementation on both GPU architectures and is same

for data transfer time as the memory requirement for double precision accuracy be-

comes double. Figure 3.14 shows that for smaller problem sizes the OOMMF based

62

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8

T
im

e
lo

g(
Se

c)

Problem Size in Million

Double Precision Computation Time

OOMMF

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Equivalent CPU Implementation

Figure 3.14. Double Precision Computation Times

 0.001

 0.01

 0.1

 1

 10

 0 1 2 3 4 5 6 7 8

T
im

e
lo

g(
Se

c)

Problem Size in Million

Single Precision Computation Time

OOMMF

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Equivalent CPU Implementation

Figure 3.15. Single Precision Computation Times

CPU implementation on four cores is faster than the GTX 260. This trend can be

understood with the fact, that for small problem sizes with small number of parallel

63

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Table 3.4. Computation Time of OOMMF CPU Implementation and GPU
With Single Precision GPU Implementation Against Di�erent Problem Sizes and
GPU/CPU 4-cores Speed Up Factor

OOMMF

(CPU)
GTX-260 Quadro-6000

Size

(million)

Total

Time(sec)

Total

Demag

Total

Demag_m
SpeedUP_mSpeedUP

Total

Demag

Total

Demag_m
SpeedUP_mSpeedUP

0.5 0.03 0.011 0.026 1.169 2.882 0.005 0.008 3.892 6.538

1 0.06 0.020 0.046 1.317 3.005 0.009 0.016 3.889 7.161

2 0.14 0.039 0.082 1.721 3.651 0.017 0.036 3.966 8.506

4 0.28 0.067 0.148 1.898 4.180 0.033 0.072 3.918 8.594

8 0.6 0.135 0.mat 2.112 4.496 0.070 0.143 4.212 8.689

Table 3.5. Computation Time of Our CPU Implementation and GPU With
Single Precision GPU Implementation Against Di�erent Problem Sizes and
GPU/CPU 4-cores Speed Up Factor

Our

Imp

(CPU)

GTX-260 Quadro-6000

Size

(million)

Total

Time(sec)

Total

Demag

Total

Demag_m
SpeedUP_mSpeedUP

Total

Demag

Total

Demag_m
SpeedUP_mSpeedUP

0.5 0.305 0.011 0.026 11.870 29.268 0.005 0.008 39.521 66.401

1 0.672 0.020 0.046 14.743 33.648 0.009 0.016 43.544 80.178

2 1.422 0.039 0.082 17.477 37.071 0.017 0.036 40.275 86.387

4 3.045 0.067 0.148 20.652 45.484 0.033 0.072 42.624 93.516

8 6.594 0.135 0.285 23.203 49.340 0.070 0.143 46.280 95.481

active threads are not fully utilizing the computation power of GPU. Secondly for

small problem sizes the data transfer overhead dominates the computation time.

3.8.2.2 SpeedUp

In Figures 3.16 to 3.19 I have demonstrated the average speedup of magnetostatic

�eld solver on di�erent GPU architectures against CPU based shared memory par-

allel micromagnetic solver �OOMMF� and my equivalent parallel implementation

respectively running on four cpu cores. Where my GPU based implementation

shows a signi�cant speedup factor of up to 8.6 for single precision �oating point ac-

curacy with out data transfer time and 4.2 with data transfer time on high end GPU

64

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8

Sp
ee

dU
p

Fa
ct

or
 G

PU
/o

om
m

f
C

PU

Problem Size in Million

Double Precision SpeedUp

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Figure 3.16. Double Precision GPU/CPU(oommf) SpeedUp where CPU
code is running on 4 cores

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8

Sp
ee

dU
p

Fa
ct

or
 G

PU
/o

om
m

f
C

PU

Problem Size in Million

Single Precision SpeedUp

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Figure 3.17. Single Precision GPU/CPU(oommf) SpeedUp where CPU
code is running on 4 cores

architecture that is Nvidia Quadro-6000. On the other hand the speedup against

my equivalent implementation on CPU is up to 46x and 94x with and with out data

65

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8

Sp
ee

dU
p

Fa
ct

or
 (

G
PU

/E
qu

iv
al

en
t C

PU
 I

m
p)

Problem Size in Million

Double Precision SpeedUp

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Figure 3.18. Double Precision GPU/CPU(Equivalent CPU Implementation)
SpeedUp where CPU code is running on 4 cores

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8

Sp
ee

dU
p

Fa
ct

or
 G

PU
/E

qu
iv

al
en

t C
PU

 I
m

p

Problem Size in Million

Single Precision SpeedUp

GTX 260 with MTT

Quadro 6000 with MTT

GTX 260 without MTT

Quadro 6000 without MTT

Figure 3.19. Single Precision GPU/CPU(Equivalent CPU Implementation)
SpeedUp where CPU code is running on 4 cores

transfer time respectively. The reason for OOMMF for being fast on CPU against

the CPU implementation is that unlike my FFT library which is currently based on

66

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Table 3.6. Computation Time of CPU (OOMMF) and GPU With Dou-
ble Precision GPU Implementation Against Di�erent Problem Sizes and
GPU/CPU 4-cores SpeedUp Factor

OOMMF

(CPU)

GTX-260 (GPU) Quadro-6000 (GPU)

Size

(million)
Total

Time(sec)

Total

Demag

Total

Demag_m

SpeedUP

_m
SpeedUP Total

Demag

Total

Demag_m

SpeedUP

_m
SpeedUP

0.5 0.03 0.016 0.040 0.754 1.985 0.008 0.015 2.020 3.838

1 0.06 0.029 0.072 0.839 2.099 0.015 0.035 1.746 4.005

2 0.14 0.057 0.139 1.011 2.492 0.031 0.070 2.012 4.565

4 0.28 0.109 0.259 1.084 2.589 0.062 0.136 2.066 4.524

8 0.6 0.221 0.521 1.154 2.720 0.128 0.271 2.218 4.700

only radix-2 FFT algorithm the OOMMF program uses mix radix FFT algorithms

along with other compiler based optimizations.

The speedup of GPU implementation increase with the increase in the input

problem sizes. This increasing speedup trend can be understood as for larger prob-

lem sizes there are signi�cant number of active threads to fully utilize the hundred

of parallel cores on GPU secondly more active threads can also hide the latency

to fetch the data from global memory on GPUs. Secondly from Figure 3.16 one

can see that in either case that is without or even with memory transfer time my

implementation on a single GPU is much faster than both the CPU based parallel

implementations running on four cores of CPU. The two di�erent GPUs used in

my simulation di�ers with respect to number of parallel streaming processors and

the memory bandwidth. The di�erence in speedup by these two GPUs is promising

hence with the same implementation just by using very high end GPU one can gain

signi�cant amount of speedup on single GPU.

3.8.3 Conclusion

The graphics processing unit, which initially was designed for manipulating com-

puter Graphics, now with the development of high level libraries and easy to use

interfacing tools such as OpenCL and CUDA can be used as co-processor to speed

up wide range of computation intensive applications. On the other hand in micro-

magnetic simulations the study of magnetization behavior at very small space and

67

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

Table 3.7. Computation Time of CPU (Our Implementation) and GPU With
Double Precision GPU Implementation Against Di�erent Problem Sizes and
GPU/CPU 4-cores SpeedUp Factor

Our

Imp

(CPU)

GTX-260 (GPU) Quadro-6000 (GPU)

Size

(million)
Total

Time(sec)

Total

Demag

Total

Demag_m

SpeedUP

_m
SpeedUP Total

Demag

Total

Demag_m

SpeedUP

_m
SpeedUP

0.5 0.497 0.016 0.040 12.488 32.907 0.008 0.015 33.488 63.632

1 0.974 0.029 0.072 13.613 34.063 0.015 0.035 28.321 64.982

2 1.995 0.057 0.139 14.394 35.501 0.031 0.070 28.670 65.038

4 4.068 0.109 0.259 15.746 37.613 0.062 0.136 30.015 65.719

8 8.475 0.221 0.521 16.288 38.406 0.128 0.271 31.327 66.381

time scale requires lot of computational cost. Therefore parallelism becomes ade-

quate for such type of simulations. In the recent years GPUs have provided best

solution to such problems both with respect to price and performance.

In this chapter I have shown the parallel GPU implementation of magnetostatic

�eld solver, which is the most time consuming part of micromagnetic solvers. I have

demonstrated my results both for single and double precision �oating point accuracy

on di�erent GPU architectures. My results show a very high speed-up factor up to

8.6x as compare to well know CPU based solver that is OOMMF and up to 94x

against my equivalent CPU implementation running on four cores of CPU. Secondly

while the time of writing and with best of my knowledge my implementation is the

�rst OpenCL based magnetostatic �eld solver on GPUs. As unlike CUDA OpenCL

targets all devices which conform to its speci�cation therefore in future in can be used

to utilized di�erent kind of processors present in a system and for now it makes my

implementation to work for di�erent vendors' GPUs. Moreover my OpenCL based

3-D FFT library also provides a common interface to di�erent vendors' GPUs.

In the next chapter to move further a head I have transferred this problem to

multiple GPUs, which would further enhance the performance and secondly execut-

ing simulation on multiple GPUs would also solve the problem of limited on-chip

memory resource on current GPUs, by utilizing the combined memory of multiple

GPUs. Currently my 3-D FFT library is based on Cooley Tukey radix-2 algorithm,

68

3 � Parallel magnetostatic �eld computation on GPUs using Open Computing Language

in future I am planning to move towards higher radix or even mix radix FFT al-

gorithms. Most importantly in order to achieve a very high performance I have to

shift all the components of micromagnetic solver on GPU.

The publications related to this work are [44, 55, 56, 57] and the paper submit-

ted in IEEE transactions of Parallel and Distributed Systems with the name �Fast

Parallel Magnetostatic Field Solver on GPU Using Open Computing Language�

69

Chapter 4

Magnetostatic �eld computation on

multiple GPUs

4.1 Why parallel GPUs

In chapter 3 I have discussed the highly optimized implementation of magnetostatic

�eld computation on many core architecture that is GPU. The natural next step

to further increase the level of parallelism and performance is the use of multiple

GPUs. In micromagnetic simulation due to very �ne space and time discretization

normally the input problem sizes are very large to accommodate as a whole on a

current generation of GPUs' memory [58]. This problem can be handled by using

the combined resources of multiple GPUs.

The thread management on each GPU is done automatically at hardware level.

While when we talk about multiple GPUs and want to compute the problem in

parallel on multiple GPUs then we require additional management regarding the

synchronization and communication overhead while decomposing the input problem

on multiple GPUs. In this way along with solving the problem of limited memory

resources we can also achieve high performance by utilizing the combined computa-

tional resources of multiple GPUs.

In this chapter I will discuss the parallel magnetostatic �eld solver on multiple

GPUs.

70

4 � Magnetostatic �eld computation on multiple GPUs

4.1.1 Limitations of single GPU implementation

In the recent years the use of GPUs for general purpose computation has increased

dramatically due to the reason such as

� Performance

� Economical

� Memory Bandwidth

� Architecture

which I have discussed in detail in section 2.3.1. However as compared to CPU main

memory, the memory on GPUs is normally limited. For many memory hungry appli-

cations such as [59, 60, 61] which requires a lot of memory along with computation

time, the limited memory can be a bottleneck for GPUs. Like in our case in micro-

magnetic simulations due to very �ne space and time discretization makes it very

large problem both with respect to computation and memory consumption point of

view. Therefore moving towards multiple GPUs is not only required because of im-

proving the computational time but also necessary to overcome the limited memory

problem on single GPU.

4.1.2 Multiple GPUs advantages

With multiple GPUs, the problem of limited memory can be tractable by divide and

conquer approach that is by dividing the input data and the computation among

available GPUs. In short with multiple GPUs implementation we can have following

bene�ts

� Overcomes the limited memory bottleneck on single GPU.

� Further increase the performance by parallel execution on multiple GPUs.

while shifting on to multiple GPUs along with the above mentioned bene�ts, there

also arises some problems which we have to consider such as

� The Data dependency problem.

71

4 � Magnetostatic �eld computation on multiple GPUs

� The communication overhead.

Therefore the performance of the problem on multiple GPUs heavily depends on

these two factors which one have to consider. For e�cient use of multiple GPUs the

computation time required by the input problem must be much greater than the

communication overhead time.

4.2 Di�erent architectural approaches

With respect to computation GPUs are very powerful, but when the input problem

size becomes becomes very large both from the point of view of memory consumption

and computation time one wish to compute it on multiple GPUs. Multiple GPUs

can have either of the following two architectural approaches

4.2.1 Shared system GPUs

In case of shared system GPUs the multiple GPUs are connected to same system

through PCI/AGP slots and shares the same CPU RAM for communication with

each other. Along with multiple cards on di�erent PCI/AGP slots there are some

cards like GTX 295 are dual core GPUs but appears as two separate GPUs. On

single core machine multiple threads can be used to handle multiple GPUs while

on the other hand it is advantageous to have multi-core CPU so each core handles

separate GPU.

Secondly with respect to communication cost in case of shared system multiple

GPUs as all the GPUs are physically present on single system therefore the com-

munication between them took place through PCI buses. Shared system GPUs'

con�guration is depicted in �gure 4.1

72

4 � Magnetostatic �eld computation on multiple GPUs

Main Memory

Core-1

GPU-1

GPU -1
Memory

GPU -2
Memory

GPU -3
Memory

GPU -4
Memory

Core-2 Core-3 Core-4

GPU-2 GPU-3 GPU-4

PCI Express Bus

Figure 4.1. Shared System Multiple GPUs on multicore CPU system and
sharing same CPU memory

4.2.2 Distributed system GPUs

While on the other hand in case of distributed system multiple GPUs' con�guration

multiple GPUs are present on separate CPU node and communicate to each other

via some underlying communication network similar like the cluster computing. The

di�erence between the CPU cluster and the distributed system GPUs is that in the

later case for the communication between two GPUs we require two di�erent levels of

communication. First the data transfer between the GPU memory to CPU and then

from CPU memory to second node through underlying communication network.

In parallel computing the performance of the system depends on

� Degree of parallelism of the code.

� Number of parallel threads.

� The communication cost among the parallel threads.

In case of distributed system GPUs as we can have very large number of GPUs

which can run large number of parallel threads but the overall performance gain

heavily depends on the type of underlying communication network being used. Like

73

4 � Magnetostatic �eld computation on multiple GPUs

in case of in�niBand network we can reduce this cost to some extend but along with

many other factors the �nancial cost of in�niBand is also a hurdle in most of the

cases. Distributed system GPUs' con�guration is depicted in �gure 4.2

Underlying Communication Network

Node - 1

GPU

PCI bus

CPU

Node - 1

GPU

PCI bus

CPU

Node - 1

GPU

PCI bus

CPU

Node - 1

GPU

PCI bus

CPU

Figure 4.2. Distributed System Multiple GPUs where each CPU node contains one
GPU and connected to each other through underlying communication network

4.3 Magnetostatic �eld computation on multiple GPUs

As discussed before that in micromagnetic simulations due to very �ne space and

time discretization of magnetic body the input problem sizes are normally very

larger to accommodate on single GPU memory. In particular the magnetostatic �eld

computation which is dominated by FFT computation is most time and memory

consuming part and is iteratively computed in each time step.

In magnetostatic �eld computation via discrete convolution method whose ex-

panded form is given in equation 4.1 is

H̃x(i,j,k) = Ñxx′(i,j,k)M̃x(i,j,k) + Ñxy′(i,j,k)M̃y(i,j,k) + Ñxz′(i,j,k)M̃z(i,j,k)

H̃y(i,j,k) = Ñyx′(i,j,k)M̃x(i,j,k) + Ñyy′(i,j,k)M̃y(i,j,k) + Ñyz′(i,j,k)M̃z(i,j,k)

H̃z(i,j,k) = Ñzx′(i,j,k)M̃x(i,j,k) + Ñzy′(i,j,k)M̃y(i,j,k) + Ñzz′(i,j,k)M̃z(i,j,k) (4.1)

where the FFT quantities are with tilda sign. From equation 4.1 we can see

that for any point (i, j, k) in 3D discretized magnetic body the computation of

demagnetizing �eld Hm along each x, y and z direction in cartesian coordinates

requires in total twelve FFTs. The six FFTs belongs to demagnetizing tensors which

are computed once and stored on memory. From rest of six FFTs, three related to

74

4 � Magnetostatic �eld computation on multiple GPUs

magnetization vectors, (Mvec) namely Mx, My and Mz and three inverse FFTs of

the (Hvec) components Hx , Hy and Hz and these have to be computed for each

time step.

Now we have two ways to solve this problem on GPU. The �rst way which is

being followed by all current GPU implementations is that we move all the data

that is the quantities with tidle sing in equation 4.1 to GPU and performs the whole

convolution operation on GPU. But the problem in this method is limited GPU

memory. In this way we can handle only a problem sizes up to some limited sizes.

For example like in our case where I am using GTX 260 card which has a global

memory of one gigabyte. With one GB (gigabyte) memory we can handle maximum

of four million discretized cells in a magnetic body with double precision �oating

point accuracy and maximum of eight million cells in case of single precision �oating

point accuracy. This method is adopted by current implementation because in this

way they transfer the whole data at the beginning of the simulation to the GPU

memory and copy back only the �nal results at the end. By doing so they do not

need intermediate data transfer between GPU and CPU and vice versa, which is

most time consuming part. Therefore this method there is a tradeo� between the

input problem sizes and the computation time.

The second way in which we can solve this convolution problem on GPU is divide

the problem in to components and perform FFT on each component one by one. As

discuss above we have to perform the FFT of twelve di�erent components. With

this method even on a single GPU the input problem size can be roughly twelve

times the size which we can handle with the �rst method discussed above.

I am using this method for my implementation of magnetostatic �eld compu-

tation. This method helps to handle wide range of input problem sizes even on

medium range graphic cards like Nvidia's GTX-260. In order to mitigate the extra

data communication overhead between CPU and GPU and vice versa. I have devel-

oped my own multi dimensional FFT library on GPUs, which made it possible to

fully exploit the zero padded input data without transposition and symmetries in-

herent in the �eld calculation. As a result the complexity of overall system reduced

signi�cantly compared to current GPU based solvers. Moreover it also provides a

common interface for di�erent vendors' GPUs. In order to fully utilize the GPUs

parallel architecture my solver handles many hardware speci�c technicalities such

75

4 � Magnetostatic �eld computation on multiple GPUs

as coalesced memory access, data transfer overhead between GPU and CPU, GPU

global memory utilization, arithmetic computation, batch execution etc. The dif-

ferent optimization strategies are discussed in detail in section 3.7 to mitigate the

overhead of CPU to GPU data transfer time.

So the natural next step is the use of multiple GPUs to further increase the

computation power and to avoid the limited memory problem on single GPU by

exploiting the combined resources of multiple GPUs.

4.3.1 Execution model on multiple GPUs

OpenCL kernel executes on the speci�ed devices de�ned in the environments known

as context. The context is considered as a package containing di�erent resources

such as devices to be used to run the OpenCL kernel, kernels, program objects and

the memory objects [62].

The data structure known as command queue is created on the host which holds

the commands by host to be executed on the devices de�ned in the context. For

multiple GPUs we have two di�erent approaches to create and manage the context

and the GPU devices related to it.

4.3.1.1 Single Context Multiple Devices

Single context multiple device approach is considered as standard approach for

shared system multiple GPUs in OpenCL. In this approach the OpenCL objects

such as memory object, kernel, program etc are shared among all the devices be-

longing to that speci�c context. On multiple GPUs there is no direct mechanism to

transfer data between them, the copy command only exist to copy data from device

(GPU) to host (CPU) or from host to device. Figure 4.3 depicts the copy mechanism

between two devices belonging to same context which shows the intermediary copy

to host for transferring data between two GPUs.

In my implementation as multiple GPUs are present on single system that is why

I am using this approach in execution model, which reduces the extra communication

cost on underlying network to transfer data among multiple GPUs which is explained

in next section.

76

4 � Magnetostatic �eld computation on multiple GPUs

Context
Shared Objects to different GPUs such as
- memory objects - kernels -programs

GPU-1 GPU-2

Memory
Object

Memory
Object

Two PCI data transfers are
required

Figure 4.3. The data communication among multiple GPUs using single
context multiple devices approach

4.3.1.2 Multiple Contexts Multiple Devices

Multiple contexts multiple devices approach is used where there exist distributed

system multiple GPUs model. In this approach each device has its own context

and the objects created in that context are only associated to it. In this approach

along with PCI data transfer between host and device additional communication

is required between the communicating GPUs using host based libraries such as

pthreads or MPI on underlying communication network. This scenario is depicted

in �gure 4.4. Therefore the performance gain in this scenario heavily depends on

the communication network being used to connect the di�erent nodes.

Along with PCI data transfer
between Host and Device
additional communication
would be required between

GPUs using host based
libraries such as MPI on

underlying communication
network

Two PCI data transfers are
required

Node-1

Context-1

GPU-1

Memory
Object

Node-2

Context-2

GPU-2

Memory
Object

Figure 4.4. The data communication among multiple GPUs using multiple
context multiple devices approach

77

4 � Magnetostatic �eld computation on multiple GPUs

4.3.2 Work division on multiple GPUs

The �rst and the most important consideration for distributing the workload among

multiple GPUs is the data transfer overhead. If the input data is not divided properly

the performance of multiple GPUs may even get worse than single GPU implemen-

tation just because of the slow inter GPUs communication as discussed in section

4.3.1.1.

There are two approaches for designing multiple GPUs program with respect to

input data.

� Keep the redundant copy of all input data and set the global o�sets for index-

ing.

� Divide the input data into subsets and index them locally in subset.

In my case where I am trying to save the memory for very large input problem

sizes �rst case is not feasible as it requires more memory and also the more data

transfer time. Therefore in my implementation I have adopted the second approach

for dividing data among multiple GPUs which saves the extra memory along with

the extra data transfer time.

Secondly with respect to 3D input data, there are di�erent possibilities to divide

the data among multiple GPUs. Figure 4.5 depicts my data division scheme on

multiple GPUs which requires no data transfer for 2D FFT and for the for the

third dimensional FFT it requires data transfer among participating GPUs. This

approach is similar to slab decomposition used by a popular FFT library on CPU

that is FFTW on distributed memory systems [63] except here I am not using the

global transposition for the third dimensional FFT. There are di�erent reasons for

not using the global transposition on multiple GPUs for the third dimensional FFT

such as

� For making the data local to GPUs the transposition would also require a data

transfer among multiple GPUs.

� Extra kernel invocation for transposition.

� Extra computation time for transposition.

78

4 � Magnetostatic �eld computation on multiple GPUs

Therefore to overcome these problems we can access the data for the third dimen-

sional FFT by sharing the memory objects on di�erent devices which is discussed

in next section.

GPU-1

GPU-2

GPU-4

GPU-3

Performs FFT along X
and Y dimensions and

no data transfer required

Performs FFT along Z dimensions
and requires data transfer between

multiple GPUs

X
Y

Z

Input Problem
Size = X*Y*Z

Figure 4.5. Data division among multiple GPUs

4.3.3 Sharing memory objects on multiple GPUs

As discussed in section 4.3.1.1 when we create a single context for multiple devices

the di�erent OpenCL objects such as memory object, kernel, program etc are shared

among all the devices belonging to that speci�c context. Courtesy to shared memory

object we can avoid the global transposition of input data to perform the third

dimensional FFT locally. With shared memory objects the data required by a GPU

is directly accessed from the memory location of the speci�c GPU with no extra

CPU intervention.

79

4 � Magnetostatic �eld computation on multiple GPUs

4.3.4 Performance evaluation on multiple GPUs

In this section I would examine the performance of my OpenCL based magnetostatic

�eld calculation on shared system multiple GPUs architecture. Performance analysis

is conducted by comparing the execution times of single GPU based implementation

of magnetostatic �eld solver against the implementation running on four GPUs in

parallel. The use of multiple GPUs not only increases the performance but also

mitigates the limited memory problem on GPUs by utilizing the combined resources

on multiple GPUs.

4.3.4.1 Experimental setup

The graphic cards which I am using for my implementation are Nvidia Geforce GTX

295, where each GTX 295 contains two GPU cores. I am using two of these cards

on two di�erent PCI slots hence total of four GPUs in parallel. Table 4.1 shows

the con�guration of the GTX 295 which is used for performance evaluation. To test

the performance of our magnetostatic �eld solver we used 2000 nm Ö 1000 nm Ö

32 nm magnetic slab, with varying the size of cubic cells, we got di�erent input

problem sizes ranges from half million to sixteen million spins with same x, y and z

dimensions of magnetic slab for both single and multiple GPU implementations.

4.3.4.2 Computation Time

Figure 4.6 shows the average computation time of magnetostatic �eld solver on

single GPU against the four GPUs in parallel for di�erent input problem sizes.

Theoretically the speedup should be four times the single GPU but as we can see

from the results in �gure 4.7 that actual speedup is not exactly four times the single

Architecture Details
Nvidia GForce

GTX 295

Total Processing Cores 30 (Per GPU core)

Micro Processors 240 (Per GPU core)

Core Clock Rate (MHz) 576

GFLOPS 1788

Mem. Bandwidth (GB/s) 2*111.9

Table 4.1. Architecture details of GForce GTX 295

80

4 � Magnetostatic �eld computation on multiple GPUs

GPU implementation. The reason for this is the extra communication overhead to

transfer the data among multiple GPUs. As discussed above in section 4.5 that data

is equally divided on multiple GPUs. For performing the X and Y transform we

do not need to transfer data among multiple GPUs but for the third dimensional

FFT the data is no more available locally on the GPUs, therefore data transfer is

required. The data transfer procedure is discussed in section 4.3.1.1.

The speedup is almost constant for di�erent sizes, except very small input prob-

lem sizes due to the overhead related to each data transfer [64]. It is better to

transfer data in large segments rather than transferring in small batches to reduce

the data transfer overhead.

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

T
im

e
(S

ec
)

Problem Size in Million

Double Precision Computation Time Single GPU vs 4-GPUs

Single GPU

4-GPUs

Figure 4.6. Magnetostatic �eld computation time on single GPU against four
GPUs in parallel for di�erent input problem sizes

81

4 � Magnetostatic �eld computation on multiple GPUs

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

Sp
ee

dU
p

Problem Size in Million

Double Precision SpeedUp 0n 4-GPUs against Single GPU

SpeedUp

Figure 4.7. The speedup of Magnetostatic �eld computation on four parallel GPUs
against single GPU implementation for di�erent input problem sizes

4.3.5 Conclusion

In chapter 3 I have discussed the implementation of magnetostatic �eld solver on

single GPU and shown the speedup against equivalent CPU implementation for

di�erent input problem sizes. I have used di�erent optimization techniques both

with respect to our input problem and the GPU hardware architecture. Normally

in micromagnetic simulations due to very �ne space and time discretization the input

problem sizes are very large. On the other hand on most of the GPUs have little

memory resources to accommodate the very large input problem sizes. Therefore

the natural next step to further increase the performance of magnetostatic �eld

solver on GPUs and to mitigate the limited memory problem is the use of combined

resources of multiple GPUs in parallel.

In this chapter I have discussed the di�erent issues and techniques related to the

multiple GPUs implementation. I have shown the implementation of magnetostatic

82

4 � Magnetostatic �eld computation on multiple GPUs

�eld solver on multiple GPUs in parallel and the speedup against single GPU im-

plementation. In this way we can handle very large input problem sizes by utilizing

the memory resources on di�erent GPUs along with computation speedup.

The publication on this work that is �Fast Parallel Magnetostatic Field Solver

on Multiple GPUs � is under progress and hopefully would be ready soon to submit

in well reputed journal.

83

Part III

Queue Management on GPUs

Chapter 5

Fast parallel sorting algorithms on

GPUs

5.1 Introduction

Sorting algorithms have been studied extensively since past three decades. Their

uses are found in many applications including real-time systems, operating systems,

and discrete event simulations. In most cases, the e�ciency of an application itself

depends on usage of a sorting algorithm. Lately, the usage of graphic cards for

general purpose computing has again revisited sorting algorithms.

In this chapter I would present a novel Butter�y Network Sorting algorithm

(BNS) for sorting large data sets on GPUs. A minimal version of the algorithm

Min-Max Butter�y is also shown for searching minimum and maximum values in

data. Both algorithms are implemented on GPUs using OpenCL exploiting data

parallelism model. Results obtained on di�erent GPU architectures show better

performance of butter�y sorting in terms of sorting time and rate. The comparison

of butter�y sorting with other algorithms:bitonic, odd-even and rank sort show sig-

ni�cant speedup improvements on Nvidia Quadro-6000 GPU with relatively better

sorting time and rate.

85

5 � Fast parallel sorting algorithms on GPUs

5.2 Related Work

Sorting is one of the most extensively studied algorithms since well over three

decades. Likewise, there is abundant literature on the topic. Since it is not possible

to mention all previous sorting algorithms in this section, I am presenting an oc-

currence of parallelism in literature only with respect to GPUs in this section. An

overview of parallel sorting algorithms is given in [65].

A quick-sort implementation on GPU using CUDA is considered in [66]. The

quick-sort algorithm discussed in [66] works in two steps, creation of sub-sequences

and assigning threads to the sub-sequences generated in �rst step. Their algorithm

works in divide and conquer fashion on left-right sequences formation in accordance

to the current value, greater or smaller than the value of pivot. The results in [66]

show better performance of quick sort over bitonic and radix sort for large sequences

with complexity of O(nlog(n)) and O(n2) for the worst case. For smaller sequences

they suggested bitonic sort. A GPU implementation of merge sort and radix sort is

presented in [67]. In this case, the radix sort divides the sequence of N=items into

N/P blocks. In next phase, in order to maximize coherence of scatters and minimize

it to global memory, every sequence then is sorted by radix sort exploiting shared

memory on the chip. The merge sort algorithm discussed in [67] adopts same divide

and conquer approach where the complete sequence is divided into p equally sized

tiles. All tiles are sorted in parallel with p thread blocks using odd-even sort, and

then merged together using merge-sort conventions on a tree of logp depth.

An adaptive bitonic sorting algorithm is shown in [68]. Their implementation

achieves optimal complexity of O(nlog(n)/p) for sorting n numbers on p streaming

processors. A GPU implementation of bitonic sort is discussed in [69] and CUDA

based in-place bitonic sort is implemented in [70]. An overview of sorting on queues

is covered in [71] focusing mainly on tra�c simulations for studying the behavior of

transport agents in large groups. A parallel implementation of odd-even sort sug-

gested in [24] shows that parallelism can be introduced at each stage only internally

i.e. at compare-exchange process but not stage by stage meaning that no two stages

can be executed in parallel as output at any stage si is input for subsequent stage

si+1. Same holds true for both min-max butter�y and full butter�y sorting where

consecutive two stages can not be executed in parallel.

86

5 � Fast parallel sorting algorithms on GPUs

5.3 Butter�y structure

I have considered 2 × 2 butter�y acting as compare-exchange circuit for both min-

max butter�y and full butter�y sorting. The input values at the inner upper and

lower wings of the butter�y are compared and exchanged if needed and places the

output values at outer upper and lower wing of the butter�y as shown in �gure 5.1.

The detailed working of both min-max and full butter�y sorting is given in the next

sections.

5.3.1 Min-Max Butter�y

The min-max butter�y �nds minimum and maximum in large volume of data using

butter�y compare-exchange circuit. Min-max butter�y for searching minimum and

maximum inN size data has total of log2N stages. Complexity in terms of butter�ies

(comparators) is (N/2)log2N butter�ies where N/2 are number of butter�ies in each

stage. An example diagram of length 8 min-max butter�y is shown in Figure 5.1.

Here x(0), x(1)...x(7) can be any random values. At each stage N/2 butter�ies are

carried out in parallel where each butter�y fetches two values, Posstart and Posend,

from queue and then compares these values to be placed either at its upper or lower

wing of butter�y accordingly as shown in the algorithm below. After successful

complete run of the algorithm in this case minimum and maximum values, 0 and 7,

are output atx(0)andx(7) respectively. The min-max algorithm is carried out stage

by stage with parallelism introduced by executing butter�ies in parallel inside any

stage.

In addition to �nding minimum and maximum in data, the minmax butter�y

does complete sorting in special cases where input data is completely in descending

order and vice versa.

The min-max butter�y algorithm works as follows

5.3.2 Full Butter�y Sorting

In this section I would explain the novel butter�y sorting algorithm on GPUs. The

butter�y sort orders input data following any distribution type:uniform, random,

87

5 � Fast parallel sorting algorithms on GPUs

input : datarandom,size
output: datasorted

begin

for xout ← 1 to log2(size) do
PowerX = radixxout ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex × PowerX;
Posend = kIndex + yIndex × PowerX + PowerX/radix;
if Posstart > Posend then

swap(Posstart,Posend)
end

end

end

end

Algorithm 1: Min/Max Butter�y Sorting Network

88

5 � Fast parallel sorting algorithms on GPUs

7

3

2

5

6

4

0

1

3

7

2

5

4

6

0

1

2

5

3

7

0

1

4

6

0

1

3

6

2

5

4

7

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Figure 5.1. Min-Max Butter�y

exponential etc. Like min-max butter�y, in full butter�y sort the number of butter-

�ies in any stage are constant i.e. N/2. For complexity in terms of total butter�ies,

we �rst �nd total number of stages which is given by the following formula.

Totalstages = log2N +

logzN−1∑
i=1

i (5.1)

Totalbutterflies = N/2× Totalstages (5.2)

In equation 5.1, log2N are total number of out-kernals represented by the �rst

do=parallel block of the algorithm where as
∑logzN−1

i=1 i are total number of in-

kernels represented by second do=parallel block in the algorithm. Figure 5.2 shows

an example of length 16 full butter�y network. The big and the most prominent

di�erence between the bitonic sort and the butter�y sort is that of bitonic sequence

that is in bitonic sort before sorting an arbitrary sequence it must be converted in

to bitonic sequence. A bitonic sequence is a sequence which either monotonically

increases or decreases, reaches a single maximum or minimum, and then after that

89

5 � Fast parallel sorting algorithms on GPUs

maximum or minimum value it again monotonically increases or decreases. On the

other hand in butter�y sort we do not need to create any sequences before the

sorting.

The butter�y for the full sorting network is given as follows:

input : datarandom,size
output: datasorted

begin

for xout ← 1 to log2(size) do
PowerX = radixxout ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex × PowerX;
Posend = PowerX − kIndex − 1 + yIndex × PowerX;
if Posstart > Posend then

swap(Posstart,Posend)
end

end

if x > 1 then
for xin ← x to 1 do

PowerX = radixxin ;
do parallel T

yIndex = t/ (PowerX/radix);
kIndex = t% (PowerX/radix);
Posstart = kIndex + yIndex × PowerX;
Posend = kIndex + yIndex × PowerX + PowerX/radix;
if Posstart > Posend then

swap(Posstart,Posend)
end

end

end

end

end

end
Algorithm 2: Full Butter�y Sorting

90

5 � Fast parallel sorting algorithms on GPUs

OutKrOutKr InKrOutKr InKr

15
14

13
12

11
10

9
5

8
7

6
3

4
1

2
0

14
15

12
13

10
11

5
9

7
8

3
6

1
4

0
2

13
12

15
14

9
5

11
10

6
3

8
7

1
0

4
2

12
13

14
15

5
9

10
11

3
6

7
8

0
1

2
4

11
10

9
5

15
14

13
12

3
2

1
0

8
7

6
4

9
5

11
10

13
12

15
14

1
0

3
2

6
4

8
7

5
9

10
11

12
13

14
15

0
1

2
3

4
6

7
8

OutKr InKr InKr InKr

5
7

6
4

3
2

1
0

15
14

13
12

11
10

9
8

3
2

1
0

5
7

6
4

11
10

9
8

15
14

13
12

1
0

3
2

5
4

6
7

9
8

11
10

13
12

15
14

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

InKr

x(0)

x(1)

x(2)
x(3)

x(4)
x(5)

x(6)
x(7)

x(8)
x(9)

x(10)

x(11)

x(12)
x(13)

x(14)
x(15)

x(0)

x(1)

x(2)
x(3)

x(4)
x(5)

x(6)

x(7)

x(8)
x(9)

x(10)
x(11)

x(12)
x(13)

x(14)

x(15)

Figure 5.2. Butter�y Sorting

5.4 Performance Analysis

Performance of the sorting algorithms discussed here is evaluated both on CPU and

GPUs considering their sequential and parallel implementations in terms of sorting

time, sorting rate and speedup.

5.4.1 Experimental Setup

All simulations are carried out in OpenCL 1.2 and standard C compiler for di�erent

queue sizes in the power of 2. Input data of type �oat, is taken from a random

number generator with size in the range of 210 to 225. Variable declaration/ initial-

izations, random number generators and other memory reads/writes to/from queues

are mainly limited to CPU in host program. Actual sorting, butter�y computation,

is carried out on GPU in kernel code. Hardware architectures used for simulations

are Nvidia-Quadro6000, GeForce GTX260 and GeForce GT320M for parallel imple-

mentation and Intel Core2Quad CPU Q8400 for serial implementation.

91

5 � Fast parallel sorting algorithms on GPUs

5.4.2 Results

5.4.2.1 Sorting Time

Sorting time of the algorithm is recorded as real time in seconds and is the time spent

by the algorithm only for sorting data and excludes any other time spent in variable

initialization, memory read/write and contention times etc. Sorting times for min-

max butter�y and full-butter�y sorting on di�erent GPU and CPU architectures are

depicted in Figures 5.3 and 5.4 respectively. Performance is improved by exploiting

high parallelism inside any stage of the algorithm. Sorting time and rate values for

full butter�y sorting are relatively better than bitonic sort, odd even sort and rank

sort as shown in [24].

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 12 14 16 18 20 22 24

T
im

e
in

 s
ec

on
ds

 (
lo

g)

Input Data Size log2 N

Min-Max Time in Seconds on different GPU and CPU architectures

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

Figure 5.3. Sorting Time Min-Max Butter�y

92

5 � Fast parallel sorting algorithms on GPUs

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 12 14 16 18 20 22 24 26

T
im

e
in

 s
ec

on
ds

 (
lo

g)

Input Data Size log2 N

Full butterfly sorting time on different GPUs and CPU architecture

GTX260

Core2Quad CPU Q8400

GT320

Quadro 6000

Figure 5.4. Sorting Time Full Butter�y Sort

5.4.2.2 Sorting Rate

Sorting rate is the ratio of queue size to sorting time. Sorting rates for bitonic,

odd/even and rank reported in[8] and are used only for comparisons with sorting

rates of minmax butter�y and full butter�y. Our results for sorting rates, Figures

5.5 and 5.6, of min-max and full butter�y sort show better performance than all the

three algorithms.

93

5 � Fast parallel sorting algorithms on GPUs

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 10 12 14 16 18 20 22 24

So
rt

in
g

R
at

e

Input Data Size log2 N

Min-Max Sorting Rate on different GPU and CPU architectures

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

Figure 5.5. Sorting Rate Min-Max Butter�y

 100000

 1e+06

 1e+07

 1e+08

 10 12 14 16 18 20 22 24

So
rt

in
g

R
at

e

Input Data Size log2 N

Full butterfly sorting Rate on different GPUs and CPU architecture

GTX260

Core2Quad CPU Q8400

GT320

Quadro 6000

Figure 5.6. Sorting Rate Full Butter�y Sort

94

5 � Fast parallel sorting algorithms on GPUs

5.4.2.3 Speedup

Figures 5.7 and 5.8 report improvement in speedups of the butter�y sort against

di�erent sorting algorithms on di�erent GPUs architecture where as �gure 5.9 shows

the speedup of serial butter�y sort against di�erent sorting algorithms . It achieves

2x speedup over bitonic sort, a speedup of nearly 104x on Quadro-6000 over rank

and odd even sort for parallel implementation and speedup of nearly 103x against

odd-even and rank sort for serial implementation. Speedup factor increases for large

queue sizes on GPUs with larger number of cores.

 0.1

 1

 10

 14 16 18 20 22 24 26

Sp
ee

dU
p

ag
ai

ns
t B

ito
ni

c

Input Data Size 2n

 Butterfly sort speedup against bitonic sort on different GPUs and CPU architecture

GTX 260

Core 2 Quad CPU

GT 320M

Quadro 6000

Figure 5.7. SpeedUp Full Butter�y Sort Against Bitonic Sort

95

5 � Fast parallel sorting algorithms on GPUs

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 12 14 16 18 20 22 24

Sp
ee

dU
p

on
 Q

ua
dr

o
60

00

Input Data Size 2n

Full butterfly sort speedup against different sorting algorithms on Quadro 6000

vs-Bitonic sort

vs-OddEven sort

vs-Rank sort

Figure 5.8. SpeedUp Full Butter�y Sort Against Di�erent Sorting Algorithms

 1

 10

 100

 1000

 10000

 14 14.5 15 15.5 16 16.5 17

Sp
ee

dU
p

on
 C

or
e2

Q
ua

d
C

PU

Input Data Size 2n

Serial butterfly sort speedup against different sorting algorithms

vs-Bitonic sort

vs-OddEven sort

vs-Rank

Figure 5.9. SpeedUp Serial Butter�y Sort Against Di�erent Sorting Algorithms

96

5 � Fast parallel sorting algorithms on GPUs

5.5 Conclusion

I have tested parallel and serial implementation of novel sorting algorithms: min-

max butter�y and full butter�y sorting on di�erent GPU and CPU architectures and

evaluated better performance of my algorithms in comparison to bitonic, odd-even

and rank-sort in terms of sorting time, sorting rate and speedup. In future the work

will be transported to multiple GPUs with optimization techniques like memory

coalescing etc and uses of these algorithms for hold=operations. The publications

related to this work are [72, 73, 74, 24]

97

Chapter 6

Conclusion

The graphics processing units (GPUs), which initially was designed for manipulating

computer Graphics, now with the development of high level libraries and easy to

use interfacing tools such as OpenCL and CUDA can be used as co-processor to

speed up wide range of computation intensive applications. On the other hand in

micromagnetic simulations the study of magnetization behavior at very small space

and time scale requires lot of computational cost. Therefore parallelism becomes

adequate for such type of simulations.

The study and observation of magnetization behavior at sub-nanosecond time-

scales is crucial to a number of areas such as magnetic sensors, non volatile storage

devices and magnetic nanowires etc. Since micromagnetic codes in general are suit-

able for parallel programming as it can be easily divided into independent parts

which can run in parallel, therefore current trend for micromagnetic code concerns

shifting the computationally intensive parts like the magnetostatic �eld calculation

to GPUs. In the recent years GPUs have provided best solution to such problems

both with respect to price and performance.

The current micromagnetic solvers on GPU are CUDA based and uses the

general-purpose FFT library (cu�t) for the computation of magnetostatic �eld. This

limits the current GPU based magnetostatic solver to NVIDIA based hardware only.

Secondly by the use of general-purpose FFT library they can not fully exploit the

zero padded input data with out transposition and symmetries inherent in the �eld

calculation, moreover on single GPU the input problem size is also an issue.

98

6 � Conclusion

My PhD work mainly focuses on the development of highly parallel magneto-

static �eld solver for micromagnetic simulators on GPUs. I am using OpenCL for

GPU implementation, with consideration that it is an open standard for parallel pro-

gramming of heterogeneous systems for cross platform. It targets di�erent devices

such as GPUs by di�erent vendors such as Nvidia, ATI and Intel etc, along with

CPU and other processing hardware which conform to its speci�cation. The magne-

tostatic �eld calculation is dominated by the multidimensional FFTs (Fast Fourier

Transform) computation. Therefore I have developed the specialized OpenCL based

3D-FFT library for magnetostatic �eld calculation which made it possible to fully

exploit the zero padded input data with out transposition and symmetries inher-

ent in the �eld calculation. As a result the complexity of overall system reduced

signi�cantly compared to current GPU based solvers. Moreover it also provides a

common interface for di�erent vendors' GPUs. In order to fully utilize the GPUs

parallel architecture my solver handles many hardware speci�c technicalities such

as coalesced memory access, data transfer overhead between GPU and CPU, GPU

global memory utilization, arithmetic computation and batch execution.

I have demonstrated the average speedup of magnetostatic �eld solver on dif-

ferent GPU architectures against widely used CPU based shared memory parallel

micromagnetic solver �OOMMF� developed at NIST and against my equivalent par-

allel implementation respectively, running on four cpu cores. Where my GPU based

implementation shows a signi�cant speedup factor of up to 8.6 for single precision

�oating point accuracy with out data transfer time and 4.2 with data transfer time

on high end GPU architecture that is Nvidia Quadro-6000. On the other hand the

speedup against my equivalent implementation on CPU is up to 46x and 94x with

and with out data transfer time respectively.

In chapter 3 I have discussed the implementation of magnetostatic �eld solver

on single GPU and shown the speedup against OOMMF and equivalent CPU im-

plementation for di�erent input problem sizes. I have used di�erent optimization

techniques both with respect to our input problem and the GPU hardware archi-

tecture. Normally in micromagnetic simulations due to very �ne space and time

discretization the input problem sizes are very large. On the other hand on most

of the GPUs have little memory resources to accommodate the very large input

problem sizes. Therefore the natural next step to further increase the performance

99

6 � Conclusion

of magnetostatic �eld solver on GPUs and to mitigate the limited memory prob-

lem is the use of combined resources of multiple GPUs in parallel. Therefore in

the second step to further increase the level of parallelism and performance, I have

developed a parallel magnetostatic �eld solver on multiple GPUs. Utilizing multiple

GPUs avoids dealing with many of the limitations of GPUs (e.g., on-chip memory

resources) by exploiting the combined resources of multiple on board GPUs.I have

shown the implementation of magnetostatic �eld solver on multiple GPUs in parallel

and the speedup against single GPU implementation. In this way we can handle

very large input problem sizes by utilizing the memory resources on di�erent GPUs

along with computation speedup.

Currently my 3-D FFT library is based on Cooley Tukey radix-2 algorithm, in

future I am planning to move towards higher radix or even mix radix FFT algo-

rithms. Most importantly in order to achieve a very high performance I have to

shift all the components of micromagnetic solver on GPU.

Sorting algorithms have been studied extensively since past three decades. Their

uses are found in many applications including real-time systems, operating systems,

and discrete event simulations. In most cases, the e�ciency of an application itself

depends on usage of a sorting algorithm. Lately, the usage of graphic cards for

general purpose computing has again revisited sorting algorithms. I have tested

parallel and serial implementation of novel sorting algorithms: min-max butter�y

and full butter�y sorting on di�erent GPU and CPU architectures and evaluated

better performance of my algorithms in comparison to bitonic, odd-even and rank-

sort in terms of sorting time, sorting rate and speedup.

100

Bibliography

[1] Paul Manuel Kalim Qureshi, Fiaz Gul Khan and Babar Nazir. A hybrid fault

tolerance technique in grid computing system. The Journal of Supercomputing,

56:106�128, 2011. 7

[2] Babar Nazir Fiaz Gul Khan, Kalim Qureshi. Performance evaluation of fault

tolerance techniques in grid computing system. Computers and Electrical En-

gineering, 36, issue 6:1110�1122, November 2010. 7

[3] Mache Creeger. Multicore cpus for the masses. Queue, ACM New York, NY,

USA, 3(7):64��, 2005. 7, 29

[4] Lawrence Murray. Gpu acceleration of runge-kutta integrators. IEEE Trans-

actions on Parallel and Distributed Systems, 23(1):94�101, 2012. 7

[5] C.W. In Kyu Park; Singhal, N.; Man Hee Lee; Sungdae Cho; Kim. Design

and performance evaluation of image processing algorithms on gpus. IEEE

Transactions on Parallel and Distributed Systems, 22(1):91�104, 2011. 7

[6] S. ; Dongarra J. Kurzak, J. ; Tomov. Autotuning gemm kernels for the fermi

gpu. IEEE Transactions on Parallel and Distributed Systems, 23(11):245�257,

2012. 7

[7] David Brooks. Cpus, gpus, and hybrid computing. IEEE Micro, 31:4�6, 2011.

7

[8] W.J. ; Khailany B. ; Garland M. ; Glasco D. Keckler, S.W. Dally. Gpus and

the future of parallel computing. IEEE Micro, 31:7�13, 2011. 7

[9] J.D Yao Zhang, Owens. A quantitative performance analysis model for gpu

architectures. In IEEE 17th international symposium on HPCA, 2011. 10, 11

[10] T.S. Han, T.D.; Abdelrahman. hicuda: High-level gpgpu programming. IEEE

Transactions on Parallel and Distributed Systems, 22(1):78�90, 2011. 11

[11] J.; Josth R.; Herout A.; Zemcik P.; Hauta-Kasari M. Antikainen, J.; Havel.

101

Bibliography

Nonnegative tensor factorization accelerated using gpgpu. IEEE Transactions

on Parallel and Distributed Systems, 22(7):1135�1141, 2011. 11

[12] P.; Kaeli D. Byunghyun Jang; Schaa, D.; Mistry. Exploiting memory access

patterns to improve memory performance in data-parallel architectures. IEEE

Transactions on Parallel and Distributed Systems, 22(1):105�118, 2011. 11

[13] Mark Jason Harris. Real-Time Cloud Simulation and Rendering. PhD thesis,

University of North Carolina at Chapel Hill, 2003. 11

[14] D. Kirk. Innovation in graphics technology. In Talk in Canadian Undergraduate

Technology Conference, 2004. 13

[15] A.C. ; Roerdink J.B.T.M. van der Laan, W.J. ; Jalba. Accelerating wavelet

lifting on graphics hardware using cuda. IEEE Transactions on Parallel and

Distributed Systems, 22(1):132�146, 2011. 18

[16] A. ; Hinde R.J. ; Peterson G.D. Weber, R. ; Gothandaraman. Comparing hard-

ware accelerators in scienti�c applications: A case study. IEEE Transactions

on Parallel and Distributed Systems, 22(1):58�68, 2011. 18

[17] J. Nickolls and W.J. Dally. The gpu computing era. IEEE Micro, 30, issue

2:56�69, 2010. 18

[18] J. Nickolls Anderson J. Hardwick S. Morton E. Phillips Y. Zang M. Garland,

S. Le Grand and V. Volkov. Parallel computing experience with cuda. IEEE

Micro, 28:13�27, 2008. 19, 46

[19] Guochun Shi Showerman M.T Arnold G.W Stone J.E Phillios J.C Wen-

mei Hwu Kindratenko V.V, Enos J.J. Gpu clusters for high-performance com-

puting. In IEEE international conference on Cluster New Orleans, LA, 2009.

19, 46

[20] Nvidia Corporation, www.nvidia.com. OpenCL Programming Guide for CUDA

Architecture, 2009. 25

[21] A. ; Kammerer M. ; Van Waeyenberge B. ; Dupre-L. ; De Zutter D Van de

Wiele, B.; Vansteenkiste. Micromagnetic simulations on gpu, a case study:

vortex core switching by high-frequency magnetic �elds. IEEE Transactions

on Magnetics, 48:2068�2072, June 2012. 29, 37

[22] Benjamin Kruger Andre Drews Claas Abert, Gunnar Selke. A fast �nite-

di�erence method for micromagnetics using the magnetic scalar potential.

IEEE Transaction on Magnetics, 48:1105�1109, 2012. 29, 44

102

Bibliography

[23] M. J. Donahue. Parallelizing a micromagnetic program for use on multiproces-

sor shared memory computers. Ieee Transactions On Magnetics, 45:3923�3925,

2009. 29, 44, 45, 59

[24] Fiaz Gul Khan, Omar Usman Khan, Bartolomeo Montrucchio, and Paolo Gi-

accone. Analysis of fast parallel sorting algorithms for gpu architectures. In

Proceedings of the 2011 Frontiers of Information Technology, pages 1173�1178.

IEEE Computer Society, 2011. 30, 49, 86, 92, 97

[25] E.M. Lifshitz L.D. Landau. Theory of the dispersion of magnetic permeability

in ferromagnetic bodies. Phys. Z. Sowietunion, 8:153�169, 1935. 31, 33

[26] W. F Brown Jr. Micromagnetics, Interscience Tracts on Physics and Astron-

omy. Willey-Interscience, New York/London, 1963. 31, 33

[27] A. Aharoni. Introduction to the Theory of Ferromagnetism. Oxford University

Press, 2001. 31

[28] L.Dupre D.De Zutter B.VandeWiele, F.Olyslager. On the accuracy of �t based

magnetostatic �eld evaluation schemes in micromagnetic hysteresis modeling.

Journal of Magnetism and Magnetic Materials, 322:469�476, October, 2009. 31

[29] Massimiliano d'Aquino. Nonlinear Magnetization Dynamics in Thin-�lms and

Nanoparticles. PhD thesis, Universita degli studi di Napoli Federico II, 2004.

31, 40, 41

[30] A.H Morrish. The physical principles of magnetism. IEEE Press, 1975. 32

[31] Nikhil S. Tambe etc. W.Merlijin Van Spengen. Hand book of nano technology.

Springer, November 2006. 33

[32] A.E. LaBonte. Two-dimensional bloch type domains walls in ferromagnetoic

�lms. Appl. Physics, 40:2450, 1969. 33

[33] J. Mallinson. On damped gyromagnetic precession. IEEE Transactions on

Magnetics, 23:2003�2004, 2003. 33, 35, 36

[34] T.L. Gilbert. A lagrangian formulation of the gyromagnetic equation of the

magnetic �eld. Physical Review, 100:1243, 1955. 33

[35] L.T. Gilbert. A phenomenological theory of damping in ferromagnetic materi-

als. IEEE Transactions on Magnetics, 40:3443�3449, 2004. 33

[36] A. Hubert D. V. Berkov, K. RamstÃ¶cck. Solving micromagnetic problems.

towards an optimal numerical method. Phys. stat. sol., 137:207�225, 1993,

Published online 2006. 36

103

Bibliography

[37] P. ; Porod W. ; Csaba G. Khan, A.A.; Lugli. Development of a highly paral-

lelized micromagnetic simulator on graphics processors. In 14th International

Workshop on Computational Electronics (IWCE), 2010. 36

[38] NICOLA A. SPALDIN. Magnetic Materials Fundamentals and Applications.

Cambridge University Press New York USA, 2010. 38

[39] M.J. Donahue R.D. McMichael and D.G. Porter. Comparison of magnetostatic

�eld calculation methods on two-dimensional square grids as applied to a mi-

cromagnetic standard problem. Journal of Applied Physics, 85(B):5816�5818,

April 1999. 40

[40] H Neil Bertram. Theory ofMagnetic Recording. Cambridge University Press,

1994. 40

[41] G. Rowlands P. Rhodes. Demagnetizing energies of uniformly magnetized rect-

angular blocks. Proc. Leeds Phil. Liter. Soc, 6:191�210, 1954. 42

[42] Andrew J. NewellWyn WilliamsDavid J. Dunlop. A generalization of the de-

magnetizing tensor for nonuniform magnetization. Journal of Geophysical Re-

search, 98(B6):9551�9555, 1993. 42, 43

[43] Schafer Rudolf Hubert, Alex. Magnetic Domains: Analysis of Magnetic Mi-

crostructures. Springer, 1998. 42

[44] Ragusa C. Montrucchio B. Khan O.U., Khan F. Review of parallel and dis-

tributed architectures for micromagnetic codes. COMPEL, In Press, 2013. 45,

69

[45] B. Van de Wiele A. Vansteenkiste. Mumax: a new high-performance micromag-

netic simulation tool. Journal of Magnetism and Magnetic Materials, 323:2585�

2591, November 2011. 45, 60

[46] M. V. Lubarda B. Livshitz R. Chang, S. Li and V. Lomakin. Fastmag: Fast

micromagnetic simulator for complex magnetic structures. Journal of Applied

Physics, 109:07D358 � 07D358�6, 2011. 45, 46

[47] Aurelio D. Torres L. Martinez E. Hernandez-Lopez M.A. Gomez J. Alejos-O.

Carpentieri M. Finocchio G. Lopez-Diaz, L. and Consolo. G. Micromagnetic

simulations using graphics processing units. Journal of Physics D: Applied

Physics, 45:17, June 2012. 45, 46

[48] Elmar Westphal Attila Kakay and Riccardo Hertel. Speedup of fem micro-

magnetic simulations with graphical processing units. IEEE Transaction on

104

Bibliography

Magnetics, 46:2303�2306, 2010. 45, 46

[49] Franchin M. Bordignon G. Fischbacher, T. and H. Fangohr. A systematic ap-

proach to multiphysics extensions of �nite-element-based micromagnetic simu-

lations: Nmag. IEEE Transaction on Magnetics, 43:2896�2898, 2007. 45

[50] Werner Scholz. magpar version 0.9 build 3061M.

http://www.magpar.net/static/magpar/doc/magpar.pdf, 2010. 45

[51] C. Mewes and Mewes. M cube. http://bama.ua.edu/ tmewes/Mcube/Mcube.shtml,

October 2010. 45

[52] Yao Zhang and J.D Owens. A quantitative performance analysis model for gpu

arichitectures. In IEEE 17th International Symposium on HPCA, 2011. 49

[53] NVIDIA, http://www.nvidia.com. NVIDIA OpenCL Best Practices Guide, 1.0

edition, August 2009. 54

[54] Don Porter. Mike Donahue. OOMMF User's Guide for release 1.2 alpha 3.

http://math.nist.gov/oommf/doc/, 2002. 59

[55] F.G Khan B. Montrucchio O.U Khan, C.Ragusa. A mutual demagnetization

tensor for n-body magnetic �eld modeling. In 12th Joint MMM/Intermag Con-

ference Chicago, USA, January 2013. 69

[56] V.Giovara F.G Khan O.U Khan M. Repetto C.Ragusa, B.Montrucchio and

B. Xie. Implementation of 3d micromagnetic code on a parallel and distributed

arichitecture. In The fourth Italian Workshop on "The Finite Element Method

Applied to Electrical and Information Engineering", Rome, Italy. University

Roma Tre, December 2010. 69

[57] V.Giovara M.Repetto F.G. Khan O.U. Khan C.Ragusa, B.Montrucchio and

B.Xie. Implementation of a 3d micromagnetic code on a shared and distributed

architecture. In MAGNET 2011, 2nd Convegno Nazionale di Magnetismo,

Torino, Italy, February 2011. 69

[58] T. Schre� D. Suess R. Dittrich-H. Forster W. Scholz, J. Fidler and V. Tsiantos.

Scalable parallel micromagnetic solvers for magnetic nanostructures. Compu-

tational Materials Science, 28:366�383, 2003. 70

[59] J.E. ; Schulten K. Phillips, J.C. ; Stone. Adapting a message-driven parallel

application to gpu-accelerated clusters. In IEEE International Conference for

High Performance Computing, Networking, Storage and Analysis, 2008. SC

2008., pages 1�9. IEEE, November 2008. 71

105

Bibliography

[60] Gregorio Quintana-Orti, Francisco D. Igual, Enrique S. Quintana-Orti, and

Robert A. van de Geijn. Solving dense linear systems on platforms with multiple

hardware accelerators. Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, 44(4):121�130, feb 2009. 71

[61] Canqun Yang; Feng Wang ; Yunfei Du ; Juan Chen ; Jie Liu ; Huizhan Yi ; Kai

Lu. Adaptive optimization for petascale heterogeneous cpu/gpu computing.

In IEEE International Conference on Cluster Computing (CLUSTER), pages

19�28, USA, October 2010. 71

[62] Aaftab Munshi. The OpenCL Speci�cation. The Khronos Group In, version

1.0, revision 48 edition, 2009. 76

[63] Andreas Bonelli, Franz Franchetti, Juergen Lorenz, Markus PÃ×schel, and

ChristophW Ueberhuber. Automatic Performance Optimization of the Discrete

Fourier Transform on Distributed Memory Computers, volume 4330 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2006. 78

[64] Nvidia. OpenCL Best Practices Guide, April 2010. 81

[65] S.G. Akl, editor. Parallel Sorting Algorithms. Academic Press Inc.,U.S., 1985.

86

[66] Daniel Cederman and Philippas Tsigas. A practical quicksort algorithm for

graphics processors. Journal of Experimental Algorithmics (JEA), 14, 2010. 86

[67] Nadathur Satish, Mark Harris, and Michael Garland. Designing e�cient sorting

algorithms for manycore gpus. In Proceedings of the 2009 IEEE International

Symposium on Parallel&Distributed Processing, pages 1�10. IEEE Computer

Society, 2009. 86

[68] A. Greb and G. Zachmann. Gpu-abisort: optimal parallel sorting on stream

architectures. In 20th International Parallel and Distributed Processing Sympo-

sium, 2006. IPDPS 2006 Rhodes Island, Greece. IEEE Computer Society, 2006.

86

[69] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen, and

Pat Hanrahan. Photon mapping on programmable graphics hardware. In Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, pages 41�50, San Diego, California, 2003. Eurographics Association.

86

[70] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. Fast in-place

106

Bibliography

sorting with cuda based on bitonic sort. In Proceedings of the 8th international

conference on Parallel processing and applied mathematics: Part I, number 8

in PPAM'09, pages 403�410, Berlin, Heidelberg, 2010. Springer-Verlag. 86

[71] David Strippgen and Kai Nagel. Using common graphics hardware for multi-

agent tra�c simulation with cuda. In Proceedings of the 2nd International

Conference on Simulation Tools and Techniques, Simutools '09, pages 62:1�

62:8, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering). 86

[72] Bartolomeo Montrucchio Fiaz Gul Khan, Omar Usman Khan and Paolo Giac-

cone. Parallel butter�y sorting algorithm on gpus. In The 11th IASTED Inter-

national Conference on Parallel and Disributed Computing Networks, Innsbruk,

Austria, 2013. 97

[73] Carlo Ragusa Fiaz Gul Khan Omar Usman Khan Bilal Jan, Bartolomeo Mon-

trucchio. Fast parallel sorting algorithms on gpus. International Journal of

Distributed and Parallel Systems (IJDPS), 3(6):107�118, 2012. 97

[74] B.Montrucchio F.G Khan, O.U Khan. A study of odd-even and rank parallel

sorting algorithms for gpu. In Innovation Information Technologies: Theory

and Practice (Dresden, Germany), page 6, September 2010. 97

107

	Acknowledgements
	Summary
	I Introduction
	1 Introduction
	1.1 Main Contributions
	1.2 Organization of the thesis

	2 GPU Computing
	2.1 High Performance Computing (HPC)
	2.2 Parallel and Distributed Architectures
	2.2.1 Multicore shared memory architectures
	2.2.2 Distributed Memory Architectures
	2.2.3 Many core Architectures

	2.3 General-purpose computing on graphics processing units (GPGPU)
	2.3.1 Why GPGPU
	2.3.1.1 Performance
	2.3.1.2 Architecture
	2.3.1.3 Memory Bandwidth
	2.3.1.4 Economical
	2.3.1.5 Limitations

	2.4 GPU Programming
	2.4.1 Open Computing Language (OpenCL)
	2.4.1.1 Platform Model
	2.4.1.2 Execution Model
	2.4.1.3 Memory Model
	2.4.1.4 Programming Model

	2.4.2 CUDA

	II Parallel Magnetostatic solver on GPUs
	3 Parallel magnetostatic field computation on GPUs using Open Computing Language
	3.1 GPU Based Parallelization
	3.1.1 Magnetostatic field computation on GPUs

	3.2 Micromagnetic Model
	3.2.1 Micromagnetics
	3.2.2 Continuum hypothesis
	3.2.3 Micromagnetic free energy
	3.2.4 The Dynamic Landau-Lifshitz-Gilbert Equation
	3.2.5 Effective Magnetic Fields

	3.3 Magnetostatic Field Computation
	3.4 FFT discrete convolution method
	3.4.1 Compute Complexity

	3.5 Current state of the art of micromagnetic solvers
	3.5.1 GPU based solvers
	3.5.2 Limitations of current solvers

	3.6 OpenCL based GPU implementation
	3.6.1 Symmetry Properties of Components
	3.6.1.1 Demagnetizing Tensor
	3.6.1.2 Magnetization and magnetostatic field

	3.7 Implementation Approaches
	3.7.1 GPU-Optimized Implementation
	3.7.1.1 Minimizing Data Transfer Between CPU and GPU
	3.7.1.2 Coalesced Memory Access
	3.7.1.3 Minimizing GPU memory Utilization
	3.7.1.4 Minimizing the Arithmetic Computation
	3.7.1.5 Batch Execution

	3.7.2 FFTs Based Optimizations
	3.7.2.1 OpenCL Based 3-D FFT library on GPUs
	3.7.2.2 Savings in Forward 3-D FFT of Magnetization Vectors
	3.7.2.3 Savings in Inverse 3-D FFT of Magnetostatic Field Vectors
	3.7.2.4 Savings in 3-D FFT of Demagnetization Tensor

	3.8 Performance evaluation
	3.8.1 Experimental setup
	3.8.2 Results and discussion
	3.8.2.1 Computation Time
	3.8.2.2 SpeedUp

	3.8.3 Conclusion

	4 Magnetostatic field computation on multiple GPUs
	4.1 Why parallel GPUs
	4.1.1 Limitations of single GPU implementation
	4.1.2 Multiple GPUs advantages

	4.2 Different architectural approaches
	4.2.1 Shared system GPUs
	4.2.2 Distributed system GPUs

	4.3 Magnetostatic field computation on multiple GPUs
	4.3.1 Execution model on multiple GPUs
	4.3.1.1 Single Context Multiple Devices
	4.3.1.2 Multiple Contexts Multiple Devices

	4.3.2 Work division on multiple GPUs
	4.3.3 Sharing memory objects on multiple GPUs
	4.3.4 Performance evaluation on multiple GPUs
	4.3.4.1 Experimental setup
	4.3.4.2 Computation Time

	4.3.5 Conclusion

	III Queue Management on GPUs
	5 Fast parallel sorting algorithms on GPUs
	5.1 Introduction
	5.2 Related Work
	5.3 Butterfly structure
	5.3.1 Min-Max Butterfly
	5.3.2 Full Butterfly Sorting

	5.4 Performance Analysis
	5.4.1 Experimental Setup
	5.4.2 Results
	5.4.2.1 Sorting Time
	5.4.2.2 Sorting Rate
	5.4.2.3 Speedup

	5.5 Conclusion

	6 Conclusion
	Bibliography

