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1. AIMS AND SCOPE 

 

The scope of this work is to identify the relation that exists between the alterations of the 

bacterial metabolism and the exposition to an ultrasonic field. To made this relation quantifiable 

they will be used repeatable and reproducible metrological methods. 

 

To obtain this result the research will be focused on 3 specific goal: 

1. To realise a measurement of the ultrasonic field, generated by an ultrasonic bath, using an 

hydrophone calibrated specifically with the wavelengths applied. 

2. To choose a method, through uncertainty evaluation, to expose microbes to the ultrasonic 

field without an excessive alteration of the generated acoustic pressure. 

3. To find a method to measure bacterial viability, represented by the planktonic growth and 

the biofilm development, after exposure to the ultrasounds. 

 

Studying the relationship between the bacteria metabolism and ultrasonic exposure it will be 

possible to identify novels and more precise methods to treat bacterial colonisations. This result 

will be in fact useful in various fields where the bacterial presence, and in particular biofilm 

development, is today an unresolved problem.  

 

At the same time this research will put the basis for many further studies that will be realized 

applying the same method with different bacterial species, ultrasounds exposition conditions or 

ultrasonic devices. 
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2. INTRODUCTION 

 

2.1. Metrology in medicine and biology 

 

2.1.1 History 

Metrological sciences saw their birth between the eighteenth and nineteenth century with the 

creation and implementation in France of the decimal metric system. That moment signed the 

first step to achieve a world unification of measurement unit and methods, today still 

uncompleted. After the first phase of development and divulgation the most important moment 

for metrological evolution is related to the year 1875 with the “Metre Convention” and the 

creation of the “International Bureau of Weights and Measures” or “Bureau International des 

Poids et Measures” (BIPM) in Paris [1]. The first prototypes deposited in the bureau were meter 

and kilogram for the use of all member governments of the convention. Other then the bureau, 

from the conference born an organizational structure having at its base the “General Conference 

on Weight and Measures” (CGPM), that meets in Paris every four years, and the “International 

Committee for Weight and Measures” (CIPM) [1, 2]. 

In 1881 after meter, weight and temperature, during the “First International Congress of 

Electrician” in Paris, it was proposed to include electrical standard into the Metre Convention but 

this was not accepted. In 1889 the 1st CGPM sanctioned the international prototypes for the 

metre and the kilogram, together with the adoption of the astronomical second as the unit of 

time. In 1901 Giorgi showed that it is possible to combine the mechanical units of this metre–

kilogram–second system with the practical electric units to form a single coherent four-

dimensional system by adding to the three base units a fourth unit, of an electrical nature such as 

the ampere or the ohm. After the revision of the Metre Convention by the 6th CGPM in 1921, 

which extended the scope and responsibilities of the BIPM to other fields in physics, the 

Consultative Committee for Electricity (CCE, now CCEM) was created. The 10th CGPM, in 

1954, approved the introduction of the ampere, the kelvin and the candela as base units, 

respectively, for electric current, thermodynamic temperature and luminous intensity.  

In 1960 the International System of Units (SI) was established at the 11
th

 CGPM, and BIPM was 

authorized to maintain radium standard No. 5430 as standard for ionizing radiations. In 1971 the 

unit of amount of substance, the mole, was defined, and in 1993 the responsibility for the 

metrology in chemistry [2] added to BIPM. 

Finally, in 1999, members of the CGPM accepted that the BIPM should have authority to take 

action in any field of science for which there was a need for international work in metrology [2]. 
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Today the metrology has a fundamental role in all aspects of life, all fields, from engineering to 

economic, from telecommunication to transport, from agriculture to climatic changes, are strictly 

dependent on Metrology that have to provide measurement methods and instruments adequate 

for practical, technical and scientific requirements [2]. In this optic, modern biology and 

medicine methods need of specific quantification approaches too. This to obtain results with the 

highest level of accuracy.  

 

2.1.2. The International System of Units (SI) and the dimensionless quantities  

The term International System od Units (SI) was adopted in 1960 during the 11
th

 CGPM. This 

adoption were preceded by that in 1954 were approved to add as base units the ampere, the 

Kelvin and the candela. Then in 1971 to these units were added the mole bringing the total 

number of base units to seven [1-3].  

 

Definition of SI base units changed in time from the first in 1889 to the current adopted in 1983. 

Actually the definition of each SI base unit has to be unique and to provide a sound theoretical 

basis upon which the most accurate and reproducible measurements can be made. 

  

Length (metre): The metre is the length of the path travelled by light in vacuum during a time 

interval of 1/299.792.458 of a second [4, 5]. 

Mass (kilogram): The kilogram is the unit of mass; it is equal to the mass of the international 

prototype of the kilogram [6]. 

Time (second): The second is the duration of 9.192.631.770 periods of the radiation 

corresponding to the transition between the two hyperfine levels of the ground state of the 

caesium 133 atom [7]. 

Electric current (ampere): The ampere is that constant current which, if maintained in two 

straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 
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metre apart in vacuum, would produce between these conductors a force equal to 2 × 10−7 

newton per metre of length [8]. 

Thermodynamic temperature (Kelvin): The kelvin, unit of thermodynamic temperature, is the 

fraction 1/273,16 of the thermodynamic temperature of the triple point of water [9, 10]. 

Amount of substance (mole): The mole is the amount of substance of a system which contains 

as many elementary entities as there are atoms in 0,012 kilogram of carbon 12; its symbol is 

“mol” [11]. 

Luminous intensity (candela): The candela is the luminous intensity, in a given direction, of a 

source that emits monochromatic radiation of frequency 540 × 1012 hertz and that has a radiant 

intensity in that direction of 1/683 watt per steradian [12]. 

 

In 1960, during the 11
th

 CGPM, prefixes, derived units and former supplementary units were 

established too.  
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Today, using the seven base units and their derived units, it is possible to describe and to analyze 

almost all kind of physical quantities. The exceptions are represented by those quantities that 

cannot be described in terms of the seven base quantities of the SI and that are defined as 

“dimensionless quantities”[3]. Dimensionless quantities can be found in some kind of 

conditions: 

o Ratio of two quantities of the same kind, and are thus dimensionless, or have a dimension 

that may be expressed by the number one (As example absorbance value in 

spectrophotometric measures). 

o Quantities defined as a more complex product of simpler quantities in such a way that the 

product is dimensionless (As example values derived by hydrophone calibration and 

expressed in dBspl). 

o Number that represent a count (As example bacterial quantification). 

In these cases the SI unit to use is the number one itself, because all of these counting are defined 

dimensionless or of dimension one, so that the unit one is considered a base unit.   

 

2.1.3. The Uncertainty in measurement and metrological concepts 

Until the 1977 didn’t exist an international harmonized  method for the calculation of the 

uncertainty in measurement. In that year the CIPM requested the BIPM to realize this 

harmonization to achieve an international consensus on the expression of uncertainty in 

measurement. The BIPM, to obtain an internationally accepted procedure for expressing 

measurement uncertainty and for combining individual uncertainty components into a single 

total uncertainty, convened a meeting  to create a work group formed by 11 experts from eleven 

national metrology laboratories. This group, named Working Group on the Statement of 

Uncertainties, realized in 1980 the Recommendation INC-1 (Expression of Experimental 

Uncertainties) that was approved by the CIPM in 1981. From this first step in 1993 born the 

Guide to the expression of uncertainty in measurement (GUM) [1] then corrected various times 

until the last version of the 2008 supported by seven organizations as:  

o BIPM: Bureau International des Poids et Mesures 

o IEC: International Electrotechnical Commission 

o IFCC: International Federation of Clinical Chemistry 

o ISO: International Organization for Standardization 

o IUPAC: International Union of Pure and Applied Chemistry 

o IUPAP: International Union of Pure and Applied Physics 

o OlML: International Organization of Legal Metrology 
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The guide gives not only the significance of uncertainty in measurement but also guidelines in 

the use of concept and terms for the metrology as expressed by the “International vocabulary of 

metrology - basic and general concepts and associated terms” (VIM).  

 

uncertainty (of measurement) 

parameter, associated with the result of a measurement, that characterizes the dispersion of the 

values that could reasonably be attributed to the measurand (GUM 2.2.3) 

 

This definition shows that what is defined uncertainty has to be always related to the measurand 

and how If the results are out of the intervall declared, this occurs with a probability 

corresponding to the risk of error of the first type [13]. With the concept of uncertainty is 

fundamental to defined other concepts related to the measure as: 

o Measurand: particular quantity subject to measurement (VIM 2.6). 

o Measuring instrument: device used for making measurements, alone or in conjunction 

with one or more supplementary devices (VIM 3.1). 

o Measuring system: set of one or more measuring instruments and often other devices, 

including any reagent and supply, assembled and adapted to give information used to 

generate measured quantity values within specified intervals for quantities of specified 

kinds (VIM 3.2). 

o Resolution: smallest change in a quantity being measured that causes a perceptible 

change in the corresponding indication (VIM 4.14). 

o Stability: […] metrological properties remain constant in time (VIM 4.19). 

o Repeatability: condition of measurement, out of a set of conditions that includes the 

same measurement procedure, same operators, same measuring system, same operating 

conditions and same location, and replicate measurements on the same or similar objects 

over a short period of time (VIM 2.20). 

o Reproducibility: condition of measurement, out of a set of conditions that includes 

different locations, operators, measuring systems, and replicate measurements on the 

same or similar objects (VIM 2.24). 

o Accuracy: closeness of the agreement between the result of a measurement and a true 

value of the measurand (VIM 3.5). 
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o Precision: closeness of agreement between indications or measured quantity values 

obtained by replicate measurements on the same or similar objects under specified 

conditions (VIM 2.15). 

Each one of these concept are indispensable to understand the significance of “to do a 

measurement”. 

 

2.1.3. Metrology of biosciences 

In 1999 the BIPM participated, with a keystone role, in the creation of the Joint Committee for 

Traceability in Laboratory Medicine (JCTLM) which brought together the BIPM with the 

International Federation of Clinical Chemistry and Laboratory Medicine and the International 

Laboratory Accreditation Cooperation (ILAC) as well as representatives of manufacturers and 

regulators in the field of clinical chemistry [2]. In 2000 it born the Bioanalysis Working Group 

(BAWG) that became a member of the Consultative Committee on Quantity of Matter (CCQM), 

from this date the CCQM BAWG will be the most important organization related to the 

development of the metrology for biosciences. One of the last investigative about metrology for 

bioscience was published in 2011 from the BIPM and shows how this research field is rich of 

future developments [14]. 

 

Biometrology could be divided into different classes related to three factors strictly dependent 

each other: 

o Type of measurement method to use; 

o Type of biological material to analyse;  

o Type of biological phenomena to describe. 

 

The type of measurement methods applicable to execute measurements in biology are strictly 

related to the other two factor. The dimension of biological materials linked to their stability 

made really hard to obtain a good level of accuracy and of precision at the same time. For this 

reason measuring instruments give often results that need to be interpreted. At the same time 

specific phenomena needs more then one dimension to be understood and explained so need 

more than one instruments to obtain the final measure. 

 

Biological materials could be divided in relation of their dimension and type: 

o 0.3-3 nm: Small molecules 

o 4-20 nm: Proteins 
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o 2-200 nm: Glycans 

o 2nm-2m (in length): Nucleic acids 

o 4-100 nm: Viruses 

o 0,2-2 µm: Bacteria 

o 2-30 µm: Yeast cell 

o 2-10 µm: Mamm. cells 

All these needs a specific approach to be quantified and often more then a single method is 

needed to obtain an adequate accuracy. Between all the biological materials the ones, that is 

more and better analysed today, are the nucleic acids thanks to the polymerase chain reaction 

(PCR) method. The problem is that often biological phenomena cannot be explained using only a 

count base method and there is the need to apply other kind of measures or measurement 

methods for describing them. 

Biological phenomena, as activity, viability, efficacy, toxicity, are also that called “method-

dependent quantities” need, to be quantified, of complex procedures that are strictly linked to the 

knowledge of biological cells and their metabolism [15]. Principal problem to describe these 

phenomena is the low stability of the measurands, so that often an experiment,  even if 

performed very carefully, could be  really hard to be reproduced. So that near to repeatability and 

reproducibility there is the problem of the comparability linked to the high instability of 

biological measurands.  

The problem of stability is one of the big problems of metrology applied to the biosciences. In 

fact the biological materials instability could be influenced by environmental factors but, at the 

same time, is related to their tendency  to change state and characteristics very fast compared to 

the times required to perform repeated measurements in order to increase the accuracy. For this 

reason two experiments at the same conditions but in two different moment could give different 

results, so showing a very high uncertainty. To avoid part of this problem one may, however, 

work with comparison measurements using a reference a value with a good stability common to 

both measurands. 

 

1.2. Ultrasounds 

 

Sound is a rapid motion of molecules transmitted through a gas, liquid, or solid in the form of a 

travelling wave. This propagated wave is generated by the mechanical motion of consecutive 

compression and rarefaction of these molecules that produce a pressure variation in the medium 

[16]. 
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The sound is described in its time and space characteristics. About time, there is a periodical 

variation of molecular positions  and the corresponding pressure, therefore an important 

parameter is the frequency (ƒ) (SI unit: Hz). The frequency is then classified in relation with the 

frequency range, or spectrum, over which human beings can hear sounds called audible sound. 

Audible frequencies are between 20 Hz and 20 kHz approximately. Frequencies less then 20 Hz 

produce infrasound while above 20 kHz are called ultrasound (Fig. 2.2.1). 

 

 20 Hz     20 kHz  

←Infrasound ←Audible sound→ Ultrasound→ 

Fig 2.2.1. Acoustic spectrum 

The pressure change in the medium produces a propagation in space, characterized by a wave 

peak to peak distance. 

 

Other than for the frequency the sound wave is characterized by: 

o Amplitude value: it is represented by half of the difference between maximum and 

minimum pressure.  

o Wavelenght: it is the distance between two adjacent crest and it is denoted by λ. (Fig 

2.2.2) 

o Period: it is the time that it takes for one cycle to occur and it is denoted by T and it is 

the reciprocal of frequency (T=1/ƒ). (Fig 2.2.2) 

 

 

Fig 2.2.2. Acoustic waveform, amplitude vs distance (wavelength) and amplitude vs time (period) 

 

During its motion the ultrasonic wave is modified in relation with the kind of medium that it 

passed through or better from medium characteristic of impedance and attenuation [16]. When 

the ultrasounds is propagated into a biological medium two specific effects were analyzed and 

described that are thermal and not-thermal mechanisms. Thermal mechanism is strictly related to 
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the attenuation of the wave, during its motion ultrasounds attenuation is due to either absorption 

or scattering. While the scattering is the effect that give a different direction to the ultrasonic 

wave, the absorption transform the kinetic energy into heat. In this last case the amplitude 

decreases with the distance with a simultaneous increase in temperature. This thermal 

mechanism increases with the increasing of medium attenuation [16].  

The not-thermal mechanism is principally represented by mechanical effects, acoustic pressure 

and cavitation that will be described in later chapters. 

 

2.3. Microbial biofilm modulation by ultrasounds, current concepts and 

controversies.  

 

2.3.1. Introduction 

 

2.3.1.1. Bacterial biofilm 

Bacterial biofilm has been described since seventeenth century by van Leeuwenhoek and fully 

recognised in 1978 when a complete theory was formulated [17-19]. 

Bacterial biofilm is currently defined as “a microbially derived sessile community characterized 

by cells that are irreversibly attached to a substratum or interface or to each other, are 

embedded in a matrix of extracellular polymeric substances that they have produced, and exhibit 

an altered phenotype with respect to growth rate and gene transcription” [19]. A biofilm is 

characterised by cells adhesion to a not exfoliative surface, immersed in an aqueous medium and 

on other bacteria cells. The attachment mechanism could be explained by participation of several 

factors represented by the effects of the substratum, conditioning films forming on the 

substratum, hydrodynamics of the aqueous medium, characteristics of the medium, and various 

properties of the cell surface [18]. 

Proprieties of the cell surface linked to cell surface hydrophobicity, presence of fimbriae and 

flagella, and production of polysaccharide all influence the rate and extent of attachment of 

microbial cells [18]. These properties determine phenomenon of co-aggregation (interaction 

between planktonic micro-organisms of a different strain or species) and of co-adhesion 

(interaction between a sessile, already adhering organism and planktonic micro-organisms of a 

different strain or species) both fundamental for biofilm development [20, 21]. All those factors 

are required to obtain adhesion as surface-cell as cell-cell, with a constant competition between 

different bacteria species involved in this mixed community.  
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Another specific characteristic of bacteria biofilm is the presence of the “matrix of extracellular 

polymeric substance”, that contains polysaccharide, proteins and DNA and its formation is the 

consequence of metabolism of the microbial community forming the biofilm. This link explains 

why biofilm structure changes according to bacteria species that compose it [18, 20, 22, 23]. 

During the biofilm development, matrix creates a tridimensional structure with bacteria cells 

located in matrix-enclosed defined in literature “towers”, “stalk” or “mushrooms”. Many of these 

“structures” result in architecture with water channels between the “bacterial buildings”. The 

water channels look like a circulatory system which protects cell bacteria against toxic 

metabolites activity and operates as a source of nutrients [19, 20, 24]. Development and integrity 

of Biofilm structure are linked to a system of communication between bacteria species (spp). 

This system is represented by pheromones that allow cell-to-cell communication that could make 

bacteria forming biofilm to react against external stress as one. This communication system is 

called Quorum Sensing (QS) and it is closely involved both in biofilm formation and in surface 

motility in the opportunistic pathogens, its activation being linked to the activity of specifics 

molecules called autoinducers (AIs) [20, 25]. Biofilm organization give to bacteria cells a strong 

resistance against pharmacological and chemical therapies. This resistance could be explained by 

the impermeability of the matrix, by the QS activation, by the negative influence that internal 

environment of  biofilms has on antibacterials agent’s activity  as oxygen gradients and by an 

altered growth rate of biofilm organisms [19, 26-28]. Biofilms resistance to the drug regimens, as 

well as their ability to grow by adhering firmly to surfaces, make them central to the 

pathogenesis and persistence of nosocomial infections associated with contaminate pipelines, 

dental unit water lines, catheters, ventilators and medical implants [19, 20]. Association between 

biofilms and diseases is not always straightforward, because biofilm infection cannot be proven 

according to Koch’s postulates. Infections strongly linked to biofilm development, such as 

periodontal disease, endodontic infections, valve endocarditis, cystic fibrosis, urinary catheter 

cystitis, all have in common the resistance to non-invasive therapies (as drug therapy) [20, 29, 

30]. Starting from this perspective, US therapy were applied in these last years to obtain biofilm 

removal without biological damage to human cells, trying to reach the results obtained in water 

and food disinfections [30-35]. 

  

2.3.1.2. Therapeutic ultrasound 

Therapeutic ultrasound (US) can be divided into two classes determined by the maximum spatial 

average field intensity: ‘low’ intensity (up to 3 W/cm
2
) and ‘high’ intensity (over 5 W/cm

2
). Low 

intensity treatments are aimed at stimulating physiological responses to injury, or accelerating 
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some biological processes. The purpose of high intensity treatments is rather to selectively 

destroy tissues. In this field, a wide range of US frequencies are employed, from about 20 kHz 

up to several MHz, with frequencies lower than a few hundred kHz generally defined as 'low 

frequency US' and frequencies of the order of 1 MHz and above 'high frequency US'. An 

alternative classification scheme would be in terms of applications for which the sound  waves 

are directly propagated to the tissue via a coupling medium, and those for which the ultrasound 

transducer is coupled to a waveguide terminated with a tool specifically designed for the task 

required [36].  

Among US medical applications, in the last 10 years there has been a considerable spread of US 

usage in dental clinical practice [37]. Since the 1950s studies can be found related to the use of 

ultrasonic scalers in periodontal therapy against bacteria biofilm, while the technology of modern 

instruments based on piezoceramic transducers, born a decade ago, is currently increasing its 

importance for many therapeutic surgical protocols [35, 37-39].  

Ultrasonic scalers are instruments that allow the removal of root-surface accretions with a 

vibrating mechanical device [38]. In the literature it can be found how ultrasonic debridement 

allows to obtain similar clinical results to those registered with manual scaling and root-planing 

in periodontitis’ therapy respect to probing depth reduction, gain of clinical attachment and 

decreased clinical inflammation [32, 37-42]. The advantages of ultrasonic debridement are 

represented by a shorter chair time and operator fatigue against using manual instrumentation 

[32, 42], but at the same time the application of ultrasound seems to be associated with a number 

of hazards that need to be avoided, to ensure safety of operators and patients in the dental 

practice [43]. 

Although this clinical role, we can found very few scientific works on ultrasonic application on 

oral bacteria [32, 41], and on the ultrasonic influence on bacteria in general too, principally 

based on E. coli, S. aureus, B. subtilis, and P. aeruginosa which represent the various structural 

types of bacteria and possible contaminants of common-use water facilities [44] (Fig 2.3.1, 

2.3.2).  

Therapeutic US effects are commonly classified into thermal and non-thermal effects. Indeed 

this division is merely theoretical because the two effects are often not separable except in 

special cases like extracorporeal lithotripsy [16, 36, 45, 46]. Absolute thermal effects are 

normally generated when a substantial amount of energy is transferred to a tissue by exposure to 

a continuous or discontinuous wave (with duration of the order of 1 s or more). On the other 

hand, non-thermal (mechanical) effects are produced by exposure to a high-power pulsed wave 

(with pulse duration much shorter than 1 s). However, some devices designed to produce non-
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thermal effects (like the ultrasonic scalers cited above) employ continuous waves and therefore 

are likely to yield thermal effects also. A reasonable approach is then to assume that non-thermal 

effects will always be accompanied by some heating, because the interaction between ultrasound 

and tissue is simultaneously thermal and mechanical and there is insufficient evidence as to 

whether there is a true threshold for bioeffects resulting from either mechanism [16, 45]. 

 

 

Fig 2.3.1. Papers published about the use of ultrasound to obtain an antimicrobial effect divided between its use in water 

disinfection, food disinfection and medical disinfection. Its interesting how while the total number of works showed that 

ultrasound using for medical disinfection represented the 34%, this percentage go down to 26% from 2005 to 2010. 

(http://www.ncbi.nlm.nih.gov/pubmed/) 

 

 

Fig 2.3.2. Papers published about ultrasound effects on different bacteria species. No strong differences can be highlighted 

between all article published and those of the years between 2005 and 2010. (http://www.ncbi.nlm.nih.gov/pubmed/) 
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2.3.1.3. Current concepts about ultrasound effects on bacteria population 

Study of US effect on bacteria can be divided into different periods. Until the first half of 90 

years we can see how the researchers concentrated their efforts to understand and outline the 

behavior of ultrasound in microbiology. These studies led to the acknowledgment of the 

mechanism of cavitation as the main responsible for the bactericidal power derived by US 

activity. From 1994 start the analysis of US effects combined with antibiotics or other 

bactericidal substances to obtain a bactericidal effect using US in vivo without sides effect. 

These studies led, in 2003, to understand the capabilities of ultrasound, under certain conditions, 

to stimulate bacterial metabolism. From this year we can find in literature many works about the 

analysis of US effect on bacteria in planktonic or in biofilm form but no one has yet described 

what cellular mechanisms are activated in bacterial cells when affected by ultrasonic field (Table 

2.3.1). The US activities on bacteria are linked to both thermal and non-thermal effects and, on 

top of these effects, the most important on microbes is represented by the acoustic cavitation 

defined as “the formation of tiny gas bubbles in the tissues as the result of ultrasound vibration” 

[45, 47, 48]. Cavitation effects can have different consequences on bacteria cells based on bubble 

stability. The cycles of low and high acoustic pressure in the incident acoustic wave cause the 

gas bubbles to expand and shrink, which in turn creates shear flow around the oscillating bubbles 

[45, 47, 49, 50]. Stable cavitation results when the acoustic intensity is sufficiently low that the 

bubbles do not collapse violently during their contraction cycle. Collapse (or transient) cavitation 

is produced when the bubble radius is reduced to a very small value at the end of the contraction 

cycle [47, 51]. The sudden reversal of motion of the gas/liquid interface at the time of bubble 

rebound produces an outgoing shock wave, and the internal gas at peak compression reaches 

temperatures near 5000 K, which in turn can fragment water and other molecules into free 

radicals [31, 50]. In 2003 Joyce et al [52] described the antimicrobial activity of collapse 

cavitation, dividing this effect in four: (1) a surface resonance of the bacterial cells, “pressures 

and pressure gradients resulting from the collapse of gas bubbles which enter the bacterial 

solution on or near the bacterial cell wall”, (2) “shear forces induced by microstreaming occurs 

within bacterial cells”, (3) effects of free radicals derived from gases in the aqueous medium, (4) 

formation of a strong bactericide as the hydrogen peroxide (H2O2) derived by the sonochemical 

degradation of water. In the same work it is also cleared that, to obtain the maximum effect, high 

ultrasonic intensities are required. In the same year (2003) Piyasena et al [34] write a review 

about the use of US in food decontamination. In this work the authors describe in depth different 

US applications according to their antimicrobial effects. Opposed to the sonication (US 

application with only non-thermal effects) they study effects of thermosonication (heat plus 
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sonication), manosonication (pressure plus sonication), and manothermosonication (heat and 

pressure plus sonication) on food processing and microbial food safety.  

 

 
Authors Year Freq. Objective Tested bacteria Conclusions 

 

1 Scherba et 

al. 
1991 26 kHz 

Study of 

Bactericidal effect 

of US 

E. coli, S. aureus,              

B. subtilis,                     

P. aeruginosa 

Cavitation is the mechanism responsible of 

bacteria damaging with similar result on Gram- 

and Gram+.  

 

2 
Pitt et al. 1994 67 kHz 

US to grow 

antibiotic activity 

on biofilm  

P. aeruginosa,    E. 

coli,                S. 

epidermidis,             

S. aureus 

Bacteria in a biofilm may become susceptible to 

antibiotics through ultrasonic treatment. 

 

 

3 Phull et al. 1997 
38 kHz, 

800 kHz 

US biocidal effect 

with or without 

chemical 

disinfectant 

E. coli 

US are suitable for water disinfection. US at high 

frequency  are more effective to obtain biocidal 

effect. Chemical disinfectant activity is improved 

by US. 

 

 

4 
Rediske et 

al. 
1998 70 kHz 

Bactericidal effect 

of US alone or 

combined with an 

antibiotic 

E. aerogenes,                     

S. marcescens,          

S. derby,S. mitis,      

S. epidermidis 

Bacterial viability was reduced  when US were 

combined with antibiotics. No difference were 

seen between Gram+ and Gram- bacteria. 

 

 

5 
Peterson 

and Pitt 
2000 

70 kHz, 

500 kHz 

Bactericidal effect 

of US combined 

with an antibiotic 

E. coli 

The combination of the ultrasound and antibiotic 

appears to be very effective. Low frequency with 

high power intensity show better results then high 

frequency. 

 

 

6 Piyasena 

et al. 
2003 

Various 

(Review) 

Inactivation of 

microbes using US 

Various  

(Review) 

The use of US in the food industry for bacterial 

destruction is currently unfeasible; however, the 

combination of ultrasound and pressure and/or 

heat shows considerable promise. 

 

 

7 Joice et al. 2003 

20 kHz,   

38 kHz, 

512 kHz, 

850 kHz 

Effect of US at 

different powers 

and frequencies on 

Bacillus subtilis. 

B. subtilis 

Sonication has two effects: Bacterial declumping  

and bacterial killing  The overall effect of 

applying US is the result of a competition 

between killing and declumping bacteria. 

 

8 
Pitt and 

Ross 
2003 70 kHz 

US can increase the 

growth rate of 

bacterial cells. 

S. epidermidis,                   

P. aeruginosa,   E. 

coli 

Applying low frequency and intensity US 

increased the growth rate of the cells. 

 

 

9 
Carmen et 

al. 
2005 28.5 kHz 

Treatment of 

biofilm infections 

with US and 

antibiotics in vivo 

E. coli, P. 

aeruginosa 

Antibiotic-US treatment for 48 h reduced viable 

bacteria. When P. aeruginosa biofilms were 

treated for 24 and 48 h, no reduction of viable 

bacteria was observed. 

 

 

10 

Runyan et 

al. 
2006 70 kHz 

Study on US 

activity on bacterial 

membrane  

P. aeruginosa 

US create holes or perturbations in the outer 

membrane lipid bilayer sufficiently large for the 

passage of relatively large hydrophilic 

compounds, including antibiotics. 

 

 

11 

Kirzhner 

et al. 
2009 20 kHz 

US efficiency to 

remove microbial 

biofilm . 

Wastwater 

heterotrophic 

aerobic bacteria 

US treatment is effective in removing bacteria 

biofilm that otherwise adhere to the roots, by 

more then two orders of magnitude. 

 

 

 

12 
Declerck 

et al. 
2010 36 kHz 

Evaluation of power 

US for disinfection 

of some bacteria 

species 

L. pneumophila, A. 

castellanii 

Possible application of power ultrasound in the 

control of both studied bacteria. However, the 

energies required to use ultrasound alone as a 

disinfection technique are rather high and 

therefore not recommended to use for general 

large-scale microbiological decontamination 

 

Tab 2.3.1. Selection of various papers that showed from 1991 to today novels concepts about ultrasound effect on 

microorganisms. 
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Bacteria, and in particular spores, are resistant to non-thermal effects alone, so, to obtain the 

killing effect, US would most likely have to be used in conjunction with pressure treatment 

and/or heat treatment. About this Piyasena et al write that “the enhanced mechanical disruption 

of cells is the reason for the enhanced killing when ultrasound is combined with heat or 

pressure”. This work shows how it is necessary to know the activity that thermal effects, 

mechanical effects and cavitation (with shock waves) effects have respectively, to understand US 

global effects on bacteria. Another interesting work about US activity outside human medicine 

by Kirzhner et al, in 2009, describes the use of cavitational effect to remove bacteria biofilm on 

Water Hyacinth plants roots [33]. In this paper the authors, applying low frequency sonication, 

proved that the US treatment is effective in decreasing microorganisms that otherwise adhere to 

the roots, by more than two orders of magnitude. 

 

2.3.1.4 Bacteria response to US activity 

US activity can determine two possible response by bacteria: a bactericidal effect opposed to a 

stimulation of bacterial growth.  

US bactericidal effect seems linked to collapse cavitation that occurs at higher intensity levels 

and lower frequencies for which the oscillating bubbles can violently accelerate the fluid around 

them. During bubble collapse, the adiabatic heating of the internal gas produces very high 

temperatures, which in turn generate free radicals, high liquid shear force, and a shock wave as 

the collapsing spherical wall suddenly reverses its motion [53]. With a sufficient number of 

collapse cavitation events, cell membranes can be stressed by high fluid shear rates, or damaged 

by the heat or free radicals [34]. Furthermore, cavitation adjacent to a solid surface (such as a 

bacterium) generates stress on the cell membrane during bubble expansion; and then during 

contraction an asymmetric collapse propels a high velocity jet of liquid towards the surface [53-

55].  

Bactericidal effect has been described first by Scherba et al. who, in 1991, wrote a work in 

which they described US bactericidal effect on E. coli, S. aureus, B. subtilis and P. aeruginosa in 

planktonic form. In this paper the authors studied the effect of US applied on bacteria species 

with a frequency of 26 kHz, using three different intensity descriptors: spatial-peak temporal-

peak intensity (ISPTP), spatial-peak temporal-average intensity (ISPTA) and spatial-average 

temporal-average intensity (ISATA), and three exposure levels (defined low, medium, and high). 

The exposure durations examined for the bacterial experiments were 1, 2, 4, 8, 16, and 32 min. 

Results of this work show how all the bacteria species analysed were killed by US application, 

with a killing rate directly proportional with the exposure time and with the intensity level. The 
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principal ultrasonic effect, at low frequency, responsible for bactericidal power seemed to be 

cavitational effect with no difference between Gram- or Gram+ bacteria [44].  

In 1994 Pitt et al. described the synergism between US activity with antibiotics to kill the 

bacteria forming biofilm (P. aeruginosa, E. coli, S. epidermidis, S. aureus). In this paper the 

authors showed how ultrasonic treatment alone, with a frequency of 67 kHz and intensity of 0,3 

W/cm
2
, appeared to have no statistically significant effect on viability. Testing US with 

antibiotic addition the authors obtained a bactericidal effect better than the bactericidal effect of 

antibiotics alone while US alone, at 67 kHz, showed an increasing in bacteria growth rate. About 

this increased growth the authors wrote that it cannot be attributed to a higher oxygen 

concentration or modification of the terrain nutrient, but it may be possible that cells are under 

some stress and show stress-induced growth [56]. A similar work, about US bactericidal activity 

associated to disinfectants on E. coli, was written by Phull et al in 1997 [57], then other works on 

the synergism between US and antibiotics by Rediske et al. appeared in 1998 and 1999 (first on 

E. aerogenes, S. marcescens, S. derby, S. mitis and S. epidermidis, then on P. aeruginosa) [58, 

59]. In 2000 Peterson and Pitt, studying E. coli, showed how low frequency US with high power 

intensity show better antimicrobial results then high frequencies US [57, 60]. In 2004 Duckhouse 

et al studied US bactericidal effect associated to sodium hypochlorite solution with good results 

on E. coli [61], in the same year Stanley et al. demonstrated that E. coli inactivation can be 

obtained by high-intensity ultrasonication with the presence of salts [62]. 

 

2.3.1.5 Therapeutic US in medical field 

In medicine US has found applications since 1924, when Wood and Loomis first described the 

biological changes related to ultrasonic treatment [63]. Today US is used in medicine from 

diagnostic to therapeutic applications. Talking about ultrasound activity on bacteria, we can find 

in literature three principal fields of application: the direct action of US on bacteria biofilm [31, 

64, 65], their activity to reinforce drugs’ activities, and US action to obtain optimal bacteria 

growth to get easier infection’s diagnosis [66, 67]. In 1991 Scherba et al. first describe 

ultrasound activity on various microorganism studying effect of low frequency (26 kHz) 

sonication applied on suspensions of bacteria (Escherichia coli, Staphylococcus aureus, Bacillus 

subtilis, and Pseudomonas aeruginosa), fungus (Trichophyton mentagrophytes), and viruses 

(feline herpesvirus type 1 and feline calicivirus) [44]. For bacteria quantification, after US 

exposure, each sample was plated separately and incubated for 3 days, after which the number of 

colonies was counted.  For fungus quantification , after the US exposures, the fungal plugs were 

blotted on sterile filter paper and plated on similar agar media. The plates were then incubated at 
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26°C and ranked daily according to the amount of growth. Viruses quantification titler was 

measured by a microtitration procedure. The authors' conclusion was that tested US frequency 

has efficacy in inactivating some disease agents with some uncertainty about viruses response. 

Their results show that cavitation effect is the physical mechanism responsible for damaging the 

microorganisms with similar result on Gram- and Gram+.   

In 2003 an interesting paper by Carmen et al. analyse which bacteria are commonly involved in 

orthopedic implant infections. They report how, in those kind of infections 35% of the organisms 

were S. aureus, 15% were S. epidermidis, 25% were coliforms, and 25% were anaerobes and 

others as previously described by Sanderson [68]. In their work Carmen et al. investigated the 

combination of low frequency US and vancomycinin treating S. epidermidis infections in a 

rabbit model. In a second time they compared their results with those obtained by the 

combination of US and gentamicin against E. coli. Treatment of S. epidermidis biofilms with 

vancomycin and 48 h of ultrasound significantly enhanced the reduction of viable bacteria in the 

biofilm. Despite this result, the author admitted that the combination of ultrasound and 

gentamicin is more effective against E. coli in vivo than the combination of ultrasound and 

Vancomycin against S. epidermidis [69]. In 2009 Tor Monsen et al. describe sonication activity 

applied to stimulate bacterial growth to analyze the contamination of prosthetic joint infection 

[30]. In this work the authors found different activity of US among different bacteria species. 

The aim of this study was to evaluate the effects of temperature, duration, composition of the 

sonication buffer, and material during sonication of bacteria often associated with prosthetic 

infections prior to culture. Gram+ shows a greater resistance against ultrasonic action than 

Gram-. In their work, the authors underline that the container material has an influence too: tubes 

of glass show a higher influence on US diffusion than plastic tubes. This work was based only on 

bacteria related on prosthetic joint infection but takes important information about US action on 

human pathogens bacteria as Escherichia coli, Haemophilus influenza, Pseudomonas 

aeruginosa,  Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis.  

 

2.3.2. Experimental approaches on bacteria biofilm 

 

2.3.2.1 Literature’s analysis 

After the work in 1994 by Pitt et al., about US effect on oral biofilm [56], we have to wait 10 

years to find in literature an update on this topic. In 2004 Carmen et al. executed new series of 

test on bacteria response to the combined activity of US+antibiotics in vivo. They chose to work 

with a US frequency of 28,48 kHz applied on the S. epidermidis. Their work described how 
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ultrasonic treatment increased the killing of viable bacteria without causing bacteremia or tissue 

damage [69]. In 2005 Ensing et al. and Carmen et al. published others works on synergism of US 

and antibiotics in vivo on bacterial biofilm. Ensing et al. work on E. coli analyzed how, with 70 

kHz US in combination with gentamicin, they could obtain an enhanced killing of bacteria [67]. 

Carmen et al. paper studied US+gentamicin activity on E. coli and P. aeruginosa biofilms in 

vivo. Their results reported the successful use of ultrasound in vivo when the treatment of E. coli 

biofilms was extended to 48 h, and the failure of such therapy to reduce viable bacteria in P. 

aeruginosa biofilms. The P. aeruginosa biofilm resistance was linked to the extraordinary outer 

membrane impermeability of that bacterium  [26, 70]. In 2006 Ensing et al. extended their work 

in vivo on P. aeruginosa and S. aureus too. Their results showed a resistance of P. aeruginosa 

biofilm to US+antibiotic activity, confirming Carmen et al. results but without finding an 

explanation [66]. Following these results, in 2006 Runyan et al. published a paper based on the 

analysis of permeabilization of P. aeruginosa biofilm after US application in vitro. In this work 

they applied US at 70 kHz of frequency and 4.6 W/cm
2
 of intensity on both P. aeruginosa forms 

(planktonic and biofilm). Their work demonstrated that US in vitro creates holes or perturbations 

in the outer membrane lipid bilayer sufficiently large for the passage of relatively large 

hydrophilic compounds, including antibiotics [53]. Despite these conclusions, it remains 

unresolved why previously experiments in vivo showed a strong P. aeruginosa biofilm 

resistance to US+antibiotics activity [67, 70, 71].  

In 1997 O’Leary et al. wrote the only paper in literature related to US bactericidal effect on oral 

bacteria which A. actinomycetemcomitans and P. gingivalis. Those bacteria, defined as 

periodontal pathogens, are two of the principals responsible for periodontal disease in human 

[40]. This study showed how ultrasonic debridement with a dental ultrasonic scaler (frequency 

~25 kHz) in vitro destroyed bacteria biofilm but authors could not demonstrate any bactericidal 

effect related to acoustic phenomena. In their conclusions they admitted that further 

investigations will be necessary of the acoustic bacteriolytic potential of ultrasonic scalers while 

the principal bactericidal effect seemed to be linked principally to the mechanical oscillation of 

the tip  [41].  

In their review of 2003, Piyasena et al, analysing antimicrobial inactivation by US activity 

described how further study on US will need to determine the effect of ultrasound on microbial 

inactivation efficiency when used with other processing technologies (high pressure, heat or 

others), to identify the mechanisms of microbial inactivation when used in combination with 

other technologies and the critical process factors when ultrasound is used in hurdle technology 

[34]. 
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In 2003 Pitt and Ross described US stimulation of bacterial growth rate [50], an effect already 

described by Pitt et al. in 1994 [56]. In this paper they analyzed three species of bacteria as S. 

epidermidis, P. aeruginosa and E. coli after application of US with frequency of 40 kHz and 

intensity variable from 2 to 4 W/cm
2
. They studied bacteria adhesion ability and bacterial 

quantification with and without US application, and their results showed how bacterial biofilms 

grow better  exposed to low intensity and low frequency US while the growth of planktonic 

cultures also appears to be enhanced by US. Authors proposed that this effect could be caused by 

increased nutrient and waste transport during biofilm development, following various works 

about the nutrient concentration gradient within the bacterial biofilms [22, 71, 72]. In 2009 Tor 

Mosen et al., as previously described, applied US activity to obtain an easier diagnosis of 

prosthetic infection. In their work they used US prior to conventional culture to obtain a better 

bacterial growth. In conclusion they found that a recovery of bacteria after sonication is 

dependent on the type of microorganism tested, the temperature of the sonication buffer, the time 

of exposure to ultrasound, and the material and composition of the sonication tube [30]. 

Another study in 2008 reproduced in vitro US effect on E. coli biofilm. In this paper the authors 

analyzed bacteria viability after biofilm destruction, using High-intensity focused ultrasound 

(HIFU) with a pulse repetition frequency of 1000 Hz. Authors determined US biocidal effect 

analysing the number of colony forming units (CFU) and found that the US treatment was able 

to completely destroy the biofilm for most exposures at the two highest exposure levels. During 

CFU analysis they found still a residual bacteria viability at those exposure level too. Their 

results showed how a two step study to determine biofilm destruction and then bacteria killing is 

inefficient to determine real effect of US on biofilm because their method, to study bacteria 

viability, based on biofilm scraping after US exposure, could alone falsify final results [31]. 

 

2.3.2.2 Evaluation of US effects on biofilm 

US and bacterial motility and adhesion: Bacterial motility and adhesion are linked to various 

specific structures placed on cell surface as flagella (linked to motility) and fimbriae (linked to 

adhesion) [18]. Those structures make bacteria able to interact with the environment and with 

others eukaryotic cells.  

Flagellum is the most common and best studied motility structure, it enables bacteria to swim 

through their medium and to change direction in response to attractants or repellents in the 

environment, which cells detect with chemotaxis system [73]. US activity on bacterial motility 

was studied analyzing effect of the sonification on a P. aeruginosa population [56]. During the 

experiment quick darting motion were analysed, typical of flagellated bacteria, from quivering or 
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shaking motion without any net forward movement. This study showed how cellular stress, 

induced by ultrasonic field, reduced flagella motility after 9 hours of sonication at 67 kHz. These 

data should not necessarily imply that during and after US application bacterial cells are 

stationary and immersed in the medium. They still showed movement, although reduced, due to 

the activity of remaining flagella but linked to possible Brownian motion too [74].  

Bacterial attachment ability is strongly influenced by US action as before as after biofilm 

formation. US ability to remove bacterial cells from surface is today fully recognized, so that 

such application is commonly applied in many field and has been studied and described in many 

articles [31-33, 64, 75, 76]. However, this effect is related to a simple mechanical destruction of 

the biofilm extracellular matrix due to the effect of ultrasonic cavitation (derived by High 

intensity and Low frequency US) or to the direct contact of the transducer with the biofilm 

without any interaction with adhesive mechanism. Studies about this US removal power showed 

also how sonification is unable to strip all bacteria from surfaces. Many works show how 

detachment percentages of bacterial cell are all around 85-90% after US low frequency 

application (from 40 to 100 kHz) with a peak of 95% obtained applying highest power density at 

38 kHz [75]. In all cases bacterial cell detachment is linked to cavitational effect that can be 

generated only by low frequency US which, at high intensity (> 10 W/cm2), is also able to lyse 

cellular membrane causing to kill cells in addition to partially removing them from surfaces [77]. 

More recent studies have verified how US activity stimulates bacterial metabolism and in 

particular, in our case, the ability of bacteria to adhere to surfaces by enhancing the related 

mechanisms [30, 50].  At high intensity this stimulation could be the explanation of the US 

inability to completely destroy biofilm structure mechanically. When US are applied at low 

frequency and low intensity (2 W/cm
2
), their effects on bacteria adhesion mechanism and 

metabolism are instead diametrically opposite. At low intensity US is not able to deliver enough 

mechanical energy to obtain biofilm structure destruction and cell detachment, unless up to a 

minimal degree, and instead it will stimulate bacterial metabolism with formation of a biofilm 

which is more resistant and strongly adherent to surfaces [50].  

 

US and matrix’s structure and water channels: Extracellular Polymeric Substances (EPS), 

composed fundamentally by polysaccharides, are the primary matrix material of biofilm [18, 78]. 

Their chemical composition and characteristics are strictly linked to bacterial type forming 

biofilm: Gram– bacteria principally forms neutral or anionic EPS while for Gram+ EPS chemical 

composition may be cationic [18]. These differences determine different relationships between 

matrix and external environment, as example if there is the presence of divalent cations such as 
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calcium and magnesium [78]. EPS showed a highly hydrated structure with both hydrophilic and 

hydrophobic characteristics, and these enable EPS to protect bacteria forming biofilm by 

dehydration if exposed to hostile environment and by antibacterial agents preventing their 

penetration by binding them directly [19, 28, 78]. Matrix development is principally linked to a 

good nutrient status of the growth medium and by presence of slow bacterial growth [18]. 

Biofilm final architecture is represented by a dynamic structure that changes constantly 

following environmental and internal stimuli. Water channels work actively to promote biofilm 

adaptation both with nutrient and oxygen transportation but, more important, enabling cell-to-

cell communication through the QS and, eventually, their movement into biofilm buildings [18, 

19]. 

US activity on the matrix must be divided into high intensity US effect and low intensity US 

effect. High intensity US seems to be principally linked to a mechanical destruction of the 

polymeric substance with bactericidal effect [34] while low intensity shows to stimulate bacterial 

growth and biofilm development [30, 50]. Both these effects are related to a dual effect that US 

has on the biofilm structure: while there is a mechanical destruction of extracellular substance by 

cavitation effect there is also a stimulation of bacteria metabolism and the increase of oxygen 

and nutrients transport in the deeper layers of the biofilm  [60, 79]. The prevalence of one or the 

other effect gives the final result. Low intensity US show bactericidal effect only when combined 

with antibiotics as gentamicin [80]. This result can be explained with various hypotheses, firstly 

that US enhances drug transport through the extracellular matrix and increases the concentration 

surrounding the bacteria, while at the same time antibiotic activity seems to be increased when 

cells at the base of a mature biofilm, usually dormant, become active [59, 69]. Activation occurs 

when the upper layers of the biofilm are killed and subsequently removed, thus making increased 

levels of nutrients available to the underlying bacteria [70, 71]. When US are applied to a mature 

biofilm is necessary to understand well how they operate and what final result the operator wants 

to obtain. 

US and bacterial viability: Biofilm structure and its biochemical environment give bacteria a 

strong resistance to external agents, resistance comparable to that of spore-forming bacteria. The 

biofilm infection appears to be from 10 to 1000 times more resistant to antimicrobial agent than 

planktonic infections [28].  This biofilm resistance can be explained with multiple mechanisms 

that work all together to evade antimicrobial agents effects. Among these effects can be cited the 

inability of antibacterial agents to penetrate the matrix, the starved state of many bacteria present 

into the biofilm and physiological changes due to the biofilm mode of growth [19, 20]. 

Antimicrobial agents diffusion trough matrix structure is a necessary condition to obtain the 
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antibacterial effect. Matrix composition play a fundamental role in biofilm resistance and its 

impenetrability can obviously be influenced by extracellular polymeric substances composition 

[19]. An interesting case is that of P. aeruginosa which, in the form of biofilms, has a great 

resistance to antibacterial agents with the ability to produce alginate [19, 20, 81]. This substance 

showed the ability to inhibit the distribution of various antibacterial agents as gentamicin and 

tobramycin trough the matrix [81, 82].  

The altered growth rate of biofilm organisms is another possible condition that gives bacteria 

forming biofilm a best resistance against antibacterial agents. A slower bacterial metabolism is 

obviously linked to a reduction in antimicrobial power of antibacterial agents. The low oxygen 

and nutrient concentrations in biofilm deeper layers well explains how bacteria cause biofilm 

drug resistance [19, 20, 78].  

Another crucial feature of biofilms which explains their resistance to antimicrobial agents is the 

quorum sensing. A mature biofilm is characterised by the presence of various bacteria species, 

and  quorum sensing makes them able to communicate with each other by exchanging 

information or even to stimulate mutations to entire sections of their genome [83-86]. US have 

four possible ways, yet previously explained, to determinate a bactericidal effect: through 

acoustical cavitation, increasing antimicrobial agents’ activity, producing a mechanical 

oscillation of a tip or generating high temperatures. At the same time it is necessary to remember 

again how US could also determine stimulation of bacterial growth (for example with the 

frequency and intensity used to increase drugs activity) (Fig 2.3.3).  

 

 

Fig 2.3.3. Different biological effect derived by ultrasound application depending on frequency and intensity variations. 

(*Concept of high or low frequency and intensity derived by the analysis of work published about biological activity of 

ultrasounds and are not linked to the same concepts for others scientific fields.) 
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Often, several of these effects can be present together, obtaining a final effect very difficult to 

study and to analyse. For this reason scientific papers in literature describe, in most cases, only 

one effect alone and never analyse QS responses. This approach have obviously the limit of not 

determining precisely the final bactericidal or bacterial growth stimulation effect in vivo. 

 

2.3.3. Discussion and conclusions 

US technologies applied to antibacterial treatment have already been developed extensively to 

play a key role for their future use in food industry as well as for water decontamination [34, 57]. 

In these applications US antibacterial activity can be used without great risk of side effects by 

choosing frequencies and intensities high enough to avoid the bacterial growth stimulation [50] 

(Fig 3). In particular, in food industry, US was been used for many years as a measuring or 

analysis tool while its decontamination power is still under study [34]. The use of therapeutic US 

for antimicrobial treatment in vivo is principally based today on its ability to improve antibiotics 

activity [69]. This application is employed for example to eradicate infections in joint prostheses 

adding US activity with gentamicin [51, 52]. Many studies in literature report about this activity 

as the only way to treat biofilm infection when it is impossible to realize a mechanical treatment 

[53]. Recent studies about biofilm destruction using only US activity show well how, when 

ultrasonic action at high frequency is unable to kill bacteria, yet it is able to perform tissue 

damage [15, 72]. In literature there is also some confusion about the ability, showed by bacteria, 

of an adaptability to US exposures at lower level than the bactericidal level, so that some bacteria 

develop as an answer the ability to produce a stronger biofilm with a high resistance to further 

therapeutic actions [3, 66]. In particular it is very interesting the case of P. aeruginosa, that 

showed to have a great resistance to US procedures when in biofilm form. Many studies about 

this resistance could not find a clear explanation to this phenomenon, as previously described. 

The most probable explanation for this behavior could be maybe found in the formation of a 

stress-induced resistance correlated with mechanisms of quorum sensing. The quorum sensing 

genes are fundamental for the P. aeruginosa pathogenesis and have a key role for its biofilm 

formation [25].  P. aeruginosa quorum sensing modulation is linked to two specific N-

acylhomoserine lactones, wich are the Ais of Gram negative bacteria,  termed Las RI and Rhl R1 

[20]. The Las and Rhl systems work directing the synthesis of N-3-oxododecanoyl-homoserine 

lactone (3OC12- HSL) and  N-butanoylhomoserine lactone (C4-HSL) fundamental to generate a 

mature biofilm. The P. aeruginosa biofilm is characterized also by the bacterial production of 

alginate linked to the expression of a specific gene called mucA [84, 87]. Many studies show that 

alginate production by P. aeruginosa is not stable in time but is stress related, when the 
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bacterium is exposed to a stimulus that causes harm, whether physical, mechanical or chemical, 

there is activation of the quorum sensing and secondary of the gene predisposed to the 

development of alginate [87]. By alginate system activation the P. aeruginosa is able to develop a 

biofilm highly resistant to standard therapies, this could explain the large difference between the 

action of US on bacterial in planktonic or in biofilm form. When US activity isn’t sufficient to 

produce a rapid bactericidal effect the stress-induced added to growth stimulation probably 

allows the bacterium to develop, through mechanisms of quorum sensing, a more resistant 

biofilm. 

As for P. aeruginosa, the US double effect of killing and stimulation probably acts similarly on 

other bacterial species, with perhaps less obvious effects. Further studies in this direction, 

focusing just on quorum sensing and gene expression, would better understand the action of 

ultrasound at frequencies not even fully bactericidal. 

In the light of what has been reported so far, US activity against bacteria and in the biofilm 

modulation still has many unclear points. Through studies realized until now we have a good 

analysis about US diffusion and macroscopic response by bacteria in planktonic or biofilm form. 

What is yet undetermined is a critical study about how the activity of US could alter the bacterial 

quorum sensing and gene expression. Another further topic will be studying how to determine 

the mechanisms of bacterial inactivation both in terms of proteomics and by means of other 

factors that may influence the US action (pressure, temperature, chemical activity). 

Although many studies have led to a rapid increase in knowledge about the ultrasonic 

technology, much remains to be studied. This awareness can leave a great deal of future research 

in order to achieve full awareness of the potential of this instrument. 

 

 

2.4. Conclusions 

 

The low stability of bacteria during their growing in association with the not well understood 

double effect that the US have on microbial species, make it difficult to assess the correct 

relationship between them.  

In order to identify biological mechanisms related to US effect on microbial cells, a close control 

of the uncertainty is required in relation not only with the measurement instrument but also with 

the method and the measurand. 
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The application of a metrological approach, to investigate all these three factors at the same time, 

is at the base of this work and it will try to highlight the weaknesses that could exist and, where 

possible, to correct them. 

The results of the thesis will allow to identify, with the higher accuracy possible, the microbial 

metabolism’s changes in response to the exposition to an ultrasonic field and specifically to an 

acoustic pressure. 
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3. MATERIALS AND METHODS 

 

3.1. Choice of methods and experimental plan 

 

To achieve the research scope it was created an experimental plan in which the work was divided 

in three steps. Each step was related to a different kind of field and was development in different 

place.  The first step was the phase of physical analysis, the second was the phase of biological 

analysis while the third was a mixed phase where the results from the first two steps were 

applied. (Table 3.1.1, 3.1.2). To achieve these objectives an analysis of methods, materials and 

instruments that were used was performed. 

 

Step 1 Acoustic measures  

Step 2 Biological measures 

Mixed measures 

Uncertainty and statistical analysis of data Step 3 

Future prospective 

Tab 3.1.1. Experimental plan 

 

Creation of a support to perform the measurements with an hydrophone into an 

ultrasound bath  

Hydrophone calibration 

Acoustic pressure measurement in baseline condition (P0) 

P0 repetition putting the Hydrophone into different type of tubes where will be put 

bacteria (P1-P2-P3) 

Uncertainty and clustering of data   

Step 1 

Acoustic pressure analysis and choice of frequencies  

Metrological evaluation of the method to analyse bacteria viability and biofilm 

development (microtiter plate assay) 

Eventual method correction 
Step 2 

Analysis and evaluation of base values of bacterial growth 

Bacterial viability and biofilm development measurement after ultrasonic exposure 

Uncertainty and statistical analysis of data Step 3 

Future prospective 

Table 3.1.2. Experimental plan with details 
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3.2. Step 1 

 

1. Creation of a support to perform the measurements with an hydrophone 

into an ultrasound bath  

2. Hydrophone calibration 

3. Acoustic pressure measurement in baseline condition (P0) 

4. P0 repetition putting the Hydrophone into different type of tubes where 

will be put bacteria (P1-P2-P3) 

5. Uncertainty and clustering of data   

6. Acoustic pressure analysis and choice of frequencies  

 

3.2.1. Description 

 

The first step is related to ultrasound analysis procedure. To perform this kind of evaluation an 

ultrasonic bath from the acoustics and ultrasounds department of the National Institute of 

Metrological Research (INRIM) in Turin was used (Fig 3.2.1.1).  

 

 

Fig 3.2.1.1. Ultrasoni bath 
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To realise the measurements were identified four critical conditions: 

o To identify the frequencies to explore; 

o To find a method to achieve repeatable and reproducible measurements; 

o To find an instruments do realise measurements of acoustic pressure; 

o To identify the method to expose the bacteria to the ultrasonic field without 

contaminating the system. 

 

Frequencies: To choose the frequencies to use, it was studied which of them were normally used 

for decontamination, in contact with human cells or to delicate instruments and, at the same time, 

which were used for short periods of time (at least 60 seconds). For these reasons frequencies 

from 20 to 40 kHz have been chosen. 

 

Method for repeatable and reproducible measurements: To try to lower as much as possible the 

variability of the various measures has been chosen to build a tripod-grid to be placed above the 

bath so as to be able to repeat the measurements in the same points at each replication. 

 

Instrument to measure acoustic pressure: To measure the acoustic waves produced and calculate 

the various acoustic pressures was chosen a hydrophone needle. 

 

System to avoid contaminations: To avoid contamination, it was decided to use tubes that will be 

immersed inside the tank and that will contain within the culture medium with the bacteria. 

 

3.2.2. Ultrasonic bath and tripod-grid creation 

 

To perform ultrasound analysis the ultrasonic bath was measured to create a support that could 

be used to guide the measures.  

To realise the support they were chosen as materials aluminium and plexiglass. The aluminium 

was used to create the base for the grid and for the legs, the grid was built in plexiglass with 

three niches to be blocked on the basis. The tripod-grid creation was made at the workshop of the 

Department of Management Engineering and Production (DIGEP) of the Polytechnic of Turin 

(Fig 3.2.2.1-3.2.2.13). 
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Fig 3.2.2.1 and 3.2.2.2. Measures of the tank and schematization of its structure. 
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Fig 3.2.2.3 and 3.2.2.4. Evaluation of the space and of tubes dimension related to tank length, width, height and depth 
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Fig 3.2.2.5 and 3.2.2.6. Planning of the grid, distribution of the holes and design of the upper structure. Evaluation of the edge in 

relation with the position of the support legs. 
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28 cm

2 cm

30 cm

ULTRASONIC TANK

 

Fig 3.2.2.7 and 3.2.2.8. Evaluation of the tank height and of the distance between the grid and the bath. 

 

2 cm

14 cm

2 cm

14 cm
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STOP

 

Fig 3.2.2.9 and 3.2.2.10. Simulation of water position in relation with the grid and of tube insertion. 

 

Bacteria at concetration
10^6 introduced up to 5 cm 
from tube board.

5 cm

 

Fig 3.2.2.11 and 3.2.2.12. Simulation of medium position into the tubes and of mutual position of the level of the culture medium 

compared to the level of the water in the tank 
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Fig 3.2.2.13. Work completed. The creation of the grid was made at the DIGEP workshop of the Polytechnic of Turin. 

 

3.2.3. Hydrophone calibration 

 

An hydrophone from INRIM was chosen to measure the acoustic pressure developed by 

ultrasound into the ultrasonic bath (Fig 3.2.3.1). To realize the calibration of this instruments, for 

the frequencies that will be used for the study, the hydrophone has been brought to the Rome 

CNR.   

At the department of acoustic of the Rome CNR the test instrument was compared with a 

standard for the frequencies under 100 kHz. Both the hydrophones (test and standard) were put 

at the same distance from a transducer that produced an acoustic wave at the frequencies choices 

(Fig 3.2.3.2-3.2.3.5). The calibration was realised with four measures executed in two 

consecutive days (in the morning and in the afternoon for each day). As result of the calibration 

process four values expressed in decibel Sound Pressure Level (dBSPL), for each frequency that 

will be used, were obtained (Table 3.2.3.1). After this phase, the values of sensitivity will be 

used to calculate the uncertainty of the instrument for each frequency and to calculate the 

acoustic pressure. 
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Fig 3.2.3.1. Hydrophone used for this work (from Acoustic Department of INRIM) 

 

  

Fig 3.2.3.2 and 3.2.3.3.  The transducer and the position of the hydrophone before of the immersion underwater. 

 

  

Fig 3.2.3.4. and 3.2.3.5. Ultrasound emission with the test instrument and with the standard. 
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Fig 3.2.3.6. Results of the calibration with the value expressed in dBSPL (decibel Sound Pressure Level) as value of sensitivity. 

 

3.2.4. Ultrasonic transparency of sonication tubes exposed to various frequencies: a 

metrological evaluation of modifications and uncertainty of acoustic pressures.  

 

3.2.4.1. Principle 

To study US activity on microorganism the simpler method is to expose prokaryotic cells to the 

ultrasonic wave immersed into a liquid medium into a sonication tank. To avoid a contamination 

of the generator there is the need to use a sonication tube immersed into the medium where will 

be suspended microorganisms. The sonication will be performed into the tube without alteration 

of disinfected condition of the liquid medium into the tank [30]. 

The effect of US on prokaryotic cells changes among microorganisms, at the same time AP 

shows an high variability linked to sonication tube position, kind of liquid medium and material 

and form of sonication tube; therefore the development of an in vitro condition is fundamental to 

perform tests with a good rate of reproducibility and a value of uncertainty as low as possible. 
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For the analysis, three different kinds of tubes housing the hydrophone were chosen (Fig 

3.2.4.1), the case in which no tube is used being denoted by P0: 

P1: glass tube with hemispherical bottom; 

P2: plexiglass tube with hemispherical bottom; 

P3: plexiglass tube with taper bottom. 

 In order to find out which sonication tube exhibits better transparency to ultrasonic waves, the 

three kinds of tubes were tested,  exposed to different frequencies (from 20 to 40 kHz) without 

variations of power (30 W) and placed always in the same location and depth, compared to AP 

measured in absence of any tube. Using a platform build specifically for this experiment was 

possible to obtain tests with high repeatability reproducibility and, especially, comparability. 

 

The platform was a simple tripod with, at the top, a grid for the 

placement of the tubes. Tripod and grid were separable so that is 

possible to add water in the tank without remove the tripod. 

When the grid was put on its support the position is related to 

three centering so that, as long as the tripod was not moved, the 

position of the tubes in the grid will always be orthogonally the 

same. The depth of immersion of the tubes was instead made 

repeatable by a fixed stop on the same tube that rests on the grid 

(Fig 3.2.4.2). 

 

 

Fig 3.2.4.2. Position of the tripod-grid and of the hydrophone during the measures 

 

Fig 3.2.4.1. Tested tubes 

P1 P2 P3 
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AP measurements were performed using a 3 mm OD piezoelectric needle hydrophone equipped 

with a glass coating, previously calibrated in the working frequency range (as shown in Fig. 

3.2.3.6.) at the O. Corbino Institute in Rome. Table 3.2.4.1. displays the mean values of 

sensitivity, expressed as decibel Sound Pressure Level (dBSPL) and as microvolt per pascal, and 

the relevant uncertainty intervals for each frequency at 95% confidence level. 

 

Sensitivity/dBspl Sensitivity/(µV/Pa) 
Frequency/kHz 

M L U m L U 

20 -270,6 -272,6 -268,6 2,96·10-2 2,35·10-2 3,73·10-2 

21 -272,6 -277,9 -267,4 2,33·10-2 1,28·10-2 4,26·10-2 

22 -274,4 -278,2 -270,6 1,90·10-2 1,23·10-2 2,95·10-2 

23 -272,6 -274,9 -270,4 2,34·10-2 1,80·10-2 3,03·10-2 

24 -268,6 -270,3 -266,8 3,73·10-2 3,06·10-2 4,55·10-2 

25 -269,5 -275,8 -263,3 3,34·10-2 1,63·10-2 6,83·10-2 

26 -269,6 -271,8 -267,3 3,32·10-2 2,56·10-2 4,31·10-2 

27 -266,8 -269,3 -264,3 4,55·10-2 3,41·10-2 6,07·10-2 

28 -265,2 -266,0 -264,4 5,51·10-2 5,03·10-2 6,04·10-2 

29 -267,3 -273,1 -261,4 4,33·10-2 2,20·10-2 8,50·10-2 

30 -267,5 -271,3 -263,7 4,22·10-2 2,71·10-2 6,57·10-2 

31 -267,2 -267,8 -266,5 4,38·10-2 4,06·10-2 4,72·10-2 

32 -265,5 -266,4 -264,6 5,32·10-2 4,79·10-2 5,89·10-2 

33 -263,9 -264,5 -263,4 6,36·10-2 5,96·10-2 6,79·10-2 

34 -264,0 -264,8 -263,3 6,29·10-2 5,76·10-2 6,88·10-2 

35 -265,0 -266,6 -263,3 5,63·10
-2

 4,65·10
-2

 6,82·10
-2

 

36 -264,6 -266,3 -262,8 5,91·10
-2

 4,85·10
-2

 7,21·10
-2

 

37 -263,2 -265,5 -260,9 6,94·10
-2

 5,34·10
-2

 9,01·10
-2

 

38 -263,3 -264,6 -262,0 6,86·10
-2

 5,90·10
-2

 7,98·10
-2

 

39 -264,3 -265,8 -262,8 6,10·10
-2

 5,15·10
-2

 7,22·10
-2

 

40 -262,3 -263,0 -261,6 7,67·10
-2

 7,09·10
-2

 8,30·10
-2

 

Tab 3.2.4.1. Uncertainty in hydrophone calibration. Mean values m and limits L and U of 95% confidence intervals 

(uncertainty intervals) of sensitivity, expressed as decibel Sound Pressure Level (dBSPL) and as microvolt per pascal, 

at explored frequencies. 

 

The Sound Pressure Level, or sound level LP is a logarithmic measure of the effective sound 

pressure p relative to a reference sound pressure p0. i.e. 

10

0

20log
p

p
L

p

    
====     

    
 (1) 
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From the sound levels LP, it is possible to determine the sensitivity of hydrophone expressed as 

microvolt per pascal at each frequency, which is equal to  

1220 20
V µV

10 10 10
µPa Pa

p pL L

= ⋅= ⋅= ⋅= ⋅  (2) 

Three preliminary measurement sessions, without a tube, with five replications each were 

performed for each frequency. Therefore, a total of 15 measurements were performed for each 

frequency. Outputs are given in microvolt, then, according to sensitivities shown in Table 

3.2.4.1, values of AP expressed in pascal are derived. Table 3.2.4.2 shows mean values and 

uncertainty intervals (95% confidence level) of AP for each frequency. Expanded uncertainty of 

AP takes into account the resolution and the reproducibility relevant to the output and the 

calibration uncertainty relevant to the sensitivity for each frequency.   

AP/kPa 
Frequency/kHz 

m L U 

20 2,3 1,3 3,4 

21 5,1 1,9 8,3 

22 6,4 3,2 9,7 

23 6,7 0,0* 14,3 

24 2,8 1,1 4,5 

25 1,8 0,6 2,9 

26 3,8 0,0* 8,7 

27 2,0 0,0* 4,7 

28 2,1 1,3 3,0 

29 1,5 0,0* 3,3 

30 3,0 0,4 5,6 

31 5,4 0,4 10,5 

32 2,9 0,1 5,7 

33 3,2 0,1 6,3 

34 3,6 0,8 6,5 

35 2,5 1,0 3,9 

36 2,1 0,8 3,4 

37 2,2 0,8 3,5 

38 4,8 3,4 6,1 

39 5,2 2,4 8,0 

40 3,7 0,0* 7,9 

Tab 3.2.4.2. Mean values m and limits L and U of 95% confidence intervals (uncertainty intervals) of AP.  

(*related to a negative value, calculated analytically, without physical significance.) 
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Table 3.2.4.3 shows, as an example, the uncertainty budget relevant to the frequency 20 kHz. 

The mathematical model considered is 

3

12 20

10

10 10
pL

output
AP

−−−−

= ⋅= ⋅= ⋅= ⋅

⋅⋅⋅⋅

 (3) 

 

where the output is expressed in microvolt, Lp in decibel Sound Pressure Level and AP in 

kilopascal. The resolution of the output is 1 µV, while the reproducibility, i.e. the standard 

deviation of the 15 measurements, is 14 µV. The calibration uncertainty relevant to the 

sensitivity is 2 dBSPL (see Table 3.2.4.1), which corresponds to a standard uncertainty equal to 

0,63 dBSPL (assuming 95% confidence level and 3 degrees of freedom).  Further details on 

methods for uncertainty evaluation are given in [13].  

 

xj 

Symbol Value Note 
sj aj kaj u

2
(xj) cj uj

2
(y) ννννj uj

4
(y)/ ννννj 

output 69 Res  0,5 3 8,3·10-2 3,4·10-2 9,5·10-5 1 9,1·10-9 

  Repr, 14,0   2,0·10
2
 3,4·10

-2
 2,2·10

-1
 14 3,6·10

-3
 

Lp -270,6 Bias 0,63   4,0·10-1 -2,7·10-1 2,8·10-2 3 2,6·10-4 

AP 2,3  Variance of y, u²(y) 2,5·10
-1

 Σ 3,9·10
-3

 

   Standard deviation of y, u(y) 5,0·10-1 ννννy 16 

   Confidence level 95%   

   Coverage factor (Student's t) 2,1   

   Expanded uncertainty, U(y) 1,1   

Tab 3.2.4.3. Uncertainty table, showing main contributions and resulting expanded uncertainty. 

 

With reference to Table 3.2.4.2, frequencies which correspond to lowest values of uncertainty of 

AP have been chosen. Figure 3.2.4.3 shows AP uncertainty intervals for the chosen frequencies. 
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Fig 3.2.4.3. Acoustic pressure measures for each frequency 

 

Three measurement sessions, with the three different types of tube, with five replications each 

were performed for the chosen frequencies. Uncertainties on AP were calculated in the same way 

as the preliminary session without the tube. The results are given in Fig. 3.2.4.4 (a-g). 

 

 

Fig 3.2.4.4.a. Acoustic pressure confrontation between P0 and tested tubes. 
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Fig 3.2.4.4.b. Acoustic pressure confrontation between P0 and tested tubes. 

 

 

 

Fig 3.2.4.4.c. Acoustic pressure confrontation between P0 and tested tubes. 
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Fig 3.2.4.4.d. Acoustic pressure confrontation between P0 and tested tubes. 

 

 

 

Fig 3.2.4.4.e. Acoustic pressure confrontation between P0 and tested tubes. 
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Fig 3.2.4.4.f. Acoustic pressure confrontation between P0 and tested tubes. 

 

 

 

Fig 3.2.4.4.g. Acoustic pressure confrontation between P0 and tested tubes. 
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3.2.4.2. Discussion and conclusion 

The analysis of US activity on bacteria species is always related to a lot of factors that could 

make high variation in results as sound pressure, environmental changes, tube position, 

cavitation activity. In this work is tested a method to be able to realize a correlation between 

exposition to an acoustic pressure derived from an ultrasonic device with exclusion of other 

factors.  

Cavitation effect is the most variable factor during US emission and, specifically on microbial 

species, could product many different and often contradictory results. Using low frequency and 

intensity is possible to avoid bubbles formation, in addition tubes made able to stop shock waves 

before that they could reach the cells. The platform build specifically for this experiment made 

possible to analyze tubes always in the same position obtaining tests with high repeatability 

reproducibility and, especially, comparability. 

From the results obtained  is possible to determine how both form as material of tubes 

determined an influence to the acoustic pressure, at the same time with the variation of the 

frequency was possible to highlight a different behavior related principally to the material. In 

conclusion the method used in this work made possible to identify which kind of tube is the best 

to perform analyze about acoustic pressure effect of US on biological tissue or microorganism 

when is necessary to avoid cavitation effect. 

 

3.2.5. Conclusions (From step 1 to step 3) 

 

At the end of the first phase seven frequencies was chosen based on the lower uncertainty values 

obtained by the analysis (Table 3.2.5.1). 

 

Frequency/kHz Acoustic Pressure/kPa Uncertainty 

20 1,3-3,4 46% 

24 1,1-4,5 62% 

25 0,6-2,5 67% 

28 1,3-3,0 40% 

35 1,0-3,9 59% 

37 0,8-3,5 62% 

38 3,4-6,1 28% 

Table 3.2.5.1. Frequencies chosen 

 

A tube, of specific form and material, was determined as the better one to realise biological 

analysis for each frequency. The variables used to choose the tubes were the transparency to the 

acoustic wave and, in case of similar transparency between more tubes, the lower uncertainty. 
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The transparency was evaluated finding the tube where was possible to detect the acoustic 

pressure more similar to that detected without tubes (Table 3.2.5.2). 

 

Acoustic Pressure/kPa Uncertainty 
Frequency/kHz Tube chosen 

P0 Tube P0 Tube 

20 P2 (Plexiglass) 1,3-3,4 1,2-2,9 46% 41% 

24 P1 (Glass) 1,1-4,5 1,5-4,3 62% 49% 

25 P2 (Plexiglass) 0,6-2,5 0,5-2,4 67% 68% 

28 P2 (Plexiglass) 1,3-3,0 1,6-3,3 40% 35% 

35 P1 (Glass) 1,0-3,9 1,5-4,8 59% 52% 

37 P1 (Glass) 0,8-3,5 1,0-2,8 62% 47% 

38 P2 (Plexiglass) 3,4-6,1 1,9-6,1 28% 54% 

Table 3.2.5.2. Tubes chosen for each frequency 

 

3.3. Step 2 

 

1. Metrological evaluation of the method to analyse bacteria viability and 

biofilm development (microtiter plate assay) 

2. Eventual method correction 

3. Analysis and evaluation of base values of bacterial growth 

 

3.3.1. Description of the method 

 

Spectrophotometry, a technique based on the interaction of light and matter, investigates the 

absorption of different substances within the wavelength range 190-780 nm. In this range the 

absorption of the electromagnetic radiation is caused by the excitation of the bonding and non-

bonding electrons of the ions or molecules. Spectrophotometry is used for both qualitative and 

quantitative investigations of samples. The wavelength at the maximum of the absorption band is 

related to the amount of the species absorbing the light.  

Spectroscopic techniques are based on the exchange of energy that occurs between radiant 

energy and matter. In particular, the absorption spectrophotometry is concerned within the 

phenomena of absorption of the electromagnetic radiation in the region of the electromagnetic 

spectrum belonging to the visible range (350-700 nm) and near ultraviolet (200-350 nm). The 

absorption of these types of radiation on the part of the molecules is capable of producing the 

energy transitions of the outer electrons of the molecules, as well as those engaged in a bond as 

those not engaged. To perform qualitative analyzes are used polychromatic rays in continuous 

spectrum, then separated by monochromators in the various components (monochromatic 

radiations), in practice the individual monochromatic radiations of that radius are made to pass, 
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one at a time, through the substance under examination, which will absorb in a different way, ie 

with different intensity, the different radiation. Bringing the values plotted on a graph 

wavelength-absorption, the absorption spectrum of the substance to be tested is obtained. Since 

each substance has its absorption spectrum, the examination of such spectra allows to identify a 

substance (for direct comparison with known samples or via databases of spectra) or to control 

the degree of purity. To perform quantitative analyzes using monochromatic rays, ie constituted 

by radiation of a single frequency. In practice, because of the difficulties of having rays with this 

property, radiation beams comprising a very narrow band of the spectrum, ie monochromatic 

beams, are used. 

The quantitative determinations are based on the fact that, when a radiation passes through a 

solution, is absorbed more or less intensely depending on the concentration, in other words the 

absorption depends on the concentration. Disposing of instruments capable of measuring the 

absorption is possible to determine the concentration of the solution. In fact, if it is passed 

through a solution to unknown concentration, a monochromatic radiation (ie in a specific λ) and 

of intensity I0, beyond the solution will be found a radiation intensity equal to I, which will be 

less than I0 if a part of the radiation is absorbed by the solution itself, or equal to I0 if there was 

no absorption. 

 

3.3.2. Microtiter spectrophotometric biofilm production assay analyzed with metrological 

methods and uncertainty evaluation.  

 

3.3.2.1. Introduction 

Microorganisms can live in one of two possible states: sessile or planktonic. The sessile 

phenotype results from attachment and usually develops into a biofilm that has unique 

characteristics [20]. The biofilm is commonly defined as “an assemblage of microbial cells that 

is irreversibly associated (not removed by gentle rinsing) with a surface and enclosed in a matrix 

of primarily polysaccharide material.” [18]. This definition is not entirely satisfactory, since a 

biofilm may be not only an aggregation of bacteria but also, as recently defined, “a microbially 

derived sessile community characterized by cells that are irreversibly attached to a substratum 

or interface or to each other, are embedded in a matrix of extracellular polymeric substances 

that they have produced, and exhibit an altered phenotype with respect to growth rate and gene 

transcription” [19]. A biofilm is characterized by the adhesion of the cells to a non exfoliative 

surface, immersed in an aqueous medium and/or on other bacteria cells. The mechanism of 

attachment may be explained in terms of several factors, namely substratum effects, conditioning 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 46 

films forming on the substratum, hydrodynamics of the aqueous medium, characteristics of the 

medium, and various properties of the cell surface [18]. The association between biofilms and 

diseases is not always easy, because the biofilm infection cannot be proved according to Koch’s 

postulates [20]. Infections strongly linked to a biofilm development, such as periodontal disease, 

endodontic infections, candidiasis, valve endocarditis, cystic fibrosis, urinary catheter cystitis, 

have all in common the resistance to non-invasive therapies (as drug therapy). The study of this 

microbial state is today indispensable to obtain a diagnosis and to decide an appropriate therapy 

[20, 26, 29, 88-90]. Biofilm infections are often originated by nosocomial infections linked to 

poorly sterilized surfaces of medical devices, entailing critical consequences for involved 

patients [20, 91, 92]. Among the microbial species involved in biofilm infections are some 

microbes having a primary role or considered model organisms for in vitro analysis, and 

therefore are among the most studied microbial species (spp) both in vivo and in vitro. Eight of 

these microbes, namely Escherichia coli (Ec), Pseudomonas aeruginosa (Pa), Klebsiella 

pneumonia (Kp), Bacillus subtilis (Bs), Enterococcus faecalis (Ef), Staphylococcus aureus (Sa), 

Candida albicans (Ca) and Aggregatibacter actynomicetemcomitans (Aa) [20, 88, 91-97] (Table 

3.3.2.1), were considered in this study.  

The development of a reproducible, specific and sensitive biofilm measurement method is today 

necessary in both medical and industrial fields. Among the various methods, indirect and direct 

applications may be distinguished. Indirect applications, such as standard plate counts, roll 

techniques, and sonication, allow the operator to obtain a quantification analysis of the biofilm 

after a detaching action. Other indirect techniques, such as radiolabeled bacteria, enzyme-linked 

immunosorbent assay, biologic assays, stained bacterial films, and microtiter plate procedures, 

enable the observer to obtain a quantification evaluation of the biofilm by measuring some 

attribute for the attached organism [98]. While many works in literature found limits often linked 

to the indirect methods [98-100], the direct methods show a better performance in terms of 

biofilm assessment, offset however by greater difficulties associated with techniques and 

equipment which may not be readily available (laser-scanning confocal, transmission electron 

and scanning electron microscopes) [98]. 

An indirect method which showed a good level of reproducibility, specificity and sensitivity, 

along with substantial simplicity, is the microtiter or microplate spectrophotometric assay [98, 

101-104]. This method, first described in 1977 [101] and modified and improved in 1998 and in 

2002 [98], is highly adaptable to the type of organisms to be studied in various and different 

growing conditions, is used routinely [105, 106], and is nowadays considered as the gold 

standard for the indirect evaluation of biofilm  [104]. 
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Biofilm microbial species 

 
Infection or disease 

 
Nosocomial 

 

Biliary tract infection NO 

Bacterial prostatitis NO Escherichia coli (Ec) 

Orthopedic devices infection YES 

Cystic fibrosis NO 

Contact lens infection YES 

Central venous catheters infection YES 
Pseudomonas aeruginosa (Pa) 

Orthopedic devices infection YES 

Urinary catheter cystitis YES 
Klebsiella pneumonia (Kp) 

Central venous catheters infection YES 

Bacillus subtilis (Bs) Model organism - 

Endodontic infection NO 

Urinary catheter cystitis YES 

Mechanical heart valves infection YES 

Orthopedic devices infection YES 

Enterococcus faecalis (Ef) 

Intra-Uterin devices infection YES 

Arteriovenous shunts infection YES 

Intra-Uterin devices infection YES Staphylococcus aureus (Sa) 

Pentile prostheses infection YES 

Candidiasis NO 

Vaginitis NO 

Peritoneal dialysis peritonitis YES 

Vascular catheters infection YES 

Joint prostheses infection YES 

Candida albicans (Ca) 

Central venous catheters infection YES 

Periodontal disease NO 

Meningitis NO Aggregatibacter actynomicetemcomitans (Aa) 

Heart disease NO 

Tab 3.3.2.1. Main diseases related to bacterial spp examined. Nosocomial infections are identified. 
 

This work is aimed at validation of the microtiter spectrophotometric biofilm production assay as 

a measurement tool using a metrological approach, exploiting statistical methods in order to 

perform an uncertainty evaluation [1]. 

 

3.3.2.2. Materials and methods 

 

Culture preparation 

The following species were used for this study: 

1. Gram positive bacteria: Staphylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 

29212 [107], Bacillus subtilis (clinical strain)  [90]. 
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2. Gram negative bacteria: Escherichia coli ATCC 7075, Pseudomonas aeruginosa ATCC 

27853, Aggregatibacter actinomycetemcomitans  DSM 11123 (genotype JP2) (Deutsche 

Sammlung von Mikrorganismen und Zellkulturen GmbH, Braunschweig, Germany) [107], 

Klebsiella pneumoniae (clinical strain) [108]. 

3. Fungi: Candida albicans from oral clinical isolates. These specimens were plated in 

Sabouraud glucose agar for 48 hours at 35 °C (Microbiol, UTA, Cagliari, Italy). The colonies 

were identified with an API ID32C system (Biomerieux, St Louis, MO) and maintained at –

20 °C in skimmed milk (Oxoid, Basingstoke, UK) [107]. 

Before the application of the spectrophotometric assay method, the selected microorganisms 

were divided into three groups:  

i) strains of  Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, 

Pseudomonas aeruginosa and Klebsiella pneumoniae were incubated in Müller Hinton agar, 

(MH Microbiol, UTA, Cagliari Italy) at 37 °C for 24 hours,  

ii) one strain of Candida albicans was cultured in Sabouraud glucose agar at 37 °C for 48 hours,  

iii) one strain of Aggregatibacter actinomycetemcomitans  was incubated in Anaerobic difficile 

agar (Microbiol, UTA, Cagliari, Italy) at 37 °C for 24 hours with a CO2 concentration of 5% 

[109]. 

After the incubation, group (i) was suspended in Müller Hinton broth (MH), group (ii) in 

Sabouraud glucose broth (SAB) and group (iii) in vials containing Schaedler Broth (SH) [109]. 

Bacterial suspensions were performed  to obtain a concentration with a turbidity equivalent to 

the no. 3 McFarland standard (about 10
8
 CFU/ml), then diluted to 1/100 (obtaining a 10

6
 

CFU/ml) using a spectrophotometer at 620 nm (DMS100s, Varian, New Hampshire, USA) [29]. 

 

Microtiter plate biofilm production assay 

The protocol described in 2007 [104] was applied to perform the biofilm analysis. During the 

application of the method, each step was numbered and analyzed, reading at 620 nm with a 

microtiter plate reader (Microplate Reader TECAN SPECTRA II) for the metrological 

evaluation. To realize the colorimetric assay, 200 µl of each suspended strain, were added to six 

wells of a 96-well plate and incubated for 24 hours. After the incubation (STEP 1: initial 

condition) the medium was removed (STEP 2: pre-washing) and the microtiter plate wells were 

washed three times with 200 µl of PBS (0,1 M, pH 7,4) buffer using a multichannel pipette, and 

allowed to dry for 15 min (STEP 3: post-washing). The microtiter wells were stained with 200 µl 

of 0.4% crystal violet for 15 min at room temperature. The unbound crystal violet stain was 

removed and the wells were washed three times with 200 µl of PBS buffer (STEP 4: post-crystal 
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violet). The wells were air-dried for 15 min and the crystal violet in each well was solubilized by 

adding 200 µl of 33% acetic acid (STEP 5: post-acetic acid). The biofilm value was represented 

by the analysis of the absorbance carried out with a spectrophotometer at 620 nm (SLT-Spectra 

II™, SLT Instruments, Germany) (Fig 3.3.2.1). 

 

 

Fig 3.3.2.1. Microtiter spectrophotometric assay example: full colored plate with different levels of absorbance in each wall 

which show different levels of biofilm development. 

 

Step by step spectrophotometric measurement 

During the colorimetric assay, the five critical steps previously described, i.e. STEP 1 to STEP 5, 

were identified. Each phase was analyzed through a spectrophotometric reading at 620 nm 

obtaining 240 measurements of absorbance. In STEP 1 the absorbance value of the bacteria 

planktonic growth after the incubation was obtained; it could be considered as the value 

representing the development of each microorganism in an aqueous medium before any 

manipulation. By STEP 2 the value that represents the turbidity of each well after the broth 

removal was obtained. STEP 3 determined the absorbance after the first washing phase. In STEP 

4 the turbidity of the dried colored biofilm after washing and before suspension was analyzed. 

STEP 5 was the final phase of the microtiter plate biofilm production assay method; by this 

phase the turbidity of the colored biofilm suspended by acetic acid may be determined. Table 

3.3.2.2 shows some descriptive statistics (mean and standard deviation) and values for each 

specie at each step, corrected subtracting a relevant C- value different for each broth (MH, SAB 
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or SH). Since negative values of absorbance are physically meaningless, such values were 

arbitrarily set equal to zero, enabling the evaluation of metrological characteristics using 

statistical methods. 

 

STEP 1 Initial condition STEP 2 Pre-washing STEP 3 Post-washing STEP 4 Post-crystal violet STEP 5 Post-acetic acid 

 Mean St. Dev.  Corrected Mean St. Dev. Corrected Mean St. Dev. Corrected Mean St. Dev. Corrected Mean St. Dev. Corrected  

Kp (MH) 1,381 0,07 1,282 0,134 0,04 0,102 0,093 0,07 0,000 0,087 0,02 0,022 0,273 0,05 0,174 

Bs (MH) 0,739 0,07 0,639 0,339 0,12 0,307 0,093 0,06 0,000 0,073 0,07 0,009 0,123 0,03 0,025 

Sa (MH) 0,549 0,08 0,449 0,136 0,02 0,104 0,103 0,07 0,008 0,094 0,05 0,030 0,158 0,05 0,060 

Pa (MH) 0,933 0,06 0,833 0,113 0,02 0,082 0,113 0,05 0,018 0,109 0,07 0,045 0,138 0,03 0,039 

Ec (MH) 0,991 0,04 0,892 0,100 0,02 0,068 0,122 0,04 0,026 0,103 0,08 0,039 0,108 0,03 0,009 

Ef (MH) 0,149 0,05 0,049 0,073 0,01 0,041 0,105 0,07 0,009 0,070 0,02 0,006 0,127 0,03 0,029 

Ca (SAB) 1,232 0,04 1,145 0,324 0,05 0,289 0,107 0,04 0,000 0,104 0,08 0,028 0,147 0,04 0,051 

Aa (SH) 0,359 0,04 0,258 0,247 0,02 0,196 0,270 0,06 0,151 0,274 0,09 0,136 0,380 0,05 0,259 

C- (MH) 0,100 0,01  0,032 0,00  0,095 0,04  0,064 0,03  0,099 0,01  

C- (SAB) 0,088 0,01  0,035 0,01  0,114 0,01  0,076 0,04  0,096 0,01  

C- (SH) 0,101 0,01  0,051 0,04  0,119 0,03  0,138 0,02  0,120 0,01  

Tab 3.3.2.2. Descriptive statistics and values for each specie at each step, corrected subtracting relevant C- value (negative values 

were arbitrarily set equal to zero). 

 

Statistical analysis 

An uncertainty evaluation of the whole process has been performed according to the GUM [1]. 

This may be properly organized in a tabular format (Table 3.3.2.3), referring to EA-4/02:1999 

[110]. A minor modification was adopted by substituting the standard deviations with variances, 

in order to show the individual contribution to the variance of output quantity y [13, 111].  

 

xj 

Symbol Value Note 
sj aj kaj u2(xj) cj uj

2(y) ννννj uj
4(y)/ ννννj 

x 0,279 Res  5,0E-04 3 8,3E-08 1,0E+00 8,3E-08 100 6,9E-17 

  Repr, 4,4E-02   2,0E-03 1,0E+00 2,0E-03 100 3,9E-08 

b 0,089 Res  5,0E-04 3 8,3E-08 -1,0E+00 8,3E-08 100 6,9E-17 

  Repr, 4,4E-02   2,0E-03 -1,0E+00 2,0E-03 100 3,9E-08 

y 0,191  Variance of y, u²(y) 3,9E-03 Σ 7,7E-08 

   Standard deviation of y, u(y) 6,3E-02 ννννy 200 

   Confidence level 95%   

   Coverage factor (Student's t) 2,0   

   Expanded uncertainty, U(y) 1,2E-01   

Tab 3.3.2.3. Uncertainty table 
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The considered mathematical model is: 

 

y x b= −  (1) 

 

where x is the general mean of the means of six replications of absorbance values considering all 

the microorganisms at each step, while b is the overall mean of the means of six replications of 

absorbance values considering all the C- values at each step. The value of y is 1,9·10
-1

. 

The resolution of the spectrophotometer is equal to 1·10
-3

. The reproducibility, calculated as the 

standard deviation of biases from the means of six replications considering all the absorbance 

values at each step, was found equal to 4,4·10
-2

.  The resulting expanded uncertainty at 95% 

confidence level is 1,2·10
-1

, i.e. relative expanded uncertainty of about 65%. 

This value concerns the whole process, namely the 5 steps referred to above. To detect some 

possible criticalities of the method, linked to biological behavior or to practical implementation, 

a statistical comparison among the 5 steps was performed in terms of variance. In particular, a F-

test [112] was exploited to check, for each microbe, whether there are significant differences in 

terms of variability among the different phases (Table 3.3.2.4). Only step 4 for microbe Ec 

exhibits a variance significantly greater than the variance of the mean of the 5 steps, at a 5% 

level. 

 

  STEP 1 Initial condition STEP 2 Pre-washing STEP 3 Post-washing STEP 4 Post-crystal violet STEP 5 Post-acetic acid 

 Var m Var Ratio Var Ratio Var Ratio Var Ratio Var Ratio 

Kp 0,003 0,005 1,82 0,002 0,64 0,005 1,68 <0,001 0,10 0,002 0,76 

Bs 0,006 0,005 0,83 0,014 2,50 0,004 0,65 0,005 0,90 0,001 0,12 

Sa 0,003 0,006 1,92 <0,001 0,12 0,005 1,53 0,002 0,73 0,002 0,70 

Pa 0,003 0,004 1,58 <0,001 0,09 0,002 0,88 0,006 2,12 0,001 0,33 

Ec 0,002 0,002 0,75 <0,001 0,12 0,002 0,82 0,006 2,80 0,001 0,52 

Ef 0,002 0,003 1,58 <0,001 0,05 0,004 2,46 <0,001 0,28 0,001 0,63 

Ca 0,003 0,002 0,56 0,003 1,03 0,002 0,58 0,007 2,33 0,001 0,50 

Aa 0,003 0,002 0,52 <0,001 0,14 0,003 1,04 0,008 2,46 0,003 0,84 

Tab 3.3.2.4. F-test relative to variability among different phases for all species. Degrees of freedom being 5 for numerator, and 

25 for denominator, F value at 95% confidence level is 2,60. Only step 4 exhibits a significant variance ratio for Ec (boldface), 

significance level being barely approached for Aa and Ca.  

 

3.3.2.3. Results 

 

Preliminary results 

Given the different strains of microorganisms, they are best considered individually. Since the 

turbidity of the suspended biofilm is the focus of the method, step 5 was examined in detail. In 
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this step, considering absorbance values corrected with respect to C- values, Ec, Ef, Bs show 

some negative values, making the evaluation of the uncertainty meaningless. Furthermore, Pa, 

Sa, Ca exhibited a very large variability, entailing excessively large values of uncertainty. On the 

other hand, results related to Kp and Aa showed an acceptable variability. The method described 

in Table 3 was applied, obtaining values of the relative expanded uncertainty, respectively, equal 

to 28% for Kp and to 22% for Aa (Table 3.3.2.5).  The experiments were repeated for Ec, Kp 

and Aa in order to improve the method. 

 

 Before improvement After improvement 

 m U U/m m U U/m 

Ec - - - 0,051 0,013 26% 

Kp 0,174 0,049 28% 0,546 0,124 22% 

Aa 0,259 0,057 22% 0,147 0,063 43% 

Tab 3.3.2.5. Mean values, relevant absolute and relative expanded uncertainties (95% confidence level), before and after 

improvement of method.  

 

Method improvement 

The preliminary analysis enabled identification of some critical phases with step-by-step 

spectrophotometric measurements. In particular, a strong criticality was highlighted in the values 

during STEP 3, exhibiting an increase of the dispersion of results (but for Ca and Bs). Another 

problem is due to the tendency shown by many microorganisms to have an absorbance value 

near zero at STEP 5, requiring remedial action. Since STEP 3 is the most critical phase, an 

improvement in the method of washing was devised, by a closer control of pipette tip during the 

insertion into the wells and a softer release of the washing liquid (PBS). To achieve these 

objectives, a single pipette tip was adopted, avoiding the use of the multichannel pipette (Fig 

3.3.2.1), thus enabling the operator to improve control during washing phases (STEP 3 and 

before STEP 4). 

 

Final results 

After improvement of the method, values of the relative expanded uncertainty equal to 26% for 

Ec, 22% for Kp, and 43% for Aa (Table 3.3.2.5), were obtained. On the other hand, comparing 

the values of absorbance before and after improvement of the method,  Kp showed the highest 

values. 
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Fig 3.3.2.2. Pipettes used in the study: multichannel pipette (bottom) then substituted by single pipette (top) for the method 

improvement. 

 

3.3.2.4. Discussion 

The microbial biofilm development process is strictly related to the presence or absence of a 

variety of influencing factors [103]. Bacterial metabolism, genotype presence or absence of 

specific nutrients, level of O2, pH, temperature are some examples of factors which could up- or 

down-regulate biofilm both quantitatively and qualitatively [103, 106]. Bearing this in mind, 

since the biofilm is a dynamic structure, slight alterations among experiments may result into 

very different growth in vitro. Therefore comparative experiments with the method described 

above are best performed at the same time with the same conditions, since comparison among 

absorbance values obtained for the same bacteria grown in different times and/or under different 

conditions might yield inconsistent results.  

Observing STEP 1 before and after improvement of the method, significant differences at the 

95% confidence level for Aa and Kp planktonic growth may be observed, with a marked 

reduction of dispersion. In fact, Aa shows in STEP 1 of the first test a mean value of absorbance 

equal to 0.36 with an upper confidence limit of 0,40 and a lower confidence limit of 0.32, while 

in the second test the mean decreases to 0,29 with limits of 0,30 and 0,27. Accordingly, Kp 

shows in STEP 1 of the first test a mean of 1,38 with limits equal to 1,46 and 1,31, while in the 

second test these values change to a mean of 1,22 and limits of 1,24 and 1,21. Ec showed a 

similar planktonic growth in both tests obtaining a mean of 0,99 before the method improvement 

and of 1,00 after the method improvement, with limits equal to 1,03 and 0,95 against 1,06 and 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 54 

0,95. These results highlight the growth stability of this bacteria, supporting the choice of Ec as a 

standard for studies in the microbiological field. The different growth rates showed by Aa and 

Kp may not be easily explained, since in both tests the same protocol performing the cultural 

phase was applied; some uncontrolled environmental factor may somehow influenced the 

bacterial growth.  

Further considerations are necessary to understand why the method showed substantially 

different results between different microbial species. In the first analysis, for some microbial 

species biofilm analysis was made impossible by negative results and/or excessive variability. 

These problems may be related to a too light and thin biofilm; indeed, the biofilm is a microbial 

structure linked to both virulence and preservation, as well as the result of an intra-species 

cooperation [26, 29, 106]. Experiments in vitro may not readily replicate the conditions 

necessary to determine the development of virulence factors, as the analysis of each 

microorganism alone (necessary to understand the biodynamic linked to the biofilm 

development) implies the formation of a much thinner biofilm than when many bacteria grow 

together. The use of antibacterial substances at low concentrations might determine the 

formation of a thicker biofilm, however this could negate comparison among different 

microorganisms.  

The improvement of the method enabled to determine Kp and Ec biofilms with a reasonable 

uncertainty thanks to a major compliance with the biofilm light base-structure, on the contrary 

Aa showed the worst results with respect to the first analysis (see Table 3.3.2.5). This problem 

may be explained by the bio-dynamic of Aa; during the planktonic growth, this bacteria forms 

micelle with consequent precipitation on the bottom of the walls, so that these structures, while 

not participating in the formation of the biofilm, develop a weak adhesion to the biofilm surface 

[105, 106]. Previous studies show that removal of loosely adherent or non-adherent cells requires 

many washings, up to 15, i.e. 6 more than the base protocol [105]. 

In conclusion, the microtiter spectrophotometric assay proved to be a valid method to perform 

biofilm analysis and measurements. Key factors for proper use are knowledge of the dynamics of 

the biofilm formation of the species to be tested, and application of the method on all samples 

simultaneously when performing comparative studies. 
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3.3.3. Metrological analysis of base values for planktonic growth and biofilm development 

of various microorganisms using the improved method 

 

The method described in the previous chapter was used again with the same bacterial species at 

the same condition to evaluated again the uncertainty of PG and BD of all microbial species after 

the improving of the method. 

 

3.3.3.1. Statistical analysis 

Uncertainty evaluation was performed according to GUM [1], along the lines developed in [113]. 

In a nutshell, the analysis was organized in a tabular format (Table 3.3.3.1), according to EA-

4/02:1999 [110]  with some minor modifications aimed at showing more clearly the individual 

contribution to the variance of output quantity y [111].  

 

xj 

Symbol Value Note 
sj aj kaj u2(xj) cj uj

2(y) ννννj uj
4(y)/ ννννj 

x 0,807 Res  5,0E-04 3 1,0E-08 1,0E+00 1,0E-08 100 1,1E-18 

  Repr, 1,6E-01   3,3E-03 1,0E+00 3,3E-03 7 1,6E-06 

b 0,180 Res  5,0E-04 3 1,0E-08 -1,0E+00 1,0E-08 100 1,1E-18 

  Repr, 7,6E-03   7,3E-06 -1,0E+00 7,3E-06 7 7,5E-12 

y 0,627  Variance of y, u²(y) 3,3E-03 Σ 1,6E-06 

   Standard deviation of y, u(y) 5,8E-02 ννννy 7 

   Confidence level 95%   

   Coverage factor (Student's t) 2,4   

   Expanded uncertainty, U(y) 1,4E-01   

   Relative expanded uncertainty, U(y)/y 22%   

Tab 3.3.3.1. Uncertainty table, showing main contributions and resulting relative expanded uncertainty, for biofilm development 

of Kp. 

 

A simple mathematical model was considered, namely  

y x b= −  (1) 

where x is the mean of eight replications of absorbance values considering a single 

microorganism, and b is the mean of eight replications of absorbance values considering the 

corresponding C- values. Table I shows e.g. the uncertainty budget relevant to the biofilm 

development of Klebsiella pneumoniae. Resolution of the spectrophotometer is equal to 1·10
-3

. 

The reproducibility of x and b is calculated as the standard deviation of eight replications of 
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absorbance values, respectively equal to 1,6·10
-1

 and 7,6·10
-3

 Further details on methods for 

uncertainty evaluation are given in [13]. 

 

3.3.3.2. Results 

 

Mean Std, Dev, Upper limit Lower limit Uncertainty 

Kp 1,04 0,07 1,09 0,98 7% 

Bs 0,78 0,13 0,89 0,67 18% 

Sa 0,40 0,06 0,45 0,35 22% 

Pa 0,78 0,02 0,80 0,76 3% 

Ec 0,82 0,04 0,86 0,79 5% 

Ef 0,45 0,04 0,48 0,41 13% 

Ca 0,63 0,05 0,68 0,59 9% 

Aa 0,31 0,02 0,33 0,29 10% 

C- SH 0,10 0,01 0,11 0,09 11% 

C- MH 0,17 0,01 0,17 0,16 6% 

Planktonic Growth 

C- SAB 0,10 0,03 0,12 0,08 36% 

Kp 0,81 0,16 0,94 0,67 22% 

Bs 0,80 0,24 1,01 0,60 32% 

Sa 0,63 0,11 0,72 0,54 20% 

Pa 0,35 0,08 0,42 0,28 41% 

Ec 0,25 0,02 0,27 0,24 25% 

Ef 0,35 0,12 0,45 0,24 55% 

Ca 0,29 0,06 0,35 0,24 36% 

Aa 0,33 0,08 0,39 0,27 31% 

C- SH 0,12 0,01 0,13 0,11 13% 

C- MH 0,18 0,01 0,19 0,17 5% 

Biofilm Development 

C- SAB 0,15 0,01 0,16 0,14 9% 

Tab 3.3.3.2. Descriptive statistics, limits of 95% confidence interval and corresponding relative uncertainty pertaining to tested 

microbial species and C- values. 

 

Table 3.3.3.2 shows values of relative uncertainty obtained for tested microbial species. 

In their planktonic condition, all microorganisms show a rather small uncertainty. In fact, only 

for Bacillus subtilis and Staphylococcus aureus relative uncertainty exceeds 15% (see also Fig. 

3.3.3.1).  

In biofilm state, differences among tested microbial species are larger (Fig. 3.3.3.2). 

Microorganism tested may be divided into three groups: 

1. Relative uncertainty lower than 30%, which includes Klebsiella pneumoniae (22%), 

Staphylococcus aureus (20%) and Escherichia coli (25%). 

2. Relative uncertainty between 30% and 40%, which includes Bacillus subtilis (32%), 

Candida albicans (36%)  and Aggregatibacter actynomicetemcomitans (31%). 
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3. Relative uncertainty greater than 40%, which includes Pseudomonas aeruginosa (41%) 

and Enterococcus faecalis (55%). 

Furthermore, relative uncertainty for PG is lower than for BD for all microorganisms, but for 

Staphylococcus aureus (22% against 20%). 

 

 

Fig 3.3.3.1. Distribution of the eight absorbance values relevant to the planktonic growth for each microbial species. 

 

 

Fig 3.3.3.2. Distribution of the eight absorbance values relevant to the biofilm development for each microbial species. 
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3.3.3.3. Discussion 

 

A rapid quantification analysis of different condition of prokaryotic cells, sessile or planktonic, is 

fundamental to determine the metabolic state of a pathogen as well to determine the activity of a 

therapy. In particular microbial biofilm formation is the key-stone of an impressive number of 

chronic infections with an high resistance against conventional antibiotic therapy [18, 20]. The 

analysis of its development became indispensable to highlight all the different variables that 

could influence sessile structures and characteristics. These conditions work during the five 

stages of BD, in the first stage of the attachment for example, microbial cells activity is 

influenced by environmental signals that change by organism but are linked to changes in 

nutrients and nutrient concentrations, pH, temperature, oxygen concentration, osmolality and 

iron too [20].  

Therefore it is very important to quantify biofilm production with a method as sensible as 

possible, and with high reproducibility and repeatability. This permits to isolate accurately the 

potential biofilm production ability of each bacteria, and to determination of a proper therapeutic 

approach. 

In this work we tested whether the Microtiter plate biofilm production assay of Christensen et 

al.[114], after its modification in literature[98, 104, 113], might still be considered the gold 

standard to study BD. To achieve this goal we applied to this method a metrological analysis 

covering extended uncertainty, in order to evaluate whether it may be considered equally valid 

for various microbial species. All factors other than microbial diversity, such as PH or nutrient 

concentration, were controlled and standardized to reduce as much as possible environmental 

influences. To minimize operator’s effect, the analysis were performed by an expert user. Results 

show that the method exhibits a different sensitivity depending upon which microorganism it is 

applied to. Kp, Sa and Ec show a low uncertainty linked to the capacity to develop a stable and 

resistant biofilm also in an in vitro condition and without other bacteria interaction [93, 97, 115]. 

The second group of microorganism identified in this work, characterized by an uncertainty 

between 30% and 40%, is formed by Bs, Ca and Aa, three broadly different kind of microbial 

species. Bacillus subtilis is a Gram positive, aerobe bacterium with the ability to generate a tough 

endospore [96], Candida albicans is the most commonly fungus species associated with biofilm 

infection, frequently found in the normal microbiota of humans [88]. Aggregatibacter 

actinomycetemcomitans is a gram-negative,  facultative anaerobe, implicated in numerous 

human diseases [109]. These three microbial organisms have very different characteristic so that 
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there is the needing to find for each one of them a specific explanation for the high value of 

uncertainty described. 

Bs characteristically generate solid surface-associated biofilms as well as biofilm similar to a 

pellicle at the air-liquid interface, following a distinct developmental pathway as respect to 

others bacteria such as Ec, Sa or Kp. When Bs cells reach a concentration of 5x10
7
 CFU/ml, they 

begin to form a floating pellicle on the air-liquid interface with the development of aerial 

projections [90]. This kind of aerial structure can be easily destroyed during the Microtiter plate 

biofilm production assay method, accounting for the substantial uncertainty detected. 

Ca biofilm is strictly related with its virulence and in these last decades it became the third 

leading cause of catheter-related infections [116]. Ca sessile state have some specific 

characteristics that made this microorganism hard to treat by applying the Microtiter plate 

biofilm production assay method. First of all its cells need for their initial attachment a bio-

surface while the plate were is realized the biofilm coloration is obviously synthetic; despite this, 

thanks both to the proteins present in the broth and to other adhesive capacity of cells, the 

primary adhesion, although weaker, takes place however [88]. Therefore during the washing 

phases a part of the biofilm may be easily removed from the plate’s walls, leading to higher 

uncertainty than pertaining to microorganisms which produce a biofilm with a better attachment. 

Aa uncertainty may be explained by its bio-dynamic, this bacteria being characterized by the 

formation of micelle during its planktonic growth. This structure shows a tendency to settle to 

the bottom of plate’s wall where it forms the biofilm. When the micelle came into contact with 

the biofilm surface they develop a mutual adhesion that may be hard to remove by washing [105, 

106]. Previous studies show that removal of loosely adherent or non-adherent cells requires 

many washings, up to 15, i.e. 6 more than the base protocol [105]. 

Eventually two bacteria were identified with a relative uncertainty exceeding 40%, namely Ef 

and Pa. Enterococcus faecalis needs to produce its biofilm with a high concentration of glucose 

in the medium, since it is linked to that of a glucose-dependent transcriptional regulator [117]. 

The surface protein of Ef involved in biofilm production showed improvement in presence of 

strain with glucose at 1%; lacking this it was reported that only BD were reduced without any 

effect on PG [118]. Presence of human serum in the medium is reported too as condition that 

enable the formation of a more resistant biofilm as well to promote a better regulation to pass 

from initiation to mature biofilm [117]. In this work was used as medium for the Ef the MH that 

not presents in its composition or glucose or human serum. For this reason it has formed a 

biofilm less resistant than that in vivo, a biofilm which therefore has suffered the washing steps 

more then for other microbial species. 
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Pseudomonas aeruginosa biofilm formation and maturation are strictly linked to environmental 

conditions. In literature is described that this bacteria needs to develop a mature biofilm a 

medium contained glucose and a carbon source both absent in the MH used in this study [119]. 

In conclusion this work shows how the Microtiter plate biofilm production assay is a good 

method to perform a quantitative and qualitative evaluation of both PG and BD. To use it 

properly for BD is always indispensable to have an excellent knowledge about the metabolism 

and about the growth mechanism of the microorganism to analyze. 

 

3.3.4. Conclusions (From step 2 to step 3) 

 

At the end of the second phase a microorganism was selected to be subjected to ultrasound so as 

to perform the third phase. To choose which bacteria could be the better, three variable were 

evaluated: 

1. Uncertainty of PG evaluated as absorbance value after seven days of incubation. 

2. Uncertainty of BD evaluated as absorbance value obtained by the microtiter plate assay 

method. 

3. Knowledge about its metabolism. 

 

For these reasons Escherichia coli  has been chosen, in fact it presented a low uncertainty for 

both the evaluated conditions (Table 3.3.3.2) and, at the same time, it is consider the model 

organism for the study of surface colonization. 

E. coli (Fig 3.3.4.1) is a facultative 

anaerobic bacteria of the gastrointestinal 

tract and, with more than 250 serotype, 

it is recognised as primary causes of 

infection of the urogenital tract as well 

of contaminator of medical devices [93]. 

Its  biofilm formation is related to  four 

different phases well described in 

literature: 

1. Approaching the surface; 

2. Primary adhesion to surface; 

3. Irreversible adhesion to surface; 

4. Building the mature biofilm. 
Fig 3.3.4.1. Escherichia coli macroscopic aspect 
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The first phase is related to the active motility of the microorganism in a liquid or semi-liquid 

medium. This ability is related to a flagellar apparatus that allows to gram-negative bacteria, as 

E. coli, to swim up to increase their chance to reach a surface to colonize [93]. Recent studies 

have shown that the presence and magnitude of an active motility is even essential for the 

formation of a biofilm [120]. 

  

The second phase is strongly influenced by different kind of factors, as well as the environmental 

conditions, such as medium ph or temperature, as the characteristics of adhesion surface, such as 

rugosity or if it is made by an hydrophobic or an hydrophilic material [18]. These factors directly 

influence the physicochemical and electrostatic interactions between the bacteria and the 

adhesion surface [93].  

 

The third phase is based on the role of the fimbriae and in particular on their capacity to develop 

an irreversible attachment of bacteria to the surface of adhesion. These protein structures can be 

divided into three classes such as type 1 fimbriae, curli, and conjugative pili. All of them are 

related to the expression of specific genes whose mutation or inhibition may lead to the 

development of a biofilm less resistant or to the lack of formation of it. 

 

3.4 Step 3 

 

1. Bacterial viability and biofilm development measurement after ultrasonic 

exposure 

2. Uncertainty and statistical analysis of data (RESULTS) 

3. Future prospective (DISCUSSION AND CONCLUSIONS) 

 

3.4.1. Description 

 

After steps 1 and 2 the US frequencies, the types of tubes to use and the bacteria to test have 

been chosen. In the step 3 all these elements will be used all together to reach the goals described 

in the Chapter 1. 

To perform the exposition of the E. coli to the acoustic pressure first of all there was the need to 

analyze its growth curve to identify the best timing to perform the experiments (Fig 3.4.1.1). 
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Fig 3.4.1.1. E. coli growth curve made to identify the phases of growth of the bacterium and based on 3 replications of 

measurement. The point “a” is the beginning of the exponential growth while the point “b” is the beginning of the stationary 

growth. The best time to achieve the experiments is at the beginning of the stationary growth phase as it is the one with the 

greater stability of the sample. 

 

Growth and preparation of E. coli were carried out according to the same protocol described in 

Section 3.3. To determine the exposure time and to test the protocol a preliminary experiment 

was done. In this first test only the 20 kHz frequency was used and six exposure times, from 10 

to 60 seconds, were tested with 10 second intervals between each of them. One tube containing 

the culture of E. coli at a concentration of 10
6
 CFU/ml was prepared for each exposure time (test 

tube named 10, 20, 30, 40, 50 and 60) more one tube for the analysis of bacterial growth without 

US exposition (named C+). Each tube was inserted into the central hole of the grid and it was 

immersed into the ultrasonic tank as 

described in the chapter 3.2. At this 

point  the US were emitted for the 

time chosen for each test at the 

chosen frequency. After the US 

exposition from each tube were 

collected eight samples and seeded 

in multiwall to achieve the 

incubation and then the 

spectrophotometric measurement as 

described in the chapter 3.3 (Fig Fig 3.4.1.2. Step 3 experiment 
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3.4.1.2). Each exposure time was analyzed both for its activity in relation with the PG as for the 

BD. From this preliminary analysis no difference was identified in PG in relation with the 

exposure times, while three exposure times have showed to be the more interesting in relation 

with the BD and they were the 10 seconds, 40 seconds and 60 seconds (Fig 3.4.1.3). 

 

 

Fig 3.4.1.3. Biofilm development values after E. coli exposition at different exposure times to an acoustic pressure related to the 

ultrasonic wave with a length-wave of 20 kHz and seven days of incubation. 

 

3.4.2. Analysis of planktonic growth and biofilm development after ultrasonic exposure 

 

After the exposure times were chosen, the main experiment was started following the same 

protocol of the preliminary. For each frequency and each exposure time to be tested it was 

decided to prepare three tubes containing 5 ml of E. coli in Müller Hinton broth at a 

concentration of 10·10
6
 CFU/ml for a total of 63 bacterial cultures. In addition for each 

frequency will be also prepared three tubes, under the same conditions described above, for the 

sample for comparison (C +) to a total of 84 test tubes. To perform spectrophotometric analysis 

after US exposure each sample will be divided in eight wall of a multiwall plate to be incubated 

for seven days. At the end of the incubation 504 values for both PG and BD will be obtained to 

be compared with the 168 C+ for both the bacterial condition. To perform the analysis, they were 

carried out on three different days, 15 days apart from each other, always at the same hour of the 

day and checking that the environmental conditions (such as temperature and humidity of the 

room) were the same every time (Fig 3.4.2.1-14). 
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Fig 3.4.2.1. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 20 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.2. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 20 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

s s s 

s s s 
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Fig 3.4.2.3. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 24 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.4. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 24 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

s s s 

s s s 
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Fig 3.4.2.5. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 25 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.6. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 25 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 s           s       s 
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Fig 3.4.2.7. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 28 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.8. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 28 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 
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Fig 3.4.2.9. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 35 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.10. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 35 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 
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Fig 3.4.2.11. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 37 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.12. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 37 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 
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Fig 3.4.2.13. Planktonic growth (PG), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 38 kHz for 10, 40 and 60 seconds compared to the PG ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 

 

 

Fig 3.4.2.14. Biofilm development (BD), represented by an absorbance value (ABS), of Escherichia coli after exposure to an 

ultrasonic wave at 38 kHz for 10, 40 and 60 seconds compared to the BD ABS obtained without ultrasounds (C+). Results are 

related to 24 measures for each condition. 
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3.4.3. Metrological evaluation of step 3 

 

The analysis the uncertainty at 95% confidence level was evaluated as first thing to determine 

the stability of our samples. To determine the uncertainty was used the same table previously 

exposed (see Tables 3.3.2.3 and 3.3.3.1). The PG showed little uncertainty as regards both the 

cultures exposed to the US that the control samples. In several cases it was found in the samples 

less uncertainty than in the control (Table 3.4.3.1). On the contrary the BD showed very high 

values of uncertainty in relation to the samples exposed to ultrasound, uncertainty that has 

remained low in the controls. In particular it has been possible to note how the uncertainty would 

increase passing from 10 to 40 seconds of exposure and then decreased again towards the 60 

seconds for almost all frequencies studied (Table 3.4.3.1). 

In the next chapter an analysis frequency by frequency of the two states will be performed to try 

to identify a trend that allows to hypothesize the reasons for these results. 

 

Uncertainty values 

PG BD 
Frequency 

(kHz) 

10 s 40  s 60 s C+ 10 s 40 s 60 s C+ 

20  3% 4% 4% 4% 60% 300% 130% 15% 

24  6% 4% 5% 3% 310% 3030% 330% 12% 

25  4% 2% 2% 3% 55% 95% 53% 16% 

28  3% 2% 2% 3% 250% 800% 80% 14% 

35  2% 2% 2% 3% 480% 400% 180% 12% 

37  2% 2% 2% 3% 120% 310% 210% 13% 

38  2% 2% 2% 3% 160% 340% 330% 16% 

Table 3.4.3.1. Uncertainty of planktonic growth (PG) and biofilm development (BD) for each exposure time to US.
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4. RESULTS 

 

4.1. Statistical Analysis 

 

Minitab
®

 16.1.1 was used to perform statistical analysis of the absorbance values (ABS) obtained 

by the step 3. In the first phase of the analysis the ABS variables related to PG and BD are called 

simply PG and BD, while the factors taken in consideration are the frequency (kHz), the 

exposure time (t), and the minimum, medium and maximum values of acoustic pressure (kPa 

min, kPa mean and kPa max). After this phase the variables PG and BD will be normalized 

using the acoustic pressure values (Table 4.1.1) 

 

Factors Variables Variables normalized 

kPa min 
kHz 

PG 

 
PG/kPa min, PG/kPa mean, PG/kPa max 

kPa mean 

t 
kPa max 

BD BD/kPa min, BD/kPa mean, BD/kPa max 

Table 4.1.1. Schematization of the factors and variables used to perform the statistical analysis of data. 

 

In order to be able to compare the values of ABS between a frequency and another, due to the 

high variability of the samples, each individual value of PG and BD has been transformed into a 

value of comparison. This value, expressed on a scale 0-1, has as a reference the average of C + 

for each frequency and bacterial state that is used as a value of unit (Table 4.1.2). 

 

ABS mean (comparison value with C+) 

Planktonic Growth (PG) Biofilm Development (BD) Frequency (kHz) Acoustic Pressure (kPa) 

10 s 40  s 60 s C+ 10 s 40 s 60 s C+ 

20 (Plexiglass) 2,09 ± 0,85 (1,24-2,94) 0,90 0,86 0,95 1,00 0,41 0,08 0,18 1,00 

24 (Vetro) 2,93 ± 1,43 (1,5-4,36) 1,03 0,93 0,98 1,00 0,04 0,06 0,11 1,00 

25 (Plexiglass) 1,42 ± 0,96 (0,46-2,38) 0,93 0,89 0,92 1,00 0,55 0,23 0,32 1,00 

28 (Plexiglass) 2,49 ± 0,87 (1,62-3,36) 1,00 0,94 0,94 1,00 0,10 0,06 0,01 1,00 

35 (Vetro) 3,13 ± 1,63 (1,5-4,76) 0,93 0,91 0,91 1,00 0,04 0,04 0,18 1,00 

37 (Vetro) 1,93 ± 0,91 (1,02-2,84) 0,96 0,94 0,96 1,00 0,27 0,09 0,15 1,00 

38 (Plexiglass) 3,99 ± 2,15 (1,84-6,14) 0,79 0,74 0,75 1,00 0,14 0,03 0,03 1,00 

Table 4.1.2. Means of the variables ready to be compared with each other and with the factors time, pressure and frequency. 

  

The first analysis was the evaluation of the effects of kHz, t and kPa min, kPa mean and kPa max 

on PG and BD, using the analysis of the variance (ANOVA) (Fig 4.1.1-4.1.2). 
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Fig 4.1.1. The mean value of ABS for PG does not appear affected by the acoustic pressure if not for values higher than 3.11 kPa, 

the exposure time shows a trend, apparently parabolic, between 10, 40 and 60 seconds, finally, there seems to be a effect of 

frequency regardless of pressure. 
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Fig 4.1.2. Unlike PG, the mean values of ABS for BD shows a rather pronounced influence of the acoustic pressure. A parabolic 

trend is present for the time factor, while the frequency factor requires more detailed analysis. 

 

A matrix plot was used to explore graphically relations between factors and variables (Fig 4.1.3). 
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Fig 4.1.3. No clear relationship between PG and BD appears. 
 

Before beginning the analysis of individual variables a check was performed to identify a 

correlation if any between variation of the two variable in relation with frequency. A descriptive 

statistic was realized to evaluate the variables in relation with each factor (Table 4.1.3-4.1.5) and 

then Pearson’s correlation coefficient was computed for all combinations of variables and factors 

(Table 4.1.6). 

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range 

PG 0,91 0,09 0,69 0,88 0,92 0,96 1,31 0,62 

BD 0,15 0,36 0,00 0,00 0,00 0,03 2,09 2,09 

Table 4.1.3. Descriptive statistic of the ABS values separated in function of PG and BD. 
 

Variable kHz Mean StDev Minimum Q1 Median Q3 Maximum Range 

20 0,91 0,08 0,69 0,86 0,91 0,94 1,12 0,43 

24 0,98 0,11 0,81 0,91 0,94 1,04 1,31 0,51 

25 0,91 0,05 0,84 0,89 0,90 0,93 1,17 0,33 

28 0,96 0,05 0,86 0,92 0,95 0,99 1,09 0,22 

35 0,92 0,04 0,84 0,90 0,92 0,94 1,02 0,18 

37 0,95 0,04 0,83 0,93 0,96 0,98 1,09 0,27 

PG 

38 0,76 0,03 0,70 0,74 0,76 0,78 0,82 0,12 

20 0,22 0,44 0,00 0,00 0,00 0,26 1,93 1,93 

24 0,07 0,26 0,00 0,00 0,00 0,00 1,91 1,91 

25 0,37 0,48 0,00 0,00 0,03 0,65 2,03 2,03 

28 0,06 0,18 0,00 0,00 0,00 0,00 1,04 1,04 

35 0,09 0,31 0,00 0,00 0,00 0,00 2,09 2,09 

37 0,17 0,42 0,00 0,00 0,00 0,15 2,03 2,03 

BD 

38 0,07 0,19 0,00 0,00 0,00 0,00 0,99 0,99 

Table 4.1.4. Descriptive statistic of the ABS values in function of PG and BD and in relation with kHz. 
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Variable t Mean StDev Minimum Q1 Median Q3 Maximum Range 

10 0,93 0,10 0,72 0,89 0,93 0,98 1,31 0,59 

40 0,89 0,08 0,69 0,87 0,90 0,94 1,10 0,41 PG 

60 0,92 0,09 0,72 0,90 0,93 0,96 1,27 0,55 

10 0,22 0,44 0,00 0,00 0,00 0,24 2,03 2,03 

40 0,09 0,24 0,00 0,00 0,00 0,00 1,43 1,43 BD 

60 0,14 0,36 0,00 0,00 0,00 0,02 2,09 2,09 

Table 4.1.5. Descriptive statistic of the ABS values in function of PG and BD and in relation with t. 

 

 kHz t kPa min kPa mean kPa max Other variable 

 p-value pearson p-value pearson p-value pearson p-value pearson p-value pearson p-value pearson 

PG <0,0005 -0,315 0,042 -0,091 <0,0005 -0,238 <0,0005 -0,427 <0,0005 -0,471 

BD <0,0005 -0,121 0,018 -0,105 <0,0005 -0,277 <0,0005 -0,237 <0,0005 -0,211 
0,009 0,117 

Table 4.1.6. Pearson’s correlation coefficients, and related p-values 

 

The results of Pearson correlation analysis could be influenced by the values related to 38 kHz, 

that is the frequency with the highest acoustic pressure, and have a strong influence on both PG 

and BD (see Fig 4.1.1 and 4.1.2). Therefore Pearson’s analysis was repeated without the ABS 

values related to that frequency (Table 4.1.7). 

 

 kHz t kPa min kPa mean kPa max Other variable 

 p-value Pearson p-value Pearson p-value Pearson p-value Pearson p-value Pearson p-value Pearson 

PG 0,129 0,073 0,040 -0,099 <0,0005 0,179 0,002 0,149 0,011 0,123 

BD 0,070 -0,087 0,045 -0,096 <0,0005 -0,273 <0,0005 -0,253 <0,0005 -0,223 
0,158 0,068 

Table 4.1.7. Pearson’s correlation coefficients, and related p-values, without ABS values related to 38 kHz. 

 

Eliminating the values of ABS related to the exposure to ultrasound at 38 kHz, it was possible to 

correct the initial error, related to too strong an influence of 38 kHz against PG. In fact, Table 

4.1.7 shows that the correlation of frequency value with the values of PG and BD falls below 

significance. At the same time, however, it can be pointed out that other factors do not show 

marked variations in respect of the values of BD, variations that are present for the values of PG 

(see Table 4.1.6 and 4.1.7). Moreover, without the 38 kHz values there is no correlation between 

PG and BD appears any more. 

 

ANOVA for the two bacterial state separated with each factors was then performed, to find a 

specific influence that each factor could have on the variables.  

First of all PG and BD variation with frequency is analyzed (Fig 4.1.4-4.1.5) 
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Fig 4.1.4. Boxplots of PG versus frequency (asterisks denote suspected outliers) 
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Fig 4.1.5. Boxplots of BD versus frequency (asterisks denote suspected outliers) 
 

The values of BD, as also noted above, tend to decrease with increasing pressure, their analysis 

is therefore postponed to the subsequent analysis of the factors kPa min, mean and max. The 

One-way ANOVA: PG versus kHz  
 
Source   DF       SS       MS       F      P 

kHz       6  2,27002  0,37834  100,62  0,000 

Error   497  1,86883  0,00376 

Total   503  4,13885 

 

S = 0,06132   R-Sq = 54,85%   R-Sq(adj) = 54,30% 

 

One-way ANOVA: BD versus kHz  
 
Source   DF      SS     MS     F      P 

kHz       6   5,658  0,943  7,91  0,000 

Error   497  59,225  0,119 

Total   503  64,883 

 

S = 0,3452   R-Sq = 8,72%   R-Sq(adj) = 7,62% 

 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 77 

values of PG seem to be influenced by the frequency applied, with the exclusion of the 38 kHz 

for which the highest value of pressure seems to overpower the possible effect of frequency. 

Analyzing frequencies up to 37 kHz it would seem possible to divide the frequency values into 

two groups on the basis of the values of ABS (Fig 4.1.6-4.1.8). 
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Fig 4.1.6. Boxplots for all the ABS values without those related to the 38 kHz points out to systematic effects; the presence of 

two group of values is hinted at by the graph. 
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Fig 4.1.7. No significant difference between averages of these three groups appears. 
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Fig 4.1.8. No significant difference between group averages appears. 
 

Group 1 (20 kHz, 25 kHz and 35 kHz) is represented by ABS mean values near 0.91 while group 

2 (24 kHz, 28 kHz and 37 kHz) have ABS mean values near 0.96, with hardly a significant 

difference. 

 

 

 

The same analysis performed for the frequencies was realized for the exposure times (Fig 4.1.9-

4.1.10). 

One-way ANOVA: Group 1; Group 2 
 

Source   DF       SS       MS      F      P 

Factor    1  0,29113  0,29113  67,95  0,000 

Error   430  1,84237  0,00428 

Total   431  2,13349 

 

S = 0,06546   R-Sq = 13,65%   R-Sq(adj) = 13,44% 

 

 

                                Individual 95% CIs For Mean Based on 

                                Pooled StDev 

Level      N     Mean    StDev  --------+---------+---------+---------+- 

Group 1  216  0,91269  0,05594  (---*----) 

Group 2  216  0,96461  0,07375                            (---*----) 

                                --------+---------+---------+---------+- 

                                      0,920     0,940     0,960     0,980 

 

Pooled StDev = 0,06546 
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Fig 4.1.9. Boxplots of PG versus exposure time. 
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Fig 4.1.10. Boxplots of BD versus exposure time. 
 

One-way ANOVA: PG versus t  
 
Source   DF       SS       MS     F     P 

t         2  0,17212  0,08606 10,87 0,000 

Error   501  3,96673  0,00792 

Total   503  4,13885 

 

S = 0,08898   R-Sq = 4,16%   R-Sq(adj) = 

3,78% 

 

 

One-way ANOVA: BD versus t  
 
Source   DF      SS     MS     F      P 

t         2   1,526  0,763  6,03  0,003 

Error   501  63,357  0,126 

Total   503  64,883 

 

S = 0,3556   R-Sq = 2,35%   R-Sq(adj) = 

1,96% 
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Exposure time has a different effect on PG and BD, the former shows a pattern between the 

values which is maintained for all exposure times tested. Also examining the behavior of the 

variable according to the change of frequency can be identified as the relationships identified 

above (see Fig 4.1.6-4.1.8) and the two groups found previously are no longer identifiable (Fig 

4.1.11-4.1.13). 
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Fig 4.1.11. Boxplots of PG values after 10 seconds of exposure time at the different frequencies. (p-value <0,0005) 

 

 

 

 

One-way ANOVA for 10 s: PG_20; PG_25; PG_35 
 
Source  DF       SS       MS     F      P 

Factor   2  0,01588  0,00794  2,37  0,101 

Error   69  0,23117  0,00335 

Total   71  0,24705 

 

S = 0,05788   R-Sq = 6,43%   R-Sq(adj) = 3,71% 

 

 

                             Individual 95% CIs For Mean Based on 

                             Pooled StDev 

Level   N     Mean    StDev  --+---------+---------+---------+------- 

PG_20  24  0,89926  0,05751  (-----------*----------) 

PG_25  24  0,92950  0,06965                 (-----------*-----------) 

PG_35  24  0,93188  0,04350                  (-----------*-----------) 

                             --+---------+---------+---------+------- 

                             0,880     0,900     0,920     0,940 

 

Pooled StDev = 0,05788 
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Fig 4.1.12. Boxplots of PG values after 40 seconds of exposure time at the different frequencies. (p-value <0,0005) 

 

 

 

 

One-way ANOVA for 10 s: PG_24; PG_28; PG_37 
 
Source  DF       SS       MS     F      P 

Factor   2  0,04663  0,02332  3,22  0,046 

Error   69  0,50010  0,00725 

Total   71  0,54674 

 

S = 0,08513   R-Sq = 8,53%   R-Sq(adj) = 5,88% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level   N    Mean   StDev  -----+---------+---------+---------+---- 

PG_24  24  1,0257  0,1296                    (---------*---------) 

PG_28  24  0,9954  0,0556            (--------*---------) 

PG_37  24  0,9634  0,0432  (---------*---------) 

                           -----+---------+---------+---------+---- 

                              0,945     0,980     1,015     1,050 

 

Pooled StDev = 0,0851 
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One-way ANOVA for 40 s: PG_24; PG_28; PG_37 
 
Source  DF       SS       MS     F      P 

Factor   2  0,00095  0,00048  0,19  0,828 

Error   69  0,17321  0,00251 

Total   71  0,17416 

 

S = 0,05010   R-Sq = 0,55%   R-Sq(adj) = 0,00% 

 

 

                             Individual 95% CIs For Mean Based on 

                             Pooled StDev 

Level   N     Mean    StDev  ---+---------+---------+---------+------ 

PG_24  24  0,93067  0,06786  (------------*-------------) 

PG_28  24  0,93950  0,03597        (------------*-------------) 

PG_37  24  0,93607  0,04041     (-------------*-------------) 

                             ---+---------+---------+---------+------ 

                              0,915     0,930     0,945     0,960 

 

Pooled StDev = 0,05010 

 

One-way ANOVA for 40 s: PG_20; PG_25; PG_35 
 
Source  DF       SS       MS     F      P 

Factor   2  0,02904  0,01452  7,17  0,001 

Error   69  0,13975  0,00203 

Total   71  0,16879 

 

S = 0,04500   R-Sq = 17,20%   R-Sq(adj) = 14,80% 

 

 

                             Individual 95% CIs For Mean Based on 

                             Pooled StDev 

Level   N     Mean    StDev  --+---------+---------+---------+------- 

PG_20  24  0,86383  0,06747  (-------*------) 

PG_25  24  0,89484  0,02469               (------*------) 

PG_35  24  0,91241  0,03023                      (------*------) 

                             --+---------+---------+---------+------- 

                             0,850     0,875     0,900     0,925 

 

Pooled StDev = 0,04500 
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Fig 4.1.13. Boxplots of PG values after 60 seconds of exposure time at the different frequencies. (p-value <0,0005) 

 

 

 

 

 

 

 

 

 

One-way ANOVA for 60 s: PG_20; PG_25; PG_35 
 
Source  DF       SS       MS     F      P 

Factor   2  0,02379  0,01189  4,62  0,013 

Error   69  0,17755  0,00257 

Total   71  0,20134 

 

S = 0,05073   R-Sq = 11,81%   R-Sq(adj) = 9,26% 

 

 

                             Individual 95% CIs For Mean Based on 

                             Pooled StDev 

Level   N     Mean    StDev  ---+---------+---------+---------+------ 

PG_20  24  0,95316  0,07504                  (-------*--------) 

PG_25  24  0,91580  0,03268   (-------*--------) 

PG_35  24  0,91351  0,03195  (-------*--------) 

                             ---+---------+---------+---------+------ 

                              0,900     0,925     0,950     0,975 

 

Pooled StDev = 0,05073 
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BD shows instead an effect of sound pressure that reflects what has been seen previously only in 

the 10 seconds of exposure; in 40 and 60 seconds almost all values tend to 0 losing that trend. 

ANOVA shows a statistical significance only for the values relating to 10 seconds of exposure. 

 

 

 

 

 

 

One-way ANOVA for 10 s: BD versus kPa Mean 
 
Source     DF      SS     MS     F      P 

kPa Mean    6   5,634  0,939  5,67  0,000 

Error     161  26,647  0,166 

Total     167  32,281 

 

S = 0,4068   R-Sq = 17,45%   R-Sq(adj) = 14,38% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level   N    Mean   StDev  -----+---------+---------+---------+---- 

1,42   24  0,5542  0,6437                       (-----*------) 

1,93   24  0,2657  0,5469           (------*-----) 

2,09   24  0,4068  0,5264                 (-----*------) 

2,49   24  0,1010  0,2571    (------*------) 

2,93   24  0,0374  0,0846  (-----*------) 

3,13   24  0,0424  0,1325  (------*-----) 

3,99   24  0,1361  0,2779      (-----*------) 

                           -----+---------+---------+---------+---- 

                              0,00      0,25      0,50      0,75 

 

Pooled StDev = 0,4068 

 

One-way ANOVA for 60 s: PG_24; PG_28; PG_37 
 
Source  DF       SS       MS     F      P 

Factor   2  0,01617  0,00808  1,83  0,168 

Error   69  0,30519  0,00442 

Total   71  0,32136 

 

S = 0,06651   R-Sq = 5,03%   R-Sq(adj) = 2,28% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level   N    Mean   StDev  ---+---------+---------+---------+------ 

PG_24  24  0,9816  0,1047                 (----------*---------) 

PG_28  24  0,9449  0,0359  (----------*----------) 

PG_37  24  0,9642  0,0318          (----------*----------) 

                           ---+---------+---------+---------+------ 

                            0,925     0,950     0,975     1,000 

 

Pooled StDev = 0,0665 
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The values of ABS were normalized according to the values of kPa min, kPa mean and kPa max 

for both PG and BD, to enable analysis on the influence of pressure values on other factors 

(Table 4.1.8). 

One-way ANOVA for 60 s: BD versus kPa Mean 
 
Source     DF      SS     MS     F      P 

kPa Mean    6   1,506  0,251  2,01  0,067 

Error     161  20,111  0,125 

Total     167  21,617 

 

S = 0,3534   R-Sq = 6,96%   R-Sq(adj) = 3,50% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level   N    Mean   StDev  ---------+---------+---------+---------+ 

1,42   24  0,3168  0,3090                       (--------*---------) 

1,93   24  0,1500  0,4339            (--------*--------) 

2,09   24  0,1781  0,4206             (---------*--------) 

2,49   24  0,0139  0,0388  (---------*--------) 

2,93   24  0,1123  0,3943         (--------*---------) 

3,13   24  0,1783  0,4912             (---------*--------) 

3,99   24  0,0314  0,1247    (--------*---------) 

                           ---------+---------+---------+---------+ 

                                  0,00      0,15      0,30      0,45 

 

Pooled StDev = 0,3534 

 

One-way ANOVA for 40 s: BD versus kPa Mean 
 
Source     DF      SS      MS     F      P 

kPa Mean    6  0,6712  0,1119  2,05  0,062 

Error     161  8,7887  0,0546 

Total     167  9,4599 

 

S = 0,2336   R-Sq = 7,10%   R-Sq(adj) = 3,63% 

 

 

                           Individual 95% CIs For Mean Based on 

                           Pooled StDev 

Level   N    Mean   StDev  ------+---------+---------+---------+--- 

1,42   24  0,2336  0,3848                      (--------*---------) 

1,93   24  0,0937  0,2133        (--------*---------) 

2,09   24  0,0813  0,2898       (--------*---------) 

2,49   24  0,0643  0,1581     (--------*---------) 

2,93   24  0,0624  0,2149     (--------*---------) 

3,13   24  0,0385  0,1423  (---------*--------) 

3,99   24  0,0328  0,1147  (--------*---------) 

                           ------+---------+---------+---------+--- 

                               0,00      0,10      0,20      0,30 

 

Pooled StDev = 0,2336 
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Frequency (kHz) 

Exposure 

time (t) BD/kPa Min BD/kPa Mean BD/kPa Max PG/kPa Mean PG/kPa Max PG/kPa Min 

20 0,33 0,20 0,14 0,43 0,31 0,73 

24 0,03 0,01 0,01 0,35 0,24 0,68 

25 1,20 0,39 0,23 0,65 0,39 2,02 

28 0,06 0,04 0,03 0,40 0,30 0,62 

35 0,03 0,01 0,01 0,30 0,20 0,62 

37 0,26 0,14 0,10 0,50 0,34 0,94 

38 

10 

0,08 0,04 0,02 0,20 0,13 0,43 

20 0,06 0,04 0,03 0,41 0,29 0,69 

24 0,04 0,02 0,01 0,32 0,21 0,62 

25 0,50 0,16 0,10 0,63 0,37 1,93 

28 0,04 0,02 0,02 0,38 0,28 0,58 

35 0,03 0,01 0,01 0,29 0,19 0,61 

37 0,09 0,05 0,03 0,49 0,33 0,92 

38 

40 

0,02 0,01 0,00 0,19 0,12 0,40 

20 0,15 0,09 0,06 0,45 0,32 0,77 

24 0,07 0,04 0,03 0,34 0,23 0,65 

25 0,70 0,23 0,13 0,65 0,39 2,00 

28 0,01 0,00 0,00 0,38 0,28 0,58 

35 0,12 0,06 0,04 0,29 0,19 0,61 

37 0,15 0,08 0,05 0,50 0,34 0,95 

38 

60 

0,02 0,01 0,00 0,19 0,12 0,41 

Table 4.1.8. Normalization of ABS values. 
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4.1.1. Biofilm development  

 
4.1.1.1. Analysis of the acoustic pressure effect 

 

The values of BD, as pointed out earlier, seem to be mainly influenced by the variation of 

acoustic pressure, on the contrary the frequency factor appears to have a secondary effect while 

the exposure time factor would seem predominant only from 40 seconds of exposure (Fig 

4.1.1.1-4.1.1.5). 
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Fig 4.1.1.1. ABS value variation in relation to the different frequency. (p-value related to the ANOVA) 
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Fig 4.1.1.2. ABS value variation in relation to the different exposure time. (p-value related to the ANOVA) 
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Fig 4.1.1.3. ABS value variation in relation to the different minimum acoustic pressure. (p-value related to the ANOVA) 
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Fig 4.1.1.4. ABS value variation in relation to the different mean acoustic pressure. (p-value related to the ANOVA) 
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Fig 4.1.1.5. ABS value variation in relation to the different maximum acoustic pressure. (p-value related to the ANOVA) 

 

 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 90 

Before starting with the analysis of the acoustic pressure, a last assessment of the possible 

interaction between frequency and exposure time (Fig 4.1.1.6) was performed by two-way 

ANOVA. 

 

 
 

ANOVA shows there’s no interaction between that these factors when all the ABS values are 

examined together. 
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Fig 4.1.1.6. Analysis of interaction between frequency and exposure time on the ABS value of the BD. 
 

 

To evaluate the influence of acoustic pressure, and to identify interaction of kHz or t factors with 

BD value if any, a normalization of the variables with the values of kPa min, kPa mean and kPa 

max was performed (Table 4.1.1.1-4.1.1.3). 

Two-way ANOVA: BD versus kHz; t 
 
Source        DF       SS        MS     F      P 

kHz            6   5,6582  0,943027  8,20  0,000 

t              2   1,5258  0,762914  6,63  0,001 

Interaction   12   2,1526  0,179385  1,56  0,100 

Error        483  55,5465  0,115003 

Total        503  64,8831 

 

S = 0,3391   R-Sq = 14,39%   R-Sq(adj) = 10,84% 
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Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

BD/kPa min 0,19 0,52 0,00 0,00 0,00 0,02 4,40 4,40 0,021 

BD/kPa mean 0,08 0,20 0,00 0,00 0,00 0,01 1,43 1,43 0,010 

BD/kPa max 0,05 0,13 0,00 0,00 0,00 0,01 0,85 0,85 0,007 

Table 4.1.1.1. BD values normalized for acoustic pressure values 

 

Variable kHz Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

20 0,18 0,35 0,00 0,00 0,00 0,21 1,56 1,56 0,210 

24 0,05 0,17 0,00 0,00 0,00 0,00 1,27 1,27 0,000 

25 0,80 1,05 0,00 0,00 0,07 1,40 4,40 4,40 1,404 

28 0,04 0,11 0,00 0,00 0,00 0,00 0,64 0,64 0,000 

35 0,06 0,21 0,00 0,00 0,00 0,00 1,39 1,39 0,000 

37 0,17 0,41 0,00 0,00 0,00 0,14 1,99 1,99 0,145 

BD/kPa min 

38 0,04 0,10 0,00 0,00 0,00 0,00 0,54 0,54 0,000 

20 0,11 0,21 0,00 0,00 0,00 0,12 0,92 0,92 0,125 

24 0,02 0,09 0,00 0,00 0,00 0,00 0,65 0,65 0,000 

25 0,26 0,34 0,00 0,00 0,02 0,45 1,43 1,43 0,455 

28 0,02 0,07 0,00 0,00 0,00 0,00 0,42 0,42 0,000 

35 0,03 0,10 0,00 0,00 0,00 0,00 0,67 0,67 0,000 

37 0,09 0,22 0,00 0,00 0,00 0,08 1,05 1,05 0,076 

BD/kPa mean 

38 0,02 0,05 0,00 0,00 0,00 0,00 0,25 0,25 0,000 

20 0,08 0,15 0,00 0,00 0,00 0,09 0,66 0,66 0,089 

24 0,02 0,06 0,00 0,00 0,00 0,00 0,44 0,44 0,000 

25 0,15 0,20 0,00 0,00 0,01 0,27 0,85 0,85 0,271 

28 0,02 0,05 0,00 0,00 0,00 0,00 0,31 0,31 0,000 

35 0,02 0,06 0,00 0,00 0,00 0,00 0,44 0,44 0,000 

37 0,06 0,15 0,00 0,00 0,00 0,05 0,71 0,71 0,052 

BD/kPa max 

38 0,01 0,03 0,00 0,00 0,00 0,00 0,16 0,16 0,000 

Table 4.1.1.2. BD values normalized for the values of acoustic pressure and divided by frequency 

 

 

Variable T Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

10 0,28 0,70 0,00 0,00 0,00 0,19 4,40 4,40 0,186 

40 0,11 0,38 0,00 0,00 0,00 0,00 3,10 3,10 0,000 BD/kPa min 

60 0,17 0,42 0,00 0,00 0,00 0,01 2,07 2,07 0,011 

10 0,12 0,26 0,00 0,00 0,00 0,10 1,43 1,43 0,097 

40 0,05 0,14 0,00 0,00 0,00 0,00 1,00 1,00 0,000 BD/kPa mean 

60 0,07 0,17 0,00 0,00 0,00 0,01 1,05 1,05 0,007 

10 0,08 0,16 0,00 0,00 0,00 0,07 0,85 0,85 0,067 

40 0,03 0,09 0,00 0,00 0,00 0,00 0,60 0,60 0,000 BD/kPa max 

60 0,05 0,11 0,00 0,00 0,00 0,01 0,71 0,71 0,005 

Table 4.1.1.3. BD values normalized for the values of acoustic pressure and divided by exposure time 

 

 

Variability, indicated by IQR, is greater for the minimum pressure and decreases while passing to the 

median pressure and the maximum pressure. When the pressure is greater, this factor becomes dominant 

over the others; other factors are analyzed in relation to the normalized values with a specific attention 

about the minimum pressure (Fig 4.1.1.8-4.1.1.11). 
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Fig 4.1.1.8. Distribution of BD normalized values by frequency 
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Fig 4.1.1.9. Distribution of BD normalized values by exposure time 
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Fig 4.1.1.10. Boxplots for the general variance of the BD normalized values versus the different frequencies. 
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Fig 4.1.1.11. Boxplots for the general variance of the BD normalized values versus the exposure times. 
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The analysis of interaction between frequency and exposure time was repeated using the BD normalized 

values one by one as variables. ANOVA highlighted how frequency and exposure time interact at 

statistically relevant level when analyzed with BD/kPa min (p-value: 0,013), this result becomes less 

noticeable with the BD/kPa mean (p-value: 0,048), and statistically irrelevant with the BD/kPa max (p-

value: 0,060) (Fig 4.1.1.12-4.1.1.14). 
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Fig 4.1.1.12. Interaction between frequency and exposure time using as variable BD/kPa min 

 

 

 

 

 

 

 

 

Two-way ANOVA: BD/kPa Min versus kHz; t 
 
Source        DF       SS       MS      F      P 

kHz            6   32,994  5,49893  27,14  0,000 

t              2    2,520  1,26010   6,22  0,002 

Interaction   12    5,239  0,43659   2,15  0,013 

Error        483   97,855  0,20260 

Total        503  138,608 

 

S = 0,4501   R-Sq = 29,40%   R-Sq(adj) = 26,48% 
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Fig 4.1.1.13. Interaction between frequency and exposure time using as variable BD/kPa mean 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Two-way ANOVA: BD/kPa Mean versus kHz; t 
 
Source        DF       SS        MS      F      P 

kHz            6   3,3027  0,550452  17,33  0,000 

t              2   0,4490  0,224510   7,07  0,001 

Interaction   12   0,6810  0,056754   1,79  0,048 

Error        483  15,3380  0,031756 

Total        503  19,7708 

 

S = 0,1782   R-Sq = 22,42%   R-Sq(adj) = 19,21% 
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Fig 4.1.1.14. Interaction between frequency and exposure time using as variable BD/kPa max 

 

 

After these analysis the evaluation was performed frequency by frequency to identify whether 

there is some kind of trend in relation with each frequency using as variables the BD normalized 

values and as factor the exposure time. 

Two-way ANOVA: BD/kPa Max versus kHz; t 
 
Source        DF       SS        MS      F      P 

kHz            6  1,18309  0,197182  14,85  0,000 

t              2  0,19137  0,095686   7,21  0,001 

Interaction   12  0,27401  0,022834   1,72  0,060 

Error        483  6,41141  0,013274 

Total        503  8,05989 

 

S = 0,1152   R-Sq = 20,45%   R-Sq(adj) = 17,16% 
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4.1.1.2. Analysis frequency by frequency 

In the analysis of BD acoustic pressure results to have a major role in the general effects 

described above. In this section we will analyze the frequencies explored one by one to try to 

detect if there is any kind of trend that goes beyond the simple effect of the pressure (Fig 

4.1.1.2.1-4.1.1.2.7). 

An analysis of the evolution of values of ABS, three main patterns are highlighted (Fig 

4.1.1.2.8): 

- Parabolic (20 kHz, 25 kHz and 37 kHz) 

- Constant (24 kHz and 35 kHz) 

- Descending (28 kHz and 38 kHz) 

 

 

 

   

 

 

Fig. 4.1.1.2.8. Three different trend identified of the variable depending by the frequency. (a. parabolic, b. constant, c. 

descending) 

 
 

The interpretation of these results will be discussed in the chapter 5 (Discussion). 

a b c 
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20 kHz 

Acoustic Pressure: 2,09 ± 0,85 kPa (1,24 kPa – 2,94 kPa)  
 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_20-10 0,33 0,42 0,00 0,00 0,08 0,57 1,32 1,32 0,569 

Mean_20-10 0,19 0,25 0,00 0,00 0,05 0,34 0,78 0,78 0,338 

Max_20-10 0,14 0,18 0,00 0,00 0,04 0,24 0,55 0,55 0,240 

Min_20-40 0,07 0,23 0,00 0,00 0,00 0,00 1,10 1,10 0,000 

Mean_20-40 0,04 0,14 0,00 0,00 0,00 0,00 0,66 0,66 0,000 

Max_20-40 0,03 0,10 0,00 0,00 0,00 0,00 0,47 0,47 0,000 

Min_20-60 0,14 0,34 0,00 0,00 0,00 0,17 1,56 1,56 0,175 

Mean_20-60 0,09 0,20 0,00 0,00 0,00 0,10 0,92 0,92 0,104 

BD/kPa 

Max_20-60 0,06 0,14 0,00 0,00 0,00 0,07 0,66 0,66 0,074 
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Fig 4.1.1.2.1. Evaluation of BD normalized values for the 20 kHz 

One-way ANOVA 
 
Source   DF       SS      MS     F      P 

Factor    8   1,7419  0,2177  3,66  0,001 

Error   207  12,3109  0,0595 

Total   215  14,0528 

 

S = 0,2439   R-Sq = 12,40%   R-Sq(adj) = 9,01% 

 

 

Pooled StDev = 0,2439 
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24 kHz 

Acoustic Pressure: 2,93 ± 1,43 kPa (1,5 kPa - 4,36 kPa) 
 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_24-10 0,02 0,06 0,00 0,00 0,00 0,00 0,20 0,20 0,000 

Mean_24-10 0,01 0,03 0,00 0,00 0,00 0,00 0,10 0,10 0,000 

Max_24-10 0,01 0,02 0,00 0,00 0,00 0,00 0,07 0,07 0,000 

Min_24-40 0,04 0,14 0,00 0,00 0,00 0,00 0,68 0,68 0,000 

Mean_24-40 0,02 0,07 0,00 0,00 0,00 0,00 0,35 0,35 0,000 

Max_24-40 0,01 0,05 0,00 0,00 0,00 0,00 0,23 0,23 0,000 

Min_24-60 0,07 0,26 0,00 0,00 0,00 0,00 1,27 1,27 0,000 

Mean_24-60 0,04 0,13 0,00 0,00 0,00 0,00 0,65 0,65 0,000 

BD/kPa 

Max_24-60 0,03 0,09 0,00 0,00 0,00 0,00 0,44 0,44 0,000 
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Fig 4.1.1.2.2. Evaluation of BD normalized values for the 24 kHz 

 

 

One-way ANOVA 
 
Source   DF      SS      MS     F      P 

Factor    8  0,0800  0,0100  0,70  0,689 

Error   207  2,9463  0,0142 

Total   215  3,0263 

 

S = 0,1193   R-Sq = 2,64%   R-Sq(adj) = 0,00% 

 

 

Pooled StDev = 0,1193 
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25 kHz  

Acoustic Pressure: 1,42 ± 0,96 kPa (0,46 kPa - 2,38 kPa) 
 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_25-10 1,21 1,40 0,00 0,00 0,74 2,38 4,40 4,40 2,382 

Mean_25-10 0,39 0,45 0,00 0,00 0,24 0,77 1,43 1,43 0,772 

Max_25-10 0,23 0,27 0,00 0,00 0,14 0,46 0,85 0,85 0,460 

Min_25-40 0,51 0,84 0,00 0,00 0,00 1,17 3,10 3,10 1,174 

Mean_25-40 0,16 0,27 0,00 0,00 0,00 0,38 1,00 1,00 0,380 

Max_25-40 0,10 0,16 0,00 0,00 0,00 0,23 0,60 0,60 0,227 

Min_25-60 0,69 0,67 0,00 0,00 0,65 1,31 2,07 2,07 1,308 

Mean_25-60 0,22 0,22 0,00 0,00 0,21 0,42 0,67 0,67 0,424 

BD/kPa 

Max_25-60 0,13 0,13 0,00 0,00 0,13 0,25 0,40 0,40 0,253 
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Fig 4.1.1.2.3. Evaluation of BD normalized values for the 25 kHz 

 

 

One-way ANOVA 
 
Source   DF       SS     MS     F      P 

Factor    8   24,468  3,059  7,75  0,000 

Error   207   81,686  0,395 

Total   215  106,155 

 

S = 0,6282   R-Sq = 23,05%   R-Sq(adj) = 20,08% 

 

 

Pooled StDev = 0,6282 
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28 kHz  

Acoustic Pressure: 2,49 ± 0,87 kPa (1,62 kPa - 3,36 kPa)  

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_28-10 0,06 0,16 0,00 0,00 0,00 0,00 0,64 0,64 0,000 

Mean_28-10 0,04 0,10 0,00 0,00 0,00 0,00 0,42 0,42 0,000 

Max_28-10 0,03 0,08 0,00 0,00 0,00 0,00 0,31 0,31 0,000 

Min_28-40 0,04 0,10 0,00 0,00 0,00 0,00 0,37 0,37 0,000 

Mean_28-40 0,03 0,06 0,00 0,00 0,00 0,00 0,24 0,24 0,000 

Max_28-40 0,02 0,05 0,00 0,00 0,00 0,00 0,18 0,18 0,000 

Min_28-60 0,01 0,02 0,00 0,00 0,00 0,01 0,12 0,12 0,011 

Mean_28-60 0,01 0,02 0,00 0,00 0,00 0,01 0,08 0,08 0,007 

BD/kPa 

Max_28-60 0,00 0,01 0,00 0,00 0,00 0,01 0,06 0,06 0,005 
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Fig 4.1.1.2.4. Evaluation of BD normalized values for the 28 kHz 

 

 

One-way ANOVA 
 
Source   DF       SS       MS     F      P 

Factor    8  0,07165  0,00896  1,38  0,207 

Error   207  1,34354  0,00649 

Total   215  1,41519 

 

S = 0,08056   R-Sq = 5,06%   R-Sq(adj) = 1,39% 

 

 

Pooled StDev = 0,08056 
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35 kHz  

Acoustic Pressure: 3,13 ± 1,63 kPa (1,5 kPa - 4,76 kPa) 

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_35-10 0,03 0,09 0,00 0,00 0,00 0,00 0,36 0,36 0,000 

Mean_35-10 0,01 0,04 0,00 0,00 0,00 0,00 0,17 0,17 0,000 

Max_35-10 0,01 0,03 0,00 0,00 0,00 0,00 0,11 0,11 0,000 

Min_35-40 0,03 0,09 0,00 0,00 0,00 0,00 0,44 0,44 0,000 

Mean_35-40 0,01 0,05 0,00 0,00 0,00 0,00 0,21 0,21 0,000 

Max_35-40 0,01 0,03 0,00 0,00 0,00 0,00 0,14 0,14 0,000 

Min_35-60 0,12 0,33 0,00 0,00 0,00 0,01 1,39 1,39 0,009 

Mean_35-60 0,06 0,16 0,00 0,00 0,00 0,00 0,67 0,67 0,004 

BD/kPa 

Max_35-60 0,04 0,10 0,00 0,00 0,00 0,00 0,44 0,44 0,003 
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Fig 4.1.1.2.5. Evaluation of BD normalized values for the 35 kHz 

 

 

One-way ANOVA 
 
Source   DF      SS      MS     F      P 

Factor    8  0,2407  0,0301  1,64  0,114 

Error   207  3,7909  0,0183 

Total   215  4,0316 

 

S = 0,1353   R-Sq = 5,97%   R-Sq(adj) = 2,34% 

 

 

Pooled StDev = 0,1353 
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37 kHz  

Acoustic Pressure: 1,93 ± 0,91 kPa (1,02 kPa - 2,84 kPa) 

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_37-10 0,26 0,54 0,00 0,00 0,00 0,24 1,93 1,93 0,244 

Mean_37-10 0,14 0,28 0,00 0,00 0,00 0,13 1,02 1,02 0,129 

Max_37-10 0,09 0,19 0,00 0,00 0,00 0,09 0,69 0,69 0,088 

Min_37-40 0,09 0,21 0,00 0,00 0,00 0,07 0,81 0,81 0,069 

Mean_37-40 0,05 0,11 0,00 0,00 0,00 0,04 0,43 0,43 0,037 

Max_37-40 0,03 0,08 0,00 0,00 0,00 0,02 0,29 0,29 0,025 

Min_37-60 0,15 0,43 0,00 0,00 0,00 0,12 1,99 1,99 0,121 

Mean_37-60 0,08 0,22 0,00 0,00 0,00 0,06 1,05 1,05 0,064 

BD/kPa 

Max_37-60 0,05 0,15 0,00 0,00 0,00 0,04 0,71 0,71 0,043 
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Fig 4.1.1.2.6. Evaluation of BD normalized values for the 37 kHz 

 

 

One-way ANOVA 
 
Source   DF       SS      MS     F      P 

Factor    8   0,9399  0,1175  1,47  0,171 

Error   207  16,5889  0,0801 

Total   215  17,5288 

 

S = 0,2831   R-Sq = 5,36%   R-Sq(adj) = 1,70% 

 

 

Pooled StDev = 0,2831 

 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 104 

38 kHz  

Acoustic Pressure: 3,99 ± 2,15 kPa (1,84 kPa - 6,14 kPa) 

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min_38-10 0,07 0,15 0,00 0,00 0,00 0,09 0,54 0,54 0,093 

Mean_38-10 0,03 0,07 0,00 0,00 0,00 0,04 0,25 0,25 0,043 

Max_38-10 0,02 0,05 0,00 0,00 0,00 0,03 0,16 0,16 0,028 

Min_38-40 0,02 0,06 0,00 0,00 0,00 0,00 0,30 0,30 0,000 

Mean_38-40 0,01 0,03 0,00 0,00 0,00 0,00 0,14 0,14 0,000 

Max_38-40 0,01 0,02 0,00 0,00 0,00 0,00 0,09 0,09 0,000 

Min_38-60 0,02 0,07 0,00 0,00 0,00 0,00 0,32 0,32 0,000 

Mean_38-60 0,01 0,03 0,00 0,00 0,00 0,00 0,15 0,15 0,000 

BD/kPa 

Max_38-60 0,01 0,02 0,00 0,00 0,00 0,00 0,10 0,10 0,000 
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Fig 4.1.1.2.7. Evaluation of BD normalized values for the 38 kHz 

 
 

One-way ANOVA 
 
Source   DF       SS       MS     F      P 

Factor    8  0,09210  0,01151  2,54  0,012 

Error   207  0,93749  0,00453 

Total   215  1,02960 

 

S = 0,06730   R-Sq = 8,95%   R-Sq(adj) = 5,43% 

 

 

Pooled StDev = 0,06730 
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4.1.2. Planktonic growth:  

 
4.1.2.1. Analysis of the acoustic pressure effect 

 

Analysis of dependence of variable PG from frequency and exposure time showed that these 

factors have a decisive effect. In this perspective, the analysis of factors acoustic pressure 

minimum, mean and maximum re-emphasizes the existence of three distinct groups of values . 

The first two groups are characterized by the effect of the primary frequency, and have been 

highlighted previously; the third group, formed from the values related to the single frequency of 

38 kHz, appears instead probably related to the fact that acoustic pressure reaches, for this 

frequency, the maximum value recorded (Fig 4.1.2.1-4.1.2.3). 
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Fig 4.1.2.1. ABS value variation in relation to the different minimum acoustic pressures. (p-value related to the ANOVA) 
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Fig 4.1.2.2. ABS value variation in relation to the different mean acoustic pressures. (p-value related to the ANOVA) 
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Fig 4.1.2.3. ABS value variation in relation to the different maximum acoustic pressures. (p-value related to the ANOVA) 
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The evaluation of the interaction between frequency and time of exposure, previously performed 

for BD, shows for PG a statistically significant interaction (p-value <0,0005) between the two 

factors and the variable (Fig 4.1.2.4). 
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Fig 4.1.2.4. Analysis of the interaction between frequency and exposure time on the ABS value of the PG. 
 

To determined whether the acoustic pressure effect could be relevant on the PG values, a 

normalization of the variable PG for the factor kPa min, kPa mean and kPa max is performed 

(Table 4.1.2.1). At this point the PG normalized values are confronted with factors frequency 

and exposure time (Fig 4.1.2.5-4.1.2.6). 

 

Variable Mean StDev Minimum Q1 Median Q3 Maximum Range IQR 

Min 0,85 0,49 0,38 0,59 0,64 0,91 2,54 2,16 0,324 

Mean 0,40 0,14 0,18 0,30 0,38 0,49 0,82 0,65 0,188 PG/kPa 

Max 0,27 0,08 0,11 0,20 0,28 0,33 0,49 0,38 0,137 

Table 4.1.2.1. PG values normalized for acoustic pressure values 

Two-way ANOVA: PG versus kHz; t 
 
Source        DF       SS        MS       F      P 

kHz            6  2,27002  0,378336  117,23  0,000 

t              2  0,17212  0,086058   26,67  0,000 

Interaction   12  0,13789  0,011491    3,56  0,000 

Error        483  1,55882  0,003227 

Total        503  4,13885 

 

S = 0,05681   R-Sq = 62,34%   R-Sq(adj) = 60,78% 

 



 

Direct measurement of ultrasonic activity on microbial metabolism and analysis of related uncertainty 

 108 

 

2

1

0

PG/kPa MaxPG/kPa MeanPG/kPa Min

PG/kPa MaxPG/kPa MeanPG/kPa Min

2

1

0

PG/kPa MaxPG/kPa MeanPG/kPa Min

2

1

0

20

D
a
ta

24 25

28 35 37

38

Boxplot of PG/kPa Min; PG/kPa Mean; PG/kPa Max

Panel variable: kHz
 

Fig 4.1.2.5. Distribution of PG normalized values by frequency 
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Fig 4.1.2.6. Distribution of PG normalized values by exposure time 
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Fig 4.1.2.7. ANOVA for the general variance of the PG normalized values versus the different frequencies. 
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Fig 4.1.2.8. ANOVA for the general variance of the PG normalized values versus the different exposure times. 
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Eventually a two way ANOVA to analyze the interaction between frequency and exposure time 

was performed using as variables PG normalized values (Fig 4.1.2.9-4.1.2.11). 
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Fig 4.1.2.9. Interaction between frequency and exposure time using as variable PG/kPa min 

 

 

 

 

 

 

 

 

Two-way ANOVA: PG/kPa Min versus kHz; t 
 
Source        DF       SS       MS        F      P 

kHz            6  119,740  19,9566  6692,65  0,000 

t              2    0,128   0,0639    21,42  0,000 

Interaction   12    0,092   0,0077     2,58  0,003 

Error        483    1,440   0,0030 

Total        503  121,400 

 

S = 0,05461   R-Sq = 98,81%   R-Sq(adj) = 98,76% 
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Fig 4.1.2.10. Interaction between frequency and exposure time using as variable PG/kPa mean 

 

 

 

Two-way ANOVA: PG/kPa Mean versus kHz; t 
 
Source        DF       SS       MS        F      P 

kHz            6  9,26986  1,54498  2554,82  0,000 

t              2  0,03004  0,01502    24,84  0,000 

Interaction   12  0,02498  0,00208     3,44  0,000 

Error        483  0,29208  0,00060 

Total        503  9,61695 

 

S = 0,02459   R-Sq = 96,96%   R-Sq(adj) = 96,84% 
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Fig 4.1.2.11. Interaction between frequency and exposure time using as variable PG/kPa max 

 

 

Two-way ANOVA: PG/kPa Max versus kHz; t 
 
Source        DF       SS        MS        F      P 

kHz            6  3,46549  0,577581  2134,30  0,000 

t              2  0,01367  0,006836    25,26  0,000 

Interaction   12  0,01237  0,001031     3,81  0,000 

Error        483  0,13071  0,000271 

Total        503  3,62223 

 

S = 0,01645   R-Sq = 96,39%   R-Sq(adj) = 96,24% 
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5. DISCUSSION 

 

This study is born from the intention of understanding how ultrasounds interact with bacterial 

metabolism in absence of the cavitation effect. Currently the international scientific literature 

does not provide sufficient data regarding the effects on the microorganisms by the acoustic 

pressure produced by ultrasound in a system not cavitating. The present work provides a method 

to assess the influence of low intensity ultrasounds on the metabolism of prokaryotic cells. To 

develop this study has been applied to an experimental plan, which provided for the division of 

the experiments in different phases. Each phase was to represent a range of different application 

with a separate uncertainty analysis such that it was possible to isolate and highlight critical 

issues. This step by step approach will allow the discussion, as detailed as possible, the possible 

explanations about the results so as to be able to identify which possible future studies could be 

designed. 

As well as the experimental plan consisted of three phases of analysis, divided into acoustic, 

biological and mixed, so the discussion is being developed in three parts. In the first part will be 

treated the inherent aspect of the acoustics and the complications encountered in this phase of the 

study. The second part covers the biological aspects of work trying to interpret the results in light 

of the knowledge of the metabolism of prokaryotic cells. The third and final part of the 

discussion will focus on the implications of this work in the field of metrology, and in particular 

about the instability of the measurand, typical of biological field, and how this instability can 

affect the interpretation of the results. 

 

5.1. Acoustics 

 

The analysis of the acoustic wave propagated inside the bath initially come across some 

complications. Initially, the study included an analysis of the acoustic field throughout the tank 

by measuring the acoustic pressure through all the fifteen holes of the grid. This approach, 

however, has encountered the problem that, outside of the central hole, through all other holes, 

the field was too unstable with huge uncertainty of measurement. At the same time, it was 

determined that the insertion of the tubes allows,  almost for all frequencies studied, to slightly 

reduce the uncertainty related to the measurement of sound pressure. During the experiments is 

undoubtedly emerged as, despite the frequency changes, the geometry and the material which 

forms the tubes have a primary role in influencing the sound pressure and the resulting 
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uncertainty. At the same time it is evident how the uncertainty of the system should also be 

closely linked to another factor. 

In the first case the positioning hydrophone in the various points of the grid may have exposed 

the measures to a factor of variability not measured during this study and that the phenomenon of 

scattering. This phenomenon may also be similarly related to the reduction of uncertainty within 

the tubes. 

The scattering refers to the property of a medium to spread in all directions the power of a wave 

incident, so subtracting additional power to the coherent component. 

During the emission of the acoustic wave, both the walls of the tank and the water surface (the 

medium), produce echoes that determine the phenomenon of scattering. These echoes could 

adversely affect the hydrophone when placed in different areas of the grid leading to measures 

inconsistent and unusable. This phenomenon varies from frequency to frequency and according 

to the position of the measuring instrument. In the central point of the grid it was then possible to 

measure acoustic pressures with greater or lesser uncertainty probably also based on how the 

scattering influenced the hydrophone when the frequency changes. At the same time this 

phenomenon has probably resulted in a reduction in uncertainty when the tubes are inserted. The 

presence of the tube has perhaps removed the influence echo coming from the surface of the 

medium isolated from the tube itself thereby reducing the uncertainty resulting. 

 

5.2. Biology 

 

The development of a biofilm is considered fundamental condition so that the majority of 

microorganisms demonstrate their pathogenic power. As far as mature biofilm may be resistant 

and hard to remove, such a state is related to very delicate and highly coordinated phenomena 

[20]. During biofilm development several factors work together to promote or to interfere with 

its growth cycle. During this process it could be possible to highlight as critical the first two 

steps that are related to a condition of reversible attachment. The first phase is characterized by 

the first contact between microorganism and surface. This step, that can take only seconds, is 

strictly related to environmental signals as nutrient presence and concentration, pH, temperature, 

medium chemical characteristic, oxygen concentration and surface characteristic. In E. coli, as 

previously described, this phase is related also to the mobility of the bacterium and it finishes 

with a first and reversible binding [18]. Recent studies showed how this phase of the biofilm 

development is also related to the shear forces present in the medium. The analysis described 

how the presence of a Reynolds numbers of 5.000 performs the ideal condition to increase 
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planktonic cells capability to start the biofilm formation. Reynolds number is a dimensionless 

number describing the flow of a liquid; when high, turbulent flow exists; if low, laminar flow 

conditions prevail [19].  

The second critical step is the phase II, in this stage of the biofilm development process it is 

possible to identify various metabolic process concentrated to realize an irreversible attachment 

of the microorganism to the surface [20]. In this stage bacteria formed biofilm emitted chemical 

signals that allows a communication between microorganism with a strong increasing of the 

adherence to the biofilm. When the thickness of the extracellular matrix becomes greater then 10 

µm the process enter in the phase III of maturation I. E. coli biofilm formation in the second 

stage is strictly related to specific protein structure as type 1 fimbriae, curli, and conjugative pili 

[93]. The spectrophotometric evaluation of bacterial viability and of biofilm development 

showed in results chapter values with a complicate interpretation. First of all this work shows 

how ultrasound at low frequencies and for short exposure time is not able to produce a reducing 

into bacterial viability. Only the frequency of 38 kHz showed some bactericidal or bacteriostatic 

effect but with a reduction of E. coli count only of the 25% respect to the C+. Except for the 38 

kHz results (probably related to the high acoustic pressure) other six frequencies showed some 

tendency (see ANOVA page 78).  
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Fig 5.2.1. Distribution of PG values considering the frequency and exposure time factors together 
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In the end the planktonic growth of E. coli showed to be influenced by both frequency and time, 

the frequency effect shows two different tendencies only if the exposure time factor is not 

considered (Fig. 5.2.1). This result could be explained with a possible antibacterial power of 

some frequency that could need more time (from 15 to 60 minutes) to work, as described in 

literature too [121].  

Biofilm formation showed in the results, right from the first analysis, a strict correlation with the 

acoustic pressure with an inhibition power increasing with pressure (between the value of ABS 

related to the BD and the value in kPa related to the acoustic pressure it was possible to find a 

Pearson correlation of -0,237 with a p-value lower than 0,0005). 
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Fig 5.2.2. Evaluation of ABS value of BD in relation with the growth of the acoustic pressure 

 

The difference between the trends of the PG respect to the BD requires to perform a separate 

analysis, principally to understand which kind of mechanisms work to inhibit the second one. 

The Two-Way ANOVA (performed from page 94 to page 96) showed how both frequency and 

exposure time have some activity against biofilm formation, but it is identifiable only using BD 

value normalized for the minimum value of acoustic pressure. Another characteristic of the US 

effect on the BD is that with a time exposure exceeding 10 seconds the ABS values are all close 

to 0 losing previous trends shown in fig 5.2.2. This result allows to determine how E. coli is able 
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to resist to US exposure (at least at low pressure) for a few seconds before detecting a complete 

biofilm inhibition (Fig 5.2.3-5.2.5). 
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Fig 5.2.3. BD ABS trend after 10 second of exposure to the ultrasonic field. The behavior of the biofilm is similar to that 

described in Figure 5.2.2. 
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Fig 5.2.4. ABS trend after 10 second of exposure to the ultrasonic field. Most values tends to 0. 
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Fig 5.2.5. BD ABS trend after 60 second of exposure to the ultrasonic field.  It is possible to identify a greater development of 

the biofilm compared with that relating to the 40 seconds of exposure, in correspondence with certain pressures/frequencies. 

 

Analyzing frequency by frequency the effect of the US on E. coli it was possible to identify three 

patterns of  development (as described at page 97). These patterns are closely associated with the 

activity that the individual frequencies have in favor or in conflict with the effect of acoustic 

pressure and exposure time.  

Parabolic pattern is probably related to frequency with a stimulating activity on 

bacterial metabolism. In fact, for frequencies of 20 kHz, 25 kHz and 37 kHz is 

detected the trend in the absorbance values of drop to almost 0 after 40 seconds 

of exposure and then grow in the measurements carried out after 60 seconds of exposure. This 

trend could be explained by a stimulation by these frequencies of the metabolism of E. coli. 

Constant pattern, identified for the 24 kHz and 35 kHz, could be explained as 

the presence of balance between stimulating and inhibitory power in these 

frequencies. At the same time a tendency towards the inhibition of biofilm 

development, but minor, it would be equally valid to understand this trend. 

Descending pattern is probably related to a synergy between acoustic pressure, 

exposure time and frequency in bringing a final inhibitory effect on the biofilm 

development. In this case the frequencies, such as 28 kHz and 38 kHz, work 

with other factors leading to a continuous reduction of the absorbance values that, in the 

measures after 60 seconds of exposure, were reduced to almost 0. 
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The biological explanation for these results is not straightforward. On the one hand it is clear that 

the effect of ultrasounds on the microorganism tested is necessarily related to interference with 

its intimate biological mechanisms. On the other hand it is not immediately identifiable how 

metabolic mechanism is inhibited by exposure to frequencies tested. Anyhow, starting from the 

knowledge that were described previously about the phases of development of a biofilm, three 

possible mechanisms may be assumed that could explain the results obtained. The first 

hypothesis is that the ultrasounds could affect directly the ability of bacterial mobility. As 

described in previous chapters, the capacity for mobility given by the flagellar apparatus is 

essential for the initial adhesion of E. coli to a surface. An irreversible alteration of the bacterial 

mobility would explain the subsequent inability of E. coli to adhere to surfaces. The second 

hypothesis is the effect that the ultrasounds could have on genetic regulation of  protein structure 

related to the development of an irreversible attachment. The expression of specific genes and 

the self-regulation between them are fundamental to produce the biological adhesion between 

bacteria and surfaces. If the environmental changes, performed by the ultrasounds, generate 

some mutations so that to break this delicate process, it could explain the observed results.  

A final possible explanation of the results obtained may then be the presence of an interaction 

between the exposure to ultrasound and the production, by E. coli, of the quorum sensing (QS). 

QS is primarily a means of intercommunication between bacteria developed through some 

extracellular molecules. These molecules allow the microorganisms to stimulate each other their 

metabolism so as to respond more quickly and effectively to environmental changes. In the case 

of biofilm for example, bacteria that are already part of it, through the QS can stimulate 

transcription of the necessary adhesion proteins in the microorganisms still in planktonic form 

[20]. In the case of E. coli QS also has a key role in the development of bacterial motility by 

stimulating the production of flagella as well as in stimulating the production of surface proteins 

necessary for the development of the irreversible adhesion [93]. As in the two previous 

hypotheses also in this case a mutation, induced by the ultrasonic field, in the genes deputies to 

the development of QS would explain the inability of the bacteria exposed to a acoustic pressure 

to produce a biofilm. 

 

5.3. Metrology 

 

The metrological point of view in this work has highlighted, for the spectrophotometric 

measurement, the presence of huge uncertainty values, especially those relating to the biofilm 

after exposure to ultrasounds (see page 71).  
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These high values of uncertainty are related to the values of absorbance relative to the 

development of biofilms for all frequencies studied. The values of expanded uncertainty, which 

in the case of the formation of biofilm in the absence of ultrasonic exposure presents values 

between 12% and 16%, arrives, after exposure to ultrasound, to values that often exceed 200% 

(Table 5.3.1). 

 

Uncertainty values 

BD 
Frequency 

(kHz) 

10 s 40 s 60 s C+ 

20  60% 300% 130% 15% 

24  310% 3030% 330% 12% 

25  55% 95% 53% 16% 

28  250% 800% 80% 14% 

35  480% 400% 180% 12% 

37  120% 310% 210% 13% 

38  160% 340% 330% 16% 

Table 5.3.1. Uncertainty of biofilm development (BD) for each exposure time to US 

 

It was tried to identify a correlation that would allow to explain, statistically, the development of 

the values of uncertainty. For this purpose, these values were correlated with both the absorbance 

values corresponding with the trend of these values in relation to frequency but not statistically 

significant correlation (p-value higher then 0,05) has emerged (Table 5.3.2). 

 

ABS Mean (Uncertainty values) 
Frequency (kHz) 

10 s 40 s 60 s 

20  0,41 (60%) 0,08 (300%) 0,18 (130%) 

24  0,04 (310%) 0,06 (3030%) 0,39 (330%) 

25  0,55 (55%) 0,38 (95%) 0,31 (53%) 

28  0,10 (250%) 0,06 (800%) 0,01 (80%) 

35  0,04 (480%) 0,04 (400%) 0,18 (180%) 

37  0,26 (120%) 0,09 (310%) 0,15 (210%) 

38  0,14 (160%) 0,03 (340%) 0,03 (330%) 

Table 5.3.2. Comparison between the mean values of ABS with the values of uncertainty. 

 

In trying to explain the presence of these values of uncertainty there is a further evaluation to 

make, the uncertainty values were analyzed on the basis of the presence of outliers. Looking at 
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the trend of the values of ABS biofilm were described only the values that were contained in the 

interquartile range box (Fig 5.3.1). Nevertheless the values considered outliers were not 

eliminated but instead kept in statistical calculations (Fig 5.3.2). This is because these values do 

not correspond to the common definition of outliers. 
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Fig 5.3.1. Interquartile range box related to BD ABS values without the values of outlier divided for frequency and exposure time 
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Fig 5.3.1. Interquartile range box related to BD ABS values with the values of outlier divided for frequency and exposure time 
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Usually the term outliers is used to indicate one or more values that are derived from a 

measurement error, often related to the operator, to the instrument or to an incorrect planning of 

the experiment. In the case of measurements in biology, outliers are the manifestation of the 

enormous instability of the measurand. From this point of view, the outlier is an integral part of 

the usual behavior of biological measurand and not a wrong measurement or a random event.  

In this study, outliers are probably correlated to the response of bacteria to the stress induced by 

ultrasound. A 1998 study investigated the effects produced on E. coli, by an ultrasonic wave 

high-frequency (1 MHz) together with the shock waves produced by the cavitation effect [122]. 

During that study the effect of the acoustic wave, but especially of bubbles arising from 

cavitation, has been identified as a cause of damage at the level of the bacterial membrane. At 

the same time were evaluated also a possible involvement of DNA and protein repair systems. 

Simultaneously to the antibacterial effect, this study highlighted the presence of a portion of the 

bacterial population that was able to resist and to survive to the exposure to ultrasound. In 

conclusion it was assumed that the cells in stationary phase were more resistant to the action of 

ultrasound even managing to respond to the stress induced by the ultrasound with a greater 

growth. The work presented in this thesis, using just bacteria in the stationary phase, confirmed 

these results and bacterial resistance is represented by the outliers. 
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6. CONCLUSIONS 

 

In conclusion, this work has allowed to highlight the innovative aspects concerning the action of 

ultrasound on microorganisms. Every aspect shown in the discussion helps to program future 

developments of this work.  

In the field of acoustics a careful study of the phenomena of scattering inside the bath and tubes 

will be needed. It will also be essential to carry out the measurements of acoustic pressure in the 

various points of the grid by varying power and intensity of the acoustic wave. Finally, a further 

analysis concerning materials and shapes of the tubes could obtain an even higher degree of 

sonic transparency with a decisive reduction in uncertainty.  

In the field of metrology this study shows once again how some aspects of bioscience need 

greater attention. The study of measurands with such high instability and variability will require 

new approaches in order to obtain reproducible and repeatable measurements. From this point of 

view, a search for reference points that allow to perform measurement sessions comparable with 

each other even after a long time and under varying environmental conditions is required. In 

particular, the future development of this study will be the opportunity to repeat the 

measurements by varying the factors taken into consideration in order to try to highlight more 

clearly the trends identified and the role of each factor. 

In the biological field, it is possible to highlight the most interesting prospects. The analysis of 

the biological reasons that led to the results obtained will require an assessment of different 

aspects. Future studies therefore may focus on an assessment of the bacterial metabolism before 

and after exposure to ultrasound, with the measurement of: 

o bacterial motility, 

o the expression of surface proteins, 

o quorum sensing, 

o genetic mutations. 

A recent article showed results similar to those identified in this work. That study showed a 

bacteriostatic effect of ultrasound without a loss of viability of the bacterial population treated. In 

the article, they analyzed the integrity of the bacterial membrane using fluorescent microscopy 

and a reporter strain containing lux genes fused with membrane damage stress response 

promoter. Although the inhibiting effect on the formation of biofilms has been showed by these 

authors that have suspected, as well as damage to membrane observed, the possible involvement 

of DNA and protein repair systems [123].  
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Further progress can be made on these issues, and the fact that other groups in the world are 

parallel conducting similar studies, it shows that this field of research still has many unclear 

aspects that need to be studied in-depth (Table 6.1). 

 

 

Field Observation Hypothesis Further Studies 

Specific material interaction 

with specific frequencies 

Analysis of the diffusion of the 

ultrasound with other kind of 

materials 
Acoustic 

High uncertainty in 

relation to different 

frequencies, tubes 

and hydrophone 

position 
Influence of the scattering 

Analysis and study of the 

scattering effect and measure in 

more point of the grid 

Effect of the ultrasounds on 

the bacterial motility 
Analysis of the bacterial motility 

Biology 

High uncertainty in 

relation with the 

biofilm state 

Ultrasound effect on the 

bacterial metabolism and, 

more specifically, on type 1 

fimbriae, curli, and 

conjugative pili activity 

Molecular analysis of the genic 

expression for the transcrition of 

the adhesive proteins 

Bacterial adaptability to a 

hostile environment 

Searching for a constant that 

allows to identify the degree of 

variability 

Metrology 

High uncertainty in 

relation with 

biological 

variability and with 

the correlation 

between several 

factors 

Needs to isolate each factor 

alone to identify more 

clearly its role in the 

uncertainty calculation 

Repeat the experiment by 

varying more the various factors 

Table 6.1.  Summary of the results and of the future developments 
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