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Abstract The emergence of economically viable and

efficient sensor technology provided impetus to the de-

velopment of smart devices (or appliances). Modern
smart environments are equipped with a multitude of

smart devices and sensors, aimed at delivering intelli-

gent services to the users of smart environments. The
presence of these diverse smart devices has raised a ma-

jor problem of managing environments. A rising solu-

tion to the problem is the modeling of user goals and
intentions, and then interacting with the environments

using user defined goals. ‘Domotic Effects’ is a user

goal modeling framework, which provides Ambient In-

telligence (AmI) designers and integrators with an ab-
stract layer that enables the definition of generic goals

in a smart environment, in a declarative way, which

can be used to design and develop intelligent applica-
tions. The high-level nature of domotic effects also al-

lows the residents to program their personal space as

they see fit: they can define different achievement cri-
teria for a particular generic goal, e.g., by defining a

combination of devices having some particular states,

by using domain-specific custom operators. This paper

describes an approach for the automatic enforcement of
domotic effects in case of the Boolean application do-

main, suitable for intelligent monitoring and control in

domotic environments. Effect enforcement is the ability
to determine device configurations that can achieve a

set of generic goals (domotic effects). The paper also
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1 Introduction

The last decade saw the emergence of economically vi-

able and efficient sensor technology which can be in-
tegrated with appliances, enabling them to sense dif-

ferent parameters of their respective environments, i.e.,

temperature, luminosity, pressure, etc. It helped realiz-
ing the vision of smart environments (Weiser, 1995) by

developing heterogeneous dynamic ensembles: groups

of co-located devices of different types which evolve

over time (Bader and Dyrba, 2011). Such environments
promise to offer additional intelligent capabilities that

go beyond the integrated and remote control of appli-

ances present in the environment. But the presence of
diverse devices and the associated complexity has given

rise to a major problem in the past years, i.e., the prob-

lem of providing users with the ability to control and
manage their respective environments.

State of the art revolves around the issues related
to communication protocols and technologies (Dey et

al, 1999; Rashidi and Cook, 2009; Kawsar et al, 2008).

Many approaches are furthermore based on abstract

modeling of smart devices, resorting to some knowl-
edge representation tool (e.g., ontologies (Heider and

Kirste, 2002; Encarnaçao and Kirste, 2005; Bonino and

Corno, 2008)), but the research trend is moving from a
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Fig. 1 Logical architecture of the Domotic Effects Frame-
work (Corno and Razzak, 2012)

traditional device-centric vision (bottom-up) to a vision

of providing higher level design for user interaction and

control (Ducatel et al, 2003; Amigoni et al, 2005; Cheng
et al, 2009; Kaldeli et al, 2010), i.e., user goal modeling.

However, this research trend has received little atten-

tion as acknowledged in (Chen et al, 2012). One such,

user goal modeling approach is ‘Domotic Effects’ (DE)
framework (Razzak, 2013).

DE framework models user intentions or goals (called

domotic effects) (Razzak, 2013; Corno and Razzak, 2012).
The context is that every device in a smart environment

is capable of providing certain visible (perceivable) ef-

fects for a user. These effects are fulfilled by possible

states of the device. For example, an effect of illumi-
nation can be provided by a lamp in ‘ON’ state. How-

ever, modern devices are complicated in nature and a

single device can have a composite state, which may
be modeled as concurrent sub-states. These sub-states

are orthogonal regions combining multiple descriptions

of a device. For example, a TV set may have an on-
off state (with possible values ON or OFF), a volume

state (with possible values 0 through 100), a channel

state (with possible values depending on the set of pro-

grammed channels). A device state is therefore compos-
ite in nature and therefore it is modeled as the parallel

composition of different sub-states.

There might be cases in which an effect can only be
fulfilled by a combination of devices having particular

states. For example, the effect of securing a building

may require all the exit doors and windows to be closed.

In the context of DE framework, an effect that depends
upon a single device (having a state or sub-states) is

called a simple effect (SE) and an effect dependent on

a combination of devices (having particular states and

sub-states) is called a complex effect (CE). A CE is

described by combining SEs and other CEs.

The DE framework is logically organized in a 3-

tiered architecture as shown in Fig. 1. The core layer

contains the basic class definitions for expressing do-

motic effects. Each Domotic Effect (DE) is expressed
as a function of existing device states or sensor values.

Such function is expressed using a set of operators that

can be extended by a AmI designer. The AmI layer en-
codes the set of operators defined or customized by the

AmI designer, depending on the application domain.

Finally, the Instance layer represents the specific DEs
being defined in a specific environment.

The DE framework addresses the concerns from per-

spectives of the AmI designer and the residents. It pro-

vides AmI designers with an abstraction layer that en-

ables the definition of generic goals inside the environ-
ment, in a declarative way, and that can be used to

design and develop intelligent applications. It provides

a general framework for expressing functional proper-
ties, in a domain-dependent way: for each application

domain, the AmI designer may choose the most suitable

representation, and define suitable functional operators.
Using these operators, various user goals are then de-

fined in a specific environment. The high-level nature

of the DEs, on the other hand, also allows the residents

to program their personal, office or work spaces as they
see fit: they can define different achievement criteria for

a particular generic goal, by using the domain-specific

operators defined in the previous phase.

This paper discusses the control aspect of the DE
framework. The control aspect involves the ability of

users to manage and control their environments with

the help of user-defined intentions or goals. This amounts
to correctly mapping user goals in terms of a combina-

tion of devices having particular states. In this paper,

the control aspect of the DE framework restricted to

Boolean application domains is discussed. Boolean ap-
plication domains are such domains in which the val-

ues of user goals (effects) can either be true (active) or

false (inactive). They cover most control applications
and many monitoring use cases in smart homes, offices

and industrial plants.

The paper is divided into seven sections. Section 2

provides the formal and conceptual modeling for do-
motic effects specialized to the case of Boolean appli-

cation domains, and then defines the problem tackled

in the paper. The general approach adopted for en-

forcement is described in Section 3, and later Section 4
defines its architecture and implementation. Section 5

shows results of the experiments carried out on effects

enforcement. Section 6 compares our approach to some
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related works and Section 7 concludes the paper and

highlights future work.

2 Modeling

2.1 Formalism

Given an intelligent environment, we define as D the

set of installed controllable devices d ∈ D. Each de-
vice is characterized by a device category that, among

the other things, defines the allowed sub-states for a

device. Depending on the device category, for each de-
vice d we define the set of allowed sub-states S(d); this

set may be discrete (e.g., {ON, OFF} for a lamp) or

continuous (e.g., [0, 100] for a volume knob). During

system evolution, the actual state of each device is a
time-dependent function s(d, t) ∈ S(d). The whole en-

vironment therefore possesses a global state space G,
represented by the Cartesian product of all device state
spaces: G =

∏

d∈D S(d), thus defining a global environ-

ment state g ∈ G.

Formally, a Domotic Effect DE is defined as a func-

tion of the global state space: DE : G → V, where V
is an application-dependent value space. For example,

for control applications, V = {0, 1} since each Domotic

Effect represents the activation of a given state config-
uration; conversely, when dealing with energy savings,

V = ℜ+ since Domotic Effects may be used to represent

consumed power.

AmI designers and end users may define custom Do-
motic Effects by working with a domain-specific set of

operators. Such operators work on the value space V
relevant to the specific application domain1. The spec-
ification of a DE function requires three levels of for-

malization:

1. defining Simple Effects (SE), to extract a V-valued
quantity from a single device state. Formally, SE

is a function that considers the state on only one

device, SE : S(d) → V; such function is also time-
dependent since it depends on s(d, t).

2. defining effect operators working within V-space al-

gebraic semantics, suitable for composing new func-
tions in the application domain. Formally, an oper-

ator op is a function op : VN → V, where N repre-

sents the number of operands of the specific op.
3. defining Complex Effects (CE), by applying effect

operators to the values computed by other SE or

CE. Formally, a CE is represented by a couple (op

, (DE 1 . . .DEN )) composed of an operator name op

1 for cross-domain applications, V would be the union of all
relevant value spaces

and a list of Domotic Effects DE i whose values are

used as operands.

For each application domain, there would be a set of

pre-defined SE and a set of operators that the users may
combine to compute the values of interest. For example,

if we consider control applications (V = {0, 1}), then
the SE functions that may be adopted are:

– for discrete-valued states, a SE detects whether a de-

vice currently is in any given state. E.g., SEON(d, t) =

(s(d, t) == ON).
– for real-valued sensors, a SE usually compares the

current sensor data with a threshold. E.g., SEHOT(d, t) =

(s(d, t) > 30oC).

The instance layer defines a set I of all defined do-

motic effects (instances), i.e., I = {DE 1,DE 2 . . .DEN}.

2.2 Conceptual Modeling

In order to provide a formal knowledge-base for the DE

framework, a modular ‘DogEffects’ ontology is devel-
oped. The DogEffects ontology is organized in a three-

tier structure, corresponding to the logical architecture

of the DE framework (Fig. 1). It models the user de-

fined goals and their mapping to devices and their cor-
responding states. The DogEffects ontology requires the

concepts of devices and their states, the modularity pat-

tern was adopted for designing the ontology. Modular-
ity allows the ontology to easily integrate with other

ambient ontologies that model environments. In our

case, DogOnt (Bonino and Corno, 2008) is adopted.
Three modeling layers of the DogEffects ontology are

explained below:

2.2.1 Core Layer

The core layer defines concepts lying at the foundation
of the DE framework. The main concepts are illustrated

in Fig. 2. The core layer consists of three main classes,

i.e., Effect, EffectOperator and Operand. Every Do-
motic Effect is formally organized into a concept hierar-

chy inheriting from the dogEffects:Effect class. Ef-

fects can either be simple (dogEffects:SimpleEffect)
or complex (dogEffects:ComplexDeviceEffect). For

both kinds of effects, domain-dependent subclasses are

defined at the AmI layer.

Simple Effects (SEs) are the terminal nodes of the

representation and compute a value depending on a de-

vice state or sensor value. SEs act as interface points
between the DogEffects ontology and some device de-

scription ontology (e.g., DogOnt). The dogEffects:-

effectOf and dogEffects:functionOf open relations
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Fig. 2 The DogEffects ontology (Core and AmI layer) - Boolean Application Domain

(i.e., relations without range restrictions) permit to iden-

tify the device and the device state for which a given
SE is computed, respectively.

Every Complex Effect (CE) represents a functional
expression of SEs and other CEs declared by using

domain-dependent operators defined at the middle-layer

of the DomoticEffects framework. Effect operators take
either simple or complex effects as operands (through

the dogEffects:hasOperand relation) and generate new

CEs as result, identified by means of dogEffects:has-

Result relation.

Two main disjoint families of operators are modeled:
unary operators (dogEffects:UnaryOperator) and non-

unary operators (dogEffects:NonUnaryOperator). Unary

operators only involve one dogEffects:Operand (car-

dinality restriction on the dogEffects:hasOperand re-
lation), which can either map to a SE or a CE (by

the dogEffects:operandEffect relation). Typical ex-

amples of unary operators are the NOT operator (in
the boolean control domain). Non-unary operators are

further specialized (disjoint union) into commutative

(dogEffects:CommutativeOperator) and not commu-
tative (dogEffects:NotCommutativeOperator) opera-

tors. According to the mathematical definition of com-

mutative (not-commutative) operators, the result pro-

duced by the former (dogEffects:CommutativeOpera-
tor) is independent on the order in which operands

are evaluated while, the latter operator provides a re-

sults depending on the order of the effect operands. In

such a case the dogEffects:OrderedOperand subclass

of operands shall be used to account for the operand
order, expressed as an ascending integer number by

the dogEffects:hasPositionN property. Typical ex-

amples of non-unary effects are the AND, OR and EX-
OR logic operators, in the boolean control domain.

2.2.2 AmI layer

The AmI layer allows AmI designers to define the domain-

dependent effect operators that govern the combination

of domotic effects. Every application domain will define

different operator classes for this layer by sub-classing
the general operator classes defined in the core layer. In

Boolean application domain, simple effects correspond

to devices (sensors) being in specific states (measuring
specific range of values). SEs and CEs can only eval-

uate to true or false, and Boolean logic is sufficient to

compute CEs and to implement rather advanced ac-
tivation scenarios. From the modeling point of view,

mapping operators to Boolean logic requires a mini-

mum set of logic operators, e.g., AND (∧), OR (∨) and
NOT (¬) (see Fig. 2, bottom); however, AmI designers
may choose to define more complex, user-intelligible op-

erators such as the ONE OF operator (true iff exactly

one of the operands is true), the NONE OF operator,
and so on. Some of them are explained below:

1. ImpliedOperator: This operator represents the “log-

ical implication” relationship.
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2. AlternateOperator (A): This operator represents a

function whose value is active when exactly one of
its operands is active. It is commutative and non-

unary. Mathematically, the Alternate effect opera-

tor can be defined as Equation 1.

3. ExactlyMOperator: This non-unary operator repre-
sents a function whose value is active when exactly

M number of its operands are active. Suppose there

are n operands, i.e., OP = {1, 2, . . . n}. Then the
ExactlyMOperator effect operator can be defined as

Equation 2.

Alt(x1 . . . xn) =
∑

i



xi ·
∏

j 6=i

xj



 . (1)

ExactlyM (x1 . . . xn) =
∑

O⊆OP,|P |=M





∏

i∈O

xi ·
∏

j /∈O

xj





(2)

Lamp Illumination

^
Lamp4             ON Lamp5             ON

SE SE

CE

Fig. 4 A simplified representation of the Lamp Illumination
CE

2.2.3 Instance layer

The instance layer of the DE framework represents spe-

cific DEs defined in a given smart environment. They
are modeled as instances of the classes defined in the

core and AmI layer. The DEs are defined according to

user preferences, i.e., can be defined by the users using
a GUI or can be designed by AmI designers.

Consider a trivial example in which a user wants

to achieve illumination in the room using lamps, called

‘Lamp Illumination’ use case2. The ‘Lamp Illumination’

2 A use case represents a scenario or the overall effect that
a user wants to achieve.
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use case is illustrated in Fig. 3. The ‘Lamp Illumina-

tion’ use case will be represented as a ‘Lamp Illumina-
tion’ CE (an instance of ComplexEffect). Suppose the

“Lamp Illumination” can be achieved using ‘Left Wall

Lamp Illumination’ SE and ‘Right Wall Lamp Illumina-
tion’ SE. The combination is governed by the “And1”

instance of And Operator) class. The ‘Left Wall Lamp

Illumination’ SE represents the ‘Lamp4’ in ‘OnState lamp4’
state, while the ‘Right Wall Lamp Illumination’ SE rep-

resents the ‘Lamp5’ in ‘OnState lamp5’ state. The in-

formation about specific devices and their states comes

from the DogOnt ontology. In order to provide easy
comprehension Fig. 4 shows the simplified graphical

representation of the ‘Lamp Illumination’ CE and Ta-

ble 1 outlines the functional representation of the ‘Lamp
Illumination’ CE. In Table 1, a SE is represented as

SE(device, sub-state(s)). For instance, the ‘Right Wall

Lamp Illumination’ SE is equivalent to SE(Lamp5, On-
State lamp5). On the other hand, a CE is represented

as Operator(DE1, DE2 . . .). For instance, the ‘Lamp

Illumination’ CE is equivalent to And(Left Wall Lamp

Illumination, Right Wall Lamp Illumination).
The reader interested in more details about the Do-

gEffects ontology is referred to (Razzak, 2013).

2.3 Problem Statement

Consider a smart environment with an AmI system

managing it. A user can define several domotic effects

(simple and complex) on top of the domotic structure,
based on the effect operators defined for the environ-

ment. At any instant, each domotic effect has a value

associated with it. The user has the ability to request

R the AMI system to enforce a set of domotic effects
on the environment. ‘Effect Enforcement’ addresses the

problem of finding at least one configuration that sat-

isfies the user’s request R. The configuration refers to
the combination of devices having particular states and

sub-states.

The user request R is defined as a subset of the
domotic effects present in the instance layer: R ⊆ I.
In simple terms, the user request R is the subset of

DE i that the user wants to be active (true) at a given

instant.
Given a request R, effect enforcement consists of

finding a global domotic state g ∈ G where all the do-

motic effects DEi ∈ R are true. This is equivalent to
computing the satisfiability of the function shown in

Equation 3.

FR(g) :
∏

DEi∈R

DE i (3)

3 Approach

In order to enable the user to enforce particular val-
ues of domotic effects on the environment, at least a

configuration needs to be found which fulfills the user

request R, as defined in Section 2.3. To solve this prob-
lem the paper proposes to transform the user’s request

into a Boolean satisfiability problem (SAT). SAT is a

decision problem to determine whether a given propo-
sitional formula is a tautology (Cook, 1971). In other

words, it establishes if the variables of a given formula

can be assigned in such a way as to make the formula

evaluate to TRUE. Equally important is to determine
whether no such assignments exist, which would imply

that the function expressed by the formula is identically

FALSE for all possible variable assignments.

To transform the user’s request into a SAT prob-
lem, each domotic effect defined in the instance layer is

mapped as a Boolean variable. The functionality of each

effect operator defined in the AmI layer is mapped in

terms of a Boolean sub-expression in the SAT problem.
The value of the variable corresponding to the Simple

Effect is true (active) if and only if the device is in

a particular sub-state(s). Meanwhile, complex domotic
effects can depend upon the values computed by mul-

tiple simple or complex domotic effects and, therefore,

the value corresponding to their variables are depen-
dent on the values of their operands. As a consequence,

the Boolean expressions for a complex domotic effect

are constructed over its dependent domotic effects us-

ing the effect operator defined for it. The process is re-
cursive, as the Boolean expressions for all the operands

are constructed and conjuncted.

For example, consider a trivial user request R to

enforce the ‘Illumination’ use case on the environment.
The ‘Illumination’ use case represents the user inten-

tion to achieve illumination in a room. The ‘Illumina-

tion’ use case will be represented as an ‘Illumination’
CE inside the ‘DogEffects’ ontology and it is graphi-

cally shown in Fig. 5. The functional representation is

listed in Table 2. It can be seen that the illumination

in the room can be achieved by means of either nat-
ural lightening (represented as ‘Natural Illumination’

SE) or artificial lightening (represented as ‘Artificial Il-

lumination’ CE). The natural lightening is achieved by
opening a shutter, whereas the artificial lightening is

achieved by using different combinations of lamps in

the room.

In order to build the Boolean expressions for the

user request, all domotic effects are represented as Boolean
variables. Then, the effect operator (and its type) at-

tached with the ‘Illumination’ CE is extracted, i.e., OR,

which is followed by the extraction of operands (do-
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Table 1 Lamp Illumination functional form

LampIllumination = And(LeftWallLampIllumination,RightWallLampIllumination)
RightWallLampIllumination = SE(Lamp5, OnState lamp5)
LeftWallLampIllumination = SE(Lamp4, OnState lamp4)

Table 2 Illumination functional form (CEB)

Illumination = Or(ArtificialIllumination,NaturalIllumination)
ArtificialIllumination = Alternate(CeilingLampIllumination, MirrorLampIllumination)

MirrorLampIllumination = And(LeftMirrorLampIllumination,RightMirrorLampIllumination)
RightMirrorLampIllumination = SE(Lamp5, OnState lamp9)
LeftMirrorLampIllumination = SE(Lamp4, OnState lamp8)

CeilingLampIllumination = SE(Lamp2, OnState lamp2)
NaturalIllumination = SE(ShutterActuator, UpStateV alue ShutterBath)

Artifical Illumination

Lamp Illumination

^
Lamp5            ON Lamp4              ON

SE SE

CE

CE

^

SE

             ON

SE

A

      UP

CE

Fig. 5 A simplified graphical representation of the Illumina-
tion CE

motic effects) attached with the operator, i.e, Natural

illumination and Artificial Illumination. After the ex-
traction of operator and operands, the first Boolean

expression (shown in Equation 4) is constructed. Then,

the Boolean expressions for Natural illumination and
Artificial Illumination CEs are constructed recursively,

until SEs are reached. All the Boolean expressions are

then conjuncted and the value of Boolean variable as-
sociated with Illumination CE is set to true.

Illumination = OR(Natural Illumination, Artificial Illumination)

(4)

To put it concisely, at any instant the user can re-

quest R several domotic effects DE i, to be enforced on

the environment. The Boolean expressions for all do-

motic effects DE i present in the user request R are

constructed and conjuncted. The process is recursive,
as the Boolean expressions for all the operands are con-

structed too. After getting all the Boolean expressions,

the DE i corresponding present in the user request R are
enforced as SAT constraints, i.e., the values of variables

corresponding to DE i are set to true.

Once the Boolean expressions are constructed, con-

juncted and the values of the variables corresponding

to DEs in R are set, they are fed to a SAT solver to

determine values of other variables (corresponding to
other DEs) under which the values of the DEs in R will

hold. Since SEs represent terminal nodes of the expres-

sions, the values of the variables corresponding to SEs
will give us a combination of devices and their particu-

lar states and sub-states fulfilling the user’s request R.

In short, bringing the combination of devices into par-
ticular states and sub-states would fulfill R. Whenever

the user request R is not satisfiable, the enforcement

procedure is canceled and the user is informed. Addi-

tionally, it is likely that several configurations satisfy R

which gives system designers an option to find an opti-

mal configuration based on some constraints. For exam-

ple, a configuration that minimizes energy consumption
(Corno and Razzak, 2012).

4 Architecture

This section describes a generic, modular and exten-
sible architecture for the implementation of the effect

enforcement approach (defined in Section 3) inside the

smart environments and highlights the procedure to ex-

tend the architecture to define new effect operators. The
architecture consists of a Domotic Effect Enforcement

module and the DogEffects ontology containing all the

domotic effects defined for the environment.
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4.1 Domotic Effect Enforcement

Given a user’s request R, the Domotic Effect Enforce-

ment module finds a configuration to fulfill R. The Do-

motic Effect Enforcement module is responsible for ex-
tracting all domotic effects from the DogEffects ontol-

ogy, receiving user’s request for enforcing particular val-

ues for a set of domotic effects, transforming the user
request into a SAT problem, and finding at least one

configuration that fulfills the user’s request (or other-

wise finding conflicts).
The logical architecture of the Domotic Effect En-

forcement module is depicted in Fig. 6. It consists of

query, solver, library components and an effect opera-

tor store.
The query component queries the DogEffects ontol-

ogy for all the domotic effects and then it organizes all

the domotic effects in a hierarchical internal data struc-
ture which is similar to the organization of domotic

effects in the DogEffects ontology. Whenever any addi-

tion or editing in the DogEffects ontology occurs, the
querying component reconstructs the data structure.

As defined in Section 3, to transform the user’s re-

quest into a SAT problem, the effect operators defined

in the AmI layer should be defined in terms of Boolean
sub-expressions. The Effect Operator store contains the

Java code for each effect operator defined in the AmI

layer by providing methods to create the corresponding
sub-expressions in terms of basic Boolean operators.

The user’s request is handled by the Solver com-

ponent. The Solver component transforms the user re-
quest into a SAT problem, finds a configuration that

satisfies the user’s request and then it enforces the con-

figuration on the environment. For each request R, the

steps taken by the solution are detailed below:

– Transformation and Feeding: It comprises transform-

ing the user’s request for particular values of do-
motic effects in to a correct set of Boolean equations

and applying constraints over them. Then, these

Boolean equations and constraints are fed to the

SAT solver. Currently, the Sat4j solver (Le Berre
and Parrain, 2010) is used.

– Solving: Based on the set of Boolean equations, the

Sat4j solver determines (if possible) the values of all
the variables inside the Boolean equations. There

may be cases in which the values of domotic effects

requested in R can not be satisfied at all.
– Interpretation: It comprises finding the values of

the variables corresponding to SEs and interpret-

ing them in terms of devices and their states and

sub-states.

The Sat4j library requires that the input is in the

Conjunctive Normal Form and each variable in the SAT

problem is represented by an integer positive number

(negative numbers represent complemented variables).
Therefore, the querying component assigns a unique in-

teger to each domotic effect. The transformation begins

by taking each user requested domotic effect and deter-
mining the effect operator that acts among its children.

Once the effect operator type of a domotic effect is de-

termined, the corresponding Java class in the Effect
Operator Store creates its sub-expression in terms of

basic Boolean operators and appropriate Boolean equa-

tions are constructed for the domotic effect and its chil-

dren domotic effects. These Boolean equations are fed
to the Sat4j solver to determine a configuration satis-

fying them.

4.2 Extensibility

In order to become a potential candidate for a wider

adoption, an approach should demonstrate the charac-

teristic of extensibility. The DE framework should also
demonstrate such characteristic. In the DE framework

the question of extensibility can be raised at two levels,

i.e., Cross-Domain extensibility and In-Domain exten-
sibility. Cross-Domain extensibility refers to the ability

of the semantic modeling (DogEffects ontology) of the

DE framework to be extended to application domains,
other than Boolean application domain. In-Domain ex-

tensibility refers to the ability of the AmI designer to

define new Boolean operators in Boolean application

domain.
The DE framework provide Cross-Domain extensi-

bility by enabling the semantic modeling of DogEffects

ontology (AmI layer) for several application domains,
i.e., Boolean domain, Energy Saving Domain. This pa-

per discusses the specialized case of the semantic mod-

eling in the Boolean application domain. An example
of semantic modeling of the AmI layer in the Energy

Saving domain is presented in (Razzak, 2013). In the

Energy Saving domain the example of operators can

be SUM, AVERAGE, THRESHOLD, INTEGRATION
operators. The DE framework is based on an Ontology-

Based approach and therefore it has an advantage of

large-scale adoption, application development, system
prototyping, solid technological infrastructure as ac-

knowledged in (Chen et al, 2012).

In the Boolean application domain, the In-Domain
extensibility of the proposed approach is achieved by

providing the AmI designers control over defining and

implementing their own Boolean operators (see Sec-

tion 4). This paper defines the fundamental Boolean
operators and their implementations, but the designers

are free to define any operator that can be translated

into a Boolean expression. The new Boolean operators
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Fig. 6 Domotic Effect Enforcement Architecture

may be required by the AmI designers to define new

rules to govern combination between domotic effects.

Appropriate implementation of new operators should
be included in the Effect Operator store for construct-

ing Boolean equations. Suppose an AmI designer wants

to declare a new Boolean effect operator called ‘New-
BooleanEffectOperator’. Then, in addition to declaring

the new effect operator in the AmI layer of the Dog-

Effects ontology, the AmI designer must also provide a

proper implementation of the new Boolean effect oper-
ator in the effect operator store.

When a new Boolean effect operator is defined in the
AmI layer of the ‘DogEffects’ ontology, the implemen-

tation of the new effect operator can be provide inside

the ‘Domotic Effect Enforcement’ module by following
two steps:

1. A new class extending the EffectNode class is de-

fined. TheEffectNode class represents the general

properties of a domotic effect 3.
2. For the construction of Boolean equations, the map-

ping of the effect operator using basic Boolean oper-

ators is provided inside the setEquation() method.
The setEquation() method receives a parameter

(gator of type GateTranslator). The gator param-

eter accumulates all constructed Boolean expres-

sions. The ‘GateTranslator’ is a Sat4j library class
which provides functionalities of the SAT’s basic

Boolean operators like Not, And and Or. One can

define any kind of effect operator in the AmI layer
as long as it can be defined in terms of basic Boolean

operators.

3 The reader interested in more detail is referred to Razzak
(2013)

Currently, the effect operator store includes the Com-

plement, And, Or and Alternate operators. The Com-

plement effect operator represents an invert relation-
ship, and is mapped as a Not Boolean operator in SAT

(Algorithm 1).

Algorithm 1 Complement effect operator
nodeNumber = node.getNodeNumber();
child=node.getFirstChild();
literals= new VecInt();
literals.push( child ) ;
gator.not(nodeNumber,literals);
return true;

Algorithm 2 shows the mapping of the And effect

operator in terms of basic Boolean operators. The Or

effect operator algorithm is similar, but it is mapped as
an Or Boolean operator in SAT.

Algorithm 2 And effect operator
nodeNumber = node.getNodeNumber();
children=node.getChildren();
literals= new VecInt();
for all children as child do

literals.push( child ) ;
end for

gator.and(nodeNumber,literals);
return true;

The Alternate effect operator (Algorithm 3) repre-
sents a function which is true when only one of its chil-

dren is active.

5 Experimental evaluation

The ‘Domotic Effect’ modeling framework was devel-

oped to be integrated with the Dog2.0 (Bonino et al,
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Algorithm 3 Alternate effect operator
nodeNumber = node.getNodeNumber();
children=node.getChildren();
literals= new VecInt();
globalNumber → Counter for temporary variables;
globalCounter → list of temporary variables;
literals.clear();
int List = newList();
int List.addAll( children ) ;
for count:=0 ; count < int List.size(); count++ do

literals.clear();
for innercount:=0 ; innercount < int List.size();
innercount++ do

if count =innercount then

literals.push( int List.get(innercount) ) ;
else

literals.push( - int List.get(innercount) ) ;
end if

end for

globalCounter.add(globalNumber++);
gator.and(globalNumber, literals);

end for

literals.clear();
for all globalCounter as each do

literals.push( each ) ;
end for

gator.or(nodeNumber,literals);
return true;

2008a) smart home gateway. Dog is an ontology-powered

Domotic OSGi Gateway that is able to expose different

domotic networks as a single, technology neutral, home

automation system. It consists of 12 core bundles and it
is built on top of the OSGi framework and the adoption

of semantic modeling techniques allows Dog to support

intelligent operations inside the home environment. Dog
uses the DogOnt ontology to model an environment

and it provides the ability to overcome issues like in-

teroperability among different device/sensor protocols,
validating device state or sensor value, etc. Two mod-

ules, i.e., Ontology Loader and Domotic Effect Enforce-

ment, were built atop/deployed on Eclipse Equinox,

which is an implementation of the OSGi framework
(OSGI Alliance, 2003). The OSGi framework brings

versatility and modularity by providing each module

as a service called a bundle. Experiments were con-
ducted to measure different performance parameters of

the ‘Domotic Effect Enforcement’ module. These per-

formance parameters include the time needed to trans-
form a user’s request R into a SAT problem, and if

possible, to find at least a configuration that satisfies

the user’s request.

A complete house environment was simulated. The

domotic structure was modeled as an instance of the

DogOnt ontology. A new TestDogEffectSolution bun-
dle was developed to perform the experiments and to

measure performance parameters for each experiment.

Based on the procedure defined in Section 2, we define

six use cases {CEA . . .CEF } (see Section 5.1). In order
to define the use cases in the instance layer 190 inter-

mediate domotic effects (CEs and SEs) were declared.

A number of iterations were performed enforcing dif-

ferent user requests R ⊆ I. In the experiments, a total

of 63 iterations were performed, corresponding to each
request R over 6 use cases (omitting the trivial R = ∅).
The experiments were conducted on an Intel Core i5

CPU running at 2.6 GHz with 4GB of RAM.

5.1 Use cases

Based on the functional representation form presented

in the Section 2, this section describes some use cases

defined over a home. The house has a bed room, a living
room, a lobby, a bath room, a store and a kitchen, and

is equipped with with several automatic devices/appli-

ances like lamps, oven, tv, door actuators, window ac-

tuators, shutter actuators, gas heaters etc. Based on
simple domotic effects and using the set of Boolean

operators encoded in the AmI layer, several complex

domotic effects have been defined. Some of them are
explained in the following sections.

Secure Home: The ‘Secure Home’ use case (CEA) se-

cures all the exit points of the house, i.e., by closing
all the exit doors and shutting all the windows of the

house. This use case comprises many DEs providing the

ability to secure different rooms of the house. This can
be used in case of emergency, theft, robbery or fire etc.

BathRoom Illumination: The ‘BathRoom Illumination’

(CEB) combines small use cases that illuminate the
bathroom. The illumination can be artificial by switch-

ing on the mirror lamps or ceiling lamp in different

combinations, or illumination can be natural by open-
ing the shutter of the window during morning and af-

ternoon hours.

Home Illumination: The ‘Home Illumination’ (CEC)
requires that all the rooms of the house are illuminated.

Illumination can be both natural or artificial in nature.

Afternoon Lunch: The ‘Afternoon Lunch’ (CED) deals
with the daily routine of cooking lunch inside the kitchen.

The resident desires the kitchen’s oven to be heated, the

television to be switched on and the kitchen to be closed

so that the aroma of cooking does not spread to other
rooms of the house.

Air Passage inside the house The ‘Air Passage’ use

case (CEE) manages the natural air flow inside the
house or its different rooms. It combines different DEs

that open windows of opposite sides for the flow of air

between different rooms of the house.
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Table 3 Secure Home use case (CEA)

SecureHome All = OR(SecureHome Scenario 1, SecureHome Scenario 2);
SecureHome Scenario 1 = AND(LivingRoom l2 WS CloseDown,BathRoom WS CloseDown,Kitchen WS CloseDown,

BedRoom l1 WS North CloseDown,BedRoom WS West CloseDown,DoorActuator d4 lobby ext Close,
LivingRoom L1 WS CloseDown);

LivingRoom l2 WS CloseDown = AND(WindowActuator w6 living Close, ShutterActuator sh2 living Down);
LivingRoom L1 WS CloseDown = AND(WindowActuator w5 living Close, ShutterActuator sh1 living Down);

BathRoom WS CloseDown = AND(WindowActuator w3 bath Close, ShutterActuator bath Down);
BedRoom l1 WS North CloseDown = AND(WindowActuator w1 living Close, ShutterActuator sh1 Down);

BedRoom WS West CloseDown = AND(WindowActuator w2 Close, ShutterActuator sh2 Down);
SecureHome Scenario 2 = AND(Secure LivingRoom, Secure BedRoom, Secure BathRoom, Secure Lobby, Secure Kitchen);

Secure LivingRoom = AND(DoorActuator d7 kitchen Close,DoorActuator d6 living Close,
Tv LivingRoom Off, LivingRoom L1 WS CloseDown,LivingRoom l2 WS CloseDown);

Secure BedRoom = AND(DoorActuator d1 bed Close, BedRoom l1 WS North CloseDown,BedRoom WS West CloseDown);
Secure BathRoom = AND(BathRoom Ws CloseDown,DoorActuator d2 bath Close);
Secure Lobby = AND(DoorActuator d6 living Close,DoorActuator d5 kitchen Close,

DoorActuator d4 lobby ext Close,DoorActuator d3 lobby stor Close,DoorActuator d1 bed Close,
DoorActuator d2 bath Close);

Secure Kitchen = AND(DoorActuator d5 kitchen Close,DoorActuator d7 kitchen Close,Kitchen WS CloseDown);
Kitchen WS CloseDown = AND(WindowActuator w4 kitchen Close, ShutterActuator kitchen Down);

Morning WakeUp: The ‘Morning WakeUp’ use case
(CEF ) maps a typical scenario when a resident wants

to perform a sequence of activities after waking up in

morning, like illuminating the bedroom, the kitchen and

the bathroom, switching off the gas heater inside the
bedroom, switching on the television in the kitchen and

the radio inside the bathroom.

The functional representation of the ‘Secure Home’
use case is given in Table 3. The function representa-

tions of other use cases can be found at (Razzak, 2013)

5.2 Results and Discussion

In the first experiment, two performance parameters

were measured:

– the time taken by the ‘Domotic Effect Enforcement’

module to construct the set of Boolean equations

and to feed them to the Sat4j solver (construction
time, tc);

– the time to find at least one configuration that sat-

isfies the set of Boolean equations (solution time,
ts).

Both time measurements were taken at the milliseconds
level, and Fig. 7 shows the performance measures for

all the 63 iterations. Each cell contains a combination

expressed as tc + ts. The results are represented as a
Karnaugh map for easier reading and identification of

the simultaneously enforced domotic effects.

It can be seen that the ‘Domotic Effect Enforce-
ment’ module is quite responsive and in all cases the

time for construction of Boolean equations and deter-

mining configuration is less than 100 ms. The module

was developed to be used in real world applications and
therefore completing the user’s requests in few millisec-

onds shows that the proposed approach is promising.

On the other hand, finding at least a configuration to

satisfy user’s request depends upon the number of vari-
ables involved in the Boolean expression. Though the

measured time is in few milliseconds for this experi-

ment, the time may vary according to the number of

variables involved in the Boolean expression.

The second experiment is highlighted in Fig. 8. For
each iteration, Fig. 8 shows the total number of configu-

rations that can satisfy a set of Boolean equations (total

configurations, TC ) and the number of devices involved
in the construction of Boolean equations (Dev). Each

cell contains a combination like TC{Dev}. The clusters

of unsolvable problems (TC = 0) depicted in Fig. 8 cor-
respond to incompatible user requests, such as air flow

and security.

The applicability of the proposed approach to Boolean

application domain depends upon the robustness of the
Sat4j solver. Sat4j is a mature, open-source library pro-

viding access to SAT-related technologies to Java pro-

grammers. While the core SAT engine may not be com-

petitive against commercial SAT solvers, the results of
the library on pseudo-boolean problems are reasonable

(Le Berre and Parrain, 2010). From the experiments it

can be observed that the solver can handle hundreds of
domotic effects in few milliseconds. In fact, the number

of domotic effects needed for homes and small build-

ings will be in hundreds and the Sat4j solver will be ro-
bust enough to solve Boolean expressions in near real-

time. However, for large facilities the DE framework

may require commercial SAT solvers (since domotic ef-

fects may be in thousands) or other approaches such as
problem partitioning. This aspect needs to be investi-

gated further.

6 Related Work

Garcia-Herranz et al. (Garćıa et al, 2010) proposes an

application-independent indirect control programming
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Fig. 7 CPU time measurements (in ms, tc + ts)

system to program complex behaviors yet simple enough

to enable novice users to program their smart environ-

ments. The objective is to allow users to create powerful
and personal behavior without expert assistance. They

developed a rule-based language for a modular agent

system (Garćıa et al, 2008). The rules allow expressing
behaviors of type “When triggers, if conditions, then

action”. The rule language lacks the flexibility of pro-

viding different courses of action to achieve a solution.

Moreover, it does not provide abstraction to allow AmI
designers to develop techniques independent of devices.

Katasonov (Katasonov, 2010) motivates to build ‘Dig-
ital fluency’ in smart environments by enabling the non

programmers to design, create and modify their smart

environments. The paper proposes a higher level of ab-

straction in application design, on-the-fly development,
flexibility with respect to adding new devices and soft-

ware components. To build higher level of abstraction,

an ontology that contains the hierarchy of tasks at the

higher level is needed. The paper mentions defining

tasks and their corresponding subtasks, without pro-

viding the organization of tasks in ontologies and the
mechanism to achieve tasks. Our proposed solution in

this paper not only provides details of organizing ab-

stract goals but also provides mechanism to achieving
those goals.

D-HTN (Amigoni et al, 2005) is a planning system
for AmI applications, based on the hierarchical task net-

work (HTN) approach, that is able to find courses of

actions to address given goals. It combines concepts of
both centralized planning and distributed planning in

agent theory but the language (‘Task network’ (Erol et

al, 1996)) that is used to store goals and their courses

of actions is static. Our proposed solution also provides
a hierarchical structure to store goals and their courses

of actions but allows AmI designers to define their own

language of translation.
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In (Kawsar et al, 2008) an Artefact framework is

proposed which allows end users to deploy ubicomp
systems easily in a Do-it-yourself fashion. Secondly, it

allows developers to write applications and to build

augmented artefacts in a generic manner. The Artefact
framework provides a layered architecture where basic

artefact functionalities are combined in a core compo-

nent. Additional augmented features can be added as
plugins into the core. Each augmented feature is called

a profile. Each profile defines a specific functionality

and implements the underlying logic of the functions,

e.g., room temperature, lamp brightness. Though the
profiles provide abstraction to hide the heterogeneity of

the underlying devices, their functionality corresponds

to the functionalities of devices and lacks the focus of

providing a more generic goal that the user might wish
to achieve.

Rashidi et al. (Rashidi and Cook, 2009) proposes a
software architecture which incorporates learning tech-

niques to discover patterns in resident’s daily activities.

The activity pattern are observed by monitoring the
changes of states in different devices around the house.

After discovering an activity pattern, it stores the ac-

tivity pattern and its related temporal knowledge in a

Hierarchical activity model (HAM). HAM captures the
temporal relationships between events in an activity by

explicitly representing sequence orders in a tree struc-

ture containing Markov chains at the bottom level. The
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activities are stored based on individual devices in the

house which does not allow observers to see the bigger
picture at higher level of user goal. Though currently

our solution does not employ learning patterns to au-

tomatically extract repetitive tasks but it can easily be
employed in our proposed organization of Domotic Ef-

fects. Moreover, observing patterns at an abstract level

can give a more clear picture of user’s intentions instead
of focusing on individual device or chain of devices.

Cheng et al. (Cheng et al, 2009) proposes a smart

homes reasoning system called ASBR system. The sys-
tem learns user’s preferences by adaptive history sce-

narios and put forwards a way to rebuild reasoned knowl-

edge in other smart homes. They proposed that contex-
tual information can be extracted and reasoned as a set

of scenarios. In addition, the system can derive person-

alized habits and store them in OWL files. They do not
provide an organization mechanism and the concept of

scenario is different from our proposed effect. Effects

are different from scenarios as it is not a storage of

historical events or repetitive tasks. Though repetitive
tasks can be mapped onto effects, our approach pro-

vides complete control to the residents to define their

own abstract level control which are ultimately resolv-
able to a set of devices in certain states. The effect

based approach is designed to be extensible to smart

environments in general.

Dey et al. (Dey et al, 1999) proposes a software in-

frastructure solution to detect the current states of the

environment (called Context) and take action based on
it. The infrastructure is focused on developing context

aware applications. Though the concept of Domotic Ef-

fect can be used to monitor the current state of the envi-
ronment using the process of Effect Evaluation (Corno

and Razzak, 2012), the focus of this paper in particu-

lar is to enforce generic goals on the environment. Our
modeling allows to handle both tasks in a more sim-

ple manner. Moreover, currently the enforcement im-

plementation focuses on Boolean application domain

states, but the DogEffects ontology can be used to mon-
itor devices with continuous states, which was described

as the limitation of the infrastructure in (Dey et al,

1999). The Effect Enforcement implementation is de-
signed with the extensibility in mind, which is missing

in (Dey et al, 1999). Generally, context represents the

knowledge of external conditions and their complexi-
ties in the environment. This knowledge is used in some

way to make particular action(s) choice. The question

of how the action(s) are actually performed is not part

of the context but rather is a characteristic of the sys-
tem that handles the environment. Our paper focuses

on this internal characteristic of the system rather than

collecting conditions that triggered those actions.

Reference (Kaldeli et al, 2010) proposes a middle-

ware architecture for smart home systems. The archi-
tecture has pervasive, composition and user layers. The

composition layer contains a CSP (Constraint Satis-

faction Problem) based planner (Kaldeli et al, 2009)
which computes a plan, that is, a sequence of actions

that need to be applied in order to satisfy a user’s goal.

The goals are pre-defined in a declarative manner. Our
approach does employ declarative manner to describe

goals called domotic effects but it is more flexible as it

allows the AmI designers to define operators to manage

combinations according to environments and the user’s
can define their own domotic effects based on those op-

erator. Moreover, the planner in (Kaldeli et al, 2010)

takes time in seconds to construct a problem and de-
termine results, whereas the effect enforcement module

takes time in milliseconds for both construction of set

of Boolean equations and finding a solution.

In (Heider and Kirste, 2002; Encarnaçao and Kirste,

2005) a goal based interaction has been proposed, and

extended in (Hellenschmidt, 2005), that takes a user’s
goal and finds a path achieving the goal. The use of

propositional calculus is advocated, however, unlike our

paper, (Hellenschmidt, 2005) lacks implementation de-
tails, i.e., a proper mapping from user’s goal to propo-

sitional calculus and its interpretation. To support goal

based interaction (Heider and Kirste, 2002; Encarnaçao
and Kirste, 2005; Hellenschmidt, 2005) advocate that

each device in the environment implements an event

processing pipeline consisting of user interface, control

application and actuators. Moreover, they make an as-
sumption that each device shares data inside event pro-

cessing pipelines across all the devices present in the en-

vironment, creating a SodaPop (Self-Organizing Data-
flow Architecture suPporting Ontology-based problem

DecomPosition) model. The aim of SodaPop model is

to supports self-organization of its devices by using ad-
hoc cooperation of distributed device ensembles. In real

world, an environment comprises devices from several

different and competing vendors which may not be will-

ing to expose to other vendors internally stored infor-
mation of their devices, or may not have enough com-

puting capabilities. Domotic Effects are a more cen-

tralized approach, where all relevant information about
devices is available in the automation gateway and no

requirements are imposed onto the devices, thus provid-

ing easy and immediate interoperability with existing
devices from different vendors.

Domotic Effects provides the end user, the ability to

personalize a smart environment, as well as allows AMI
application designers to design, develop and manage

based on a higher level of abstraction. While (Rashidi

and Cook, 2009; Cheng et al, 2009) proposes a com-
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plete independent control solution based on the learn-

ing pattern of a user’s activity, the (Garćıa et al, 2010;
Katasonov, 2010; Amigoni et al, 2005) advocates en-

abling non programmers to create and manage their

smart environments according to their wishes. Provid-
ing a complete independent control extracted from a

user’s activity might not be a very good idea as it does

not allow people to program their personal spaces. It
also raises a new set of problems like privacy and secu-

rity issues. Instead of focusing on user’s goals or inten-

tions, it focuses on a set of devices and their activity.

It can be said that learning algorithms discover pat-
terns of device activity instead of user’s intention and

activity. The latter, on the other hand provide end user

programming environment but underlying structure of
organizing goals and their different courses of actions

is missing. Though (Amigoni et al, 2005; Kawsar et al,

2008; Heider and Kirste, 2002) provide goal based in-
teraction mechanism, they lacks the flexibility, separate

views of development for system designers and users

and applicability to different application domains.

7 Conclusion

This paper presented a high level approach, based on

the concept of Domotic Effects for modeling and satisfy-
ing user requests in complex smart environments. The

Domotic Effects framework, based on the DogEffects

ontology, is general, and extensible, and is easy to cus-
tomize. In particular, this paper focuses on control and

monitoring applications, where high level effects may

be described resorting to Boolean expressions defined
on device states.

The paper presented experimental examples of Sim-

ple and Complex Effects over a sample home environ-
ment setup, and shows experimental results that prove

that high-level user requests are satisfied in less than

100 ms, thanks to the mapping of the request into a
SAT problem that may be efficiently solved.

The DE framework has a wider scope of objectives.
In the future, the role of monitoring high-level state

of environment (in Boolean or Real domain) using do-

motic effect will be investigated. Moreover, the enforce-
ment approach for other application domains like En-

ergy Saving will be analyzed.
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