
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Elettronica e delle Comunicazioni

XXV Ciclo

Tesi di Dottorato

Energy Saving And Virtualization
Technologies in Switching

Nanfang Li
Mtr. 169631

Tutore Coordinatore del corso di dottorato
Prof. Andrea Bianco Prof. Ivo Montrosset

December 2012

Summary

Switching is the key functionality for many devices like electronic Router and
Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching
is responsible for moving data unit from one port/location to another (or multiple)
port(s)/location(s). In past years, the high capacity, low delay were the main con-
cerns when designing high-end switching unit. As new demands, requests and tech-
nologies emerge, flexibility and low power cost switching design become to weight
the same as throughput and delay. On one hand, highly flexible (i.e, programming
ability) switching can cope with variable needs stem from new applications (i.e,
VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce
the energy and power dissipation for switching could not only save bills and build
echo system but also expand components life time. Many research efforts have been
devoted to increase switching flexibility and reduce its power cost. In this thesis
work, we consider to exploit virtualization as the main technique to build flexible
software router in the first part, then in the second part we draw our attention on
energy saving in NoC (i.e, a switching fabric designed to handle the on chip data
transmission) and software router.

In the first part of the thesis, we consider the virtualization inside Software
Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs),
become an appealing solution compared to traditional Proprietary Routing Devices
(PRD) for various reasons such as cost (the multi-vendor hardware used by SRs
can be cheap, while the equipment needed by PRDs is more expensive and their
training cost is higher), openness (SRs can make use of a large number of open
source networking applications, while PRDs are more closed) and flexibility. The
forwarding performance provided by SRs has been an obstacle to their deployment in
real networks. For this reason, we proposed to aggregate multiple routing units that
form an powerful SR known as the Multistage Software Router (MSR) to overcome
the performance limitation for a single SR. Our results show that the throughput
can increase almost linearly as the number of the internal routing devices. But
some other features related to flexibility (such as power saving, programmability,
router migration or easy management) have been investigated less than performance
previously.

III

We noticed that virtualization techniques become reality thanks to the quick
development of the PC architectures, which are now able to easily support several
logical PCs running in parallel on the same hardware. Virtualization could pro-
vide many flexible features like hardware and software decoupling, encapsulation of
virtual machine state, failure recovery and security, to name a few. Virtualization
permits to build multiple SRs inside one physical host and a multistage architec-
ture exploiting only logical devices. By doing so, physical resources can be used
in a more efficient way, energy savings features (switching on and off device when
needed) can be introduced and logical resources could be rented on-demand instead
of being owned. Since virtualization techniques are still difficult to deploy, several
challenges need to be faced when trying to integrate them into routers. The main
aim of the first part in this thesis is to find out the feasibility of the virtualization
approach, to build and test virtualized SR (VSR), to implement the MSR exploiting
logical, i.e. virtualized, resources, to analyze virtualized routing performance and
to propose improvement techniques to VSR and virtual MSR (VMSR).

More specifically, we considered different virtualization solutions like VMware,
XEN, KVM to build VSR and VMSR, being VMware a closed source solution but
with higher performance and XEN/KVM open source solutions. Firstly we built and
tested each single component of our multistage architecture (i.e, back-end router,
load balancer)inside the virtual infrastructure, then and we extended the perfor-
mance experiments with more complex scenarios like multiple Back-end Router (BR)
or Load Balancer (LB) which cooperate to route packets. Our results show that vir-
tualization could introduce 40 % performance penalty compare with the hardware
only solution. Keep the performance limitation in mind, we developed the whole
VMSR and we obtained low throughput with 64B packet flow as expected. To in-
crease the VMSR throughput, two directions could be considered, the first one is
to improve the single component (i.e, VSR) performance and the other is to work
from the topology (i.e, best allocation of the VMs into the hardware) point of view.
For the first method, we considered to tune the VSR inside the KVM and we stud-
ied closely such as Linux driver, scheduler, interconnect methodology which could
impact the performance significantly with proper configuration; then we proposed
two ways for the VMs allocation into physical servers to enhance the VMSR per-
formance. Our results show that with good tuning and allocation of VMs, we could
minimize the virtualization penalty and get reasonable throughput for running SRs
inside virtual infrastructure and add flexibility functionalities into SRs easily.

In the second part of the thesis, we consider the energy efficient switching de-
sign problem and we focus on two main architecture, the NoC and MSR. As many
research works suggest, the energy cost in the Communication Technologies (ICT
) is constantly increasing. Among the main ICT sectors, a large portion of the en-
ergy consumption is contributed by the telecommunication infrastructure and their
devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc.

IV

More in detail, the linecards, links, System on Chip (SoC) including the transmit-
ter/receiver on these variate devices are the main power consuming units. We firstly
present the work on the power reduction of the data transmission in SoC, which is
carried out by the NoC. NoC is an approach to design the communication subsystem
between different Processing Units (PEs) in a SoC. PEs could be different elements
such as CPU, memory, digital signal/analog signal processor etc. Different PEs per-
forms specific tasks depending on the applications running on the chip. Different
tasks need to exchange data information among each other, thus flits (chopped
packet with limited header information) are generated by PEs. The flits are in-
jected into the NoC by the proper interface and routed until reach the destination
PEs. For the whole procedure, the NoC behaves as a packet switch network. Stud-
ies show that in general the information processing in the PEs only consume 60 %
energy while the remaining 40 % are consumed by the NoC. More importantly, as
the current network designing principle, the NoC capacity is devised to handle the
peak load. This is a clear sign for energy saving when the network load is low.

In our work, we considered to exploit Dynamic Voltage and Frequency Scaling
(DVFS) technique, which can jointly decrease or increase the system voltage and fre-
quency when necessary, i.e, decrease the voltage and frequency at low load scenario
to save energy and reduce power dissipation. More precisely, we studied two different
NoC architectures for energy saving, namely single plane chip and multi-plane chip
architecture. In both cases we have a very strict constraint to be that all the links
and transmitter/receivers on the same plane work at the same frequency/voltage
to avoid synchronization problem. This is the main difference with many existing
works in the literature which usually assume different links can work at different
frequency, that is hard to be implemented in reality. For the single plane NoC, we
exploited different routing schemas combined with DVFS to reduce the power for
the whole chip. Our results haven been compared with the optimal value obtained
by modeling the power saving formally as a quadratic programming problem. Re-
sults suggest that just by using simple load balancing routing algorithm, we can save
considerable energy for the single chip NoC architecture. Furthermore, we noticed
that in the single plane NoC architecture, the bottleneck link could limit the DVFS
effectiveness. Then we discovered that multiplane NoC architecture is fairly easy
to be implemented and it could help with the energy saving. Thus we focus on the
multiplane architecture and we found out that DVFS could be more efficient when
we concentrate more traffic into one plane and send the remaining flows to other
planes. We compared load concentration and load balancing with different power
modeling and all simulation results show that load concentration is better compared
with load balancing for multiplan NoC architecture.

Finally, we also present one of the the energy efficient MSR design technique,
which permits the MSR to follow the day-night traffic pattern more efficiently with
our on-line energy saving algorithms.

V

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Andrea
Bianco, for the profound advice, suggestions and helpful discussions during the past
three years. His precise observation and deep insight on my research topics helps
me significantly.

Secondly, I would like to thank Prof. Paolo Giaccone, who provided me very solid
guides on varies aspects such as research methodologies, implementation techniques,
presentation skills etc. Without the help and advise from him, it would not be
possible to conduct the research works on Network on Chip.

Thirdly, I would like to thank Luca Giraudo, Robert Birke, Fikru Getachew
Debele, Prof. Mario Roberto Casu, Prof. Luca Abeni for different helps and collab-
oration on my diverse research topics. It was very delighted, interesting and helpful
to work with them all, their different scientific expertise is pretty valuable to me.

Last but not least I want to thank my parents and my wife Boyun who give me
support continuously during my whole study period. Without their help, it would
have been never possible to accomplish the Ph.D degree.

VI

Contents

Summary III

Acknowledgements VI

I Virtualization Techniques in Software Router 1

II Virtualization Techniques in Software Router 3

1 Introduction 5

1.1 Software Router . 5
1.2 Multistage Software Router . 6

1.3 Virtualization on Software Router . 7

2 Virtualization and Related Works 11

2.1 Virtualization Techniques . 12

2.2 Networking Virtualization . 13

3 Virtualized Multi-stage Software Router 15

3.1 XEN-based Implementation . 16

3.2 VMware-based Implementation . 16

3.3 Experimental Setup and Results . 18

3.3.1 Load Balancers . 19

3.3.2 Back-end Routers . 22
3.3.3 Local Testbed for a Multi-Stage Software Router 23

3.3.4 FEDERICA-slice Based Experiments 26

3.4 How to Improve MSR’s Performance 28

3.4.1 Mapping of VMs to Physical Servers 28

3.4.2 VMs CPU Affinity Exploration 32

3.5 Conclusions and Future Work . 35

VII

4 Tuning KVM to Enhance Virtual Routing Performance 37
4.1 Introduction . 37
4.2 KVM Virtualization Framework . 39
4.3 Monotonic Virtualized Software Router Performance 40
4.4 Aggregating Multiple Virtual Routers 42
4.5 Performance Evaluation . 44

4.5.1 Virtual Network and Linux Scheduler Tests 45
4.5.2 Parallel Virtualized Router Performance 46
4.5.3 Multistage Virtualized Router Performance with Optimization 47

4.6 Conclusions and Future Work . 48

III Energy Saving Techniques in Network on Chip and
Multistage Software Router 49

5 Introduction 51

6 Balancing Traffic to Save Power Through DVFS in NoC 55
6.1 Introduction . 55
6.2 Related Work . 57
6.3 NoC Model Description . 58

6.3.1 Network Topology and Traffic model 58
6.3.2 Power Model and Power Control 59
6.3.3 Traffic Virtual Load and Power 60

6.4 The DVFS Power Control . 61
6.4.1 Exploiting DVFS with Load Balancing 61

6.5 Simulation and performance evaluation 63
6.6 SystemC Verification . 66
6.7 Conclusions . 68

7 Exploiting Space Diversity and DVFS in Multiplane NoC 69
7.1 Introduction . 69
7.2 Multi-plane NoC model . 71

7.2.1 Power Model . 72
7.2.2 Traffic Model . 73

7.3 Traffic Allocation for Two-Planes NoC 73
7.3.1 A toy scenario . 74
7.3.2 Traffic Allocation Algorithms 75

7.4 Performance Evaluation . 80
7.5 Accurate Power Model Validation . 84
7.6 Conclusions . 88

VIII

8 Energy Efficient Distributed Software Router Design 91
8.1 Introduction . 91
8.2 Energy Efficient Back-end Routers Design 93

8.2.1 Goal Programming Design Approach 94
8.2.2 Heuristic Design Approach . 95
8.2.3 Locally Optimal Design Approach 96

8.3 Design Validation . 96
8.3.1 Traffic Traces . 96
8.3.2 Experimental Setup . 96
8.3.3 Results . 98

8.4 Conclusions . 102

9 Conclusion 103

Bibliography 105

IX

List of Tables

3.1 Fairness tests for OSR on VMware ESXi: throughput of two flows
with 64 bytes when varying the relative flow load. 24

3.2 Description of the test scenarios for VM mappings 29
6.1 Normalized power cost through SystemC verification under hot spot

traffic matrix and XY routing . 68

X

List of Figures

1.1 Example of the multi-stage router composed by two load balancers
and three back-end routers: all internal elements run on a different
PC to improve performance and reliability. 7

1.2 Example of a virtualized multi-stage router architecture: three phys-
ical servers hosts different VMs building one virtualized multi-stage
router. 8

3.1 VMware Internal Switch limitation: the vSwitch does not support the
Ethernet backward-learning mechanism. The internal communication
among LBs and BRs is not working properly. 17

3.2 Internal configuration of a VMware-based multi-stage router to limit
packet flooding: solution based on per-port VLAN tagging as sup-
ported by VMware vSwitch. 18

3.3 Click based load balancer configuration: 3.3(a) from external to in-
ternal and 3.3(b) from internal to external. 20

3.4 Performance evaluation of Click-based load balancer in a Physical
server 3.4(a) and VMware ESXi 4.0 environment 3.4(b) using 64
bytes packets. 21

3.5 Performance evaluation of OSR in the VMware ESXi 4.0 environment
using VMware’s VMXNET driver and 64 bytes packets. All VM are
routing packets concurrently 3.5(a) and only 1 active VM is routing
packets 3.5(b) . 23

3.6 The implementation of the multi-stage software routers in the two
physical servers scenario. 24

3.7 Performance evaluation of multi-stage router (2 LBs + 2 BRs) in the
VMware ESXi 4.0 environment with different internal configurations.
From left to right: 64, 512 and 1500 bytes packets. 25

3.8 A slice of the FEDERICA infrastructure and the corresponding multi-
stage software routers implementation. 27

3.9 The FEDERICA-slice based multi-stage software routers packet re-
ceiving rate with minimum and maximum value 3.9(a) and packet
delay with standard deviation 3.9(b) under full mesh traffic scenario. 28

XI

3.10 Logical separation among servers. (a) Scenario C.1: A physical bot-
tleneck among the servers and (b) Scenario D.1: No physical bottle-
neck among the servers . 30

3.11 Virtual functional units optimal location mapping tests inside VMware
ESXi 4.0: left is under 64 byte packet size, middle is under 512 byte
packet size and right is under 1500 byte packet size 31

3.12 VMs CPU affinity test under VMware EXSi 4.0: the demonstration
of different CPU mapping schemas. 33

3.13 VMs cpu affinity tests under VMware EXSi 4.0 for LB 3.13(a) and
BR 3.13(b). 34

3.14 Multi-stage software routers virtual component affinity configurations
against physical cpu cores experiments inside VMware ESXi 4.0. . . . 35

4.1 Performance of a monolithic virtual router, increasing the number of
CPU cores. 41

4.2 The implementation of the multistage software router inside a KVM
server: 1 load balancer and 1 back-end router, with different inter-
connection networks. 44

4.3 Forwarding performance in KVM virtualized environment, with macv-
tap and bridge configurations, different priorities for the vhost and
vcpu threads. 45

4.4 Performance of a PVR on 4 CPU cores, increasing the number of
aggregated routers. 46

4.5 Effects of CPU bindings on the MSR performance. 47
6.1 Reducing the NoC supplying voltage to half implies reducing the chip

working frequency to half. Bit transmission duration is doubled. . . . 57
6.2 A 4× 4 NoC grid topology . 59
6.3 Load balancing exploiting 4P-ES routing 63
6.4 Power of a 5× 5 NoC under normal traffic pattern 65
6.5 Power of a 5× 5 NoC under transpose traffic pattern 66
6.6 Power of a 5× 5 NoC under hot-spot traffic pattern 67
7.1 A two planes NoC architecture. The interconnection network among

the routers in the second plane is the same as in the first plane. Each
processing element (PE) is connected to two routers, one for each plane. 70

7.2 The physical implementation of a two planes NoC and one tile archi-
tecture . 72

7.3 On the left, the MPEG4 decoder task graph (derived from [1]) with
the traffic demand among PEs, expressed in normalized rate units.
On the right, it is shown the mapping of each PE into a 4 × 4 mesh
NoC architecture. 81

7.4 Power consumption of 5×5, double plane, mesh network under normal
traffic pattern and different loads. 82

XII

7.5 Power consumption of 5× 5, double plane, mesh network under hot-
spot traffic pattern and different loads 83

7.6 Power consumption of 4 × 4, double plane, mesh network under
MPEG4 decoder traffic . 83

7.7 Minimum power supply voltage as a function of frequency for Intel
80 core and 48 core router designs. 85

7.8 Power at full and at no load for the Intel’s 80 core router as a function
of clock frequency. Supply voltage was set at the minimum value that
guarantees correct operation at chosen frequency. 86

7.9 Power at full and at no load for the Intel’s 48 core router as a function
of clock frequency. Supply voltage was set at the minimum value that
guarantees correct operation at chosen frequency. 87

7.10 Power consumption of the Intel 48 cores NoC under hot-spot traffic
pattern and different loads. 88

8.1 MSR Architecture: the load balancers (first stage), the switch (second
stage) and the back-end routers (third stage) 92

8.2 Input traffic trace used in the experiment 97
8.3 MSR power dissipation of different design approaches based on 60min

sampling . 99
8.4 Energy consumption of back-end routers selected by different design

approaches (based on 60 min traffic sampling) 100
8.5 Cluster cost for different design approaches 101
8.6 Design and sampling mismatch effect 102

XIII

Part I

Virtualization Techniques in
Software Router

Chapter 1

Introduction

Routers are the most important components for modern packet networks and of
the Internet in particular. The demand for high-performance switching and trans-
mission equipment keeps growing, due to the continuous increase in the diffusion of
Information and Communications Technologies (ICT) and new bandwidth-hungry
applications and services. Routers have been able to follow the performance growth
by offering an ever increasing transmission and switching speed, mostly thanks to the
technological advances of microelectronics. But from other points of view, nearly all
of these high-end enterprise routers and core routers are based on proprietary archi-
tectures from such as Cisco, 3com, HuaWei etc. These may raise the compatibility
issue. In the meantime, the configuration and training cost to manage multi-vender
routers with different architecture is very high. Under such conditions, the market
requirement and new user demands stimulate the emergence of open source software
router, which is based on the off-the-shell Personal Computer (PC).

1.1 Software Router

Open source Software Routers (OSRs) represent an appealing alternative to pro-
prietary network devices because of the wide availability of multi-vendor PC hard-
ware, their low cost, the continuous performance evolution driven by the PC-market
economy, and the large availability of open-source software for networking applica-
tions, such as Linux, BSD, Click[2], XORP[3] and Quagga[4].

Indeed, despite of the limitations of bus bandwidth, CPU and memory-access
speed, current PC-based routers have a traffic-switching capability in the range of
some Gigabits per second, which is more than enough for a large number of ap-
plications. Furthermore, keeping this in perspective, performance limitations are
compensated by the natural PC architecture evolution driven by Moore’s law. How-
ever, high-end performance cannot be easily obtained today with PC-based routers.

3

1 – Introduction

Thus the research community devoted a lot of efforts either to optimize the internal
architecture of OSR [5, 6] or to devise strategies to aggregate software routers to
build more powerful routing units [7, 8, 9, 10, 11, 12, 13].

1.2 Multistage Software Router

To overcome some of the limitations of OSRs based on a single PC, we proposed
to create a large size OSR exploiting a distributed, multi-stage switching architec-
ture [14, 15, 16, 17]. Performance measurements show that routing capabilities may
scale up almost linearly with the number of internal elements. Furthermore, im-
plementation of recovery mechanisms into the management plane can increase OSR
resilience to close the gap with carrier-grade routers.

The multi-stage router defined in [14] is organized in three stages (Fig. 1.1), char-
acterized by three different internal elements: first stage load balancers (LB), second
stage interconnecting switches and third stage back-end routers (BR). In the first
stage, LBs permit to scale the number of interfaces, mask the internal router struc-
ture to external devices and balance the incoming traffic load by sending packets
to selected BRs according to a round-robin- or hash-based balancing scheme. The
second stage is composed by one or more Ethernet switches that implement a logical
full-mesh among elements in the first and third stages. Finally, the third stage is
composed of BRs that forward packets at the IP layer. An internal control protocol,
named as DIST [15], runs to manage the architecture, to identify the internal ele-
ments, to configure LBs and BRs, to distribute and synchronize the routing tables
among BRs and to introduce features such as energy saving mechanisms based on
switching on/off internal elements depending on the load [18]. DIST is based on
the master-slave paradigm and the Virtual CP (i.e. virtual control processor) is the
DIST master running on an elected BR, as more precisely described in [15]. This
architecture is a centrally controlled distributed router architecture, similar in spirit
to the centralized controller based approach pursued in Openflow [19].

The main advantages of this multistage architecture can be summarized as:

� Overcome performance limitations of a single-PC-based router by offering mul-
tiple, parallel data paths to packets.

� Upgrade router performance by incrementally adding more switching elements
or incrementally upgrading each switching element.

� Scale the total number of interfaces the node can host, and as a consequence,
the router capacity.

� Automatically recover from faults, that is, reconfiguration can occur in case
of any PC/element failure.

4

1.3 – Virtualization on Software Router

Figure 1.1. Example of the multi-stage router composed by two load balancers
and three back-end routers: all internal elements run on a different PC to improve
performance and reliability.

� Support a fully asynchronous behavior.

� Provide functional distribution, to overcome single-PC CPU limitations, for
example, allowing the offloading of CPU-intensive tasks such as filtering/cryptography
to dedicated PC.

1.3 Virtualization on Software Router

As recognized by several researchers [20, 21, 22], virtualization techniques may
become an asset in networking technologies in general and in the field of distributed
router architectures in particular. Instead of buying high-end proprietary hardware-
based routers, an ISP or a network administrator could either manage or even rent
logical elements running on VMs (Virtual Machines) to build either a multi-stage
router architecture, i.e, a centralized interconnection network, or a more classical
meshed network of routers. This enables on one hand to re-use and share the existing
computing power available into the enterprise data-centers and on the other hand, to
flexibly adjust the router capacity to adapt it to traffic needs, enabling energy-aware
control techniques.

More precisely, when building the Multi-stage Software Routers (MSR) based on
VMs, three main advantages can be highlighted:

� larger scalability: new internal elements can be deployed in a seamless way
when traffic increases or more interfaces are needed. This enables renting of

5

1 – Introduction

resources from data center servers, for example when new VMs are needed to
add forwarding capacity;

� easier management and reliability: migration of VMs during maintenance pe-
riods can be implemented and faster reaction to failures should be expected
by booting new VMs on general purpose servers;

� slicing: sharing of the same physical infrastructure among different multi-stage
routers which are possibly dedicated to different types of traffic (e.g., logical
separation of the operational and of the experimental networks).

Figure 1.2. Example of a virtualized multi-stage router architecture: three physi-
cal servers hosts different VMs building one virtualized multi-stage router.

As an example, we report in Fig. 1.2 a use case referring to a distributed router
based on the multi-stage architecture. External and internal network connections
are terminated into the computing server farm, where VMs act as LBs, switches
or BRs. This solution permits i) to locate VMs on different physical servers to
upgrade the overall routing capacity; ii) to share the same physical server among
several VMs to increase resource utilization; iii) to build the multi-stage architecture
in a mixed approach exploiting both virtual and physical elements; iv) to deploy
consolidation mechanisms, e.g. to move all virtual routers to a physical server and
turn off unused servers during low traffic periods. These features introduced by
virtualization are useful to improve performance and flexibility of the multi-stage
architecture. However, some issues need more investigation:

� performance penalties due to hardware abstraction and resource contention
[23];

6

1.3 – Virtualization on Software Router

� additional complexity for the management plane, due to the joint presence of
physical and virtual resources;

� larger latency due to the introduction of additional virtualization layers and
internal operational cost.

In the first party of the thesis we focus the attention on assessing the feasibility of
the multi-stage architecture based on VMs and on the identification of performance
impairments due to the use of virtualization techniques. We also provide guidelines
on how to map the virtual resources to the existing physical devices and on properly
binding VMs to CPU to CPU cores for higher throughput.

7

Chapter 2

Virtualization and Related Works

Virtualization has been developed for nearly 40 years since the late 1960s. In
the early stage, general purpose computing unit was very expensive, thus it is not
possible to own private computers for each single person, then sharing the same
hardware among multiple users with different purposes was the key solution to meet
with user requirements, this could be considered as the very basic virtualization
concept at that time. But in the 1980s and 1990s, the multi-task Operating Systems
(OS) and the drop in hardware cost made the “sharing” feature no more interesting.
As many minicomputers and personal computers became a reality and popular,
virtualization was considered only as a historical curiosity by the academics and
industry in late 1990s.

Although the development of multitasking OS and hardware cost dropping pre-
vented the virtualization techniques in 1990s, as time passed on, they became posi-
tive force for virtualization. Nowadays, more and more powerful PCs with low cost
appear in the markets, which provide the opportunity to run multiple OSs under a
single host. Further more, cheap hardware cost lead to a over-provision scenario in
current telecommunication networks, which provide not only the under used server
and network but also heavy management overhead. The increased functionalities
have also made servers and networks fragile and vulnerable. In such situations,
virtualization become an appealing solution, which can slice the the hardware for
multiple users to increase resource utilization and consolidate light loaded servers
into few to alleviate the management effort. Virtualization could also provide se-
curity and reliability functionalities more easily than hardware only solution, and
it has some peculiar feature like providing researchers the opportunity to test and
run innovative experiments on industry network. All these features stimulate vir-
tualization a hot topic in recent years. The leading company like VMware, IBM,
Microsoft developed their own solutions for virtualization such as VMware ESX(i)
server, Windows Server Hyper-V, System-Z etc [24, 25, 26]. In research centers and
universities, people are developing new methodologies based on virtual machines to

9

2 – Virtualization and Related Works

solve new problems such as mobility, security and manageability etc.

2.1 Virtualization Techniques

The main idea of virtualization is to represent some physical resource (e.g. CPU
and memory) with an abstract description which can be identical or completely
different (e.g. emulation) to the physical machine depending on the purpose of
virtualization. This concept was firstly used to improve the CPU resource efficiency
and to support different requirements from different users (e.g. different operating
systems on the same hardware at the same time). Multiple users could share the
same hardware without interfering with each other. Even more, they feel like to
have exclusive access to the physical resources. This technology is named as full
virtualization: all features of the physical hardware are reflected into one or more
virtual machines (VM), which is an abstract representation of the complete physical
machine. A middle layer software, named as hypervisor or VMM (Virtual Machine
Monitor), is used to take control over the real hardware, to manage its abstractions
and to rule the contentions to resources (e.g. using resource schedulers for CPU,
memory, storage and network too).

Today many virtualization techniques are available and they are differentiated
by the completeness of the VM description and by the level of integration among the
hypervisor and the guest operating system. A brief list of virtualization techniques
is as follow:

� Emulation: VM and physical machine are completely different, hypervisor
intercepts and translate all interactions among virtual and physical devices
with high computational costs. VM description is complete. The typical ob-
jective is to run the software designed for a different architecture. Bochs [27]
is an emulation-based project which gives the ability to run any x86 operat-
ing system on other architectures like Alpha or PPC. QEMU [28] is another
emulation-based one, supplying the similar functionalities like Bochs but with
an alternative running mode: allowing the binary codes compiled for differ-
ent architecture launch directly on your x86 Linux, a light weight emulation
without the I/O periphery.

� Full virtualization: The VM description is complete, but virtual and phys-
ical devices mostly belong to the same family. The hypervisor is simpler and
more efficient than in the emulation case, but it has to virtualize all the fea-
tures of the physical hardware. Examples are VMware ESX [24] and IBM
System-Z [26];

10

2.2 – Networking Virtualization

� Para-virtualization: The VM description is partial and the guest VM is
modified to be aware of the virtualization infrastructure and to interact proac-
tively with the hypervisor. This solution is efficient, but it may be not feasible
in some cases when guest O.S. can not be modified and there is no support
from the O.S. developer. Para-virtualization examples are XEN [29] and KVM
[30]1;

� Operating System-level virtualization: the virtualization interface is moved
up in the architecture, since O.S. kernel resources are virtualized instead of the
physical resources. This approach is very efficient and the integration among
hypervisor and guest VMs is very tight, thus strong constraints are imposed on
the guest O.S. (e.g. same kernel for the hypervisor and guest O.S.). Examples
are OpenVZ [31] and Linux Namespaces [32].

Thanks to the fast evolution of semi-conductor technology and the large avail-
ability of hardware resources, the main motivations for the usage of virtualization
today [33, 34] are no longer to share the expensive hardware resources but to:

� Consolidate of resources: to improve the utilization of resources to mini-
mize costs (CAPEX and OPEX), power consumption and management com-
plexity;

� Decouple services from servers: to make services independent from phys-
ical resources and to introduce more flexibility (e.g. service migration, early
stage cross-platform software test), security (e.g. isolation), redundancy and
fault tolerance.

2.2 Networking Virtualization

Since the virtualization of network resources is considered as a major oppor-
tunity to foster the innovation in the Internet and to solve the Internet ossifica-
tion [33, 34, 34] problem, many research projects are working on virtualization
technologies today. For instance, GENI [35] is a NSF research project (U.S.A.) on
future Internet architectures where virtualization technologies are used to create
slices of the network. On the European side, the FP7 FEDERICA project [36, 20]
uses a similar approach based on virtualization to create network slices to support
research activities. Furthermore, network device manufacturers like Cisco and Ju-
niper are supporting network virtualization into their products as well. In most

1Both XEN and KVM have full virtualization feature, which we do not consider due to the
poor performance.

11

2 – Virtualization and Related Works

recently, many companies like Amazon and Microsoft are building services related
to network virtualization and cloud computing.

Despite the works related to the high level network virtualization, many other
researches focus the attention on how to virtualize the key network component, i.e,
router or switching point, and on evaluating or improving its performance. Software
routers based on XEN has been studied extensively [29, 37, 23], the main conclusion
is that the DomU, i.e, the guest domain, is not suitable for routing purpose due to
the high overhead and low performance. More recent works on XEN [38, 39] shows
that it is possible to optimize the router internal architecture (i.e, maintain the
packet in the same CPU cache, multi-queue network interface support) to highly
improve the SR’s performance. Some similar works related with other virtualization
technologies like OpenVZ, Linux namespace [40], User-Mode-Linux and Click [41]
can be found in the literature. Not only inside academia, virtualization is also
popular commercially [42], due to their flexibility and capex/opex saving, which
also motivated us to build our MSR by virtual resource only.

To improve the SR’s performance, we can either optimize the SR’s internal ar-
chitecture as discussed in the aforementioned works, or we can consider from the
architectural point of view, i.e, combine multiple routing elements in a systematical
way to obtain a ”big” router which has the aggregate performance and higher num-
ber of interfaces. For instance, Router Bricks [43] exploits server cluster and valiant
load balancing schema to build a flat router architecture, i.e, all servers are external
load balancers and internal routing elements as well as intermediate nodes. In our
research project we focus the attention on the multi-stage architecture and on the
adaptations required to run it on top of a virtualization infrastructure. We are in-
terested in using virtualization as a tool to create the internal elements (i.e, routing
units) of our distributed router architecture. Our efforts are devoted to understand
the functional limitations and to evaluate the unavoidable performance losses on the
multi-stage router architecture introduced by the additional virtualization software
layers as presented in [23].

12

Chapter 3

Virtualized Multi-stage Software
Router

We wish to test the feasibility of building the multi-stage architecture in a vir-
tual environment, where all internal elements are running on VMs instead of physical
PCs. In the original multi-stage implementation, FPGA-based LBs were also con-
sidered to improve balancing speed. However, in this thesis we limit our analysis to
software LB implementations based on Click Modular Router to take full advantage
of the virtualization infrastructure.

Among the existing virtualization frameworks, the emulation-based and the Op-
erating System (OS) level-based (also named container-based) solutions are not suit-
able for our purposes. On one hand container-based solutions are fast, but the host
OS and the guest OS share the same kernel [44]. This is a very tight constraint
in the heterogeneous environment that we are considering, where VMs may move
among different physical servers to exploit existing processing power. Indeed we
should guarantee the same OS on all servers, which may be infeasible from a prac-
tical point of view. On the other hand emulation-based approach has different
design objectives and it shows very poor performance when compared to full- and
para-virtualization [45]. Thus, we draw our attention on two hypervisor-based in-
frastructures: XEN and VMware ESXi. Both provide similar functionalities (e.g.
full virtualization or para-virtualization depending on CPU features) using different
approaches. XEN is an open-source project based on the Linux kernel, meanwhile
VMware is a closed-source project.

Recall that the proposed architecture is composed of three stages:

� first-stage: layer-2 LBs distribute the input traffic load to BRs.

� interconnection network: a mesh-based switched network between the first
stage LBs and the third stage BRs. Multiple paths between the LBs and BRs
could exist to support fault recovery.

13

3 – Virtualized Multi-stage Software Router

� third-stage: BRs, i.e, forwarding engines, route packets to the proper LB.

In the next sections we analyze the implementation details of the main compo-
nents (e.g. click-based software LB, software switches-based internal network and
BRs) running as XEN and VMware VMs. We show that the MSR architecture is
feasible in both cases, but with different configurations, constraints and performance.

3.1 XEN-based Implementation

The design objective of the virtual MSR is to build the multi-stage virtualized
architecture using independent VMs sharing a common physical infrastructure. Ev-
ery VM is using its own routing or load balancing table and forwarding mechanisms.
No resource sharing can be envisioned among LBs and among BRs.

The implementation of the virtualized multi-stage router is relatively easy in
XEN, because XEN provides standard Ethernet switch functionalities (e.g. using
bridge-utils software package) and no limitations are imposed on VMs (both LB
and BR). Thus the MSR implementation on XEN is equivalent to implement it on
physical Linux PCs. Three kinds of internal networking configurations are available,
namely bridged, routed and hybrid [23, 46]. In the multi-stage router context the
routed or hybrid configurations cannot be used although they would show better
performance as described in the research literature. Indeed, an important feature of
the multi-stage architecture is that the various BRs should be identical in layer-3 (i.e,
IP addresses on the interfaces) since each BR could potentially process all the traffic
during low load periods. The LBs balance the traffic to BRs based only on their
MAC addresses. The routed and hybrid configurations in XEN require IP routing
to send packets from Dom0 to DomU, which implies that different DomU should
have different IP addresses. For this reason, we rely on the bridged configuration,
which is less efficient from the performance point of view, but it permits to build
the virtual MSRs inside XEN.

3.2 VMware-based Implementation

Being VMware closed source, it is difficult to obtain details on the internal net-
working architectures and available features. Thus, we rely mainly on the vSphere
management interface and VMware drivers to interact with the virtualization infras-
tructure. In our experiments we choose VMware ESXi, the free version of the most
popular VMware ESX server virtualization; it lacks some management features,
while the same technological core is used. Both solutions are targeting the server
virtualization (e.g. VM hosting). Thus, they show some design limitations and con-
straints while using them to build a networking infrastructure as in our case. As a

14

3.2 – VMware-based Implementation

result, the implementation of the multi-stage router in this scenario is more difficult
because the internal software switch (named vSwitch) is not behaving as a standard
Ethernet switch mainly due to security and isolation issues. Indeed, vSwitch only
implements a crippled backward address learning mechanism (as described in detail
later), which is not the standard one that is fundamental to guarantee the normal
operation of our architecture.

More precisely, the vSwitch has two operational modes:

1. promiscuous mode on (hub): broadcasting the packets to every port except
the receiving one.

2. promiscuous mode off (switch): allowing for at most one MAC address asso-
ciated with a switch port. Thus, only the packets with this MAC destination
are forwarded to the associated port, whereas packets with other destinations
can not transverse this port, i.e, the packets will be dropped.

vSwitch

vSwitch

VMware server

LB inR
port1 port2

exR

Switching-Table port1
port2

known Mac Needed Mac

LB-eth inR-ethexR-eth

LB-eth

inR-eth
LB-eth, exR-eth

inR-eth

Figure 3.1. VMware Internal Switch limitation: the vSwitch does not support the
Ethernet backward-learning mechanism. The internal communication among LBs
and BRs is not working properly.

From the performance point of view, the first operational mode is not well suited
mainly because of the excessive packet broadcasting mechanism which would disrupt
the load balancing functionality. The second solution has to face the limitations in
the vSwitch that do not permit to support LBs standard operation, as shown in
Fig. 3.1. Indeed, LBs receive from BRs the packets which are not addressed to
their internal MAC addresses but to the MAC addresses of the external devices.
Unfortunately, all packets with MAC destination addresses different from the LB
MAC address are discarded by the vSwitch (in switch mode).

15

3 – Virtualized Multi-stage Software Router

Since it is not possible to configure the vSwitch to behave as a standard Ethernet
switch, we define a workaround to make the system work in a proper way. Two
possible solutions can be considered:

� hub config: use as many two-port hubs (promiscuous mode on) as the number
of interconnections among LBs and BRs to create point-to-point links among
stages. Every hub connects one LB and one BR only;

� VLAN config: use one vSwitch, as shown in Fig. 3.2, and configure one VLAN
for each BR-LB pair.

Both solutions are equivalent from the functional point of view and they permit
to implement a fully-functional MSR. Remember, in both cases an additional hub
(or VLAN) (e.g. VLAN m in Fig. 3.2) is needed to interconnect all LBs and BRs
with a full-mesh network to allow the normal operation of the DIST control plane.

Figure 3.2. Internal configuration of a VMware-based multi-stage router
to limit packet flooding: solution based on per-port VLAN tagging as
supported by VMware vSwitch.

3.3 Experimental Setup and Results

In this section we implement the virtual MSR and test its performance in dif-
ferent scenarios. All the experiments on a single physical server were run on a Dell
Power Edge T100 PC equipped with an Intel Xeon E3110 running at 3.0 GHz with

16

3.3 – Experimental Setup and Results

vmx hardware support for virtualization, 2 cores, 8 GB DDR2 RAM and 2 Intel
PRO/1000 dual-ports network interface cards (NIC) with 82571EB Gigabit Ether-
net Controller and are inserted in PCIe x4 slots. The driver versions are 7.3.21-k3
with the NAPI patch in the router tests and 7.3.20-k2 with or without NAPI patch
in the LB tests 1. When two physical servers are involved, an additional SuperMicro
C2SBX server is used. It is similar with the DELL server except for the CPU (Intel
Core 2 Duo E6750 @ 2.66 GHz). The chosen hypervisors are XEN 3.3 and VMware
ESXi 4.0. VMs run Ubuntu 9.04 with Linux kernel 2.6.28-11-generic. Traffic is
generated and received by an Agilent N2X RouterTester [47], the Gigabit Ethernet
modules have been used and they have the capability to generate and receive Eth-
ernet frames of any size in line rate. Graphs report the average of five independent
runs; the performance difference among the five tests is negligible because the tests
provided by the measurement tool are well-designed, precise and long enough to
obtain stable results. When a single stage is tested, we use one vSwitch to directly
connect VMs to one physical NIC; in the case of the multi-stage architecture, a more
complex configuration scheme is needed, as described in Sec. 3.2.

Results related to XEN are not reported because the bridged configuration ex-
hibits very poor performance, as also reported in [23]. For instance, our experiments
show that in a 64 bytes packets scenario, the XEN DomU is only able to forward
at most 150 kpps, and in deep overload scenarios (e.g. input load larger than 1.2
Mpps) throughput drops to 10 kpps (roughly 5 Mbps). Similar results hold when
increasing the number of virtual routers in DomU. Since the throughput provided
by XEN-based VMs is really poor, it is not possible today to build a virtual MSR
with reasonable forwarding rate. Thus, we focus on VMware based solution only.
All the results refer to VMware ESXi 4.0, which uses a hybrid approach of binary
translation and hardware assisted virtualization [48] to achieve better performance.

Graphs also reports the routing performance of the physical machine running
Linux (1 or 2 active CPU cores, identified by the Phy prefix) to provide an upper
bound to the VM forwarding performance. Preliminary tests not reported in this
thesis show that VMware performs better when both CPU cores are active. Thus,
all VMware ESXi tests refer to the 2-cores scenario. We first focus on performance
of LBs and BRs in isolation, then the whole virtualized multi-stage architecture is
examined.

3.3.1 Load Balancers

VMware ESXi exports to the guest OS different virtual network interfaces. We
consider here only the VMXNET and the Intel e1000 emulation due to the avail-
ability of the performance enhancing Click patch for e1000 driver. The VMXNET

1The slightly difference of the driver is due to the lack of patch in Click Modular Router

17

3 – Virtualized Multi-stage Software Router

is a custom VMware network interface based on para-virtualization, thus additional
drivers are needed in the VMs, meanwhile in the second case a virtual Intel e1000
hardware is emulated and the standard Linux driver is used (in some cases with the
addition of the e1000-related Click NAPI patch). Because of para-virtualization, we
expect better performance from the VMXNET based solutions.

(a) (b)

Figure 3.3. Click based load balancer configuration: 3.3(a) from external to
internal and 3.3(b) from internal to external.

Figs. 3.3(a) and 3.3(b) show the internal Click configurations of our LB imple-
mentation, the number of internal and external interfaces can vary depending on
the need. Interested readers may refer to [2] and [49] for more details about the

18

3.3 – Experimental Setup and Results

different blocks functionalities and Click diagram. To make a fully comprehensive
evaluation of the LB performance inside VMs, we also tested our Click LB imple-
mentation on a standard Linux distribution running on the same hardware without
any virtualization infrastructure.

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy-1core
Phy-2cores

NAPI-click-LB
NAPI-click-direct

API-click-LB
API-click-direct

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy, 1 core
Phy, 2 cores

VMXNET
VMXNET, 1 Click
VMXNET, 2 Click

E1000
E1000, 1 Click (Poll)
E1000, 2 Click (Poll)

Figure 3.4. Performance evaluation of Click-based load balancer in a Physical
server 3.4(a) and VMware ESXi 4.0 environment 3.4(b) using 64 bytes packets.

In Fig. 3.4(a) we report LB performance in the scenario without virtualization.
We compare a standard OSR running in Linux (named Phy), a Click configuration
directly connecting the input and output interface without any packet processing
(named Click-direct) and the Click-based LB described in Fig. 3.3 (named Click-
LB). In the Phy case either one or two CPU cores are activated, with the well-known
results of bad performance when more cores are forwarding packets, as explained
in [8]). In the Click-based experiments we test the basic networking API (e.g.
no interface polling) and the new-API (NAPI) based interface polling. Results
are consistent with [50]: NAPI is more stable than API under heavy load due
to the interrupt mitigation by polling and the Click-direct is faster than Linux
routing because of its very basic operations, i.e. packets are moved directly from
the input port to the output port without any forwarding table lookup and without
any filtering or modification. Furthermore, results show that our LB configuration
can achieve performance around 1 Mpps with minimum sized packet. The cost of
queueing, packet classification and header re-writing compared to the Click-direct is
approximately a throughput reduction of 20% in the worst-case high-load scenario.

We report in Fig. 3.4(b) a comparison among different virtual network drivers
when running LBs in VMs and we also include the routing performance of the cho-
sen drivers as references, namely VMXNET and E1000 respectively. One physical
interface is used to connect the PC to the router tester, whereas VMs are connected
to a single vSwitch directly connected to the physical interface.

19

3 – Virtualized Multi-stage Software Router

Regardless of the chosen NIC driver, virtualization introduces a large overhead.
In the best case of the VMXNET driver, throughput drops to about 600 kpps in
64 bytes scenario, almost half of the reference physical server routing capability.
Regarding the Click LB throughput under VMXNET driver, we could inspect fluc-
tuation and forwarding rate degradation in the high load case since no Click patch
is available for such proprietary drivers. Furthermore, running multiple Click LBs
which share the same physical resources introduces additional overheads. For in-
stance, in the case of 2 VMXNET-based LBs, throughput drops to approximately
250 kpps due to context switching and resource contention (cache misses and in-
terrupts management) among different VMs. Indeed, the cost of context switching
is higher when more VMs are sharing the same resources, because more VMs con-
tend for the same resource and the VM state has to be restored each time before
execution starts. Thus, sharing physical resources among different virtual LBs sig-
nificantly limits the performance.

Finally, the emulated Intel e1000 NIC obtains less throughput than para-virtualized
VMXNET NIC because of the more computationally intensive operations based
on hardware emulation. Even when using the polling patch (NAPI-aware) for the
driver, throughput is still unsatisfactory. An interesting result is that resource shar-
ing is beneficial in this case, since 2 VMs running Click-based NAPI-aware LB are
able to obtain a higher aggregated throughput than a single VM. This is a clear
indication that the Click-based NAPI-aware LB running on top of an emulated In-
tel e1000 hardware is not able to efficiently exploit the hardware resources because
of the complex interaction among the emulated NIC and the drivers based on the
NAPI polling mechanism 2.

3.3.2 Back-end Routers

The experiments in this section use the same internal configurations as described
in the previous one, but instead of the Click-based LBs, we test the VMware ESXi
routing performance. Only the VMXNET driver is considered due to the higher
throughput. Results are reported in Figs. 3.5(a) and 3.5(b). The virtualization
overhead is significant in the routing case too: the aggregated throughput is roughly
600 kpps when a single VM is hosted and 250 kpps when 4 VMs forward packets
concurrently. Resource sharing among BRs also negatively impacts the throughput.
This phenomenon becomes stronger when increasing the number of active VMs
concurrently performing routing operations on the same server, because more CPU
cycles are wasted to solve the contention problem. However, the performance drop
in the routing case is less than in the LB case. Indeed, the aggregated forwarding

2This result can also be verified through the host CPU load profiling, i.e, only one VM with
e1000 Click NAPI driver can not consume all the CPU resource.

20

3.3 – Experimental Setup and Results

rate of the LBs is already 250 kpps when 2 LBs are present in the same server and
even worse for 4 concurrently running LBs. Resource sharing has no impact if the
other VMs are not routing packets, as reported in Fig. 3.5(b). The results show
that the impact of resource sharing depends on the VM activity level. Indeed the
throughput of a single active VM does not change when increasing the number of
idle VMs, i.e, VMs are powered on but they are not used as routing engines.

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy, 1 core
Phy, 2 cores
1 router VM
2 router VM
3 router VM
4 router VM

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy-1core
Phy-2cores

1VMR+0VM
1VMR+1VM
1VMR+2VM
1VMR+3VM

Figure 3.5. Performance evaluation of OSR in the VMware ESXi 4.0 environment
using VMware’s VMXNET driver and 64 bytes packets. All VM are routing packets
concurrently 3.5(a) and only 1 active VM is routing packets 3.5(b)

Besides throughput measurements, we focus on fairness issues generating two
flows to two VMs with different load distributions. The VMs perform the standard
Linux routing functionalities. We report the results in Tab. 3.1, where we show
fairness measurements using two flows: first in two equal load scenarios (e.g. 50%
and 100% of the maximum input load per flow, i.e, 1Gbps) and then with different
load unbalance between the two flows (i.e, 0.5-0.5, 0.3-0.7 and 0.1-0.9). For instance,
when the input load is 50% and flow 1 (flow 2) is 0.3 (0.7), the bandwidth of
the input flow 1 (flow 2) is 150 Mbps (350 Mbps). If the output load is 42.1%
(97.5%) for flow 1 (flow 2), only 63.15 Mbps (341.25 Mbps) have been received
on the output. Clearly, regardless of the aggregated input load, the low load flow
exhibits increasingly smaller throughput for increasing load. VMware ESXi is unable
to well isolate flows, significantly penalizing low load flows.

3.3.3 Local Testbed for a Multi-Stage Software Router

We build and test a virtualized multi-stage software router architecture consid-
ering three different scenarios:

1. one physical server, one LB and one BR;

21

3 – Virtualized Multi-stage Software Router

Total input load: 50% Total input load: 100%
flow 1 flow 2 flow 1 flow 2

in out in out in out in out

0.5 68.3% 0.5 64.4% 0.5 37.6% 0.5 39.2%
0.3 42.1% 0.7 97.5% 0.3 17.9% 0.7 47.9%
0.1 75.0% 0.9 97.5% 0.1 13.3% 0.9 42.9%

Table 3.1. Fairness tests for OSR on VMware ESXi: throughput of two flows with
64 bytes when varying the relative flow load.

2. one physical server, two LBs and two BRs;

3. two physical servers, one LB and one BR per server.

Figure 3.6. The implementation of the multi-stage software routers in the
two physical servers scenario.

In the first scenario, which represents the minimal configuration, we consider
the hub configuration only for the internal vSwitch because complex configurations
are not needed. In the second scenario we compare three different internal configu-
rations: the VLAN and hub based solutions, as described in Sec. 3.2, and a static
ARP solution consisting of a simple ARP table modification needed in BRs to use
vSwitch in switch mode. This solution provides correct performance indications,
but it causes wrong packet addressing at the MAC level thus it must not be used in

22

3.3 – Experimental Setup and Results

a working solution. Finally, in the third scenario, we consider performance scaling
with additionally deployed resources. In this case we use the VLAN-based solution
only, as described in Fig. 3.6.

Results are reported in Fig. 3.7. Throughput is rather poor for small packet size.
This is expected due to the performance limitations of single element induced by
virtualization and resource sharing (e.g. frequent interrupts to run different VMs,
context switching and execution status restoration). Indeed in the first scenario (one
LB and one BR) we obtain good performance for large packets only (almost wire
speed when approaching the maximum packet size). In the second scenario, where
more elements (two LBs and two BRs) share the same resources, the CPU becomes
the bottleneck and the upper bound for performance becomes around 70 kpps for
large packet size, not enough to reach wire speed.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 400 800 1200

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy, 1 core
Phy, 2 cores
Static ARP

VLAN-based
Hub-based

2 servers
1L+1R

(a) 64 bytes

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy, 1 core
Phy, 2 cores
Static ARP

VLAN-based
Hub-based

2 servers
1L+1R

(b) 512 bytes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

Phy, 1 core
Phy, 2 cores
Static ARP

VLAN-based
Hub-based

2 servers
1L+1R

(c) 1500 bytes

Figure 3.7. Performance evaluation of multi-stage router (2 LBs + 2 BRs) in the
VMware ESXi 4.0 environment with different internal configurations. From left to
right: 64, 512 and 1500 bytes packets.

23

3 – Virtualized Multi-stage Software Router

Running the multi-stage in two physical servers, as in the third scenario, leads
to performance improvements. The throughput is still unsatisfactory for 64 bytes
packets, but it permits to reach wire-speed from approximately 512 bytes packet
size onwards. This is due to the larger amount of deployed resources and to reduced
contention, as in the first scenario.

Finally, no major performance differences can be observed among the various
internal networking configurations. Thus, the utilization of hubs or VLAN tagging
functionalities does not influence performance in the studied scenario, where the
bottleneck is represented by the overloaded CPU.

These measurements prove the feasibility of the architecture on the local infras-
tructure with multiple servers. The performance results show that single server-
based solutions obtain limited throughput, but the capacity can scale up easily by
integrating into the multi-stage router virtual resources hosted on different servers.

3.3.4 FEDERICA-slice Based Experiments

The introduction of virtualization technologies permits to dynamically add new
components borrowed either from the local data-center or from external computing
resource providers, i.e., the cloud.

To assess the feasibility of this approach, we created an instance of the multi-
stage router running on top of the FP7 FEDERICA infrastructure [36], which is an
European-wide network dedicated to network researchers. As shown in Fig. 3.8, the
MSR is composed of 3 LB VMs (hosted in Poland, Czech Republic and Germany)
and 3 BR VMs connected by a physical switch (all in Poland). The connectivity
among PoP is guaranteed by VLANs on top of GÉANT dedicated links. The multi-
stage router is connected to 3 external host VMs in the same PoPs of the LBs to
generate traffic and to collect statistics.

To measure throughput performance, we use iperf [51] to generate multiple UDP
flows to overcome software traffic generator’s speed limitation and to create enough
traffic to overwhelm the multi-stage router. To estimate latency we exploit a limited
bit rate ICMP traffic flow. Several traffic patterns were tested on the FEDERICA
slice. Due to space limitation, we report results only for a uniform 3x3 traffic
pattern. We repeated the measurements 20 times for each different packet size, for
experiments lasting one week. Fig. 3.9 shows the averaged throughput and delay
per source/sink pair. We include also the standard deviation values for latency
and the minimum/maximum values for throughput, being the standard deviation
negligible. Results in Fig. 3.9(a) show limited throughput only for small packet size.
Note that the maximum throughput of the FEDERICA slice is around 350 Mbps,
not reaching the line rate even for 1500 bytes packet size. This is due to the fact
that the MSR FEDERICA slice shares the same physical infrastructure with other
simultaneously running FEDERICA experiments. Throughput is affected by other

24

3.3 – Experimental Setup and Results

Figure 3.8. A slice of the FEDERICA infrastructure and the corresponding mul-
ti-stage software routers implementation.

running experiments sharing the same hardware. Furthermore, we can observe a
slight variability in the throughput, due to the packet loss when transmitting packets
across a long distance over different countries. Looking at the latency in Fig. 3.9(b),
overloaded and underload regions are clearly visible. When the system is overloaded
we obtain almost constant delay curves for different packet size flows. The average
delay value varies widely among different packet sizes, from 200ms for 64 bytes to
1600ms for 1500 bytes. The reason is that with 64 bytes flows, packets have been
dropped significantly due to the lack of processing power, then the actual load on
the network is less compare to 1500 bytes flows. Hence, the ICMP flow obtains lower
delays in the low network load (i.e, 64 bytes flow) scenario than in the high network
load (i.e, 1500 bytes flow) scenario.

Performance results for the MSR running on top of the FEDERICA infrastruc-
ture are coherent with those of the local testbed measurements. This shows that it
is possible i) to build a MSR using VMs running in different locations and ii) to inte-
grate the local forwarding capabilities with additional externally rented forwarding
capacity.

25

3 – Virtualized Multi-stage Software Router

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

R
X

 s
pe

ed
 [

M
b/

s]

Nominal TX speed [Mb/s]

64B
256B
512B

1024B
1500B

(b)

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

D
el

ay
 f

ro
m

 P
in

g
[m

s]

Nominal TX speed [Mb/s]

64B
256B
512B

1024B
1500B

Figure 3.9. The FEDERICA-slice based multi-stage software routers packet re-
ceiving rate with minimum and maximum value 3.9(a) and packet delay with
standard deviation 3.9(b) under full mesh traffic scenario.

3.4 How to Improve MSR’s Performance

The measurements reported in previous sections assess the feasibility of the vir-
tualized multi-stage router architecture in LAN and WAN. Our tests highlight per-
formance issues due to software limitations and resource sharing. In the next future,
the natural evolution of hardware and software solutions will help to solve the inef-
ficiency issues by adding more capacity and by introducing improved virtualization
infrastructures. Instead, the resource sharing issue is more interesting from an ar-
chitectural point of view. In this section, we propose two techniques to alleviate the
resource sharing and contention problems.

3.4.1 Mapping of VMs to Physical Servers

We experimentally investigate the problem of mapping VMs to the available
servers. This problem consists of selecting the best placement of a set of VMs
(e.g. components of the multi-stage router) over a set of physical resources (e.g.
computing servers) and of configuring the network among the physical and virtual
components (e.g. VLAN configuration). Because of the complete decoupling among
logical functions and physical resources, every VM can be hosted on every server,
but some constraints and guidelines must be considered:

� Network bottlenecks: the network among physical servers may become a bot-
tleneck when the bandwidth required among the virtual components on dif-
ferent servers is larger than the physical bandwidth available on the physical
interconnection network (i.e, middle stage);

26

3.4 – How to Improve MSR’s Performance

� Resource sharing issues: according to measurements reported in previous sec-
tions, resource sharing must be minimized to get maximum throughput, espe-
cially in the case of LBs.

We present a set of measurements designed to highlight these problems, showing
the impact of resource sharing and physical bottlenecks on our architecture. We
consider the case of a multi-stage router composed of two LBs and two BRs deployed
on a physical infrastructure composed by two physical servers (described in Sec. 3.3)
and we test several deployments of the multi-stage router over the two physical server
(e.g. 2 LBs on the first server and 2 BRs on the second server, 1 LB and 1 BR on
both servers, etc.). Furthermore, we add some baseline measurements to assess the
behavior of LBs or BRs in isolation.

The measurement scenarios reported in Tab. 3.2 are:

A) Single server: a single server hosts 1 LB and 1 BR. In the first case 1 external
interface is used (A.1), in the second case 2 external interfaces are used (A.2);

B) Balanced mapping: every server hosts 1 LB, 1 BR and 1 external interface
(Fig. 3.6). A single link connects the servers and two different balancing schemes
are used inside the LBs: standard Round-Robin (B.1) and local-only (B.2),
where all incoming traffics are sent to the BR located on the same physical
server (the LB configuration is much simpler);

C) Logical separation: 2 LBs are on a server (using 2 external links), 2 BRs on the
other server. The servers are connected by a single link to introduce a physical
bottleneck (C.1, Fig. 3.10(a)) or by two links to avoid the bottleneck (C.2);

D) Unbalanced mapping: a server runs 1 LB and 2 BRs (D.1, Fig. 3.10(b)) or 2
LBs and 1 BR (D.2), the remaining components are on the other server. A
single link connects the server without introducing bottlenecks.

Scenario Servers Mapping Additional
server 1 server 2 notes

A.1 1 1 LB, 1 BR – 1 ext. NIC
A.2 1 1 LB, 1 BR – 2 ext. NICs
B.1 2 1 LB, 1 BR 1 LB, 1 BR Round robin
B.2 2 1 LB, 1 BR 1 LB, 1 BR local only
C.1 2 2 LBs 2 BRs bottleneck
C.2 2 2 LBs 2 R no bottleneck
D.1 2 1 LB, 2 BRs 1 LB –
D.2 2 2 LBs, 1 BR 1 BR –

Table 3.2. Description of the test scenarios for VM mappings

27

3 – Virtualized Multi-stage Software Router

(a) (b)

Figure 3.10. Logical separation among servers. (a) Scenario C.1: A
physical bottleneck among the servers and (b) Scenario D.1: No physical
bottleneck among the servers

Results are reported in Fig. 3.11 where we present throughput measurements
using different packet sizes (e.g. 64, 512 and 1500 bytes). The main results are
discussed below.

A.1 and A.2: The throughput gap between A.1 and A.2 is huge, regardless of
packet size, even if the configurations are similar. A.1 is a one port router while
A.2 is a 2 port router from the external point of view, which results in a double
traffic load for A.2 and lower throughput than A.1 because the system is much
more overloaded and interrupt management cost becomes dominant. The difference
is smaller for small packet size because of excessive interrupts. Furthermore, A.2
achieves good results only if the packet size is large.

B.1 and B.2: B.1 and B.2 are based on the same topology, but on two different
balancing schemes. B.1 exploits the standard round robin mechanism, meanwhile
B.2 uses a simplified LB which sends incoming packets only to the local routing VM,
which translates into less Click elements (e.g. queues, schedulers, packet modifiers)
and simpler policies, introducing less per packet overhead. Indeed B.2 outperforms
B.1 for all packet sizes, though the difference is negligible when receiving small
packets because both systems are overwhelmed by excessive input load. Our results
suggest that the optimization of Click based LB implementation is critical to improve
the overall performance.

28

3.4 – How to Improve MSR’s Performance

C.1 and C.2: The performance are very similar regardless of the physical bot-
tleneck in C.1. Due to low LB performance, two LBs on the same hardware obtain
much smaller aggregated throughput than the bottleneck (Sec. 3.3.1). Under this
condition, C.1 and C.2 are equivalent and they achieve similar throughput.

D.1 and D.2: D.1 provides better performance than D.2, as in the previous
case. D.1 is the best with small packets and large load, because it is possible to
exploit at best hardware resources when the LB is alone. D.1’s throughput suffers
from larger packets because of the resource unbalancement which is limiting the
performance of the server hosting three components.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

A.1
A.2
B.1
B.2
C.1
C.2
D.1
D.2

(a) 64 bytes

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

A.1
A.2
B.1
B.2
C.1
C.2
D.1
D.2

(b) 512 bytes

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

A.1
A.2
B.1
B.2
C.1
C.2
D.1
D.2

(c) 1500 bytes

Figure 3.11. Virtual functional units optimal location mapping tests inside
VMware ESXi 4.0: left is under 64 byte packet size, middle is under 512 byte
packet size and right is under 1500 byte packet size

In fact, the excessive hardware interrupts dominates performance when the
packet size is small while additional internal traffic overheads are crucial when the
packet size is large. The Click LB implementation is more resource hungry than

29

3 – Virtualized Multi-stage Software Router

routing elements. Based on these observations, some rules of thumb should be fol-
lowed when mapping a virtual multi-stage router to a physical infrastructure:

� Assignment of more physical resources to LBs.

� Isolation of virtual resource leads to better throughput regardless of packet
size, especially for LBs.

� Bottlenecks among servers may sometime limit performance, thus smart virtual-
to-physical mapping algorithms are needed to obtain good performance.

A knowledge about the features of the required service will be a key element in
helping resource providers when mapping VMs to physical devices.

3.4.2 VMs CPU Affinity Exploration

We study the performance impact of mapping VMs virtual core to physical cores
with different strategies to assess the best VMs CPU affinity settings for the multi-
stage architecture. A similar approach was pursued in [52], where the authors test
how to allocate input and output interfaces to CPU cores, while our experiments
concentrate on the VM’s CPU core allocation problems because the CPU computa-
tional power limits multi-stage architecture’s performance.

As shown in Fig. 3.12, we consider 9 configurations inside a single server. Recall
that all physical servers are dual-core machines. In the figures, HC means pHysical
Core while VC means Virtual Core. The box with a dashed line stands for VMs. For
instance, the top-right sub-figure 1VM-2v2p means 1 VM with 2 virtual cores, and
each core is mapped to a different physical core; while figure 4VM-1v2p located in
the bottom-right stands for 4 VMs with a single core each, and each core is mapped
to 2 physical cores.

Two types of VMs are needed in the MSR architecture, LBs or BRs, the first
or third stage elements. Fig. 3.13 reports results for the LB and the BR case in
isolation: the multi-stage architecture is not involved. The tests are performed
on one physical server only. We consider only the VMXNET driver because it
outperforms the e1000 driver in all scenarios. In Fig. 3.13(a), it is easy to group
the curves referring to one LB or two LBs, regardless of CPU affinity configuration.
This means that hosting multiple LBs to share the same physical resource leads to
a frantic performance reduction, as explained in previous sections. Focussing on
the three lines corresponding to one LB only, observe that activating one VC and
mapping it to two HCs instead to one HC slightly improves performance because
1VM-1v2p exploits extra computational power. The same results can be observed
in Fig. 3.13(b) when testing BRs. When activating two VCs in one LB, we obtain
better throughput in low load scenario. However, in Fig. 3.13(b) we only observe

30

3.4 – How to Improve MSR’s Performance

Figure 3.12. VMs CPU affinity test under VMware EXSi 4.0: the demonstration
of different CPU mapping schemas.

throughput degradation when activating two VCs irrespective of the input load.
The reason for the dropped routing performance is again cache misses as explained
before. For the LB, indeed, the Click kernel driver substitutes the Linux networking
stack and different elements are mapped to different cores: thus, no cache miss can
happen with proper element association and higher throughput should be expected.
As the input load increases, the reception element, i.e, PollDevice, can only access
half of the physical resource. Thus, more packets are lost at the reception side,
worsening throughput in the high load scenarios.

Results related to the two VMs are similar to those with one VM if activating
two VCs in each VM. If multiple VMs with one core each are available, a 50kpps
throughput improvement can be observed at maximum load when mapping each
core to a dedicated physical core. Isolation provides less resource contention and
higher throughput.

We report in Fig. 3.14 the affinity tests for the whole multi-stage architecture,

31

3 – Virtualized Multi-stage Software Router

(a)

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

VMXNET 1 Click-1v2p
VMXNET 1 Click-1v1p

VMXNET, 1 Click-2v2p
VMXNET, 2 Click-1v2p
VMXNET, 2 Click-1v1p
VMXNET, 2 Click-2v2p

(b)

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

1 VM Routing-1v2p
1 VM Routing-1v1p
1 VM Routing-2v2p
2 VM Routing-1v2p
2 VM Routing-1v1p
2 VM Routing-2v2p

Figure 3.13. VMs cpu affinity tests under VMware EXSi 4.0 for
LB 3.13(a) and BR 3.13(b).

with different internal configurations and packet sizes. 1L1R means that there are 2
VMs in one physical server and 2L2R means 4 VMs in one server, whereas 2S-2L2R
stands for 2 physical servers in total, each hosting 1 pair of BR and LB (2 VMs).
The main results are:

� 1L1R: Better throughput is obtained when mapping each VC to a dedicated
HC compared with mapping each VC to two HCs. Furthermore, the 1L1R-
1v1p configuration reaches line rate for 512 byte packet size. Our results indi-
cate that separating physical cores for different VMs can dramatically improve
performance.

� 2L2R: Three different configurations are available, as shown in the three map-
ping scenarios at the bottom of Fig. 3.12. The reason for an unbalanced map-
ping is that we want to separate one resource hungry LB from other elements
to see if it is possible to improve the results. Unfortunately, this separation
does not increase the throughput but rather exhibits negative impact on the
whole architecture, due to more elements mapped to one HC. The results
related to 1v1p and 1v2p when more VMs exist still hold: isolated physical
resource control always obtains better throughput performance compared to
resource sharing among all VMs.

� 2S-2L2R: We increase the physical resource and consider two scenarios: shar-
ing the physical core (2S-2L2R-1v2p) or assigning each VM to a dedicated core
(2S-2L2R-1v1p). In both scenarios line rate is reached for 512 byte packets,
due to the deployment of more hardware resource. In Fig. 3.14(a), the config-
uration 2S-2L2R-1v2p routes 150kpps of 64 bytes, but 2S-2L2R-1v1p reaches
200kpps, a 25% throughput increase can be obtained by carefully allocating
VMs to physical CPU cores.

32

3.5 – Conclusions and Future Work

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

1L1R-1v2p
1L1R-1v1p
2L2R-1v2p
2L2R-1v1p

2L2R-unba-1v1p
2S-2L2R-1v2p
2S-2L2R-1v1p

(a) 64 bytes

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

1L1R-1v2p
1L1R-1v1p
2L2R-1v2p
2L2R-1v1p

2L2R-unba-1v1p
2S-2L2R-1v2p
2S-2L2R-1v1p

(b) 512 bytes

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

O
ut

pu
t p

ac
ke

t r
at

e
[k

pp
s]

Input packet rate [kpps]

1L1R-1v2p
1L1R-1v1p
2L2R-1v2p
2L2R-1v1p

2L2R-unba-1v1p
2S-2L2R-1v2p
2S-2L2R-1v1p

(c) 1500 bytes

Figure 3.14. Multi-stage software routers virtual component affinity configurations
against physical cpu cores experiments inside VMware ESXi 4.0.

In summary, to improve the virtual MSR’s performance, it is very important to
assign the minimum number of virtual elements to each physical core. However, if
the number of VMs is less than the number of physical CPU cores, it is better to
consider a mapping which exploits all physical resources to take the full power of
the system.

3.5 Conclusions and Future Work

In this chapter we demonstrated the feasibility of a multi-stage router architec-
ture in a virtualized environment. We highlighted strong performance limitations
that makes this approach rather difficult to pursue today. To improve performance,
different mapping techniques have been tested and we showed that by carefully

33

3 – Virtualized Multi-stage Software Router

assigning VMs to servers and assigning virtual cores to physical cores, better perfor-
mance can be achieved. Research work is needed in many areas to further improve
this kind of approach. The main areas of interest are as follows;

� hypervisors: reduction of overhead costs and optimization of NIC virtualiza-
tion, solving isolation/fairness issues (mainly on CPU and NICs sharing);

� MSR internal elements allocation: optimization of VMs allocation on different
physical servers and VMs cpu bindings to balance resource sharing to improve
performance;

� virtualization approaches: selection of less invasive virtualization approaches
like operating-system level virtualization (e.g. OpenVZ and Linux Vserver)
and minimized OS images for VMs. An interesting approach to be considered
is Denali OS [53], where hypervisor and OS are designed from scratch to tightly
collaborate to reduce virtualization overhead.

Nevertheless, considering the natural evolution of PCs in many areas (e.g. CPU
speed, multi-queue support in NICs, networking stack), and the optimization tech-
niques proposed in this chapter, we are confident that this approach will obtain
reasonable performance in the near future, increasing the interest on adopting these
solutions also in production networks.

34

Chapter 4

Tuning KVM to Enhance Virtual
Routing Performance

In this chapter we show how to use an open virtualization architecture to analyze
and improve the forwarding performance of a virtual router. In particular, the
forwarding performance of the Linux kernel running inside a KVM virtual machine
and the performance of some more advanced architectures based on virtual routers
aggregation are analyzed, showing how increasing the number of used CPU core
can improve performance and how properly setting the CPU affinity of the various
virtualization activities affects virtual router throughput.

4.1 Introduction

In the last decade, Software Routers (SRs), i.e, routers running in commodity
Personal Computers (PCs), become an appealing solution compared to traditional
Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-
vendor hardware used by SRs can be cheap, while the equipment needed by PRDs
is more expensive and their training cost is higher), openness (SRs can make use of a
large number of open source networking applications, while PRDs are more closed)
and flexibility. The forwarding performance provided by SRs has originally been
an obstacle to their deployment in real networks. For this reason, a good amount
of recent research focused in increasing such a performance by either tuning single
devices (as in Packet Shader [6], Click [54] and Netmap [55]), or aggregating multiple
single devices to form a more powerful routing unit like the Multistage Software
Router [14], Router Bricks [43] and DROP [56]. While some recent studies show
that even using a single device it can be possible to reach multiple tens of Gigabit
forwarding speed [6], other works show that by aggregating multiple routing units
the forwarding speed can scale almost linearly with the number of devices [14].

35

4 – Tuning KVM to Enhance Virtual Routing Performance

Such promising results suggest that SRs could be readily adopted in terms of
performance, but some other features related to flexibility (such as power saving,
programmability, router migration or easy management) have been investigated less
than performance. As recognized by several researchers [20, 22], virtualization tech-
niques could become an asset in networking technologies, providing SRs with the
needed flexibility and easy management. As an interesting example, Virtual Ma-
chine (VM) migration could be adopted for consolidation purpose to save energy.
Thus running SRs in virtualized environment can easily inherit such new features
that are valuable to build the flexible SRs.

For example, running a SR in a VM can provide three main advantages:

� renting routing resource instead of buying new hardware to improve the per-
formance. This feature is especially useful when high processing power is
necessary for a short term;

� easier management and reliability: Migration of VMs during maintenance pe-
riods can be implemented and faster reaction to failures should be expected
by booting new VMs on general purpose servers;

� slicing and sharing the same physical infrastructure among different users to
improve hardware efficiency.

However, Virtual Software Routers (VSRs) presents some other issues with re-
spect to SRs. For example, if the communications between VMs and hosts are not
correctly understood, the complex interactions between hardware and VMs could
easily compromise the performance provided by a SR. This chapter focuses on ana-
lyzing such interactions to identify and remove the various performance bottlenecks
of a VSR. We exploit an open-source virtualization mechanism (KVM, the Kernel-
based Virtual Machine [30]) which permits to easily analyze the VM and SR behavior
to identify performance bottlenecks. Indeed, since KVM is tightly integrated into
the Linux, it is possible to exploit all the available Linux management tools. Fur-
thermore, KVM has been included into the Linux mainline from 2.6.20 on. Thus,
almost all Linux system can host KVM guest, which gives us the possibility to
migrate the VSRs easily.

The VSR performance can be improved by carefully tuning various parameters
such as the mechanism used to connect the VMs, threads priorities and CPU affini-
ties, and the technique used to build modular VSRs. We will show in the following
sections that a proper configuration and optimization of the virtual routing archi-
tecture and the aggregation of multiple VSRs as the MSR architecture permit to
forward almost 1200kpps (with 64 bytes packets) in a commodity PC, close to the
physical speed of a Gigabit Ethernet.

36

4.2 – KVM Virtualization Framework

4.2 KVM Virtualization Framework

The performance of a VSR mainly depend on the amount of available CPU time,
and by the amount of CPU time consumed by the VSR, which is mainly due to two
different activities:

1. CPU time consumed by the forwarding code running in the guest (this can be
the packet forwarding subsystem of the Linux kernel, or Click, or something
else)

2. CPU time consumed by the host to move packets from virtual switches (or
from physical interfaces) to the virtual interfaces of the guests (or vice versa).

The time consumed by the host to forward packets to/from the VM (item 2) can
be spent in the OS kernel, in the hypervisor, or in the user-space virtual machine,
depending on the virtualization architecture.

Running the VSR on a “closed” virtualization architecture such as VMWare [57],
it is not easy to understand how much of the CPU time is consumed by the host,
by the guest, or by OS kernel. Hence, in this chapter an open-source virtualiza-
tion architecture is used. The two obvious candidates are Xen [29] and KVM [30].
Since the KVM architecture is more similar to the standard Linux architecture (and
hence, does not require to learn new profiling and performance evaluation tools),
this chapter is based on KVM.

KVM (the Kernel Virtual Machine) is based on a kernel module which exploits
the virtualization features provided by modern CPUs to directly execute guest code
and on a user-space VM, based on QEMU [58], which virtualize the hardware devices
and implements some virtual networking features.

When considering VSR, the most relevant features provided by the user-space
VM are the emulation of network interfaces (CPU virtualization is not an issue,
as KVM allows guest machine instructions to run at almost-native speed): when a
packet is received, the VM reads it from a device file (typically the endpoint of a
TAP device, or similar) and inserts it in the ring buffer of the emulated network card
(the opposite happens when sending packets). When emulating a standard network
interface (such as Intel e1000), the VMmoves packets to/from the guest by emulating
all of the hardware details of a real network card, and this is pretty expensive, causing
poor networking performance (especially when considering small packets, and/or
high interrupt rates). This problem can be solved by using virtio-net, which does
not not emulate real hardware but uses a special software interface (virtio [59]) to
communicate with the guest (that then needs special virtio drivers). In this way,
the overhead introduced by emulating networking hardware is removed, and network
performance is improved. In particular, virtio is based on a ring of buffers shared
between guest and VM, which can be used for sending/receiving packets. Guest and

37

4 – Tuning KVM to Enhance Virtual Routing Performance

VM notify each other when buffers are empty/full, and the mechanism is designed
to minimize the amount of host/guest interactions (by clustering the notifications,
and allowing to transfer data in batches).

As already said, when using virtio-net, the user-space VM code is still responsible
for moving data between the (endpoint of the) TAP interfaces and the virtio buffers.
Hence, when a packet is received:

� The host kernel notifies the user-space VM that a new packet is available on
the TAP device file

� The VM is scheduled, and reads the packet from the device file

� The VM copies the packet in the virtio-net buffer, and notifies the guest

� The guest receives a virtio interrupt, so the guest kernel executes and can
receive the packet

In summary, the large number of switches between host kernel, VM, and guest,
can introduce overhead and decrease the virtual router performance. This problem
is solved by usingvhost-net 1, which is a helper mechanism provided by the host
kernel, able to directly copy packets between the TAP interface and the virtio-net
buffers. In this way, the copy is not performed by the user-space VM, but by a kernel
thread (the vhost-net kernel thread) and some context switches can be avoided. As
a result, the network performance of the guest are largely improved.

When using vhost-net, the user-space VM does not need to execute when the
guest sends and receives network packets, and the CPU time consumed by the host
to move packets is not used by the user-space VM but by the vhost-net kernel
thread. Notice that there is 1 vhost-net thread per virtual interface. The guest
code executes in a different thread, named vcpu thread. Notice that there is 1 vcpu
thread per virtual CPU.

4.3 Monotonic Virtualized Software Router Per-

formance

Thanks to the fact that KVM is an open virtualization architecture, it becomes
possible to analyze the performance bottlenecks of a VSR. For example, consider
the packet forwarding performance of a Linux-based OS running inside a VM: when
forwarding small packets (64 bytes long), a Linux-based VSR is not able to forward
more than 900kpps (900000 packets per second), as shown in Fig. 4.1. This figure
shows the forwarding packet rate (as a function of the input packet rate) of a 3.0

1http://www.linux-kvm.org/page/VhostNet

38

http://www.linux-kvm.org/page/VhostNet

4.3 – Monotonic Virtualized Software Router Performance

Linux kernel running inside qemu-kvm 1.1.0 on an Intel Xeon E5-1620 at 3.66GHz.
Each experiment has been repeated 10 times, and the figure also shows the 99%
confidence intervals. Since this CPU has multiple cores, the VSR has been tested
while using a singe core (all interrupts are processed on the first CPU core, where
the KVM vcpu thread and the vhost-net kernel thread also run), 2 cores (interrupt
processing and threads execution on the first 2 CPU cores), and all 4 CPU cores.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

O
ut

pu
t p

ac
ke

t r
at

e
[p

ps
]

Input packet rate [pps]

1 core 1 router
2 cores, no bind

2 cores, bind
4 cores, no bind

4 cores, bind
x

Figure 4.1. Performance of a monolithic virtual router, increasing the
number of CPU cores.

Fig. 4.1 shows that using multiple cores improves VSR performance. However,
if the vcpu thread and the vhost-net thread are not properly scheduled (no bind-
ing), performance strongly decrease in overload conditions. In other words, there
is no graceful performance degradation when the router is overloaded. For exam-
ple, looking at the “2 cores, no bind” and “4 cores, no bind” lines in the graph, it
can be observed that performance increase moving from 2 cores to 4 cores is not
relevant, and for high input rates (around 1200kpps) 2 cores perform worse than
1 single core (thus, having more processing power does not help). Analyzing the
Linux scheduling statistics and the amount of time consumed by the various threads
(by using the top utility), it has been obvious that this performance drop is due
to migration overhead: When the task scheduler (implemented in the Linux kernel)
realizes that a CPU core is almost overloaded, it tries to migrate some tasks from
it to a different CPU core. Unfortunately, if all of the usable cores are overloaded,
tasks keep bouncing between different cores, and most of the CPU time is consumed

39

4 – Tuning KVM to Enhance Virtual Routing Performance

by these thread migrations (hence, the throughput decreases). This problem can
be fixed by binding threads to CPU cores: Forcing specific threads to execute only
on some CPU cores by using the CPU affinity mechanism provided by the Linux
kernel. The “2 cores, bind” line shows the results achieved when forcing the vcpu
thread to run on the first core, and the vhost-net thread to run on the second core.
The maximum throughput does not increase with respect to the “2 cores, no bind”
case, but the performance degradation in overload is now more graceful, and 2 cores
are able to always perform better than 1 single core. Finally, the “4 cores, bind”
line shows the results achieved when using the first 2 cores for interrupt processing,
and binding the vcpu thread and the vhost-net thread to the third core and to the
fourth core, respectively. Again, the graph shows that correct CPU bindings allow
to better exploit additional cores. However, even when 4 CPU cores are used (and
top shows a high amount of idle CPU time in the system) the virtual router is not
able to forward more than 900kpps.

When the system is unable to forward all received packets, for input rates larger
than 900kpps, the bottleneck is the vhost-net kernel thread, which consumes all the
CPU time on a core. Since the issue is that a single thread (the vhost-net thread)
needs more than 100% of the CPU time of a single core, playing with CPU bindings
cannot help anymore (because a single thread cannot simultaneously execute on 2
different CPU cores) and it is not possible to exploit the huge amount of idle time
on the other cores.

This unused computational power can be exploited by moving to a more modular
virtual router architecture, using more VMs as routers, thus using multiple vhost-net
threads (so that their load can be shared on more CPU cores). This is theoretically
possible by using aggregating multiple VSRs (as suggested, for example, in the
Multistage Software Router - MSR - architecture [14]).

4.4 Aggregating Multiple Virtual Routers

As shown in Fig. 4.1, even with the correct priority and optimal thread binding,
a “monolithic” VSR (that is, a VSR based on a single VM running a SR) is not able
to forward more than 900kpps (when using small packets). Since the bottleneck lies
in the vhost-net thread (that is, such a thread consumes 100% of the CPU time
of the core where it is running), virtualizing a multiprocessor machine does not
improve performance.A solution to this issue could be to move from a monolithic
VSR to a routing architecture based on the aggregation of multiple SRs running
inside multiple VMs.

Such an aggregation can be performed using several different virtual routing
architectures, exhibiting different characteristics in terms of performance and flexi-
bility. In the following two different architectures are discussed.

40

4.4 – Aggregating Multiple Virtual Routers

A very flexible and feature-rich example of SR aggregation is the Multistage
Software Router architecture (MSR) [14], shown in Fig. 1.1.

Recall that a Multistage Software Router (MSR) is composed of three stages as
follows:

� first stage: layer-2 Load Balancers (LBs) distribute the input traffic load to
Back-end Routers (BRs)

� second stage: interconnection network. A mesh-based switched network be-
tween the first stage LBs and the third stage BRs. Multiple paths between
the LBs and BRs could exist to support fault recovery.

� third stage: BRs, i.e, forwarding engines, route packets to the proper LBs

A virtual control processor is used to coordinate the BRs and LBs as well as to
unify the BRs’ routing table. The MSR hides its internal architecture and presents
itself to external devices as a single router. As shown in previous work, the MSR
architecture, when implemented on a cluster of physical machines, provides several
interesting features, such as extending the number of interfaces one PC can host
(limited PCIe slot), dynamically shutting down unnecessary BRs at low traffic load
while turning on BRs at high load, and seamlessly increasing the overall routing
performance. In particular, it has been shown that the MSR’s forwarding speed can
scale almost linearly with the number of BRs (if LBs are implemented using a fast
FPGA hardware - otherwise, LBs can become the performance bottleneck).

To implement a virtual MSR, the LB has been implemented in software, using
the Click modular router [54]. In this way, an MSR can be easily hosted in VMs by
just substituting each physical PC with a VM. Hence, multiple VMs are created to
run LBs and BRs.

The interconnection network is implemented inside the host as shown in Fig. 4.2,
using a standard Linux “software bridge” and some pairs of tap interfaces. Con-
nection with the lower device like the physical NIC can be implemented using the
Linux macvtap feature to improve performance.

Implementing the first stage (LBs) with Click provides high flexibility: it be-
come possible to build MSRs with a variable numbers of LBs and BRs, with a wide
range of interconnection networks allowing for BRs distributions on different hosts,
redundancy/fault tolerance, etc. However, it comes at the cost of consuming lots
of CPU power in the vcpu threads running the LBs, and in their vhost-net kernel
threads. This means that the number of CPU cores needed to provide high perfor-
mance becomes extremely high (the “non virtual” MSR implemented with real PCs
could use an FPGA for load balancing, to avoid this kind of issues).

If the focus is on forwarding performance (and some features/flexibility can be
traded for higher performance), then a different SR aggregation strategy can be

41

4 – Tuning KVM to Enhance Virtual Routing Performance

Figure 4.2. The implementation of the multistage software router inside
a KVM server: 1 load balancer and 1 back-end router, with different
interconnection networks.

used. The Linux macvtap interface provides a multi-queue functionality that can be
used for load balancing: a single macvtap interface can split the traffic on multiple
queues (currently based on network flows, but can be modified to distribute packets
in a round-robin fashion). Such packet queues can be used by a single VM (using
a multi-queue virtual network interface), or by multiple VMs. In this chapter, this
feature is used for running multiple identical copies of the same SR, each one of them
using a different macvtap queue. All of these SRs run in identical VMs (having the
same number of Ethernet interfaces, with the same IP and MAC addresses) and are
seen from outside as a single VSR (hence, the multi-queue macvtap aggregates all
the SRs in a single VSR with the same configuration). This architecture, referred
as Parallel Virtual Routers (PVR) architecture in this chapter, is less flexible than
MSR, but removes the LB performance issues (as shown in the next section).

4.5 Performance Evaluation

Before starting to analyze the virtual routing performance of the proposed archi-
tectures (MSR and PVR), a set of preliminary experiments were run to understand
the performance impact of some configuration parameters (such as scheduling algo-
rithm and task’s priorities, the mechanism used for implementing the virtual switch
component, etc...).

42

4.5 – Performance Evaluation

4.5.1 Virtual Network and Linux Scheduler Tests

In KVM virtualization framework, different mechanisms can be used to con-
nect the physical NIC with virtual interfaces. In the preliminary experiments2, a
software bridge plus tap interface and macvtap interface have been considered.

 0

 100000

 200000

 300000

 400000

 500000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

O
ut

pu
t p

ac
ke

t r
at

e
[p

ps
]

Input packet rate [pps]

macvtap,vc98,vh99,1core
macvtap,vc99,vh98,1core
macvtap,vc99,vh99,1core

macvtap,vc99,vh99,2cores
br,vc98,vh99,1core
br,vc99,vh98,1core
br,vc99,vh99,1core

br,vc99,vh99,2cores

Figure 4.3. Forwarding performance in KVM virtualized environment, with macv-
tap and bridge configurations, different priorities for the vhost and vcpu threads.

These experiments are based on a very simple configuration with a KVM instance
hosting a SR. In this case, there are two CPU-consuming threads: the vcpu thread
(running the forwarding code) and the vhost-net kernel thread (moving packets be-
tween the physical and virtual interface). These two threads were bounded to one or
two CPU cores, and scheduled with fixed priorities (using the SCHED FIFO schedul-
ing class). From Fig. 4.3 it is possible to appreciate the throughput differences for
the different priority configurations (98 and 99). The best results are obtained when
assigning the same priority to the two threads. Furthermore, assigning a higher
priority to the vhost thread performs better than assigning a higher priority to the
vcpu thread. This is due to the fact that vhost is responsible for packet reception
and transmission before and after the packet processing phase by the vcpu thread.
Thus, if the vhost thread does not have enough resource to move the packets from
the VM back to interface, the vcpu could waste precious CPU resources to process
packets only, without moving them to the external network. On the contrary, a
higher priority for the vhost can guarantee that each packet processed by the vcpu
can be correctly received by the external world. Therefore, it can reach a higher

2Experiments are performed on a server with Intel Xeon E5520 at 2.27GHz

43

4 – Tuning KVM to Enhance Virtual Routing Performance

throughput. The fact that assigning the same priority to the vcpu thread and
to the vhost-net thread provides the best performance might suggest that priority
scheduling is not the best option for this workload. Hence, as a future work, a more
advanced scheduler (namely, a reservation-based CPU scheduler [60, 61]) will be
tested. Finally, macvtap always performs better than bridge plus tap connections
and should be preferred when building a high performance VSR.

4.5.2 Parallel Virtualized Router Performance

The next experiment focus on analyzing the PVR performance, to understand
if the PVR architecture permits to outperform a monolithic VSR. Fig. 4.4 displays
how the performance of a PVR using the multi-queue macvtap mechanism for load
balancing is affected by the number of aggregated routers. 4 CPU cores are used,
and the setup is the same used in Figure 4.1 (same CPU, same number of runs per
experiment, and the 99% confidence interval is displayed). Note that this VSR is able
to outperform a monolithic VSR (Fig. 4.1 - the best curve from that figure is repeated
in Fig. 4.4 as “1 router, bind”) and reaches a forwarding rate of more than 1100kpps.
Note that when aggregating 2 routers the CPU bindings are not important for
the forwarding performance. When, instead, aggregating 3 routers, using proper
bindings permits to better exploit the CPU time. Increasing the number of routers,
the bindings become less relevant, but performance do not improve. This probably
indicates that 4 CPU cores are not able to forward more than 1200kpps in a virtual
architecture.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

O
ut

pu
t p

ac
ke

t r
at

e
[p

ps
]

Input packet rate [pps]

1 router, bind
2 routers, no bind

2 routers, bind
3 routers, no bind

3 routers, bind
4 routers, no bind

x

Figure 4.4. Performance of a PVR on 4 CPU cores, increasing the number
of aggregated routers.

44

4.5 – Performance Evaluation

4.5.3 Multistage Virtualized Router Performance with Op-
timization

The last set of experiments focused on analyzing the virtual MSR performance.
Fig. 4.5 shows how the number of available CPU cores and the usage of correct CPU
bindings affect the performance of an MSR. For the sake of simplicity and to easily
understand the results, we discuss the MSR configuration with only 1 LB and 1
BR, but similar experiments with more complex setups have been also performed
providing results consistent with the ones presented here. Before analyzing the
results, consider that this MSR configuration (1 LB and 1 BR) creates 5 CPU-
consuming threads: 1 vcpu thread and 2 vhost-net threads for the LB (since the LB
has 2 virtual Ethernet interfaces), plus 1 vcpu thread and 1 vhost-net thread for the
BR. As a result, the performance when executing on a single CPU core are pretty
bad (the 5 threads easily overload a single core).

 0

 100000

 200000

 300000

 400000

 500000

 0 200000 400000 600000 800000 1e+06 1.2e+06

O
ut

pu
t p

ac
ke

t r
at

e
[p

ps
]

Input packet rate [pps]

1 core, 1 LB, 1 router
2 core, 1 LB, 1 router no bind

2 core, 1 LB, 1 router bind case A
2 core, 1 LB, 1 router bind case B

4 core, 1 LB, 1 router no bind
4 core, 1 LB, 1 router bind

x

Figure 4.5. Effects of CPU bindings on the MSR performance.

When increasing the number of CPU cores to 2, performance slightly improve
and become very sensitive to the CPU bindings: When no bindings are used, the
MSR can route up to 140kpps. In overload, the 5 threads tend to overload the
CPU and keep bouncing between the 2 available cores. As a result, the variance
in the forwarded throughput is high (see the confidence interval), and performance
decrease. Binding the vcpu threads of the LB and of the BR to the first core, and
binding all the vhost-net kernel threads to the second core (“bind case A” in the
figure) allows to achieve a higher maximum throughput (about 240kpps). However,
when the router is overloaded throughput decreases dramatically, and for an input

45

4 – Tuning KVM to Enhance Virtual Routing Performance

rate of more than 1000kpps it performs worse than without bindings. This happens
because the three vhost-net threads overload the second core, when there still is
some idle time on the first one. Distributing the threads between cores in a different
way (“bind case B” in the figure: the vhost-net kernel threads of the LB execute on
the first core, together with the vcpu thread of the BR, all other threads are on the
second core) leads to a lower maximum throughput (about 180kpps) but to a more
stable behavior in overload.

Finally, when increasing the number of cores to 4 the MSR performance fur-
ther improve (because more CPU time is available for the 5 threads). Also in this
case proper CPU bindings permit to improve the performance. Note that MSR
performance are affected by the fact that there are only 4 available CPU cores, for
executing 5 threads. By looking at the scheduler statistics and at the CPU usage
inside the host, it has been possible to see that the main performance problems are
due to the vcpu thread of the LB, running Click, that consumes 100% of the CPU
time on a core. This explains why the PVR architecture (which does not use Click
for load balancing) is able to better exploit the computational power provided by
the 4 CPU cores.

4.6 Conclusions and Future Work

In this chapter we showed how using an open virtualization architecture permits
to analyze and improve the forwarding performance of a virtual router. In particu-
lar, the forwarding performance of the Linux kernel running inside a KVM virtual
machine have been analyzed, seeing how increasing the number of used CPU cores
can improve performance and how properly setting the CPU affinity of the various
virtualization activities affects router throughput. It has been shown that a more
modular router architecture can help in better exploiting the computational power
provided by additional CPU cores, and two different architectures based on virtual
routers aggregation have been analyzed and optimized to outperform the monolithic
architecture.

Since a proper task scheduling turned out to be fundamental to achieve good for-
warding performance, we plan to investigate the impact of different CPU scheduling
algorithms. In particular, as discussed in the comments to Figure 4.3 we feel that
fixed priority scheduling is not the appropriate solution for scheduling the vcpu and
vhost-net threads, and we plan to try reservation-based CPU scheduling.

Finally, alternative high-performance inter-VM communication mechanisms such
as Netmap and VALE [55, 62] will be tested for improving the virtual routing per-
formance.

46

Part II

Energy Saving Techniques in
Network on Chip and Multistage

Software Router

Chapter 5

Introduction

As mentioned in [63], according to different studies [64, 65], the carbon footprint
of Information and Communication Technologies (ICT) is constantly increasing,
representing today up to 10% of the global CO2 emissions. Among the main ICT
sectors, 37% of the total ICT emissions are due to telecommunication infrastruc-
tures and their devices, while data centers and user devices are responsible for the
remaining part [64]. It is therefore not surprising that researchers, manufacturers
and network providers are spending significant efforts to reduce the power consump-
tion of ICT systems from different angles.

To this extent, networking devices waste a considerable amount of power. In
particular, energy consumption has always been increased in the last years, cou-
pled with the increase of the offered performance [66]. Actually, power consumption
of networking devices scales with the installed capacity, rather than the current
load [67]. Thus, for an Internet Service provider (ISP) the network power consump-
tion is practically constant, unrespectively to traffic fluctuations, since all devices
consumes always the same amount of power. In turn, devices are underutilized,
especially during off-peak hours when traffic is low. This represents a clear oppor-
tunity for saving energy, since many resources (i.e., routers and links) are powered
on without being fully utilized, while a carefully selected subset of them can be
switched off without affecting the offered Quality of Service (QoS).

In the literature, different approaches have been proposed to reduce the gap
between the capacity offered by the network and the resources required by users
(see [68, 66] for an overview). The proposed approaches can be divided into two
main categories: power proportional techniques that adapt the capacity (and thus
consumption) of the devices to the actual load, and sleep mode approaches, that
leverage on the idea of introducing idle mode capabilities. While the first approach
involves deep modifications in the design of hardware components, the second ap-
proach requires coordination among networking devices to carefully distribute the
extra load that results from putting into sleep mode some devices.

49

5 – Introduction

In this party of the thesis, we exploit the idea of power proportional design in two
main switching architectures, namely the Network on Chip (NoC) and Multistage
Software Router (MSR). In the last decade, the fast evolution of semi-conductor
and silicon technology make the integration of large number of cores on a single chip
become reality, and more preferable due to attractive low inter-chip communication
cost compare to intra- ones. This mew design paradigm has driven the System on
Chip (SoC) from bus or peer-to-peer (P2P) communication architectures towards
short distance multi hop network connection, namely Network on Chip (NoC) ar-
chitecture. Indeed the bus based SoC lacks of spatial reuse, possess more area
O(n3 × √

n) and consume more power O(n × √
n), even the connection from the

Processing Element(PE) to the bus needs to be specific for different chips. In the
mean while NoC interconnection inherits the advantage from networking hop com-
munication which consumes less power(O(n)), uses less space(O(n)), equips with
standard interface and links can do statistic multiplexing and spatial reuse. All
of the above features make NoC more promising for large scale interconnection no
chip network [69]. Whereas as many network design principle, the NoC is devised
to handle the peak traffic load. This provides us the opportunity to save energy
when the workload on chip is low. In chapters 6 and 7, we present how to exploit
Dynamic Voltage and Frequency Scaling (DVFS) technique combined with routing
and architecture design to save power in two different NoC architecture, namely the
single plane and multiple planes NoC architecture respectively. In both works, we
modeled the NoC power saving as quadratic programming problems to obtain the
lower bound and we found that the current chip power strategy exists quite a gap
with the optimal value. Then we proposed some algorithms with lower implemen-
tation complexity to approach the lower bound. Our results have been validated by
customer NoC simulator, which gets the help from the SystemC and TLM libraries
that are intended for fast hardware simulation. We also considered different power
models, one of which are quite accurate to trace not only the dynamic power but
also the static one contributed by such as clock pump or leakage.

In chapter 8, we present a work related with energy efficient MSR design. As
shown in the first part, the MSR architecture composed of many physical servers to
compensate the performance limitation of software router. Although we can extend
the forwarding speed by increase the number of device, it is clear that the total
energy consumption of such architecture is huge. For example, if we want to build
a MSR which has the similar routing capacity of a Juniper T320 (16 interfaces and
each of which works at 10Gbps, 160Gbps forwarding capacity in total, it consumes
2.88kWatts power), we need to have 16 LBs (each of them equips with single 10Gbps
link and consumes 80w), 20 back-end routers (each of them equips with 8 links
at 1Gbps and consumes 80w) and one switch. The total power consumption is
3.2kWatts (1.92kWatts by back-end routers) and the total cost is $16,000 assuming
each PC costs $400 comparing to Juniper T320 which cost $45,000. This MSR

50

architecture consumes significant energy if we leave it 24 hours on. In the other
hand, we can save energy consumed by unused routers and links by switching them
off during low load period. In chapter 8, we will show how to build an energy
efficient MSR architecture when providing the realistic traffic trace with different
budget constraints.

51

Chapter 6

Balancing Traffic to Save Power
Through DVFS in NoC

A Network on Chip (NoC) provides the interconnection among Processing El-
ements (PEs) through routers, which permit hop-by-hop communications between
PEs. To cope with higher traffic demands, PEs and routers are running at increas-
ingly higher clock frequencies. Thus the chip power consumption grows rapidly and
limits NoC scalability.

In this chapter we consider a Manhattan-like mesh (grid) NoC topology. We
show how to leverage the traffic unbalancing within the topology to fully exploit the
classical technique of Dynamic Voltage and Frequency Scaling (DVFS) to minimize
the power consumption. We model the optimal NoC power control problem, and we
evaluate the maximum achievable power reduction. Furthermore, we propose three
different load-balancing routing schemes, simple to implement, that approximate
quite accurately the optimal solution. Simulation results show that, in most of the
cases, it is enough to consider only two paths among PEs to balance the traffic and
to approach the minimum possible power consumption.

6.1 Introduction

The fast evolution of semi-conductor and silicon technology makes the integra-
tion of large number of Processing Elements (PEs) on a single chip a reality. Single
chip hosting many PEs are becoming increasingly popular due to the attractive
low cost intra-chip communications compared with inter-chip ones. This new trend
has driven the System on Chip (SoC) design from point-to-point dedicated commu-
nications towards the Network on Chip (NoC) architecture. In a NoC, a network
interconnects PEs through on-chip “routers”, where packetized communication takes

53

6 – Balancing Traffic to Save Power Through DVFS in NoC

place. PEs access the network by means of proper interfaces, and have their pack-
ets forwarded to destination through a multi-hop routing path. Indeed, classical
SoCs lack spatial reuse, require more area and consume more power. Instead, NoCs
permit to cope with the growth of SoCs complexity and inherit advantages from
multi-hop communications. NoCs, besides reducing area and power requirements,
are equipped with standard interfaces, exploit statistical multiplexing and spatial
reuse, and are the new frontier in large scale chip network design [70]. Interest-
ingly, many communication paradigms devised for “large-scale” standard computer
networks can be adapted in this “small-scale” network scenario.

In this chapter we consider NoCs based on a mesh (Manhattan-like) topology,
since they are robust to traffic fluctuations and their design complexity scales quite
linearly with the number of PEs [71]. In such context, we revisit the Dynamic
Voltage and Frequency Scaling (DVFS) mechanism to reduce the NoC power con-
sumption. In general, DVFS is a technique adopted in CMOS gates to jointly adjust
the supply voltage and the clock frequency. We take into account only the dynamic
component of the power cost, i.e. the power due to the bit-by-bit switching activity
on the links to transmit data among PEs. The dynamic power P depends on voltage
V and frequency f as: P ∝ fV 2. To properly receive the bits, the maximum bit fre-
quency must be (approximately) proportional to V , i.e. reducing the voltage implies
increasing the bit transmission duration, as shown in Fig. 6.1. Thus, the maximum
power consumption is roughly proportional to f 3 when DVFS is exploited.

To reduce chip implementation complexity, we consider a NoC architecture in
which all communication components use the same voltage, and hence the same
frequency, at a given time. This architecture is known as the Single Voltage/Single
Frequency (SVSF) chip [72]. and the frequency/voltage of all links is simultane-
ously regulated through DVFS. The SVSF solution has been proved to perform
better than link-by-link DVFS in [73]. Furthermore, we propose to adopt only de-
terministic routing algorithms, oblivious of the current load of each link. This choice
permits to avoid additional load detection circuits introduced by adaptive routing.
The traffic matrix, i.e. the amount of traffic that PEs exchange, is statistically known
either by estimation or measurements. Our control scheme chooses the proper fre-
quency and voltage values for the whole chip to minimize the required power while
satisfying communication demands. The approach is compatible with the traffic be-
ing stationary over a time window large enough to amortize the voltage/frequency
reconfiguration overhead during such time window.

We define the NoC power saving problem as a combined traffic routing and
voltage selection problem. We provide a mathematical formulation of the problem
and solve it through a linear programming solver. Our results highlight the potential
power reductions when considering DVFS into NoCs. Furthermore, we observe that
if the link utilization is unbalanced, one or more bottleneck links constrain the choice
of the voltage, and prevent the efficient use of DVFS on underutilized links to save

54

6.2 – Related Work

Figure 6.1. Reducing the NoC supplying voltage to half implies reducing the chip
working frequency to half. Bit transmission duration is doubled.

power. However, PEs process multiple tasks, and each task contributes to the traffic
flow toward a specific PE. Thus, several flows can be identified among each pair of
PEs. Data belonging to different traffic flows can follow different routing paths
without any out-of-order delivery. This fact permits to exploit routing schemes to
better balance the network load. We propose to couple the Load Balancing (LB)
technique with deterministic routing to spread the traffic flows in the network, to
avoid load concentration and fully exploit DVFS. Simulation results show that our
LB approach closely approximates the optimal solution, but with lower algorithmic
complexity.

6.2 Related Work

Introducing DVFS into SoC has been proposed and studied in the literature for
the past few years. The main idea is to slow down the PE frequency speed during the
idle time. Indeed, [74] proposes to decouple the PE processing time from the trans-
mission time; when the communication rate is slow and the PE has been stalled, the
supply voltage for the PE is decreased to match the rate of communication channel.
[75] is a similar work which explicitly considers the PEs leakage power. [76] proposes
an on-line detection method which uses a built-in performance monitoring unit to
decide the PE processing requirements, and regulates the PE speed accordingly.

The above mentioned papers aim at PE power cost reductions. Few works in-
vestigate the transmission cost when link frequency can be adjusted. [77] considers
a 8× 8 NoC with grid topology, in which each router can adjust its links frequency
independently, according to the prediction of traffic load on links. Since each link
can work on a different frequency, such scheme is very complex to be implemented.
[78] and [79] show the hardware implementation of serial and parallel transmission
lines adopting DVFS within a NoC. [80] shows how to design a specific purpose
NoC, to save power and achieve high performance. DVFS is adopted for the ca-
pacity planning of PEs and links. The final architecture is a specialized NoC, less

55

6 – Balancing Traffic to Save Power Through DVFS in NoC

appealing than a generic purpose interconnection network.

The most relevant work with ours shown in [73] compares adaptive routing with
deterministic XY routing, in two scenarios: for SVSF NoC and for heterogeneous
DVFS, i.e. in which each link of the NoC can be configured with its own frequency
and voltage. The paper shows that adaptive routing with SVSF NoC scheme of-
fers the best performance-complexity tradeoff, since the overhead due to frequency
reconfiguration in heterogeneous DVFS negatively affects performance. Differently
from [73], we present the mathematical model of the power saving problem and we
derive the lower bound to the chip power consumption with DVFS. Then, we focus
on simple deterministic routing algorithms that exploit load balancing. We do not
consider frequency/clock islands as in [81] because this solution may improve power
savings at the cost of more complex synchronization.

6.3 NoC Model Description

6.3.1 Network Topology and Traffic model

We assume that the NoC interconnection exploits a grid (mesh) network, one
among the most common topologies [82] due to its packing simplicity and low power
dissipation [83]. The topology is shown in Fig. 6.2, and it is divided into logical areas.
Each logical area, named tile, is composed of one physical router and one logical PE,
which represents one or more physical PEs connected to the same router through a
proper Network Interface (NI). We represent the network topology with N tiles as a
directed graph with node set V, in which each tile is a node ∈ V and adjacent tiles
are connected through two opposite unidirectional edges. Each PE generates traffic
depending on its running tasks. Indeed, each PE could be a memory bank, a micro-
processor, a DMA engine, etc. The router supports very basic switching capabilities,
because of design constraints related to performance, area and memory. To reach
a destination PE, simple deterministic routing is adopted. “XY” routing is very
common: data is first routed in the X direction, until reaching the Y coordinate of
the destination, and then routed in the Y direction. The interconnections among all
components (e.g. router-router, PE-router) are provided by CMOS-based channels.
FIFO buffers with limited size are available in PEs and routers. Wormhole routing
is typically adopted: data packets are divided in small flits.

We assume that the traffic demands among PEs are given. Depending on the
actual application running on the chip, such demands can be either known in ad-
vance, or estimated on-line. The traffic demand from node i to j is denoted by λij;
let Λ = [λij] be the corresponding N ×N traffic matrix.

56

6.3 – NoC Model Description

Figure 6.2. A 4× 4 NoC grid topology

6.3.2 Power Model and Power Control

The objective of our power control is to find a routing that minimizes the power
consumption while satisfying the traffic demands and meeting the link capacity
constraints.

We assume that all links in the NoC operate at a single frequency, powered by
the corresponding voltage V , that can vary between Vmin and Vmax. We focus only
on the dynamic power contribution due to the data transfer across routers. The
energy cost in a CMOS gate depends on the supply voltage V as E = 0.5CV 2,
where C is the load capacitance. This is usually called dynamic energy cost of a
CMOS, due to switching activity when changing the logic state from 0 to 1 or vice
versa. We neglect static energy due to leakage currents. Thus, we assume that
the total amount of dynamic energy when moving b bits across a path of h hops is
proportional to bhV 2.

This hop-based energy model has been validated in the literature [84, 85]. When
transmitting continuously at rate λ bit/s, the power consumption becomes propor-
tional to λhV 2.

Let µ be the maximum rate compatible with the maximum available voltage
Vmax; the corresponding power consumption is maximum and proportional to Pmax =
µhV 2

max. To avoid traffic overload, we assume that λ ≤ µ. To exploit DVFS, the
bit duration can be expanded (at most) by a factor α = µ/λ, denoted as expansion

57

6 – Balancing Traffic to Save Power Through DVFS in NoC

factor. Hence, the voltage can be decreased by α. As a consequence, the total power
on a link is proportional to:

P = λh

(

Vmax

α

)2

∝ hλ

α2
(6.1)

Given the minimum allowed voltage Vmin in the considered technology, then α ≤
αmax, where αmax = Vmax/Vmin corresponds to the maximum expansion factor [86].
Note that αmax is often around 2 and never more than 3.

6.3.3 Traffic Virtual Load and Power

Given a static routing policy R and the traffic matrix Λ, γR
Λ is defined as the

maximum offered load among all possible edges in the topology. When DVFS is
applied with bit expansion factor α, Λ is said to be sustainable if γR

Λ α ≤ µ; the ratio
ρ = µ/(γR

Λ α) is defined as the virtual load.

The overall power consumption of a NoC exploiting DVFS is the sum of all flow
power contributions. From (6.1),

Ptot =
∑

i,j∈V

λijhij

α2
(6.2)

where hij is the average number of hops for the paths used to route the flow λij.
The maximum power consumption Pmax

tot is obtained by setting ρ = 1. We prove the
following property that will be validated in Sec. 6.5.

Property 1. Assume ideal DVFS with unbounded αmax (i.e., Vmin = 0). Given a
routing policy R and a sustainable traffic, then the overall power cost of the NoC is
a cubic function of the virtual load ρ: Ptot(ρ) = Pmax

tot ρ3, for 0 < ρ ≤ 1.

Proof. Assume that Λ is a traffic matrix for which ρ = 1. Hence, it is not possible
to reduce the voltage without reducing the throughput: α = 1. Thanks to (6.2), the
corresponding power is Pmax

tot =
∑

ij λijhij. Now consider to scale the traffic matrix
by ρ. In this case,

Ptot(ρ) =
∑

ij

(ρλij)hij

α2
=

∑

ij

ρ3λijhij = ρ3Pmax
tot (6.3)

because it is possible to expand the bit duration by α = 1/ρ.

58

6.4 – The DVFS Power Control

6.4 The DVFS Power Control

The power control aim is to minimize the NoC dynamic power due to the switch-
ing activities exploiting DVFS. This problem is denoted as Ideal Power Control
(IPC) and can be formulated as follows:

min
1≤α≤αmax,f

ml
ij ≥0

∑

i,j,m,l∈V

fml
ij

α2
(6.4)

subject to:
∑

i,j∈V

fml
ij α ≤ µ ∀m,l ∈ V (6.5)

∑

m∈V

fmk
ij −

∑

m∈V

fkm
ij =











−λij, k = i

λij, k = j ∀i,j,k ∈ V

0, otherwise

(6.6)

where fml
ij ≥ 0 is the amount of traffic, from source i to destination j, that is sent

on link m → l. The IPC formulation is a multi-commodity problem that computes
the maximum allowable α compatible with the constraints. (6.4) minimizes the
aggregated power consumption for all the flows and it is obtained from Eq. (6.1)
by observing that, λij = (

∑

ml∈V f
ml
ij)/hij by construction. Eq. (6.5) is the link

capacity constraint when considering the bit expansion factor α. Eq. (6.6) is the
flow conservation constraint.

The IPC problem assumes implicitly that traffic flows are splittable and it pro-
vides a lower bound to the power consumption when unsplittable flows are consid-
ered.

The IPC problem cannot be solved directly due to its complexity. However,
when α is fixed, the problem becomes linear, and it can be solved in an approx-
imated fashion by discretizing the interval [1,αmax] in Q points and by solving Q
different LP problems through an optimal LP-solver. The best solution among the
Q available ones is the approximated optimal solution to the IPC problem. This
method cannot be implemented in a real NoC, because the time required for the
LP solver is unpredictable, whereas NoCs need to react fast to traffic fluctuations.
In the following section, we propose simpler algorithms to find an approximated
solution to the IPC problem, based on a load balancing technique that permits to
route traffic so as to fully exploit DVFS.

6.4.1 Exploiting DVFS with Load Balancing

Recall that we assume that all NoC links are powered by the same voltage and
run at the same frequency, providing the same transfer bandwidth. Intuitively, few

59

6 – Balancing Traffic to Save Power Through DVFS in NoC

links heavily loaded would constrain to a small α, reducing the power efficiency for
all other links with much smaller load. On the contrary, the ideal condition is when
all links are equally loaded, because the largest possible α would be optimal for all
the links and flows. Hence, to solve the IPC problem, we propose a set of Load
Balancing (LB) algorithms that try to equalize the link load among all links, for a
given traffic matrix.

As a first step, the LB algorithms identify the minimum size rectangle including
the source PE and destination PE for each traffic flow. For example, in Fig. 6.2,
the upper-left part is a 2 × 3 rectangle for the traffic flowing from S1 to D1, while
bottom-right is a 2×2 square for the traffic from S2 to D2. Then, for each rectangle,
two different routing paths (XY and YX path) covering the rectangle perimeter are
considered. The main reasons for considering these two specific routing paths are:

1. Both are shortest paths, an advantage for power saving purposes because more
hops require more power (see Eq. (6.1)).

2. Both are oblivious of the paths of other flows, i.e., they do not adapt to the
dynamic state of the other flows.

3. XY and YX paths tend to balance the load on the whole network, better than
other routing policies like “negative first, north last” discussed in [87].

4. XY (YX) is dead-lock free without introducing virtual channels. This allows
to simplify the queueing structure at each router.

The main drawback of combining XY and YX routing paths is that two paths
may deliver packets out-of-order. This problem could be solved at the cost of adding
some buffers for reordering, and introducing additional delay. However, in-order de-
livery only need to be guaranteed at task level. Hence, the flows from one node to
another can be split among all the communication flows corresponding to different
tasks. Since the degree of “splittability” of a flow depends on the particular dis-
tribution of tasks in each node, to find general results we consider different split
constraints for LB routing:

� 2P-ES (2 Paths, Even Split): A traffic flow is evenly splittable among two
paths, i.e., each PE contains enough tasks to pack flows evenly into two paths.
Thus XY and YX routing paths carry exactly 50% of the original load each.

� 2P-RS (2 Paths, Random Split): A traffic flow is randomly splittable among
two paths, i.e., each flow can be split with a random unbalance factor. This
models task unbalancing.

� 4P-ES (4 Paths, Even Split): A traffic flow is evenly split among four paths.
To define the paths, a random intermediate node is chosen internally in the

60

6.5 – Simulation and performance evaluation

Figure 6.3. Load balancing exploiting 4P-ES routing

rectangle: two paths follow the standard XY, YX routing while the other two
are forced to pass through the intermediate node as shown in Fig. 6.3. This
algorithm is inspired by the minimum Valiant load balancing [88] technique.

6.5 Simulation and performance evaluation

We developed a flow level NoC simulator to evaluate the whole NoC transmission
power cost. We simulated a 5 × 5 grid topology. To generate the traffic matrix Λ,
we considered the following scenarios:

� Uniform: All nodes send the same amount of traffic to any other node, i.e.
λij is a constant for any i,j ∈ V.

� Normal: Λ is obtained as the summation of 25 permutation matrices1. By
construction

∑

k λik =
∑

k λkj for any i,j, i.e. all nodes are both source and
destination of the same aggregate amount of traffic but the traffic is not uni-
formly distributed among each node pair.

� Transpose: The node in row x and column y (with x /= y) sends traffic to
the node in row y and column x.

1A permutation matrix is a binary square matrix in which exactly one element is equal to 1 for
each row and for each column

61

6 – Balancing Traffic to Save Power Through DVFS in NoC

� Tornado: A node in column x sends traffic to the node in the same row and
in column (x+ 2) mod 5, i.e., 2 hops to the right (with wrapping).

� Hot-spot: Each node sends with probability 0.6 traffic to the hot-spot node
located in the center of the topology, and with probability 0.4 uniformly to
any other node. This traffic was proposed in [89].

To coherently compare the different scenarios under sustainable traffic for all routing
policies, for each scenario we compute the most loaded link across all the routing
policies and re-normalize the load to such value, using a parameter η ∈ [0,1], denoted
as the normalized load. More formally, given a traffic matrix Λ, the offered traffic
matrix Λ′ = [λ′

ij] for the simulation is computed as:

λ′
ij = η

µ

maxR{γR
Λ }

λij (6.7)

This means that, when η = 1, there exists a routing policy R′ for which the
virtual load is one, i.e. γR′

Λ′ = µ, and for all the other policies the virtual load is less
than one. This guarantees sustainable traffic for any routing policy.

We also evaluated the power consumption when using XY routing with or with-
out DVFS technique, referred as XY and NoDVFS respectively in the figures. Fur-
thermore, we consider an adaptive routing scheme, derived from the one in [73]
and referred as Adaptive in the figures. The scheme considers each flow singularly,
starting from the largest to the smallest. Each flow is routed by computing, hop-
by-hop, all the shortest paths to the destination and choosing, as next hop, the one
with the lowest link utilization. Then we compare the NoC power when routing the
flows according to the proposed LB schemes: 2P-ES, 4P-ES and 2P-RS. Finally,
the minimum power corresponding to the optimal solution of the IPC problem is
computed through GLPK [90] solver using the approximated method explained in
Sec. 6.4 with Q = 100.

Figs. 6.4, 6.5 and 6.6 show the normalized power consumption under normal,
transpose and hot spot traffic matrices, respectively. Without DVFS the transmis-
sion power grows linearly with the load. On the contrary, the power consumption
with DVFS is a cubic function of the load, with a different coefficient depending on
the routing algorithm and traffic matrix. This is not surprising for single component
(e.g. router, CMOS gate), but it is quite interesting for the whole SVSF NoC chip.
Our result validates Property 1 discussed in Sec. 6.3.3.

Clearly a huge gap exists between the minimum power and the XY routing,
especially in some traffic patterns like transpose and hotspot. Even under normal
traffic scenario, almost 40%2 power reduction is possible. This suggests that it is

2The percentages reported in this Section refer to the maximum load case, i.e. η = 1. Indeed,
when η < 1, obviously even more power could be saved.

62

6.5 – Simulation and performance evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

NoDVFS
XY
2P-ES
4P-ES
2P-RS
Adaptive
Minimum power

Figure 6.4. Power of a 5× 5 NoC under normal traffic pattern

promising to consider DVFS on NoC to save power although the simple XY routing
policy shows some limitations. 2P-ES shows power reductions close to the optimal
solution in most cases. Under normal traffic, 2P-ES is the best policy among LB
techniques, and it saves more than 20% power compared to XY routing with DVFS.
Under the transpose traffic patterns, 2P-ES can save up to 78% power, providing
savings close to those of the minimum power. The reason for such relevant gain
is that XY concentrates the traffic on only one link between the two connecting
adjacent nodes, whereas LB is able to distribute the traffic across all the links.
Under hot-spot traffic, 2P-ES achieves 60% gain, because it reduces the link load
around the hot-spot node.

In general, 2P-ES appears to be close to 2P-RS (within a variation < 10%)
and to multiple paths LB 4P-ES, irrespective to the traffic scenarios. The minor
performance degradation from 2P-ES to 2P-RS means that if a traffic flow cannot
be divided and cannot be evenly sent into two paths due to the lack of tasks, other
sub-optimal packing conditions (i.e.random split) can be adopted. The loss due to
flow unbalancement is not crucial if compared to the gain obtained by applying LB
technique. The multiple paths LB 4P-ES is not always better than the 2 paths LB,
because i) XY (YX) is already trying to balance the traffic, ii) random selection
of the intermediate node could result in unbalance (i.e. multiple selections of one
node), like in normal traffic scenario. Even when 4P-ES outperforms 2P-ES as in
the transpose traffic pattern case, the gain is limited to 5%.

Comparing our LB schemes with Adaptive routing, in all considered traffic pat-
terns, deterministic LB routing perform close to the adaptive routing. For instance,

63

6 – Balancing Traffic to Save Power Through DVFS in NoC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

NoDVFS
XY
2P-ES
4P-ES
2P-RS
Adaptive
Minimum power

Figure 6.5. Power of a 5× 5 NoC under transpose traffic pattern

in Fig. 6.4, 2P-ES and Adaptive behave similarly. In Fig. 6.6, a 6% improvement can
be observed when considering Adaptive with respect to 2P-ES, whereas in Fig. 6.5,
no improvement can be observed.

Results related to the uniform and tornado traffic scenarios are not reported due
to lack of space. Indeed, under uniform traffic pattern, even XY routing balances
the traffic and obtains the minimum power. Similarly, 2P-ES and Adaptive find
routing paths with minimum power. On the contrary the other two LB routing
schemes exhibit performance limitations when the load approaches the maximum
(i.e. η = 1), because the random load balancing reduces the effectiveness of DVFS.
Tornado traffic is an adverse traffic pattern, since only one routing path can be
found by any shortest-path routing policy per pair. Thus, all the routing policies
listed in this chapter, including the optimal one, behaves exactly as NoDVFS.

In summary, our deterministic 2P-ES LB scheme is able to efficiently exploit
DVFS and save considerable power for a NoC grid network, close to the minimum
achievable power.

6.6 SystemC Verification

For verification purposes, we developed a flit level simulator modeling the flit
contentions and the queuing process at the routers and PEs. The simulator is
slotted and it is written in C++ adopting SystemC 2.2 and TLM 2.0.1 standard
libraries [91], which permit us to build a functional transaction model, cycle accurate

64

6.6 – SystemC Verification

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

NoDVFS
XY
2P-ES
4P-ES
2P-RS
Adaptive
Minimum power

Figure 6.6. Power of a 5× 5 NoC under hot-spot traffic pattern

with respect to the real hardware but running much faster than RTL HDL models.
We consider input queues with VOQ (Virtual Output Queue) for the routers, with
a standard greedy maximal weight matching algorithm to solve contentions.

Two different global clocks were used, fNoC for the NoC (routers and correspond-
ing channels) and fPE for all the PEs; fPE is always fixed at 1 GHz. We consider
a network of size 5× 5, each VOQ buffer depth is 50 flits with a flit size of 32 bits
fixed; the flit duration corresponds to a slot. Packets are generated according to a
Bernoulli process, and contain a random number of flits uniformly chosen between
5 to 10. The traffic matrix is hot-spot. To compute the maximum sustainable load,
we set fNoC = fPE, corresponding to 1 Gbit/s for the link capacity. When NoDVFS
is adopted, the maximum sustainable offered load per node is equal to 5.2 Mflit/s
(ρ = 1). Then, for each traffic load, we slow down the NoC by setting fNoC = fPE/α
with α = min{1/ρ,αmax}, to saturate the bottleneck link capacity without violating
the maximum expansion factor condition.

We only consider XY routing with and without DVFS, under unsplittable traffic.
Results are reported in Table 6.1: columns report respectively, i) the traffic load ρ,
ii) the power cost of XY routing without DVFS, normalized to the maximum power
for ρ = 1, iii) the power cost of XY routing with DVFS, iv) their ratio, v) the
theoretical ratio obtained with the flow model, that can be shown to be equal to
α2. The normalized power values have been obtained with a precision < 5% at 95%
confidence interval, as an average of 5 individual runs (after removing the transient
period). The power savings obtained by introducing DVFS into NoC is observable
when traffic load is not saturated as expected. The last two columns show that the

65

6 – Balancing Traffic to Save Power Through DVFS in NoC

Input NoDVFS DVFS Actual Ratio Theoretical Ratio
load NoDVFS/DVFS NoDVFS/DVFS
1.0 1.00 1.00 1.00 1.00
0.8 0.806 0.513 1.57 1.56
0.6 0.602 0.215 2.86 2.78
0.4 0.412 0.0643 6.40 6.25
0.2 0.201 0.0223 9.02 9.00

Table 6.1. Normalized power cost through SystemC verification under hot spot
traffic matrix and XY routing

results obtained from the SystemC simulator agree well with the ones obtained by the
flow model discussed in Sec. 6.5. The power gain of DVFS with respect to NoDVFS
increases as the input load decreases, before hitting the maximum expansion factor,
where the ratio is roughly α2

max = 9.

6.7 Conclusions

In this chapter, we investigate the power saving problem for NoCs, considering
only the dynamic power related to the data transmission due to the bit switching
activity. In particular, we exploit DVFS to adjust links speed to match the traffic
demands, in a Single Voltage Single Frequency (SVSF) chip. The SVSF makes the
approach feasible and promising for hardware implementation.

We model the optimal routing and DVFS problem as an optimization program-
ming problem and solve it through GLPK solver. The optimal solution suggests that
considering DVFS into NoC is a promising approach to reduce network transmission
power consumption. Furthermore, we propose a set of deterministic load balancing
(LB) routing schemes, simple to be implemented if compared to adaptive routing,
to balance network traffic and to mitigate the load concentration problem on NoC
links. Indeed, a quasi-uniform load on the NoC permits to exploit more efficiently
DVFS.

Simulation results show that LB schemes are able to well approximate the per-
formance of adaptive routing and of the optimal solution, but with a lower compu-
tational and implementation complexity. Finally, our results have been validated
through a flit-level simulator developed with SystemC and TLM libraries.

66

Chapter 7

Exploiting Space Diversity and
DVFS in Multiplane NoC

Network-on-Chips (NoCs) have been proposed as a regular and scalable solution
to interconnect multiple components on a silicon chip. In this chapter, we approach
NoCs power optimization through Dynamic Voltage and Frequency Scaling (DVFS)
under the hypothesis that two NoC planes are available, each with a different voltage
supply and clock frequency. We show the high potential benefit of applying DVFS
independently in each plane. We propose three strategies that allocate the traffic
in the two planes and minimize power consumption. We evaluate them through a
comparison with an ideal traffic allocation policy based on a linear programming
technique. We show that load balancing in the two planes is not aways the best
policy. Indeed, in an unbalanced traffic scenario, concentrating the high-load flows
in one plane and the remaining low-load flows in the other plane, is more power
efficient. Finally, we numerically evaluate the power performance under an accurate
NoCs power consumption model.

7.1 Introduction

Network-on-Chips (NoCs) offer a regular and scalable alternative to standard
busses for the interconnection of Processing Elements (PEs) in a large-scale System-
on-Chip (SoC). Current SoC designs implement aggressive power minimization tech-
niques to stay within a limited power budget. Minimizing the power consumption
of each and every SoC component is mandatory, be it a PE, a memory block, or
the NoC supporting the traffic between them. Dynamic Voltage and Frequency
Scaling (DVFS) is a very effective technique for power optimization. In a previous
paper [92] we exploit DVFS and different routing policies to reduce power con-
sumption in single-plane NoCs. Here we consider the multiplane NoC architecture

67

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

proposed in [93] and combine it with DVFS to boost NoC power saving without
focussing on routing policies. We assume to have two parallel, independent NoC
planes, as shown in Fig. 7.1. Each PE is connected to two routers, one per plane.
Each plane is supplied by a different voltage and clock frequency, to exploit DVFS
separately and independently.

Figure 7.1. A two planes NoC architecture. The interconnection network among
the routers in the second plane is the same as in the first plane. Each processing
element (PE) is connected to two routers, one for each plane.

In a DVFS setting, clock frequency and supply voltage are jointly reduced when
the bit activity is low. This method exploits the dependency of a CMOS gate’s
dynamic power consumption on the square of supply voltage, rather than its linear
dependence on clock frequency:

P ∝ fV 2 (7.1)

In our NoC-based communication framework, clock frequency f is chosen in range
[fmin,fmax] according to the required average number of bit transitions (from 0 to
1 and vice-versa) per clock period, i.e. the average load. We define ρ ∈ [0,1] to be
such average value and consequently f = ρfmax. Notice that through this definition,
clock frequency and bit rate become synonymous. The supply voltage V is chosen
in range [Vmin,Vmax]. We define α as the voltage reduction factor in such a way that
V = Vmax/α. Due to the voltage lower bound Vmin, α is also upper bounded by
αmax = Vmax/Vmin: α ∈ [1,αmax]. We can now reformulate (7.1) as follows:

P ∝ fV 2 = ρfmax(Vmax/α)
2 (7.2)

68

7.2 – Multi-plane NoC model

Supply voltage and clock frequency are interrelated in a CMOS digital circuit.
Given a voltage V , the maximum frequency the circuit can run at is a monotonically
increasing function of V : a function which also depends on technology and circuit
parameters. When the bit rate decreases, the bit duration, i.e. the clock period in
our formulation, increases and the voltage can be decreased. Approximately, when
decreasing the voltage by α, the bit duration can be increased by the same factor,
and α can be also interpreted as the bit expansion factor: α = 1/ρ.

By setting the latter equivalence in (7.2), we get the rule of thumb that dynamic
power is a cubic function of average load: P (DV FS) = ρ3fmaxV

2
max when DVFS is

fully exploited1. On the contrary, when no voltage and frequency scaling is adopted
(α = 1), P (NoDV FS) = ρfmaxV

2
max and power scales linearly with ρ. By comparing

P (DV FS) and P (NoDV FS), the potential power gain due to DVFS when the load
is low is clear.

The motivation for exploiting multiplane NoCs together with DVFS is that the
DVFS effectiveness on single plane NoCs is limited by the “bottleneck” link on chip.
Indeed, consider a single plane NoC with each link loaded by some amount of traffic,
which depends on the applications running on the PEs and on the routing policy.
Assume that the whole chip is supplied by a single voltage2. The maximum loaded
link, the “bottleneck”, limits DVFS effectiveness, since the maximum allowed bit
expansion factor α is constrained by the load on such link. In a two planes NoC
with each plane working at a different voltage, we show that through a proper traffic
allocation algorithm it is possible to minimize the impact of bottleneck links and
save more power by concentrating most of the bottleneck flows on a single plane.

7.2 Multi-plane NoC model

We consider a mesh with N nodes, one of the most common topologies for
NoCs [82] due to its simplicity and low power consumption [83]. Two identical planes
are considered, as shown in Figs. 7.1 and 7.2. The network is partitioned into “tiles”,
and each tile corresponds to one logical PE and two physical routers, one per plane.
We assume all the PEs potentially associated with the same router as one logical
PE since all the generated/received flows from/by the PEs are routed by the same
router. We consider input queuing switch without virtual channels. FIFO buffers
of limited size are available in PEs and routers, and wormhole routing is adopted to
save buffer space. Each data packet is split into smaller units, called “flits” that are
individually routed across the NoC without interleaving. Deterministic XY routing
is used since deadlock free without virtual channels [87]: data is first routed in the

1We have substituted symbol ∝ with = assuming a suitable normalization.
2We do not consider the case of each link working at an independent voltage as in [77], which

is complex to implement, or other sophisticated architectures such as voltage islands [81].

69

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

Figure 7.2. The physical implementation of a two planes NoC and one tile architecture

X direction, until reaching the X coordinate of the destination, and then routed in
the Y direction. Each flow is transferred across a single plane, to avoid the extra-
complexity to route the flow in two planes, possibly with different frequency and
voltage pairs. Our approach doubles network resources, but compensates this cost
with a high power saving, as shown in Sec. 7.4.

7.2.1 Power Model

All links in a plane are supplied with a unique voltage and frequency pair, similar
to a Single Voltage/Single Frequency (SVSF) chip [72], but two planes can work at
different voltages chosen in range [Vmin,Vmax] and at different frequencies in range
[fmin,fmax]. The extreme values for frequency and voltage depend on the adopted
technology and chip design. We focus only on the minimization of dynamic power
due to the data transferred between routers, neglecting leakage power consumed
when routers are idle. The power model at the network level is hop based; such
model was proposed and validated in the literature [84, 85]. When transmitting
continuously at rate r bit/s along a path of h hops, from (7.1) and from the equiva-
lence between bit rate and clock frequency, the power consumption is proportional
to rhV 2. To be admissible, the flow cannot overload the links along its path. This
implies that r ≤ fmax and the normalized load is defined as ρ = r/fmax. To fully
exploit DVFS and to avoid any throughput degradation, the bit duration can be
expanded (at most) by a factor of α = 1/ρ = fmax/r, which has been previously
defined as the expansion factor; thus, the voltage can be decreased by α, as we al-
ready noted. Using (7.2), the total power for transmitting a flow with rate r across
h hops is

P = rh

(

Vmax

α

)2

∝ hr

α2
. (7.3)

70

7.3 – Traffic Allocation for Two-Planes NoC

Given the minimum allowed voltage Vmin in the considered technology, it must be
α ≤ αmax where αmax = Vmax/Vmin corresponds to the maximum expansion factor.
Note that αmax is often around 2 and never more than 3 [86]. In addition to such
high-level model of power consumption, we have considered a more realistic model
that refers to an Intel 48 cores chip [94] and has been obtained through Orion 2.0 [95],
an accurate simulator of NoC router power. This validation is discussed in details
in Sec. 7.5.

7.2.2 Traffic Model

We assume that the traffic flows among the N PEs are known. Depending on the
actual application, such flows can be either known in advance, or estimated on-line
by the rate estimator shown in Fig. 7.2. The average traffic flow from node i to j is
denoted by rij , measured in [bit/s]. All the links have maximum capacity µ [bit/s],
which is achievable only for maximum frequency fmax and maximum voltage Vmax.

Definition 1. Let Λ = [λij] be the N × N traffic matrix, in which λij is the nor-
malized traffic rate from node i to j, defined as λij = rij/µ with λij ∈ [0,1].

Definition 2. Given a routing policy R and traffic matrix Λ, γR
Λ is defined as the

bottleneck load, i.e. the maximum offered load, normalized to ρ, among all the edges
in the topology.

Definition 3. Λ is said to be admissible according to the routing policy R iff γR
Λ ≤ 1.

Since in-sequence delivery of messages belonging to same flows is crucial to avoid
complex re-ordering functionality and to reduce the memory requirements, we do
not consider splittable flows in our work, i.e, λij is routed along one single path
on a single plane. Even though, under this assumption it is not possible to get
the minimum power that a splittable policy would achieve, as we show later, it
is still possible to save considerable power. We will compare our traffic allocation
policies with an ideal one that allow splittable flows and allocates flows by solving
an optimization problem. The power obtained by such benchmark strategy can be
then taken as the lower bound.

7.3 Traffic Allocation for Two-Planes NoC

The objective of our power control is to allocate the traffic for the two-planes
NoC, in order to minimize the total power consumption while satisfying the traffic
demands and the link capacity constraints. In the following section we describe
a toy-scenario in which it is possible to highlight the potential power gain due to
different traffic allocation algorithms.

71

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

7.3.1 A toy scenario

To fully exploit multiplane NoC for power saving, one option could be to load
balance the traffic among the two NoCs. Contrary to common belief, we show that
this policy is not always optimal.

As an example scenario, consider two NoC planes, supplied with voltages V1 =
Vmax/α1 and V2 = Vmax/α2. As a reminder, all the links on plane i (with i = 1,2)
run at a maximum frequency fmax when αi = 1. Assume to have k + 1 traffic flows
among routers that are adjacent in the topology, thus all the flows do not share any
link. The first flow is at rate fmax bit/s and is denoted as “max-rate flow”. All the
other flows are at rate ρfmax bit/s, with some small ρ ∈ (0,1), and are denoted as
“low-rate flows”. To emphasize the possible power gains due to DVFS, we assume
αmax = 3, coherently with [86].

Now consider the following traffic allocation schemes:

� Route all the k + 1 flows in the first plane. In this case, DVFS cannot be
exploited because of the max-rate flow on the bottleneck link. Hence, α1 = 1
and, thanks to (7.3), the overall power consumption is

P (1) =
fmax

α2
1

V 2
max +

kρfmax

α2
1

V 2
max

= (1 + kρ)P0 (7.4)

having defined P0 = fmaxV
2
max.

� Balance the traffic among the two planes, assuming that flows can be split
across the two planes. Thus the power is an optimistic lower bound of the
actual value achievable with any load balancing scheme that do not allow flow
splitting. The bottleneck link is transferring 0.5fmax bit/s per plane and the
DVFS can be fully exploited by setting α1 = α2 = 2. According to (7.3), the
overall power consumption is

P (2) =
0.5 + kρ/2

α2
1

P0 +
0.5 + kρ/2

α2
2

P0

= (1 + kρ)
P0

4
(7.5)

� Concentrate the max-rate flow on the first plane and allocate all the other
small-rate flows on the other plane. Hence, α1 = 1 and α2 = min{1/ρ,αmax},

72

7.3 – Traffic Allocation for Two-Planes NoC

thus the overall power consumption becomes:

P (3) =
1

α2
1

P0 +
kρ

α2
2

P0

= P0 + kρ
P0

(min{1/ρ,αmax})2

=

(

1 + kmax

{

ρ3,
ρ

α2
max

})

P0 (7.6)

Note that, in a mesh topology with N nodes, the number of links is in the order of
N2; hence, in our toy scenario k grows as fast as N2. Therefore, for large enough
N , (7.4)-(7.6) can be approximated by:

P (1) ≈ kρP0

P (2) ≈ kρP0/4

P (3) ≈ kmax{ρ3,ρ/α2
max}P0

From the results above, by comparing P (2) and P (3) with P (1), it is clear the power
reduction due to the DVFS. Instead, when comparing P (2) with P (3), the third policy
is better than load-balancing when ρ < 0.5 and αmax > 2, even if the load-balancing
is allowing flow splitting. In other words, contrary to some common belief, to exploit
fully DVFS and minimize power, load balancing across the planes is not always the
optimal strategy. Intuitively, it is better to “concentrate” all the high-rate flows in
one plane, for which the voltage is kept at maximum, and route all the small-rate
flows in the other plane, that runs at a lower voltage and fully exploits DVFS.

7.3.2 Traffic Allocation Algorithms

Inspired by the toy scenario above, we consider three algorithms to allocate flows
according to different criteria. The first algorithm, denoted as 2P-Balance, bal-
ances the traffic flows between the two planes. Then we choose the most convenient
frequency and voltage for each plane according to the resulting bottleneck load. As
discussed in Sec. 6.3, no flow splitting is allowed. The corresponding pseudo code is
Algorithm 1.

Let Ω be the set of all the flows, identified by a couple (i,j) for the source PE
i and the destination PE j. Let Ω1 and Ω2 be the set of the flows that have been
allocated to plane 1 and 2, respectively. They are the outputs of the allocation
scheme, together with the corresponding expansion factors α1 and α2. The input
for the algorithm is the normalized traffic matrix Λ. The algorithm starts to consider
all the flows in first plane (Ω1 = Ω, Ω2 = ∅), which is called the Master Plane (MP).
Incrementally, the algorithm considers all the flows contributing to bottleneck link

73

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

Algorithm 1: 2P-balance

Input: Traffic matrix Λ
Output: Ω1, Ω2, α1, α2

1: Ω = Ω1 = {(i,j),∀i,j}, Ω2 = ∅
2: S = BF(Ω1) ∩ Ω
3: while S /= ∅ do

4: (i,j) = argmax(i′,j′)∈S{λi′j′}
5: if BL(Ω1 \ {(i,j)}) ≥ BL(Ω2 ∪ {(i,j)}) then

6: Ω2 = Ω2 ∪ {(i,j)}, Ω1 = Ω1 \ {(i,j)}
7: end if

8: Ω = Ω \ {(i,j)}, S = BF(Ω1) ∩ Ω
9: end while

10: α1 = µ/BL(Ω1), α2 = µ/BL(Ω2)

in MP and evaluates the load of the new bottleneck link if each flow was moved in
the second plane, named as the Slave Plane (SP). In the pseudo code, function BL

returns the load corresponding to the bottleneck link, whereas BF returns the set of
all the flows contributing to the bottleneck links, either on MP or SP depending on
whether the argument is Ω1 or Ω2. Every time a bottleneck flow has been considered
for being moved to SP, it is removed from Ω, to avoid further consideration in the
following iterations of the algorithm. The expansion factors αi for each plane are
computed as αi = µ/BL(Ωi), since the bottleneck load is the only one affecting the
DVFS. S is the set for the flows contributing to the bottleneck link.

Remember, since splittable flows are not allowed, algorithm 2P-Balance usu-
ally can not perfectly balance the load between the two planes. The algorithm
complexity is O(N2log(4N)). In worst case we need to consider each commodity
(N2) once, with the need to update link load order once for each commodity (4N
links in total and O(log(4N)) to update the order in heap structure).

Whereas 2P-Balance tends to distribute the flows among the two planes, the
second algorithm we proposed, denoted as 2P-Mini, concentrates the flows with
higher traffic into MP while the flows with lower traffic in SP. The pseudo code of
2P-Mini is described in Algorithm 2.

The key difference for this algorithm compared to 2P-balance is that we force
the bottleneck load in SP to be low (i.e., BL(Ω2) ≤ 1/αmax)), to guarantee the
SP running at the minimum possible frequency fmin and exploit fully DVFS in at
least one of the two planes. On the contrary, 2P-balance tends to equalize the
bottleneck load among the two planes MP and SP (i.e., BL(Ω1) ≈ BL(Ω2)). In the
pseudo code, the additional loop in 2P-mini (lines 10-16) considers the flows in
MP that have not been considered in the first loop (lines 3-9). Since the first loop
considers only flows contributing to the bottleneck link, it is still possible to move

74

7.3 – Traffic Allocation for Two-Planes NoC

Algorithm 2: 2P-mini

Input: Traffic matrix Λ
Output: Ω1, Ω2, α1, α2

1: Ω = Ω1 = {(i,j),∀i,j}, Ω2 = ∅
2: S = BF(Ω1) ∩ Ω
3: while S /= ∅ do

4: (i,j) = argmax(i′,j′)∈S{λi′j′}
5: if BL(Ω2 ∪ {(i,j)}) ≤ 1/αmax then

6: Ω2 = Ω2 ∪ {(i,j)}, Ω1 = Ω1 \ {(i,j)}
7: end if

8: Ω = Ω \ {(i,j)}, S = BF(Ω1) ∩ Ω
9: end while

10: while Ω /= ∅ do

11: (i,j) = argmax(i′,j′)∈Ω{λi′j′}
12: if BL(Ω2 ∪ {(i,j)}) ≤ 1/αmax then

13: Ω2 = Ω2 ∪ {(i,j)}, Ω1 = Ω1 \ {(i,j)}
14: end if

15: Ω = Ω \ {(i,j)}
16: end while

17: α1 = µ/BL(Ω1), α2 = µ/BL(Ω2)

additional flows from MP to SP. This allows to load the SP as much as possible and
better exploit DVFS.

Although 2P-Mini has an additional phase to consider the remaining flows which
do not contribute to γΛ

1R, from step 11 to 16 in the algorithm description, the
complexity is still O(N2log(4N)) since the additional loop is only a constant factor
(less than 2) for the complexity.

The last algorithm we proposed is 2P-4Phase and it is an extension of 2P-

Mini. Indeed, after some preliminary tests, we noticed that 2P-Mini allocates too
many flows in MP, and they can dominate the total power cost. To improve the
power reduction, we propose 2P-4Phase, that computes explicitly the power cost
for each flow according to the formula in (7.3), to better choose which flows to move
from MP to SP after running 2P-Mini. As the name suggests, 2P-4Phase consists
of 4 phases:

P1) Move a flow in BF(Ω1) to SP if BL(Ω2) ≤ 1/αmax.

P2) Move a flow in Ω1 to SP if both BL(Ω1) and BL(Ω2) do not change.

P3) Move a flow in BF(Ω1) to SP that increases the value of BL(Ω2) and the SP
power cost, but the power increase is lower than the power decrease in MP.

75

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

Algorithm 3: 2P-4phase
1: Run Algorithm 2
2: Calculate W1 and W2, update γΛ1R, γ

Λ
2R, S1

3: Pw1 = g(γΛ1R,W1), Pw2 = g(γΛ2R,W2)
4: repeat

5: λ1
max = max(λij ∈ S1)

6: Send λ1
max to P2, route it according to R

7: W1 = W1 − λ1
max,W2 = W2 + λ1

max

8: Update γΛ1R and γΛ2R.
9: Pw′

1 = g(γΛ1R,W1), Pw′
2 = g(γΛ2R,W2)

10: if P ′
1 + P ′

2 > P1 + P2 then

11: Move back λ1
max to P1, S1 = S1 − λ1

max

12: W1 = W1 + λ1
max,W2 = W2 − λ1

max

13: else

14: S1 = f (γΛ1R), Pw1 = Pw′
1,Pw2 = Pw′

2

15: end if

16: until S1 = ∅

17: while M /= ∅ do

18: λ1
max = max(λij ∈ M)

19: Send λ1
max to P2, route it according to R

20: W1 = W1 − λ1
max,W2 = W2 + λ1

max

21: Update γΛ1R and γΛ2R.
22: Pw′

1 = g(γΛ1R,W1), Pw′
2 = g(γΛ2R,W2)

23: if P ′
1 + P ′

2 > P1 + P2 then

24: Move back λ1
max to P1, M1 = M1 − λ1

max

25: W1 = W1 + λ1
max,W2 = W2 − λ1

max

26: else

27: M1 = M1 − λ1
max, Pw1 = Pw′

1,Pw2 = Pw′
2

28: end if

29: end while

P4) Move a flow in Ω1 but not in BF(Ω1) to SP, that increases the value of BL(Ω2)
and the SP power cost, but the power increase is lower than the power decrease
in MP.

In order to push the power consumption towards an efficient direction, the first
two phases are desirable without additional conditions. The latter two are not clear
without introducing extra merit. To cope with this, We insert an analytical power
cost formula shown as (7.3), to decide whether a movement is successful or not.
After running our 4Phase algorithm, there is not possible to move a single traffic
flow to decrease the whole chip power consumption. This algorithm outperforms
than the other two as shown later in next section.

76

7.3 – Traffic Allocation for Two-Planes NoC

The persudo code of 4Phase is shown in Algorithm 3, Wi =
∑

λij∈Λ
(λijh(λij))

is the weight of plane i, Pwi = Wi/(αi)
2 is the power cost for plane i, and this

calculation is denoted as function g . It is coherent with (7.3) but with less updating
complexity since new power calculation is only based on the weight change, i.e, no
need to calculate the entire chip power from scratch. We use 2P-mini as the first
two phases and for the following 2 phases, the movement condition is based on the
power change directly: after the movement of the selected flow, the aggregate power
decrease suggests a success move whereas the power increase means a failure. The
final complexity for this algorithm is O(N2

√
Nlog(N)) since the additional opera-

tions compare to algorithm 2P-balance are updating Wi and αi, with complexity
O(1) and O(log(N)) respectively under proper data structure (i.e heap).

To evaluate the performance of the algorithms, we also consider an Ideal Power
Control (IPC) that allows flow splitting across the two planes and finds the optimal
routing that minimize the power cost. The corresponding problem is quadratic and
is formalized as follows:

min
1≤α≤αmax,f

ml
ij ≥0

∑

i,j,m,l∈V

fml
ij

1

α2
1

+
∑

i,j,m,l∈V

gml
ij

1

α2
2

(7.7)

subject to:
∑

i,j∈V

fml
ij α1 ≤ µ ∀m,l ∈ V (7.8)

∑

i,j∈V

gml
ij α2 ≤ µ ∀m,l ∈ V (7.9)

∑

m∈V

fmk
ij −

∑

m∈V

fkm
ij =











λMP
ij , k = i

−λMP
ij , k = j ∀i,j,k ∈ V

0, otherwise

(7.10)

∑

m∈V

gmk
ij −

∑

m∈V

gkmij =











λSP
ij , k = i

−λSP
ij , k = j ∀i,j,k ∈ V

0, otherwise

(7.11)

λMP
ij + λSP

ij = λij ∀i,j ∈ V (7.12)

where fml
ij ≥ 0 is the amount of traffic, from source node i to destination node j,

sent on link m → l in MP; similarly, gml
ij refers to SP. V is the set of the nodes.

Eqs. (7.8)-(7.9) model the maximum bit expansion compatible with the bottleneck
load in each plane, in order to guarantee the maximum throughput. Eqs. (7.10)-
(7.11) are the classical flow conservation constraints. Finally, Eq. (7.12) guarantees
to serve all the traffic in one or both the two planes.

77

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

The IPC problem provides a lower bound on the power consumption when un-
splittable flows are considered. The IPC problem cannot be solved directly due to
the quadratic objective and large multi-commodity size. However, when we relax
the objective by fixing αi, the problem becomes linear. This fact permits to solve
the problem in approximated fashion by discretizing the interval [1,αmax] in Q points
and by solving Q different LP problems through an optimal LP-solver. The best
solution among the Q available ones is the approximated optimal solution to the
IPC.

7.4 Performance Evaluation

We developed a flow level NoC simulator to evaluate the whole NoC transmission
power cost. We simulated a two-planes mesh network of size 4× 4 (for the MPEG4
decoder scenario with N = 16 nodes) and of size 5 × 5 (for all the other scenarios
with N = 25 nodes). We generated the traffic matrix Λ according to the following
scenarios:

� Uniform: All nodes send the same amount of traffic to any other node, i.e.
λij is constant for any pair of nodes.

� Normal: Λ is obtained as the summation of N permutation matrices3. By
construction

∑

k λik =
∑

k λkj for any i,j, i.e. all nodes are both source and
destination of the same aggregate amount of traffic but the traffic is not uni-
formly distributed among each node pair.

� Tornado: A node in column x of the mesh sends traffic to the node in the
same row and in column (x + 2) mod 5, i.e., two hops to the right (with
wrapping).

� Hot-spot: Each node sends with probability 0.6 traffic to an hot-spot node
located in the center of the topology, and with probability 0.4 uniformly to
any other node. This traffic was proposed in [89].

� MPEG4 Decoder: The traffic matrix is derived by a real MPEG4 decoder
task graph, shown in [1] and mapped to a 4 × 4 mesh network according to
Fig. 7.3.

To coherently compare the different scenarios under admissible traffic, for each
scenario we compute the most loaded link in the case that all the flows are allocated
to a single plane and are routed according to XY routing. Then, we re-normalize

3A permutation matrix is a binary square matrix in which exactly one element is equal to 1 for
each row and for each column

78

7.4 – Performance Evaluation

Figure 7.3. On the left, the MPEG4 decoder task graph (derived from [1]) with
the traffic demand among PEs, expressed in normalized rate units. On the right,
it is shown the mapping of each PE into a 4× 4 mesh NoC architecture.

the load to such value, using a parameter ρ ∈ [0,1], denoted as the normalized load.
More formally, given a traffic matrix Λ, the offered traffic matrix Λ′ = [λ′

ij] for the
simulation is computed as:

λ′
ij = ρ

µ

γXY
Λ

λij (7.13)

where γXY
Λ is the bottleneck load when all the traffic is routed according to XY

routing on a single plane. This definition implies that when ρ = 1, a naive XY
routing without DVFS will saturate at least one link. For a fair comparison, values
of ρ > 1 will not be considered since the traffic is not sustainable on a single plane.

We evaluated the power consumption under XY routing on a single plane, with
or without DVFS technique, referred as XY DVFS and NoDVFS respectively in
the figures. Then we compare the power cost with the proposed traffic allocation
algorithms when two planes are considered, namely 2P-Balance, 2P-Mini and
2P-4Phase, respectively.

To provide a lower bound on the minimum achievable power, we show also the
power corresponding to the solution of the linear programming IPC problem, which
was computed through the combination of the GLPK [90] solver and the approxi-
mated method explained in Sec. 7.3 by setting Q = 100; this guarantees a precision
around 1% on the optimal values found for α1 and α2. The corresponding curves
will be denoted as Minimum Power.

79

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

No DVFS
XY DVFS
2P-Balance
2P-Mini
2P-4phase
Minimum Power

 0

 0.5

 1

 0 0.5 1

Figure 7.4. Power consumption of 5×5, double plane, mesh network under normal
traffic pattern and different loads.

The results are shown in Fig.s 7.4-7.6, with each one corresponding to a different
traffic pattern described above. We change the seeds for the traffic patterns gen-
eration each time before running the simulation and we average the results in 10
different runs for each traffic pattern. In general, the results suggest that with DVFS,
the NoCs power scales down cubicly as the traffic load decreases, when comparing
NO DVFS with XY DVFS for a single plane. This result is not surprising for a
single hardware component (i.e, CPU, router) with DVFS, but it is quite interesting
for the whole chip transmission power cost. Indeed, it can be proved that:

Property 2. Assume ideal DVFS with unbounded αmax (i.e., Vmin = 0). Given a
routing policy R and a sustainable traffic, then the overall power cost of the NoC is
a cubic function of the normalized load ρ: Ptot(ρ) = Pmax

tot ρ3, for 0 < ρ ≤ 1.

The proof has been shown in the previous chapter.
Comparing the results for a single plane and for two planes, it is obvious that

the power is lower for the two planes, independently from the proposed algorithms,
since we exploit an additional plane and double the switching resources. According
to Property 2, by halving the load ρ thanks to the two planes, we would expect a
power proportional to (ρ/2)3 for each plane, which implies ρ3/4 for the two planes;
so a perfect load balancing (with flow splitting) would allow to achieve a power
reduction of factor 4. Interestingly, the observed gain can be larger than 4 using
some of our proposed algorithms. Note that the lower bound provided by Minimum

Power shows the maximum range of power gain due to a two planes NoC, which

80

7.4 – Performance Evaluation

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

No DVFS
XY DVFS
2P-Balance
2P-Mini
2P-4phase
Minimum Power

 0

 0.5

 1

 0 0.5 1

Figure 7.5. Power consumption of 5 × 5, double plane, mesh network under
hot-spot traffic pattern and different loads

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

No DVFS
XY DVFS
2P-Balance
2P-Mini
2P-4phase
Minimum Power

 0

 0.5

 1

 0 0.5 1

Figure 7.6. Power consumption of 4× 4, double plane, mesh network under
MPEG4 decoder traffic

can reach also a factor of 6 to 9 with respect to a single plane. Especially in Fig. 7.5,
under unbalanced traffic the minimum achievable power is almost approaching the
maximum achievable gain α2

max = 9. These promising results show the great po-
tential of multiplane NoCs to reduce the power, and our proposed algorithms are

81

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

devised to exploit it.
Regarding the traffic allocation algorithms, the results obtained with 2P-Balance

and 2P-Mini show that load concentration is better than load balancing, and the
more unbalanced traffic is, the larger performance gap between the two algorithms
can be observed. Indeed, since the traffic cannot be split for both policies, 2P-
Balance does not balance the traffic between the two planes perfectly. The plane
with a higher bottleneck link could accommodate a larger number of minor flows,
increasing the total power cost. Instead, 2P-Mini is able to allocate unsplittable
flows more efficiently, as long as there are high load and low load links, since 2P-

Mini can distribute them into different planes and save more power, as also shown
in the toy scenario from Sec. 7.3. Coherently, in Fig. 7.5, 2P-Mini saves a factor
of 4.4 in the power for ρ = 1, compared to the case without DVFS, better than
the perfect load balancing, for which the gain would be 4. This is because hot-spot
traffic pattern is very unbalanced and the link load among the hot-spot node is very
high whereas the link load “far away” from the hot-spot node is much lower. In gen-
eral any hot-spot scenario (which is quite realistic) tends to highlight the beneficial
effects of load concentration to save power.

Algorithm 2P-4Phase is devised to exploit the space diversity and load concen-
tration more efficiently. Indeed, Fig.s 7.4, 7.5 and 7.6 show a power reduction factor
of 4.2, 4.7 and 4.2, respectively, better than the other two proposed algorithms.

We did not include the results about the uniform and tornado traffic patterns,
due to the lack of space. Indeed, simulation results show that both tornado and
uniform patterns are not suitable for load concentration since all link loads are
exactly the same for both patterns. Even worse, the minimum achievable power
obtained from Minimum Power is at most 4 times lower than the single plane
case; this suggests that no algorithm is able to further exploit the two planes to gain
more than a factor of 4.

As a summary, the simulation results show that given a two planes NoC archi-
tecture with each one runs its own clock frequency for all the transmission links,
load concentration is better than load balancing when the traffic pattern is unbal-
anced. Our algorithm 2P-4Phase appears to be the best one to exploit the load
concentration efficiently for power saving.

7.5 Accurate Power Model Validation

To further back up our methodology we picked two remarkable NoC examples
from the recent literature.

The first network is a mesh used by Intel designers as communication backbone
for a chip that integrates 80 cores in a 65 nm CMOS technology [96]. Its 8 ×
10 2D mesh topology utilizes a 5-port input-buffered router based on wormhole

82

7.5 – Accurate Power Model Validation

switching. Routers are connected through 39-bit unidirectional 2mm point-to-point
links. They feature two logical lanes for deadlock-free routing with 16-flits queues
and a non-blocking crossbar. Arbitration, input-output matching and queue reading
are arranged in a 5-stage pipeline scheme. Flow control and buffer management
between routers are debit-based and use almost-full bits. The router operates at
5.6GHz at 1.3V.

The second network connects a pool of 48 cores in a 45 nm chip, again by Intel
[94], organized in a 2D mesh of 24 tiles (6 × 4, two cores per tile). Routers with
five ports and with a non-blocking crossbar are used in this design too, with bidi-
rectional 144-bits, 5.4mm point-to-point links. Virtual cut-through switching was
chosen with eight virtual channels over 2 message classes (request and response)
together with a classic dimension ordered XY routing. The pipeline scheme is a
4-stage one. A credit-based flow control is used which exerts back pressure on the
upstream routers to prevent buffer overflow. The clock frequency is 2.35GHz at
1.25V, significantly smaller than the previous case, despite the scaled technology,
because of the larger complexity and the shallower pipeline.

We modeled the routers of the two NoCs in Orion 2.0, an accurate router power
and area modeling tool which already proved capable of capturing the power char-
acteristics of the first of the two examples at a fixed nominal voltage [95]. Orion
accepts router architecture and technology parameters together with power supply
voltage and clock frequency inputs. However, it is not able to choose the minimum

 0

 1

 2

 3

 4

 5

 6

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

C
lo

c
k

 F
re

q
u

e
n

c
y

 (
G

H
z
)

Voltage (V)

80 cores router, 65 nm technology
48 cores router, 45 nm technology

Figure 7.7. Minimum power supply voltage as a function of frequency for Intel 80
core and 48 core router designs.

83

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
o

w
e

r
(W

)

Voltage (V)

Power at load = 0.0
Power at load = 1.0

Figure 7.8. Power at full and at no load for the Intel’s 80 core router as a function
of clock frequency. Supply voltage was set at the minimum value that guarantees
correct operation at chosen frequency.

voltage for a given clock frequency (or equivalently the maximum clock frequency
for a given voltage), a step necessary for our DVFS-based power evaluation. On
top of Orion 2.0, we thus added an accurate voltage versus frequency model we
derived from the Mastar Mosfet model, a tool used to compile the ITRS roadmap
of CMOS technology [97]. The maximum clock frequency is calculated based on a
gate delay model – the delay of an inverter loaded with a fanout-of-four (FO4) load,
also known as FO4 delay – which in turn is a function of supply voltage as well as
of many technology parameters like transistor doping levels, channel length, oxide
thickness, and many others. We obtained with Mastar the typical FO4 delay for
the two technologies in which the two routers were implemented, 65 and 45 nm, as
a function of the supply voltage. We then made the reasonable assumption that the
whole minimum clock period scales with voltage the same way a simple gate does.
Therefore, from Intel’s published experimental data we took the clock period at a
given voltage, and from that we drew a suited proportionality factor between clock
period and gate delay. Such constant factor is representative of the length of the
switch’s critical path in terms of FO4 delays. Using that constant at any voltage
(the number of FO4 delays depends on the number of gates in a critical path only,
and not on the voltage), we could plot curves that relate voltage and frequency, as
shown in Figure 7.7.

To fully characterize a router’s power model, we ran Orion at various voltage

84

7.5 – Accurate Power Model Validation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
o

w
e

r
(W

)

Voltage (V)

Power at load = 0.0
Power at load = 1.0

Figure 7.9. Power at full and at no load for the Intel’s 48 core router as a function
of clock frequency. Supply voltage was set at the minimum value that guarantees
correct operation at chosen frequency.

and frequency pairs and varying another important input parameter, the load. This
value represents the number of flits each router port receives per clock cycle. A 1.0
value corresponds to a fully loaded router (one flit per port received per clock cycle),
whereas a load of 0.0 represents a situation of idle router. It was shown that a router
power as a function of the load at its input ports is accurately captured by a linear
model [98]. Power expressions in Orion are linear functions of the load parameter.
Therefore, to build a model suitable for integration in our algorithms it was sufficient
to evaluate power at full load (1.0) and at no load (0.0). Any intermediate value
can be obtained as a weighted combination of the two values as follows

P (l,f) = P0(f) + l ·
(

P1(f)− P0(f)
)

. (7.14)

Figures 7.8 and 7.9 report power values as a function of clock frequency and
consequently also of voltage. Voltage and frequency pairs were chosen according to
the curves plotted in Figure 7.7, for the two routers. The two curves in each plot in
Figures 7.8 and 7.9 represent power at maximum and at zero load. Values plotted
in figures are stored in tables which get looked-up by our algorithms when required
for power analysis. The only entry in table is clock frequency, whereas the load
parameter, which we derive from the traffic matrix, is inserted in (7.14) for final
evaluation.

We included the Orion power model in our two-plane NoC architecture and ran
the allocation algorithms. We only show the results for the 48 cores Intel chip in

85

7 – Exploiting Space Diversity and DVFS in Multiplane NoC

Fig. 7.10, for the case of hotspot traffic pattern. We did not run the numerical solver
for IPC to get the lower bound power since it requires a closed-form expression for
the power, which we can not extract from Orion’s model. As we could expect,
differently from previous results which ignore static power, two planes policies (2P
curves) consume more than a single plane when the load is low (XY DVFS curve),
because of the doubling of resources. But when the input load is greater than 0.65,
the same trend of previous results is observed: load concentration is better than
load balancing, which validates our previous findings. We believe that a suitable
application of standby or sleep mode strategies, which we do not consider in this
work, could help lessen the impact of leakage power.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
ow

er
 c

on
su

m
pt

io
n

Normalized traffic load

No DVFS
XY DVFS
2p-Balance
2p-Mini
2p-4phase

Figure 7.10. Power consumption of the Intel 48 cores NoC under hot-spot
traffic pattern and different loads.

7.6 Conclusions

In this chapter we consider a two-planes NoC architecture, in which each plane
exploits Dynamic Voltage and Frequency Scaling (DVFS) independently from the
other plane. We show how to leverage the spatial diversity provided by the two
planes to reduce more power than the one achieved by a naive load-balancing scheme.
The main idea is to concentrate the high-traffic flows in one plane and the low-traffic
flows in the other plane; in this way, at least one plane can run at a reduced voltage
and frequency to better exploit the beneficial effects of DVFS. We propose three
traffic allocation algorithms, with a different performance and complexity tradeoff,

86

7.6 – Conclusions

and investigate the corresponding power consumptions under different traffic matri-
ces. We compare their performance with respect to single plane architectures and
to the optimal allocation.

Our results have been obtained assuming a well known theoretical model for the
dynamic power in CMOS hardware, but they have also been validated through a
realistic power model, obtained from an accurate hardware simulator for NoCs.

87

Chapter 8

Energy Efficient Distributed
Software Router Design

As we have shown in the first part of the thesis, a multistage software router
(MSR) architecture is composed of several personal computers (PCs) to overcome
scalability issues of a single stage PC-based software router (SR). Although the
architecture scales almost linearly with the number of internal elements, energy
consumption could be a threat to scalability features when building a carrier grade
router with many internal components.

In this chapter, we assume a known 24 hour traffic load, we propose three new
energy efficient MSR design approaches, which enhance the performance of energy
saving algorithms that minimize the energy consumption by tailoring the MSR archi-
tecture, designed for the worst case traffic scenario, to match the current input traffic
demand. We will show in the simulation part that the proposed design approaches
reduce the MSR energy consumption by roughly 10% with respect to existing energy
saving algorithms for similar costs and up to 20% depending on the initial admissible
budget.

8.1 Introduction

Proprietary networking equipments, and routers in particular, have high cost in
terms of both CAPEX (investment cost) and OPEX (training and energy consump-
tion). Software Routers (SRs) which are based on Personal Computers (PCs) run-
ning open-source network applications like Linux, Click Modular Router or XORP [99,
100], are an appealing alternative to proprietary devices thanks to their low cost,
programmability and flexibility.

To scale SR to large size and high performance, distributed architectures com-
posed by several PCs should be sought for. As an example, a multistage software

89

8 – Energy Efficient Distributed Software Router Design

router (MSR) architecture shown in Fig. 8.1 has been proposed in [101]. The multi-
stage architecture exploits classical PCs as elementary switching elements to build
a high-performance SR. The proposed architecture has three stages: the layer-2
front-end Load Balancers (LBs) acting as the interfaces to the external networks,
the back-end PCs (BEPCs), also named back-end routers, providing layer-3 rout-
ing functionality, and an interconnection network based on Ethernet switches to
interconnect the two stages.

The key advantages of the MSR architecture are the ability to i) overcome the
performance limitation of a single PC-based router by offering multiple, parallel
forwarding paths, ii) scale the number of interfaces, iii) improve router performance
by incrementally adding/upgrading internal elements.

 SW

LB

L

.

.

.

.

.

.

.

.

.

11

j

1

i

R

LB

R

R

2

1

Load Balancers Back-end Routers

Switch

.

.

.

.

.

.

L1k

Lj1

Ljk

Figure 8.1. MSR Architecture: the load balancers (first stage), the switch (second
stage) and the back-end routers (third stage)

LBs distribute IP packets to BEPCs, which share the same routing table pro-
viding several parallel forwarding paths in the architecture. Increasing the number
of BEPCs enhances MSR routing performance. However, this performance scaling
feature implies a high level of redundancy at this stage for period of low traffic load,
which translates into high and un-needed energy consumption. To enhance energy
efficiency, unused BEPCs must be switched off during low load periods, because the
routing task can be handled by a subset of BEPCs. Note that while BEPCs are
redundant during low traffic periods, LBs and switches are not, acting respectively
as external interfaces, which must stay active to guarantee external connectivity
and may be switched off only with a network-wide view, and internal interconnec-
tion network which must guarantee internal connectivity. Thus we focus only on
optimizing the number of active BEPCs depending on the MSR traffic load.

90

8.2 – Energy Efficient Back-end Routers Design

We [102, 103] proposed on-line and off-line energy saving schemes in MSR archi-
tecture to adapt the capacity of the back-end stage to a given known traffic demand.
More precisely, in the off-line case the MSR architecture is optimized at a given time
instant for a known traffic demand. If running this algorithm at different times for
a variable traffic profile, the MSR architecture configurations obtained may be com-
posed by a different set of PCs. In the on-line case a differential approach is sought
for: a new configuration is obtained by updating the configuration defined at the
previous time by minimizing the number of PCs that should be switched on/off. No
attempt is made to globally optimize the MSR architecture taking into account the
long-term (e.g., 24 hours) traffic profile.

In [102, 103] it was shown that the proposed algorithms can save up to 60% of
energy when compared to architectures sized for peak traffic loads. However, the
achievable savings depend on the back-end routers configuration. For instance, if
the back-end stage is built up of PCs with coarse capacity granularity, it is difficult
to resize the configuration in period of low traffic load, and the installed un-needed
capacity translates into energy wastage. On the other hand, a back-end stage com-
posed of PCs with smaller capacity granularity is more flexible for reconfiguration.
Indeed, the smaller capacity means a larger number of PCs to handle a given traffic
demand, which requires more energy.

The goal of this chapter is to define the back-end routers configuration that min-
imizes the energy consumption over a given period, under the assumption that once
the MSR configuration has been optimally defined, energy saving algorithms similar
to those presented in [102, 103] are used to adapt the back-end stage configuration
to the input traffic demand.

8.2 Energy Efficient Back-end Routers Design

Capacity to handle traffic is the basic requirement when designing a high per-
formance MSR to satisfy the peak load demand. However, the approach of sizing
back-end routers on the peak demand does not translate in energy efficient config-
uration. Given the increasing importance of energy saving techniques in networks,
back-end routers design should consider energy consumption in addition to peak
load capacity requirement. To achieve this goal, we propose three different back-
end routers design approaches: a goal programming based methodology, a heuristic
and a locally optimal approach, described in detail in the following subsections. All
design approaches assumes the following input parameters:

� input traffic Tt ∈ R: an average traffic profile, derived by estimates or mea-
sures, and sampled every time t;

� set of available PCs to be used as back-end routers. Let S be a set of groups

91

8 – Energy Efficient Distributed Software Router Design

of PCs of different types. Each PC in the same group is characterized by the
same power consumption Pk ∈ R, routing capacity Rk ∈ R,

and hardware cost Ck ∈ R. In the design phase, in each group k ∈ S PCs are
assumed to be available in infinite number.

8.2.1 Goal Programming Design Approach

The first approach models the energy efficient MSR design as a preemptive goal
programming problem. The model has two objectives: energy minimization and
cost minimization. The primary objective is to minimize the energy consumption
of the back-end routers over the traffic sampling duration. This defines the Nk PCs
from each group k used to design the MSR architecture. To keep cost under control,
a maximum admissible budget I is assumed. The problem is formulated as follows:

minimize

O(t,k) =
∑

t

∑

k PkNkαt (8.1)

subject to
∑

k RkNkαt ≥ Tt ∀t (8.2)
∑

k CkNk ≤ I ∀k ∈ S (8.3)

0 ≤ Nkαt ≤ Nk ∀k ∈ S,∀t, (8.4)

Nk,Nkαt ∈ Z,αt ∈ [0,1]

The solution to the optimization problem (8.1) – (8.4) is the number of PCs Nk

from each group k to be used to build the back-end routers configuration. (8.2)
adapts Nk by αt ∈ [0,1] defining the suitable Nk composition that satisfies Tt at
each sampling instance t. It takes into account the energy saving algorithms running
after the initial design phase to adapt the designed configuration to the input traffic
demand Tt. (8.3) ensures that the hardware cost of the selected PCs should not
exceed the maximum cost I and (8.4) bounds the number of PCs needed at each
sampling time t within Nk.

The objective function, O(t,k), minimizes the sum of each sampling instance
active configuration power dissipation. This is equivalent to minimize the energy
consumption over a specified period. Note that the active configuration at time
instance t consists of only Nkαt from each group k. Hence, the energy consumption
of a MSR configuration varies for each sampling time t.

If the maximum admissible budget I, which is difficult to set up a priori, is too
large with respect to traffic needs, the first design phase could result in a costly
configuration because the optimization target is the energy consumption. Thus, we
define a second step that optimize the cost of the back-end routers by tailoring any
possibly over-sized configuration obtained in the first step. To maintain the primary

92

8.2 – Energy Efficient Back-end Routers Design

objective, we enforce the energy cost obtained from the energy optimization problem
as an equality constraint and build the budget optimization model as follows:

minimize

O(k) =
∑

k CkNk (8.5)

subject to
∑

k RkNkαt ≥ Tt ∀t (8.6)

0 ≤ Nkαt ≤ Nk ∀t,∀k ∈ S (8.7)
∑

t

∑

k PkNkαt = O(t,k) (8.8)

Constraints (8.6) and (8.7) have the same meaning as in (8.2) and (8.4) respectively.
(8.8) guarantees that the new back-end routers configuration dissipates the same
power as in the previous phase.

The solution is a back-end PCs configuration with optimized cost that satisfies
the traffic demand and maintains the primary objective of back-end routers energy
consumption. Thus equations (8.1) – (8.8) define a preemptive goal programming
model that minimizes the aggregate energy consumption of back-end routers over a
specified period with minimum cost.

8.2.2 Heuristic Design Approach

The heuristic approach defines the back-end routers configuration by greedily
choosing the most efficient PCs until the traffic requirement is satisfied. The PCs
efficiency is defined as performance per unit watt. Since we assumed infinite PCs
for each group, only the most efficient group k is used to build the back-end routers
cluster. Thus, the number of PCs, Nk, required to handle a peak load Tt,max is
simply computed as:

Nk =

⌈

Tt,max

Rk

⌉

(8.9)

Similar cluster design approaches exist in the literature. The Google cluster
architecture [104] considers performance per unit of price as PCs selection crite-
rion to setup a cluster configuration. This approach gives priority to commodity-
class PCs to high-end multi-processor servers because of their cost advantage. The
most common way of resizing a cluster capacity is to use servers with best abso-
lute performance such that the cluster handles peak load with fewer reliable com-
puters [105, 106]. However, such cluster is far more expensive due to the higher
interconnect bandwidth and reliability of the servers [104]. The clusters designed
by these approaches have not been analyzed for power consumption. In the design
validation section we will compare their energy costs with those of our proposed
design techniques.

93

8 – Energy Efficient Distributed Software Router Design

8.2.3 Locally Optimal Design Approach

This optimal design approach defines the optimal back-end routers configuration
considering only the peak load. This configuration is used as a basis for the other
sampling time t, assuming that energy saving algorithms deployed after the design
stage adjust this base configuration to the traffic demand Tt at each sampling in-
stance. Of course this design is not globally optimal. The problem formulation is
the same as (8.1) – (8.8) with a single sampling time, i.e. the peak load sampling
time.

8.3 Design Validation

In this section we discuss the performance of the proposed approaches through
experimental results. First we discuss inputs to the design problem: The traffic
traces and the experimental scenario. Then, we discuss the main results in the
following subsections.

8.3.1 Traffic Traces

Instead of defining a synthetic traffic load with a typical day and nigh behaviour,
we captured traffic from a university core router in Twente to derive the traffic load.
To build large MSR, traffic was scaled up while keeping the ratio among traffic loads
at different sampling time. We used Perl scripts to aggregate the traces into 5min,
15min, 30min and 60min time interval. Then, we averaged the traffic volume over a
week to get a per day volume statistics. Fig. 8.2 shows the 5min and 60min volume
traces. We did not include the 15 and 30min curves for the sake of clarity, but they
show a similar behavior.

8.3.2 Experimental Setup

The following four groups of PCs are used as input to the model [107, 108, 109]:
Group I

� Routing capacity, RI = 6500 Mbps;

� PC power consumption, PI = 75 W;

� PC cost, CI = $250

Group II

� Router routing capacity, RII = 8700 Mbps;

94

8.3 – Design Validation

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 2 4 6 8 10 12 14 16 18 20 22 24

T
ot

al
 tr

af
fi

c
(G

bp
s)

Time (hours)

5min sampling
60min sampling

Figure 8.2. Input traffic trace used in the experiment

� PC power consumption, PII = 95 W;

� PC cost. CII = $400

Group III

� Router routing capacity, RIII = 10000 Mbps;

� PC power consumption, PIII = 120 W;

� PC cost, CIII = $500

Group IV

� Router routing capacity, RIV = 8500 Mbps;

� PC power consumption, PIV = 92 W;

� PC cost, CIV = $400

An infinite number of PCs in each group is available in the design phase. Based on
this setup, we compare the different design approaches in terms of energy consump-
tion and cost of back-end routers configuration.

� Design-I : build a back-end routers cluster by choosing PCs with highest per-
formance/price ratio

95

8 – Energy Efficient Distributed Software Router Design

� Design-II : build a back-end routers cluster by choosing PCs with the highest
performance (i.e, routing capacity)

� Design-III : build a back-end routers cluster by choosing PCs with the highest
performance/power ratio

� Design-IV : design based on optimal back-end routers configuration for the
peak load

� Design-V,Ix: solves the optimization problem defined in (8.1) – (8.8) for dif-
ferent budget constraints Ix where x = 1,2,...n and I1 < I2 < ... < In.

Design-I and Design-II are existing cluster design approaches [104, 105, 106].
The former gives priority to commodity-class PCs in terms of cost; on the contrary,
high performance servers are preferred in the latter approach to ensure hardware
reliability. The last three are our proposed design approaches (See section 8.2). We
derive the energy consumption over a period of 24 hours and compare the results
with the optimal solution which is obtained by solving the following ILP model:

minimize

Ooptimal =
∑

t

∑

k PkNk (8.10)

subject to
∑

k RkNk ≥ Tt (8.11)

Note that we do not have any constraint in this model, except to guarantee the
capacity for the traffic load.

We also assume that algorithms similar to those presented in [102] will be used
to turn on/off PCs at each traffic sampling time to adapt the back-end routers
size to the traffic demand. We rely on CPLEX [110] to collect the results of the
optimization models.

8.3.3 Results

In this subsection we compare the back-end routers selected by the different
design approaches from the energy consumption and cost perspective. We also
discuss the impact of traffic sampling interval on each design approaches.

Energy consumption

Fig. 8.3 compares the power dissipation of the different configurations. The
result is based on the 60 minutes input traffic sampling. The energy consumption

96

8.3 – Design Validation

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 5 10 15 20

Po
w

er
 (

kW
at

ts
)

Time (hours)

I1<I2<I3<I4

Optimal
Design-I

Design-II
Design-III
Design-IV

Design-V,I1
Design-V,I2
Design-V,I3
Design-V,I4

Figure 8.3. MSR power dissipation of different design approaches based
on 60min sampling

of the back-end routers over a given period can be computed from the power curves
as:

Energy = power × time (8.12)

This is equivalent to compute the area under each power curve. The result is shown
for a 24 hours traffic pattern in Fig. 8.4. For the sake of clarity we split the results
into two graphs (Fig. 8.4(a),Fig. 8.4(b)). The optimal solution obtained by solving
the ILP model (8.10) – (8.11) is included in both graphs as a reference.

Results show that Design-II consumes the highest energy in the specified pe-
riod. This design approach gives priority to high performance devices to setup the
back-end routers cluster. Since the high-end servers have large capacity granularity,
resizing the configuration to the input traffic mostly ends up in wasting some ca-
pacity. Thus, less loaded PCs in the back-end are sources of energy inefficiency and
the energy required by this approach is roughly 2kWh larger than the one required
by the optimal algorithm.

The design principle that configures back-end routers based on performance/price
ratio, Design-I, has better tailoring properties as it give priority to mid-range PCs
that have relatively smaller capacity and consume less energy, making it easier to
match input traffic. This yields roughly 1kWh less energy consumption than Design-
II, although it is fairly far from the optimal.

The curves labeled Design-III, Design-IV, and Design-V,Ix are the energy con-
sumption of our proposed back-end routers cluster design approaches. Goal pro-
gramming technique outperforms the other design approaches if not under very tight

97

8 – Energy Efficient Distributed Software Router Design

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 12 14 16 18 20 22 24

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

Optimal
Design-I

Design-II
Design-III
Design-IV

 0

 2

 4

 0 2 4 6 8 10

(a) Energy consumption: Design-I, Design-II,
Design-III, and Design-IV

 4

 6

 8

 10

 12

 14

 12 14 16 18 20 22 24

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

I1<I2<I3<I4

Optimal
Design-V,I1
Design-V,I2
Design-V,I3
Design-V,I4

 0

 2

 4

 0 2 4 6 8 10

I1<I2<I3<I4

(b) Energy consumption: Design-V

Figure 8.4. Energy consumption of back-end routers selected by different design
approaches (based on 60 min traffic sampling)

budget constraint (see label Design-V,I1) where the energy consumption is similar
to Design-III and Design-I. However, with less strict budget requirements, perfor-
mance is very close to the optimal solution (see label Design-V,I3 and Design-V,I4),
saving up to 1-2 kWh every day if compared to other design approaches. The goal
programming approach is more efficient because it selects PCs from heterogeneous
groups giving more flexibility to resize the back-end PCs to match input traffic.

Design-IV is also competitive with respect to the goal programming approach,
being roughly 0.25kWh less efficient than the optimal solution over 24hours. Design-
III, on the other hand, performs worse than the two other proposed approaches.

The proposed design approaches, namely Design-III, Design-IV and Design-
V,Ix, save roughly 10% of energy when compared to existing design techniques.

Cost

Since cost is always a key consideration, it is important to compare the cost of
back-end routers defined by different design approaches, as shown in Fig. 8.5. As
expected, Design-I has the least price because it is based on the performance/price
ratio selection criterion which tries to minimize price while increasing performance.
Design-IV,I1 has similar costs mainly because of the tight initial investment con-
straint. It is also interesting to note that the two approaches have similar energy
efficiency, as shown in Fig. 8.4. However, the cost of Design-IV,Ix increases for
increasing budget constraints while the energy consumption decreases. The almost
optimal solution, Design-IV,I4, has cost ∼1.5-2 times larger than any of the other
approaches. Design-IV,I3 has similar costs with the other design approaches but

98

8.3 – Design Validation

it achieves near optimal energy efficiency. There is a trade-off between energy effi-
ciency and cost in goal programming back-end routers design approach which can
be controlled by selecting a proper budget constraint.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

D
esign-I

D
esign-II

D
esign-III

D
esign-IV

D
esign-V

,I1
D

esign-V
,I2

D
esign-V

,I3
D

esign-V
,I4

Figure 8.5. Cluster cost for different design approaches

Except the best goal programming approach, all other design approaches have
similar cost. At least with the considered set of PCs, which are those available
on the market today, energy efficiency seems to be the most important metric in
selecting the proper set of back-end routers.

Sampling interval impact

We also analyzed the impact of traffic sampling intervals on energy efficiency.
We analyzed the energy consumption of the back-end PCs using traffic traces sam-
pled every 5min, 15min, 30min and 60min. The results, not reported due to lack
of space, show that energy consumption depends only slightly on traffic sampling
interval. However, if the back-end routers cluster is analyzed under a sampling in-
terval for which it was not designed, the results are different as shown in Fig. 8.6.
We considered a cluster designed on 60min sampling, later analyzed for its energy
consumption under the same traffic trace but for a 5min sampling interval. The
curve labeled ”Design-X/Sampling-Y” represents a back-end PCs designed under
”X min” traffic sampling but analyzed for energy consumption under ”Y min” sam-
pling. The figure shows the difference in energy consumption for a MSR designed
for 60min and analyzed for 60min and 5min traffic sampling time. The mismatch

99

8 – Energy Efficient Distributed Software Router Design

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

E
ne

rg
y

co
ns

um
pt

io
n

(k
W

h)

Time (hours)

Design-60/Sampling-60
Design-60/Sampling-5

Figure 8.6. Design and sampling mismatch effect

accounts for 0.8 kWh energy wastage per day. This implies that algorithms responsi-
ble to resize the back-end routers configuration after initial deployment should stick
to the sampling time used during the design phase to reduce energy inefficiency.

8.4 Conclusions

In this chapter we proposed three different energy efficient back-end routers
design approaches that make energy saving algorithms more efficient. They permit
to save up to 10% of energy with respect to existing design approaches with similar
budget. Savings could raise to 20% for the goal programming design approach if
relaxing the budget constraint.

The traffic sampling interval is not so fundamental in designing energy efficient
back-end routers. Furthermore, if back-end PCs are designed for a given sam-
pling time, algorithms responsible to resize the configuration for variable traffic load
should stick to the sampling time used during the design stage to improve efficiency.

Although we considered the specific design scenario of a MSR architecture, the
proposed design approaches can be used in any cluster design that involve PCs as
the basic computational resources.

As future research activity, we would like to include quality of service issues as
an additional design requirement.

100

Chapter 9

Conclusion

In this thesis work, we focused on two main problems in switching, the virtu-
alization and energy saving. In the first part we showed that virtualization could
be valuable to build flexible software routers. We implement the Multistage Soft-
ware Router (MSR) into different virtual infrastructures including VMware ESXi,
KVM, XEN and we evaluated their performance for the single component/stage and
the whole architecture. The results showed that virtualization for software router
could impose overhead and reduce the performance for around 40 % compared with
the physical software router. As such, we worked on two directions for increasing
the performance, namely from the architecture point of view and from the single
component tuning point of view. In the first aspect, we experimentally evaluated
the allocation of different virtual units (i.e, load balancer, back-end router) into
physical hardware and we discovered that the performance is quit depending on the
allocation, especially when precious hardware resource are contended by more units
which are i/o intensive. Thus we argue that it is important to separate the VMs
with the same functionality and group the ones with different functionalities, i.e, cpu
intensive and i/o intensive could be together. Next, we measured the performance
of mapping different virtual CPUs into physical cores without considering the loca-
tion of VMs. The results showed that the cpu cycles are shared among the number
of virtual CPUs bounding to it and the performance is influenced by the workload
of each virtual CPU. Regarding the virtual machine tuning work, we carefully cre-
ated the software router with minimum possible thread and bound each thread to
a specific CPU core and we gain dramatically performance. We have also demon-
strated that the thread priority, the internetworking methodology and the number
of hardware CPU cores are critical to the performance. We presented some initial
results on how to optimally configure all these parameters to obtain the throughput
close to hardware software router, yet some more systematical measurement is still
missing for obtaining the general rules on how to exploit all the resource efficiently
for virtual software router.

101

9 – Conclusion

In the second part of the thesis, we considered the energy saving problem for two
main different switching architecture, namely network on chip and multistage soft-
ware router. In network on chip, we noticed that the chip capacity is usually built
to match with the peak traffic load and this could waste energy when the traffic load
is low. Thus we proposed to combine dynamic voltage and frequency scaling with
load balancing algorithm to reduce the chip power when possible. In specifically,
we considered a common mesh chip architecture with realistic constraints (i.e, all
links work at the same frequency, to minimize the voltage/frequency transition syn-
chronization overhead) and we evaluated the chip power cost with different traffic
load when running our load balancing algorithms. Our results have been compared
with the optimal value obtained by modeling and solving the power saving problem
formally with optimization technique. The results showed that in the single plane
mesh NoC architecture, it is usually enough to consider two path load balancing for
power saving and the results could approach the optimal value very close. Further-
more, we noticed that the DVFS effectiveness is restricted by the bottleneck link, to
solve this issue, we proposed to build the NoC architecture with multiplan and we
assume each plane can work on its own frequency and voltage for all links. We found
that the DVFS could be more effective if we concentrate more traffic on few planes
which run fast enough to accommodate the high traffic load and leaving all other
planes working at the minimum possible voltage/frequency with few flows. Our re-
sults have been validated not only by the empirical cubic power model but also by
a realistic power model extracted from Orion 2.0 NoC power simulator. Regarding
the multistage software router, we proposed a novel design method called the goal
programming approach to find the best compositions of the MSR architecture when
providing the traffic trace, budget and server type. Our main results show that with
the similar investment, our approach could save 10 % ∼ 20 % more energy compare
with the energy-blind MSR architecture, pushing our MSR solution a step more
close to the production network.

102

Bibliography

[1] P. Bogdan and R. Marculescu, “Workload characterization and its impact
on multicore platform design,” in Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference
on, oct. 2010, pp. 231–240.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[3] M. Handley, O. Hodson, and E. Kohler, “XORP: an open platform for network
research,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 53–57, 2003.

[4] “Quagga routing suite,” http://www.quagga.net.

[5] S. Han, K. Jang, K. Park, and S. Moon, “Building a single-box 100 gbps
software router,” in Local and Metropolitan Area Networks (LANMAN), 2010
17th IEEE Workshop on, may 2010, pp. 1–4.

[6] ——, “Packetshader: a gpu-accelerated software router,” SIGCOMM Comput.
Commun. Rev., vol. 40, no. 4, pp. 195–206, Aug. 2010.

[7] R. Bolla and R. Bruschi, “RFC 2544 performance evaluation and internal
measurements for a Linux based open router,” in HPSR, Poznan, Poland,
Jun. 2006.

[8] ——, “PC-based software routers: high performance and application service
support,” in PRESTO, Seattle, WA, USA, Aug. 2008.

[9] ——, “An effective forwarding architecture for SMP Linux routers,” in IT-
NEWS, Venice, Italy, Feb. 2008.

[10] K. Argyraki, S. Baset, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies,
E. Kohler, M. Manesh, S. Nedevschi, and S. Ratnasamy, “Can software routers
scale?” in PRESTO, Seattle, WA, USA, Aug. 2008.

[11] IETF, “Forwarding and control element separation working group (ForCES),”
http://tools.ietf.org/wg/forces/.

[12] W. Wang, L. Dong, B. Zhuge, M. Gao, F. Jia, R. Jin, J. Yu, and X. Wu,
“Design and implementation of an open programmable router compliant to
IETF ForCES specifications,” in ICN, Sainte-Luce, Martinique, Apr. 2007.

[13] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,

103

http://www.quagga.net
http://tools.ietf.org/wg/forces/

Bibliography

A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: exploiting parallelism
to scale software routers,” in SOSP, Big Sky, MT, USA, Oct. 2009.

[14] A. Bianco, J. M. Finochietto, M. Mellia, F. Neri, and G. Galante, “Multistage
switching architectures for software routers,” IEEE Network, vol. 21, no. 4,
pp. 15–21, Jul.-Aug. 2007.

[15] A. Bianco, R. Birke, J. M. Finochietto, L. Giraudo, F. Marenco, M. Mellia,
A. Khan, and D. Manjunath, “Control and management plane in a multi-stage
software router architecture,” in HPSR, Shanghai, China, May 2008.

[16] A. Khan, R. Birke, D. Manjunath, A. Sahoo, and A. Bianco, “Distributed
PC based routers: bottleneck analysis and architecture proposal,” in HPSR,
Shanghai, China, May 2008.

[17] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, D. Mazzucchi, and
F. Neri, “Scalable layer-2/layer-3 multistage switching architectures for soft-
ware routers,” in IEEE GLOBECOM, San Francisco, CA, USA, Dec. 2006.

[18] A. Bianco, F. G. Debele, and L. Giraudo, “Energy saving in distributed router
architectures,” in IEEE ICC, Ottawa, Canada, June 2012.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[20] P. Szegedi, J. Riera, J. Garcia-Espin, M. Hidell, P. Sjodin, P. Soderman,
M. Ruffini, D. O’Mahony, A. Bianco, L. Giraudo, M. Ponce de Leon, G. Power,
C. Cervello-Pastor, V. Lopez, and S. Naegele-Jackson, “Enabling future inter-
net research: the FEDERICA case,” IEEE Communic. Mag., vol. 49, no. 7,
pp. 54–61, Jul. 2011.

[21] M. B. Anwer and N. Feamster, “Building a fast, virtualized data plane with
programmable hardware,” ACM SIGCOMM Comput. Commun. Rev., vol. 40,
no. 1, pp. 75–82, 2010.

[22] M. Caesar and J. Rexford, “Building bug-tolerant routers with virtualization,”
in PRESTO, Aug. 2008.

[23] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schooley,
“Evaluating Xen for router virtualization,” in ICCCN, Honolulu, HI, USA,
Aug. 2007.

[24] “VMware,” http://www.vmware.com.
[25] “Windows server hyper-v,” http://www.microsoft.com/hyper-v-server/en/

us/default.aspx.
[26] “IBM system z,” http://www-03.ibm.com/systems/z/.
[27] K. P. Lawton, “Bochs: A portable PC emulator for Unix/X,” Linux Jounal,

Tech. Rep., Sep. 1996.
[28] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in USENIX,

Anaheim, CA, USA, Apr. 2005.

104

http://www.vmware.com
http://www.microsoft.com/hyper-v-server/en/us/default.aspx
http://www.microsoft.com/hyper-v-server/en/us/default.aspx
http://www-03.ibm.com/systems/z/

Bibliography

[29] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar,
I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles (SOSP03),
2003.

[30] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM: the linux
virtual machine monitor,” in Proceedings of the Linux Symposium, Ottawa,
Ontario, Canada, 2007.

[31] “OpenVZ project,” http://www.openvz.org/.
[32] “Linux Vserver,” http://wiki.linux-vserver.org/.
[33] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of

the art and research challenges,” IEEE Communic. Mag., vol. 47, no. 7, pp.
20–26, Jul. 2009.

[34] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet
impasse through virtualization,” Computer, vol. 38, no. 4, pp. 34–41, Apr.
2005.

[35] “NSF GENI project,” http://www.geni.net/.
[36] “The FEDERICA project,” http://www.fp7-federica.eu/.
[37] F. Anhalt and P. Primet, “Analysis and experimental evaluation of data plane

virtualization with Xen,” in ICNS, Valencia, Spain, Apr. 2009.
[38] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner, “Achieving

10 gb/s using safe and transparent network interface virtualization,” in
Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, ser. VEE ’09. New York, NY, USA: ACM,
2009, pp. 61–70. [Online]. Available: http://doi.acm.org/10.1145/1508293.
1508303

[39] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proceedings of the 2008 ACM CoNEXT Conference, ser. CoNEXT ’08. New
York, NY, USA: ACM, 2008, pp. 20:1–20:12. [Online]. Available: http://doi.
acm.org/10.1145/1544012.1544032

[40] S. Rathore, M. Hidell, and P. Sjodin, “Performance evaluation of open virtual
routers,” in IEEE GLOBECOM, Miami, FL, USA, Dec. 2010.

[41] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI
veritas: realistic and controlled network experimentation,” SIGCOMM Comp.
Communic. Rev., vol. 36, no. 4, pp. 3–14, 2006.

[42] Microsoft, “Enabling a dynamic datacenter with microsoft virtualization,” Mi-
crosoft, Tech. Rep., 2008-2009.

[43] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploiting
parallelism to scale software routers,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, ser. SOSP ’09. New York,

105

http://www.openvz.org/
http://wiki.linux-vserver.org/
http://www.geni.net/
http://www.fp7-federica.eu/
http://doi.acm.org/10.1145/1508293.1508303
http://doi.acm.org/10.1145/1508293.1508303
http://doi.acm.org/10.1145/1544012.1544032
http://doi.acm.org/10.1145/1544012.1544032

Bibliography

NY, USA: ACM, 2009, pp. 15–28. [Online]. Available: http://doi.acm.org/
10.1145/1629575.1629578

[44] S. Soltesz, H. Poltz, M. Fiuczynski, A. Bavier, and L. Patersson, “Container-
based operating system virtualization: A scalable, high-performance alterna-
tive to hypervisors,” in EuroSys, Mar. 2007.

[45] “Virtual linux from ibm,” http://www.ibm.com/developerworks/linux/
library/l-linuxvirt/.

[46] “XEN networking,” http://wiki.xensource.com/xenwiki/XenNetworking.

[47] “Agilent N2X router tester,” http://advanced.comms.agilent.com/n2x/.

[48] VMware, “Understanding full virtualization, paravirtualization, and hardware
assist,” VMware Inc., Tech. Rep., 2007.

[49] “The Click modular router web-site.” [Online]. Available: http://www.read.
cs.ucla.edu/click/click

[50] A. Bianco, R. Birke, D. Bolognesi, J. M. Finochietto, G. Galante, and M. Mel-
lia, “Click vs. Linux: Two efficient open-source IP network stacks for software
routers,” in HPSR, Hong Kong, China, May 2005.

[51] “Iperf.” [Online]. Available: http://iperf.sourceforge.net/

[52] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proceedings of the 2008 ACM CoNEXT Conference, ser. CoNEXT ’08. New
York, NY, USA: ACM, 2008, pp. 20:1–20:12. [Online]. Available: http://doi.
acm.org/10.1145/1544012.1544032

[53] A. Whitaker, M. Shaw, and S. D. Gribble, “Scale and performance in the
Denali isolation kernel,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 195–
209, 2002.

[54] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[55] L. Rizzo, “Revisiting network i/o apis: The netmap framework,” Queue,
vol. 10, no. 1, pp. 30:30–30:39, Jan. 2012. [Online]. Available: http://doi.
acm.org/10.1145/2090147.2103536

[56] R. Bolla, R. Bruschi, G. Lamanna, and A. Ranieri, “Drop: An open-source
project towards distributed sw router architectures,” in Global Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE, 30 2009-dec. 4 2009, pp.
1–6.

[57] A. Bianco, R. Birke, L. Giraudo, and N. Li, “Multistage software routers in a
virtual environment,” in Proceedings of the IEEE Global Telecommunications
Conference (GLOBECOM 2010), Miami, Florida, December 2010.

[58] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings of
the 2005 USENIX Annual Technical Conference, Anaheim, CA, April 2005.

106

http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/1629575.1629578
http://www.ibm.com/developerworks/linux/library/l-linuxvirt/
http://www.ibm.com/developerworks/linux/library/l-linuxvirt/
http://wiki.xensource.com/xenwiki/XenNetworking
http://advanced.comms.agilent.com/n2x/
http://www.read.cs.ucla.edu/click/click
http://www.read.cs.ucla.edu/click/click
http://iperf.sourceforge.net/
http://doi.acm.org/10.1145/1544012.1544032
http://doi.acm.org/10.1145/1544012.1544032
http://doi.acm.org/10.1145/2090147.2103536
http://doi.acm.org/10.1145/2090147.2103536

Bibliography

[59] R. Russel, “virtio: Towards a de-facto standard for virtual i/o devices,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 5, 2008.

[60] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-
time systems,” in Proceedings of the IEEE Real-Time Systems Symposium,
Madrid, Spain, December 1998.

[61] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An EDF scheduling
class for the Linux kernel,” in Proceedings of the Eleventh Real-Time Linux
Workshop, Dresden, Germany, September 2009.

[62] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”
in Proceedings of the 8th international conference on Emerging networking
experiments and technologies, ser. CoNEXT ’12. New York, NY, USA: ACM,
2012, pp. 61–72. [Online]. Available: http://doi.acm.org/10.1145/2413176.
2413185

[63] A. Bianzino, L. Chiaraviglio, and M. Mellia, “Grida: A green distributed
algorithm for backbone networks,” in Online Conference on Green Communi-
cations (GreenCom), 2011 IEEE, sept. 2011, pp. 113–119.

[64] T. C. Group, “Smart 2020: Enabling the low carbon economy in the informa-
tion age,” M. Webb, June 2008.

[65] G. A. Plan, “An inefficient truth,” Global Action Plan Report, Tech. Rep.,
December 2007. [Online]. Available: http://globalactionplan.org.uk

[66] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency in the fu-
ture internet: A survey of existing approaches and trends in energy-aware fixed
network infrastructures,” Communications Surveys Tutorials, IEEE, vol. 13,
no. 2, pp. 223–244, quarter 2011.

[67] A. Adelin, P. Owezarski, and T. Gayraud, “On the impact of monitoring router
energy consumption for greening the internet,” in Grid Computing (GRID),
2010 11th IEEE/ACM International Conference on, oct. 2010, pp. 298–304.

[68] A. Bianzino, C. Chaudet, D. Rossi, and J.-L. Rougier, “A survey of green net-
working research,” Communications Surveys Tutorials, IEEE, vol. 14, no. 1,
pp. 3–20, quarter 2012.

[69] I. Cidon and I. Keidar, “Zooming in on network-on-chip architectures,” Elec-
trical Engineering, vol. 565, p. 10, 2009. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.66.9010&rep=rep1&type=pdf

[70] L. Benini and G. D. Micheli, “Networks on Chips: A new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[71] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, 2006.

[72] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar,
and S. Borkar, “An 80-tile sub-100-w teraflops processor in 65-nm cmos,”
Solid-State Circuits, IEEE Journal of, vol. 43, no. 1, pp. 29–41, jan. 2008.

107

http://doi.acm.org/10.1145/2413176.2413185
http://doi.acm.org/10.1145/2413176.2413185
http://globalactionplan.org.uk
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.9010&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.66.9010&rep=rep1&type=pdf

Bibliography

[73] J. Stine, N. Carter, and J. Flich, “Comparing adaptive routing and dynamic
voltage scaling for link power reduction,” Computer Architecture Letters,
vol. 3, no. 1, p. 4, january-december 2004.

[74] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and fre-
quency scaling for precise energy and performance tradeoff based on the ra-
tio of off-chip access to on-chip computation times,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 1, pp.
18–28, 2005.

[75] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic voltage scal-
ing for real-time embedded systems,” in Proceedings of the 41st annual Design
Automation Conference, New York, USA, 2004.

[76] C. hsing Hsu and W. chun Feng, “Effective dynamic voltage scaling through
CPU-boundedness detection,” in Power-Aware Computer Systems, 2004, pp.
135–149.

[77] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links for
power optimization of interconnection networks,” in 9th International Sym-
posium on High-Performance Computer Architecture, Washington, DC, USA,
2003.

[78] J. Kim, M. A. Horowitz, F. Vdd, F. Vdd, and V. Vctrl, “Adaptive supply serial
links with sub-1v operation and per-pin clock recovery,” in Proc. International
Solid-State Circuits Conference, San Francisco, USA, 2002.

[79] G. yeon Wei, J. Kim, D. Liu, S. Sidiropoulos, and M. A. Horowitz, “A variable-
frequency parallel i/o interface with adaptive power-supply regulation,” IEEE
J. Solid-State Circuits, vol. 35, no. 11, pp. 1600–1610, 2000.

[80] P. Ghosh, A. Sen, and A. Hall, “Energy efficient application mapping to noc
processing elements operating at multiple voltage levels,” in Proceedings of the
2009 3rd ACM/IEEE International Symposium on Networks-on-Chip, Wash-
ington, DC, USA, 2009.

[81] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, “Voltage-
frequency island partitioning for gals-based networks-on-chip,” in Design Au-
tomation Conference, 2007.

[82] F. G. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet-switching networks on chip,” In-
tegration, vol. 38, pp. 69–93, 2004.

[83] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An empirical
investigation of mesh and torus noc topologies under different routing algo-
rithms and traffic models,” in 10th Euromicro Conference on Digital System
Design Architectures, Methods and Tools, Washington, DC, USA, Aug. 2007.

[84] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for reg-
ular NoC architectures,” IEEE Transactions on computer-aided design of in-
tergrated circuits and systems, vol. 24, no. 4, pp. 551–562, 2005.

108

Bibliography

[85] S. Bhat, “Energy models for network on chip components,” Ph.D. dissertation,
Technische Universiteit Eindhoven, 2005.

[86] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “The limit of dynamic
voltage scaling and insomniac dynamic voltage scaling,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 11, pp. 1239–
1252, 2005.

[87] F. G. Moraes, N. L. V. Calazans, A. V. de Mello, and L. C. Ost, “Evaluation
of routing algorithms on mesh based NoCs,” Faculdade de informatica pucrs
- Brazil, Tech. Rep., 2004.

[88] W. J. Dally and B. Towles, Principles and practices of interconnection net-
works, D. E.M.Penrose, Ed. Morgan Kaufmann, 2003.

[89] M. Rahman, Y. Sato, and Y. Inoguchi, “High performance hierarchical torus
network under adverse traffic patterns,” in Computer and Information Tech-
nology (ICCIT), 2010 13th International Conference on, dec. 2010, pp. 210–
215.

[90] [Online]. Available: http://www.gnu.org/software/glpk/
[91] [Online]. Available: http://www.systemc.org/downloads/standards/
[92] A. Bianco, P. Giaccone, and N. Li, “Exploiting dynamic voltage and frequency

scaling in networks on chip,” in IEEE 13th International Conference on High
Performance Switching and Routing (HPSR), June 2012.

[93] S. Noh, V.-D. Ngo, H. Jao, and H.-W. Choi, “Multiplane virtual channel router
for network-on-chip design,” in First International Conference on Communi-
cations and Electronics (ICCE’06), Oct. 2006, pp. 348–351.

[94] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, and N. Borkar, “A 2 tb/s 6 4 mesh network for a single-
chip cloud computer with dvfs in 45 nm cmos,” Solid-State Circuits, IEEE
Journal of, vol. 46, no. 4, pp. 757–766, april 2011.

[95] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: A fast and accurate
noc power and area model for early-stage design space exploration,” in Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09., april
2009, pp. 423–428.

[96] S. Vangal, A. Singh, J. Howard, S. Dighe, N. Borkar, and A. Alvandpour, “A
5.1GHz 0.34mm2 router for network-on-chip applications,” in IEEE Sympo-
sium on VLSI Circuits, June 2007, pp. 42–43.

[97] (2009) International Technology Roadmap for Semiconductors (ITRS),
Process Integration, Devices, and Structures Chapter. [Online]. Available:
http://www.itrs.net

[98] N. Eisley and L.-S. Peh, “High-level power analysis for on-chip networks,” in
Proceedings of CASES 2004. New York, NY, USA: ACM, 2004, pp. 104–115.

[99] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
modular router,” ACM Trans. Comput. Syst., vol. 18, pp. 263–297, August

109

http://www.gnu.org/software/glpk/
http://www.systemc.org/downloads/standards/
http://www.itrs.net

Bibliography

2000.
[100] M. Handley, O. Hodson, and E. Kohler, “XORP: an open platform for network

research,” SIGCOMM Comput. Commun. Rev., vol. 33, pp. 53–57, January
2003.

[101] A. Bianco, J. Finochietto, M. Mellia, F. Neri, and G. Galante, “Multistage
switching architectures for software routers,” Network, IEEE, vol. 21, no. 4,
pp. 15–21, July–August 2007.

[102] A. Bianco, F. G. Debele, and L. Giraudo, “On-line energy saving in a dis-
tributed multistage router architecture,” in Communications (GCC), 2012
IEEE International Conference on. IEEE, December 2012, pp. 1–6.

[103] ——, “Energy saving in distributed router architectures,” IEEE, pp. 1–5, June
2012.

[104] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The Google
cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28, March-April
2003.

[105] “Windows clustering.” [Online]. Available: http://technet.microsoft.com/
en-us/library/cc757731(v=ws.10)

[106] “Domino 8.0 administration.” [Online]. Available: http://publib.boulder.ibm.
com/infocenter/domhelp/v8r0/index.jsp

[107] A. Bianco, R. Birke, D. Bolognesi, J. Finochietto, G. Galante, M. Mellia,
M. Prashant, and F. Neri, “Click vs. Linux: two efficient open-source IP net-
work stacks for software routers,” in High Performance Switching and Routing,
2005. HPSR. 2005 Workshop on, May 2005, pp. 18–23.

[108] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone, A. Knies,
M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting parallelism to scale
software routers,” in ACM SOSP, 2009, pp. 15–28.

[109] “Approximate desktop, notebook, & netbook power usage.” [Online].
Available: http://www.upenn.edu/computing/provider/docs/hardware/
powerusage.html

[110] “IBM ILOG CPLEX Optimization Studio.” [Online].
Available: http://www-01.ibm.com/software/integration/optimization/
cplex-optimization-studio/

110

http://technet.microsoft.com/en-us/library/cc757731(v=ws.10)
http://technet.microsoft.com/en-us/library/cc757731(v=ws.10)
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/domhelp/v8r0/index.jsp
http://www.upenn.edu/computing/provider/docs/hardware/powerusage.html
http://www.upenn.edu/computing/provider/docs/hardware/powerusage.html
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/

	Summary
	Acknowledgements
	I Virtualization Techniques in Software Router
	II Virtualization Techniques in Software Router
	Introduction
	Software Router
	Multistage Software Router
	Virtualization on Software Router

	Virtualization and Related Works
	Virtualization Techniques
	Networking Virtualization

	Virtualized Multi-stage Software Router
	XEN-based Implementation
	VMware-based Implementation
	Experimental Setup and Results
	Load Balancers
	Back-end Routers
	Local Testbed for a Multi-Stage Software Router
	FEDERICA-slice Based Experiments

	How to Improve MSR's Performance
	Mapping of VMs to Physical Servers
	VMs CPU Affinity Exploration

	Conclusions and Future Work

	Tuning KVM to Enhance Virtual Routing Performance
	Introduction
	KVM Virtualization Framework
	Monotonic Virtualized Software Router Performance
	Aggregating Multiple Virtual Routers
	Performance Evaluation
	Virtual Network and Linux Scheduler Tests
	Parallel Virtualized Router Performance
	Multistage Virtualized Router Performance with Optimization

	Conclusions and Future Work

	III Energy Saving Techniques in Network on Chip and Multistage Software Router
	Introduction
	Balancing Traffic to Save Power Through DVFS in NoC
	Introduction
	Related Work
	NoC Model Description
	Network Topology and Traffic model
	Power Model and Power Control
	Traffic Virtual Load and Power

	The DVFS Power Control
	Exploiting DVFS with Load Balancing

	Simulation and performance evaluation
	SystemC Verification
	Conclusions

	Exploiting Space Diversity and DVFS in Multiplane NoC
	Introduction
	Multi-plane NoC model
	Power Model
	Traffic Model

	Traffic Allocation for Two-Planes NoC
	A toy scenario
	Traffic Allocation Algorithms

	Performance Evaluation
	Accurate Power Model Validation
	Conclusions

	Energy Efficient Distributed Software Router Design
	Introduction
	Energy Efficient Back-end Routers Design
	Goal Programming Design Approach
	Heuristic Design Approach
	Locally Optimal Design Approach

	Design Validation
	Traffic Traces
	Experimental Setup
	Results

	Conclusions

	Conclusion
	Bibliography

