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Summary

The amount of data that residential users generate, store and share with their friends
via a multitude of devices has grown significantly in the past few years. As a
consequence, there is a clear need for an intelligent content distribution system that
can help the residential users exchange data between devices, assure safe backup
and share it with other friends.

In order to address this need, gateway-centric network architecture is proposed,
whereby each household is equipped with a gateway that stores, tags and manages
the data collected by the residential users. The gateway can provide the Internet
access, manage content storage and collect the users’ social networking data with
the user’s permission. Also in keeping with the “federated home” vision, multiple
neighbouring or remote home gateways can be connected in a collaborative fashion,
and can exchange various kinds of information.

Moreover by leveraging typical social networks indicators, such as interests, hob-
bies and preferences, and by having all personal digital data appropriately tagged,
content replicas can be proactively cached on those gateways whose users are most
likely to be interested in accessing the cached content. So that the matching of
remote users and content to cache would allow to catch two birds with a stone: safe,
redundant online backup and social content sharing.

In our work, we devise an efficient content placement schema to determine where
to cache the content from a user’s gateway to remote gateways belonging to his/her
social friends. Moreover, placing content replicas “outside” the home (i) consumes
transmission bandwidth for uploading the content and (ii) incurs a storage cost
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on the remote friends’ home gateways. So for the case of content backup, we aim
at a strategy that maximizes the friends’ benefit by trying to match content type
and friends’ interests while considering the bandwidth constraint between the local
gateway and the remote friend gateways. Meanwhile in the case of content sharing,
we also take into account the interest of content owner’s other friends and the
bandwidth from the replica gateway to the corresponding interested friend gateways.

Firstly, we formulate this content placement problem as a Budgeted Maximum
Coverage (BMC) problem which is NP-hard, and we use Gurobi solver, which runs
a variant of the branch-and-cut algorithm, to numerically solve the optimization
model and to obtain the optimal content placement solutions. We also compare
it with two different content placement strategies for gateways with various quota
sizes, under a realistic simulation scenario with synthetic social network and realistic
network environment.

We then devise and evaluate some low-complexity, distributed heuristic algo-
rithms which can be implemented on federated residential gateways to realize a social
caching strategy and use simulations in the same synthetic social network scenario
to show the final content placement among “friendly” gateways well approximates
the optimal solution under different network settings. Finally we evaluate the im-
pact of different content caching strategies on the content retrieval performance in
terms of average access delay, hops and distance using NS3 simulator.

To make our simulation scenario more realistic, we need to set up a synthetic so-
cial network that shares the basic common properties of real social networks, namely
realistic degree distribution and the distribution of friends and their position/dis-
tance on the network topology. We choose Facebook as a target, since it is one of
most popular and largest online social networking sites nowadays. In particular, we
use the findings in other related works to characterize the network properties and
to establish a relationship between geographical distance and friendship probability
that matched the one that can be measured in Facebook.
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In the implementation work of federated residential gateways, a framework pro-
totype to connect the home gateway with the online social network (OSN) service
is proposed and implemented through API services exposed by OSN (i.e. Facebook
Graph API). So each gateway can be allowed to collect its user’s social networking
data with the user’s permission, and to obtain the interest information shared by
their friends who also belong to the federation residential networks after checking
with lookup service (which is a naming service set up by us to manage the infor-
mation on the home users and their associated gateways). Firstly, the overview of
gateway implementation architecuture will be provided; followed by the design of
a framework for caching module and the detailed description on the caching mod-
ule implementation. Finally, we use Common Open Research Emulator (CORE) to
emulate a realistic network environment for home gateways to test and evaluate our
content caching algorithms implementation.
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Chapter 1

Introduction

The Internet has today more than 1.6 billion users and over 400 million households
connected through broadband access; this corresponds to a growth of over 350%
during the last decade. An almost exponential increase in user generated data is ex-
pected, with media content being an increasing fraction of the total data. Similarly,
the storage capacity will continue to grow and include distributed data storage, both
across end-users devices and storage networks “in the cloud”. End users will be both
producers and consumers of content, and social networks will spread and grow based
on users’ needs and desires to connect, interact and exchange data. Today, there is
a clear need for an intelligent content distribution system that can provide a unified
content storage and access from within the home and via the Internet, and help the
home users exchange data between devices, assure safe backup and share it with
other friends.

In this first chapter, we introduce the motivation and scope of the research carried
in the context of this thesis, followed by the main contributions and an outline of
the subsequent chapters.

1.1 Problem
The means of communication has significantly changed during the last years, starting
with the invention of the telegraph, followed by the fixed/mobile telephone and
radically disrupted with the wide adoption of the Internet. While people wound
originally communicate via voice or limited text, new technologies have added a lot
of new dimensions, allowing not only to have verbal discussions, but rather exchange
messages, images, videos and generally experiences.

The Internet nowadays has connected a total of more than 1.6 billion users and
over 400 million households through broadband access [1]. This corresponds to a
growth of over 350% during the last decade. Along with its growth and increased
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1 – Introduction

adoption, the Internet has continuously evolved to adapt to new services, applica-
tions and operational requirements. We do not expect this growth and evolution
to slow down, but rather the opposite. We foresee the future Internet to have a
continued growth of users and connected households, including more interconnected
networks, wireless networks and mobile users. And it is clear that the future Internet
is moving towards to a user- and content-centric network.

Meanwhile, thanks to the continuously evolving of facilities and broadband ac-
cess, we expect an almost exponential increase in data, with media content con-
stituting an increasing fraction of the total data. For example, as digital cameras
became common place, average consumers were able to generate their own content,
directly in digital format, and transfer it to their personal computers for further
processing, such as archiving, printing or sharing. Also, mobile phones with built-in
cameras have brought the content creation devices to the masses.

Similarly, the storage capacity will continue to grow and include distributed data
storage, both across end-users devices and storage networks “in the cloud”. End-
users will be both producers and consumers of content and there will be further
development and increase of social networks based on the users’ need and desire to
connect, interact and exchange data. Furthermore, users will expect to be able to
access and consume their services and content in a ubiquitous manner even while
being remote and potentially mobile. Around this ecosystem, new content distribu-
tion channels became available, with dedicated on-line services, facilitating content
storage and sharing, among family, friends and the wider community in general.

The next disruption is expected to happen in the home domain, as residential
broadband connections have become a reality for many. The single home computer
for accessing the Internet has been replaced with residential networks containing
many interconnected multimedia devices, at least in the well developed countries,
which promise to make communication even richer. Trends show that between 2007
and 2014 the total amount of personal digital content in a typical digital home could
increase from about 1 Terabytes (TB) to almost 12 TB [2], in which half are for the
entertainment in the home. Fig. 1.1 presents the estimated cumulative growth of
digital content in average American home from 2007 through 2014.

The explosion of content amount and the wealth of digital devices and appli-
ances have brought about the dramatic changes in our habits in everyday’s life.
Some content is acquired from a service provider; some is collected independently
from any service provider; some is autonomously generated by the user. This com-
plication brings about some critical difficulties and complexities in the management
and delivery of the content for the home users. These entail to rethink the residen-
tial network architecture to support the home users’ need to store, find and access
content regardless of its location.
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Figure 1.1: Estimated amount growth of digital content in average American home.

1.1.1 Residential network environment
The residential network is a vision of PCs, mobile devices (still cameras, video cam-
eras, phones) seamlessly collaborating through wired or wireless networks to share
content and enrich user experience. Today, home users are continuously acquiring,
viewing and managing a rapidly increasing amount of digital content using an in-
creasing number and variety of such devices. Due to this proliferation of content
and devices, home users desire to enjoy content easily and conveniently. But today’s
reality is a complex environment of heterogeneous services, networks and devices; all
operating independently. Current systems do not fulfil the home user expectations
of simple management, demonstrated by some real use cases illustrated as following:

• Bob is watching his favourite TV show but he’s late to dinner at some friends’,
so he needs to start recording the rest of the show, convert it into a suitable
format and upload it to his mobile device: he will watch it the following
morning while commuting by train.

• Alice is visiting Bob and wants him to listen to the new rock album she just
downloaded. So Bob requires to remotely stream the songs from Alice’s mobile
device onto his home Hi-Fi set. After listening through it, Bob is so mesmerized
by it that he asks Alice if she has previous works by that same rock band. She
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Figure 1.2: Residential network environment.

does, however they are not on her mobile devices: they are stored “in the
cloud”. So, she needs to fetch the content and streams it over the Internet to
Bob’s Hi-Fi set.

• Bob wants a “paperless” home, so he starts scanning all of his bills and receipts
(unless they were in electronic form in the first place), and jots down his
notes/lists/recipes on his laptop or mobile. He wants these notes to be indexed,
filed under the proper category (using tags that he adds) and stored in his
electronic household storage system for later browsing. In case of need, he will
want to be able to access these notes on-demand from outside his home.

• Alice carries her laptop home from work. As she relaxes before dinner, she
leaves the laptop on and an automated wireless backup onto a storage device
is started. In the course of the backup, the updated content of her hard-disk
is scanned for specified tags she may have appended to documents or media
files: beside being bundled in the daily backup, these will be made available
to any home appliance or digital document repository that matches the tags.

From the vivid scenarios above, we can derive a number of challenges for the
future residential network architecture to better support the users’ everyday life in
interacting with the Internet and handling their content. First, residential networks
connected at the edge of the Internet are becoming an integral part of the Inter-
net. These residential networks are typically controlled by non-technical end-users,
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which give rise to new challenges in terms of simple network management for reg-
ular end-users. There needs to be support that alleviates the users from manually
configuring, monitoring, and optimizing their networks, as well as support that aids
them in case troubleshooting is needed. Second, new networking mechanisms are
needed to better support the users having easy remote access from the Internet
to their residential networks and their content/services traditionally residing in the
residential network. Third, following this, it is clear that the future Internet must
include an improved support for the users to easily handle their networked digital
content. The wealth of available content, whatever its source, needs to be indexed
and associated to a contextual application or appliance (e.g., news segments to a
TV set or to a smart phone; music files to a hi-fi set or any mp3 player). Improved
content management needs network architecture support to efficiently provide stor-
age, search and access of digital content. Furthermore, the content should be easily
accessible regardless from where the users are connected to the Internet. It must
also support content privacy as well as easy content sharing, depending on content
type and the owners’ preferences. Fourth, the support for community-oriented net-
working must be improved in the future Internet. Innovative systems and network
solutions must be developed to better support and exploit community networks to
provide improved value-added services to the users. Finally, the integration of other
sectors with the future Internet poses challenges for how to interconnect different
networks and systems to ultimately provide a common service infrastructure. More-
over, the user interaction with these services must also be revisited for a successful
integration.

1.2 Research objectives
As described previously, home users have become producers, importers and exporters
of large amounts of digital content via a multitude of devices that are all managed
independently. Perhaps one of the most remarkable complications is the reliance on
digital storage for whatever information content we own or produce. So, there is
a clear need for an intelligent content distribution system that can help the home
users exchange data between devices, assure safe backup and share it with other
users.

The user usually collects content in an anarchic way, and often the storage and
archival of this content is done in an ad-hoc fashion with copies being made on
external media such as USB hard disks or DVDs. Currently, a user may store some
content on storage units he owns at home. If data are to survive a disk crash,
the user must define his own management policies (using e.g., RAID storage, do
regular backup on a dedicated disk, etc.). Of course, no savvy user would rely solely
on storing precious, irreplaceable data in a single device and backup systems are
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now common in most households. More recently, the availability of “cloud” storage
services, aimed at consumers and companies alike has introduced a new opportunity.
The user can rely upon of a cloud storage provider for personalized data backup and
sharing, such as Dropbox, Box.net, Apple’s MobileMe or Amazon’s Simple Storage
Services (S3). In the latter case, a wide-band Internet connection can be exploited
during idle periods to run background data transfer onto cloud storage. Some of
these services charge users based on the storage volume and network bandwidth
consumed, other are free and include premium options for a fee.

However, using just a single such provider of cloud storage has a number of
shortcoming: (i) The terms of the service contract as of today are such that the
service provider does not give any guarantees against loss and also is not liable in
case of data loss and (ii) the service provider may simply go out of business at any
time - as has happened often in the past with Internet-based hosting companies -
in which case all data may be lost. In addition, storing on a remote server can
be excessively time-consuming if done directly from the user devices, while a home
storage device could trickle the content to a cloud storage using space available
bandwidth.

Furthermore, accelerated content access, as well as data protection against loss
in case of disaster (“single point” failure described above) can be addressed by
distributing the content across multiple storage devices that are located in geo-
graphically distinct places including storage space that not only can be rented at
data centers (cloud-based content storage) but also provided by other households
(p2p-based content storage).

Another drawback of personal, cloud-based or p2p-based storage approaches
is the fact that data of potential interest of other users sit unused in a storage
device. Let us consider the following example. George has a set of pictures of
the latest family vacations and he wants to show them to his friend John or other
friends, while, at the same time backing them up. George remotely uploads the
pictures to John’s NAS, where a storage quota is reserved for such purpose; also
this replica on John’s NAS can be shared with George’s other friends. John is then
notified that a copy of the pictures now exists in his NAS and that he is welcome
to have a look, while keeping it in its NAS as a backup for George or a caching for
George’s other friends. For fairness, a similar quota for John’s backups should be
set aside at George’s. The example could be extended to a close group of friends, as
defined within social networks, and the potential of such a scheme instantly become
apparent. By leveraging typical social networks indicators, such as interests, hobbies
and preferences, and by having all personal digital data appropriately tagged, the
matching of remote users and content to cache would allow to catch two birds with
a stone: safe, redundant social backup and social content sharing.

To improve efficiency of data exchange for home users to manage, backup and
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share their own generated content, caching techniques could be exploited for im-
proving content delivery performance, in our vision including:

• Gateway-centric architecture

The federated residential gateways can be used for caching the interested con-
tent for their home user’s social friends. The residential gateways are ideal
to act as stable caches: they lay at the edge of the network between the res-
idential network and the Internet, and are highly available since they remain
powered-on most of the time.
And, keeping with the “federated homes” vision under the FIGARO [3] project
(which will be introduced later), multiple neighbouring or remote home gate-
ways can be connected in a collaborative fashion, and can exchange various
information. So the federated residential gateways, which formed as the feder-
ation overlay network, can be tuned as a “caching layer” of content distribution
for home users.

• Social-aware

The intuition that is pursued in our work is the following: if a gateway is
allowed to collect its users’ social networking data, such information could be
exploited to combine content sharing and content backup. Social data could
include (but not be limited to) social contacts and social interests, friends’ lo-
cations and whether they are in the federated home network or not. Federated
gateways could then be designed so as to reserve a part of their storage quota
to store content from other gateways belonging to friends from their users’ so-
cial networks. The content could reflect common interests among such friends.
For example, instead of (or in addition to) an anonymous “cloud” backup, a
gateway could autonomously choose to upload a set of Mozart concertos to
a music-lover friend’s gateway. Beside creating a backup of the music files in
a trusted location, these could also be enjoyed by the friend, who can access
them on his/her own gateway.
So content caching can exploit the user’s social network in P2P-based storage
solution. By combining content caching and information on the content owned
by the user’s social network, this can create a more efficient content caching
mechanism. Some examples: if I buy some music, which a friend of mine
also has, we can use each other’s home gateways for caching; if I share my
family photos with my parents, they will have a copy for purposes of looking
at the photos but also as a backup for me. This can be taken further: the
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user doesn’t actually have to copy data for making a backup, if that data
is already available somewhere on another home gateway. One just needs a
control mechanism that ensures one can only restore content from another
location if he originally owned that content. This not only saves a lot of
bandwidth, i.e. actual copies do not have to be made if the content is already
available elsewhere, but also saves a lot of storage capacity and, indirectly,
energy for powering all this bandwidth and storage capacity.

• Optimization in content placement

Creating “redundant copies” that are cached on multiple residential gateways
can assure reliability of irreplaceable content and accelerate content access for
home users. We need a placement scheme that determines where to cache
the redundant copies: storing the redundant copies “under the same roof”
certainly increases the reliability, but may not protect against events such as
theft or natural disasters, which can only be addressed by storing the data on
geographically distributed households.
Placing redundant copies “outside” the home (i) requires transmission band-
width and (ii) incurs a cost for the additional storage space needed. We plan to
develop strategies that use information about the social interactions between
the members of the federated environment in order to optimize the system
performance to maximize the benefit for all the home users.

• Distributed heuristics

Also the distributed content caching and dissemination algorithm that can
approximate to the optimal solution, along with a dispatching protocol must be
devised to allow the gateway to efficiently deliver the content to the appropriate
friend gateway. We will investigate the cost-reliability trade-offs provided by
the different redundancy and replacement schemes and implement a prototype
of caching module and test it under a realistic network environment.
Several practical considerations, however, force us to draw a more complicated
picture. Firstly, there are gateway selections issues. Choosing a friend’s gate-
way to cache data only because interests match is not a sound policy from a
networking point of view. The remote gateway could have poor connectivity
or it could be overloaded. The gateway could be located in a far away coun-
try (even though friends in social networks are more likely to be in nearby
areas [4]). The remote gateway should implement a solid quota management
to avoid being swamped by friends’ contents.
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Additionally, there are management details to address: the user must rely on
the cached content to be readily available on the remote gateway (or, at least,
it should be notified when the content is about to be deleted). If the content is
deleted, a second-best choice should be identified, based on the same criteria
that guided the former selection. Also a reliable updating policy should also
be devised.

However, the outlook is not as simple as the description implies. Some issues
outlined below might be beyond the focus of this thesis. For example, the home user
should not be required to explicitly manage and schedule caching. Instead caching
should occur automatically and transparently to the user. Lastly, copyright and
ownership issues also should need a second thought.

1.3 Contributions
The basic assumption is that all the content is stored on the home gateway, i.e.
whenever a satellite device comes in the communications range of the home gateway,
all the digital content is automatically transmitted to the home gateway. A transfer
in the other direction from home gateway to satellite device could also happen. For
instance somebody may want to have copies (maybe in reduced resolution) of his
pictures on his smartphone. You can attach a USB hard disk or NAS (Network
Attached System) to expand the residential gateway’s storage capacity. Another
assumption is the residential gateway could gather the user’s social data (e.t., on
Facebook) after authorized by its home users using their credentials.

In this thesis, we choose instead to focus on content caching in the federated
residential gateways and, specifically, to devise an efficient content placement scheme
to determine where to cache the content from a user’s gateway to remote gateways
belonging to his/her social friends. As remarked above, placing content replicas
“outside” the home (i) consumes transmission bandwidth for uploading the content
and (ii) incurs a storage cost on the remote friends’ home gateways. So we aim at
a strategy that maximizes the friends’ benefit by trying to match content type and
friends’ interests while taking into account both the bandwidth constraints among
home gateways as well as the storage space at the remote gateway. Thus, we model
this optimization problem as a Budgeted Maximum Coverage (BMC) problem, as
preliminary introduced in [5], and numerically obtain the optimal content placement
solutions using the Gurobi solver [6] under a synthetic social networking scenario,
whose set up will be discussed in the following. Next, we design a collaborative
social-aware placement strategy for federated home gateways and develop heuristic
distributed caching algorithms taking the dynamic nature of users’ social networking
information into account to achieve the near-optimal results. Finally we evaluate the
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heuristics and discuss the conditions under which they can approximate the optimal
solution.

The following is a summary list of the contributions of this thesis:

• We formulate this content placement problem as a Budgeted Maximum Cov-
erage (BMC) problem which is NP-hard, and we use Gurobi solver [6], which
runs a variant of the branch-and-cut algorithm, to numerically solve the op-
timization model and to obtain the optimal content placement solutions. We
also compare it with two different content placement strategies for gateways
with various quota sizes, under a realistic simulation scenario with synthetic
social network and realistic network environment.

• We then devise and evaluate some low-complexity, distributed heuristic algo-
rithms which can be implemented on federated residential gateways to realize
a social caching strategy and use simulations in the same synthetic social net-
work scenario to show the final content placement among “friendly” gateways
well approximates the optimal solution under different network settings. And
we evaluate the impact of different content caching strategies on the content
retrieval performance in terms of average access delay, hops and distance using
NS3 simulator.

• To make our simulation scenario more realistic, we need to set up a synthetic
social network that shares the basic common properties of real social networks,
namely realistic degree distribution and the distribution of friends and their
position/distance on the network topology. We choose Facebook as a target,
since it is one of most popular and largest online social networking sites nowa-
days. In particular, we use the findings in other related works to characterize
the network properties and to establish a relationship between geographical
distance and friendship probability that matched the one that can be measured
in Facebook.

• In the implementation work of federated residential gateways, a framework
prototype to connect the residential gateway with the online social network
(OSN) service is proposed and implemented through API services exposed by
OSN (i.e. Facebook Graph API). So each gateway can be allowed to collect
its user’s social networking data with the user’s permission, and to obtain the
interest information shared by their friends who also belong to the federation
residential networks after checking with lookup service (which is a naming
service set up by us to manage the information on the home users and their
associated gateways). Meanwhile, we use Common Open Research Emulator
(CORE) to emulate a realistic network environment for residential gateways
to test and evaluate our content caching algorithms implementation.
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1.4 Thesis organization
The rest of this thesis is organized as follows. In the next chapter we introduce our
research background and present a list of related works. Chapter 3 describes the
assumptions of our model and the modelling procedure of the content placement
problem, which is formulated as an budgeted maximum coverage (BMC) optimiza-
tion problem. Chapter 4 addresses the same problem from the point of view of
distributed heuristic algorithms. Chapter 5 introduces the simulation scenario in
which we present a procedure to construct a synthetic social network. Also the
performance comparisons of the optimization approach and of the heuristics are
shown in Section 5.2. In Chapter 6, the overview of caching module architecture
and the details of implementation on the residential gateway is presented. Finally,
in Chapter 7, we draw some concluding remarks of our study and outline directions
for future work.
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Chapter 2

Background and related works

In this chapter, we introduce the research and technology domains related with our
work. Firstly, we will give an overview description to the framework of FIGARO
project which is an European project under FP7. It proposes a research agenda that
will spawn in parallel across multiple areas reflecting the multi-dimensionality of the
problem we are called to address. Then, we review and discuss the other related
works in multiple fields under our main works.

2.1 FIGARO project
The Future Internet Gateway-based Architecture of Residential netwOrks (FIGARO)
project envisions that residential networks connected at the edge of the Internet are
becoming an integral part of the Internet, and that content will be created and deliv-
ered to/from hundreds of millions households hosting these residential networks. To
address the challenges above, FIGARO therefore proposes an evolvable future Inter-
net architecture based on gateway-oriented federation of residential networks. The
fundamental concepts of FIGARO and its overall architecture are gateway-centric
networking and federation of residential networks. In this section, we recapitulate
the definition of these two core concepts needed for the understanding of the overall
FIGARO system and the description in the subsequent sections.

2.1.1 Gateway-centric networking
Traditionally, residential gateways interconnect the residential network with the
Internet, and are responsible for aggregating a multitude of devices and services
within the residential network, and are control points where many Internet-based
services pass through [7,8]. The residential gateway clearly has a central role in our
vision of proposed “gateway-centric” network architecture [3,9], whereby we assume,
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each home is equipped with a gateway and a large number of interconnected devices
(satellite appliances) within the household.

Figure 2.1: A gateway-centric residential network.

The home gateway will play an increasingly important roll in the management
and storage of the content for the home users. The gateway allows any content to be
downloaded from outside the household, stored on it and accessed by satellite devices
in communications range of the home gateway. Upload to the gateway occurs either
through the same device where the content was generated or temporarily stored, or
through dedicated input devices allowing appliances with no wireless interface, or
with no predefined uploading software, to access the gateway-centric home network
(e.g., a digital camera equipped with a USB interface can connect with an external
input devices that, in turn, uploads the pictures to the gateway for storage in the
appropriate repository within the household).

To preserve the content from possible data loss, by configuring a backup plugin,
the gateway will take care of backing-up the selected resources. The configuration
of both the resources to be scheduled for backup and the parameters of the backup
phase can be set by the user. Also, the gateway can participate in the operation as
a cache among home network devices, and allow storage on other users’ gateways
by exploiting social information of home users.

Taking a simple example, Jane has to manage her large photo collection (10GB).
She has her photos tagged in such a way that the gateway can discriminate which are
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personal, which are for family and relatives, which can be shared with friends, and
which can be for public viewing. Jane’s laptop uploads the photos on the gateway
via the LAN. The gateway can both keep a local copy and cache the pictures onto
friends’ and families’ gateways (according to the tagging) for additional storage
capabilities. Once there, the pictures can also be viewed by the interested users.

Access to the user’s home resources and content should be available (in a secure
fashion) also when the user is not at home. To this end, multiple remote gateways
(beyond the user’s neighbourhood) can be configured in a collaborative manner
to act as “virtual home gateways”: each user on the move would be assigned to
such “virtual” home gateway wherever they are connected, and they would provide
computing and storage resources needed for the users on the move. Such access
may occur on demand or on a scheduled basis (e.g., the user will need access to his
medical records stored at home between 2pm and 4pm on a specific date when a
hospital check-up is planned).

Furthermore, the home gateway can be used for coordination across different
sectors. The future Internet will not be restricted to the IT, telecom and media
sectors, however. It will also include services and user-centric content from other
sectors, such as utility (energy, water, etc.), e-health care and security. Currently,
those sectors develop their own communication and system solutions. Such intra-
sector optimization often leads to badly standardized, poorly scalable and closed
system. It’s also being recognized among the world’s governments (most notably in
the US, Australia and the Netherlands [10]) that intra-sector optimization leads to
only sub-optimal solutions for the society as a whole; It is simply too expensive and
no longer acceptable that every single service requires its own separate infrastruc-
ture deployment along with installation of additional control devices. One example
is the push from the energy industry to install elaborate energy meters, whereas
many of the included communication functions could be handled by the existing
Internet infrastructure with help of the residential gateway. Another example is the
multiple movement sensors next to each other in the house, one for e-health and the
others for security. We foresee a rapid growth of Internet-based applications and
services in these other sectors. Moreover, user will expect to access these services
and their content in the same manner as any other Internet-based service. The
Future Internet must therefore evolve to support not only the increasing demands
in the IT/telecom/media sector, but also meet the new requirements of these other
sectors. For example, end-to-end quality of service and user friendliness for these
emerging services and applications typically differs significantly from those currently
governing the Internet. Furthermore, while the Internet Protocol (IP) clearly plays
an important role in the integration of sectors, the services and applications in these
other sectors may still use non-IP technologies. There is therefore a need for co-
ordination across different sectors in order for them to interconnect and ultimately
collaborate.
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To conclude, the residential gateway is deployed where network domains are
interconnected; it interconnects the residential network with the Internet and is re-
sponsible for aggregating a multitude of devices and services within the residential
network. With the convergence of networking technologies, the residential gateway
has become a critical infrastructure at home. The gateway is only the invariant and
indispensable element of the residential network and a natural control point where
many Internet-based services pass through. Most Internet-enabled end-user devices
are connected to it while at home, and could in the future also access the gateway
remotely over the Internet. Furthermore, a residential gateway today is nearly as
powerful as a PC, and is capable of supporting the increasing requirements originat-
ing from the future Internet challenges outlined above. A gateway-centric approach
enables efficient network management in terms of monitoring of network, applica-
tion and services, as well as automatic troubleshooting and network optimizations.
Furthermore, it also enables efficient management of digital content.

So, the residential gateway serves as the primary platform to implement and
demonstrate the strength of our proposed future Internet architecture.

2.1.2 Federation of residential networks
FIGARO proposes an evolvable Future Internet architecture based on gateway-
oriented federation of residential networks. We define “federation of networks” as
follows. A federation of networks is composed by two or more independent networks
that are interconnected and can operate, at least partly, in a coordinated fashion.
The network in a federation can be independent and heterogeneous in terms of their
ownership, characteristics, and technologies, as well as in their targeted services and
applications. However, these networks share a set of common objectives, such as
providing a certain set of services to one or more users, exchange of information,
or sharing and optimization of network resources. Hence, in a federation of net-
works the sum is greater than its parts since the federation can offer functionality
and services beyond what an individual network can. Naturally, network federation
necessitates definition of key system requirements for successful operation. For ex-
ample, common interfaces for querying about data, content, services and resources
must exist. The federation should also have an agreement regarding common rep-
resentation of information, such as network configuration and network monitoring
data.

We extend the above concept and define “federation of residential networks”
as follows. The federation is structured around the residential networks connected
at the edge of the Internet. We consider the residential gateways additionally to
undertake the role as federators, internally as well as externally, in the FIGARO
architecture. We call a federation external when multiple gateways interconnect
to form federated cooperative overlays across residential networks. In contrast, we
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call a residential network federation internal when a gateway interconnects (and
federates) two or more networks within a single residence. We note that external
network federation ultimately provides a scalable approach to Internet-wide ubiq-
uitous access and sharing of data, content, services and resources. It will enable to
offer added value in terms of e.g., collaborative services such as resource sharing,
collaborative network optimizations, content distribution and management. Inter-
nal network federation, on the other hand, ultimately aims to converge the networks
and services of regular IP-based networks and other sector-specific (possibly non-IP)
networks used by e.g., home automation and e-health. More specifically, it targets
to be an enabler of cross-sector services by providing a common interface to these
networks and their services through the gateway.

These two types of federations: External Federation and Internal Federation
within FIGARO will be described next.

External federation

Externally, gateways interconnect to form federated cooperative overlays across res-
idential networks. These so-called external federations enable to offer added value
in terms of collaborative services such as resource sharing, collaborative network
optimizations, content distribution and management. For example, access network
sharing for bandwidth bundling and multi-path video streaming. These services
leverage neighbouring home networks to use their unused access network resources
to increase the access bandwidth and improve the video streaming device robust-
ness, respectively. Another example is optimizing WiFi networks on a neighbour-
hood scale. In this case, collaboration among neighbouring homing is leveraged to
enable network optimizations such as load-balancing and interference management.
A third example is collaborative content management, such as social-aware content
caching and distributed backup, which exploit unused storage resources on gate-
ways across the federation. In the first two examples, the federation is formed by
gateways of home networks in the same neighbourhood, typically within WiFi radio
range of each other. In the last example, the federation does not have an explicit
geographical boundary but can potentially comprise gateways (and users) located
anywhere. To this end, we consider that external federations can have different
scope and potentially different functional or operational restrictions.

We give three examples of different types of external federations considered in
FIGARO. A “neighbourhood federation” is a geographically localized federation
consisting of members in some type of neighbourhood community. For example,
this may include homes in the same apartment buildings or potentially span sev-
eral co-located buildings. It is easy to imagine that these apartment owners are
already part of another neighbourhood community, such as an apartment co-op or
community league. Our neighbourhood federation use cases mentioned above rely
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Figure 2.2: Simplified FIGARO residential network overlay/federation.

on inter-home wireless connectivity and thus require a certain density to operate
and be efficient. However, one can imagine other services that do not have the wire-
less interconnectivity restriction, such as a collaborative neighbourhood micro-grid
or local virtual power plant service. Another possible federation type is “service
provider federation”. To some extent, such federation forms exist today and offer
simple services. For example, subscribers to the operator FREE in France may
subscribe to a service that allows them to access the Internet through the WiFi
access points of other FREE subscribers. As per the use cases mentioned above,
FIGARO shares the idea of such community WiFi concept, but extends it with
more value added services. A service provider oriented federation clearly benefits
from simplified operation, such as authentication, authorization and accounting, as
a single service provider can handle all this. Such a federation type may be suitable
for e.g., an access network bandwidth bundling service. While a service provider
federation limits the federation to include only members (subscribers) of that par-
ticular service provider, it is technically feasible to implement provider-independent
or cross-provider federations. A third interesting type of federation is the “social
federation”. This is based on users’ social network and may be based on e.g., family,
friends, or online social networks (OSNs) such as Facebook, Flickr or Google+. For
example, the FIGARO social-aware caching device, though nominally capable of
leveraging any OSN, is based on a user’s Facebook network. Conceptually, a “social
federation” may be either service provider specific or service provider independent,
each with its obvious pros and cons.
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Internal federation

Current innovations in e-Health services and remote energy management are still
hindered by a tendency to create vertically isolated (sometimes referred to as “stove-
pipe”) ICT solutions (i.e., dedicated to a specific service), leading to non-scalable,
expensive and closed systems. As a result, common technologies that are present
in home networks are not only IP-based communication networks, but also other
network technologies such as Zigbee and Bluetooth. They often provide their own,
inseparable network and service delivery layer, and are usually only meant to in-
terconnect function-specific devices with the home network. In the FIGARO ar-
chitecture, the internal federation is designed to define proxy functionality between
these non-IP networks and the common network and service layers within a single
residential network. As such, the internal federation facilitates the integration of
services from sectors such as e-Health, energy management and domestics, by inter-
connecting different networks and systems that do not necessarily use IP technology.
The federation enables features such as communication, resource, and content shar-
ing among the involved networks as well as a common interface to these networks
through the gateway. Part of the internal federation is the common service delivery
infrastructure. In providing this infrastructure we will leverage reliability, control
and interface provided by the home gateway. Ultimately, the internal network fed-
eration facilitates cross-sector convergence with a unified access to different types of
devices and services.

In summary, FIGARO has great potential to evolve the current Internet to meet
current and future demands of applications, services and end-users. It will deliver
solutions that contribute to the population well being through improved and simpli-
fied interaction with the Internet, their residential networks, and the digital content
transported and services delivered over these networks. By developing technologies
and solutions for integrating and supporting other sectors to converge with ICT,
FIGARO will significantly reduce the economic costs that otherwise would arise
when each sector continue to deploy their own communication and service infras-
tructure. Furthermore, through this convergence FIGARO facilitates solutions for
improved interaction and control of energy management services. We expect that
this ultimately becomes a green milestone for the society. As a general result from
FIGARO, employment should benefit from the rapid growth of the ICT and multi-
media markets as well from the potential of cross-sector innovation. This is expected
to create new jobs, particularly in SMEs and start-up companies that develop and
sell new networking solutions and content services for the Internet and home users.
Finally, the project is expected to result in technologies that will strengthen Europe’s
position and give competitive advantage to European industry in Future Internet
technologies, residential gateway business and the home automation industry.

FIGARO’s scope can be categorized into the following four areas. (i) Network
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organization and optimizations, exploiting gateway-based overlay network federa-
tions. (ii) Content management, enabling unified access and distributed caching
and backup. (iii) Converged services, extending current intra-sector control and in-
terface platforms. (iv) Monitoring, enabling network and application performance
characterization and troubleshooting.

Our works in this thesis are mainly focusing on the second category Content
management, to address the need for content sharing, content confidentiality and
protection against accidental loss through a unified, federated content management
system that hides most of the complexity and low-level aspects from the end user,
and to study and achieve more effective content management and delivery mecha-
nism for sharing and backup of home user’s content in federated residential networks
using caching techniques, which will be described in details in the following sections.
Rather, it leverages the availability of storage space both in the home environment
and outside it. The home gateway plays a key role in our architecture and will
act as a hub that performs content indexing and either holds a copy of (the most
sensitive) content available on the different devices, or records the location of the
content for prompt retrieval. We will now briefly recall the critical issues and other
works related to our tasks.

2.2 Related works
Distributed caching techniques

In order to facilitate the access to distributed content (especially in appliances with
low storage capabilities), our framework will be integrated with caching algorithms.
Caching is a well known method to improve efficiency of data exchange in a clien-
t/server or p2p application. Deployed on an end host, caching allows the application
to reuse elements that have been recently used. As most users of computer networks
expect the instantaneous service provided by an infrastructure, delay for any infor-
mation request may cause users’ impatience and ask for more interactivity. Caching
helps mitigating this problem by providing as quickly as possible part of the answer
from a nearby host whenever possible.

Caching in cooperative fashion and cache placement in wireless networks have
been explored by several works. That’s due to the opportunistic nature of con-
nectivity in a mobile network makes the design of an efficient caching scheme a
very difficult issue. In particular, the work in [11] proposes a cooperative caching
scheme that requires the nodes to periodically broadcast their identity as well as
their cache contents. In [12], Yin and Cao present distributed caching strategies for
ad hoc networks, according to which nodes may cache highly popular contents that
pass by, or record the data path and use it to redirect future requests. The work
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in [13] presents both a centralized and a distributed solution to the cache placement
problem of minimizing data access cost when network nodes have limited storage
capacity. While some of these works address topics that are relevant to our project
(cooperative caching, nodes with limited storage capacity) they tend to follow simple
LRU (Last Recently Used), LFU (Least Frequently Used) policies.

“Locality of reference” which is a classical method to assess the performance
of caching algorithms does not include geographical locality. We will work around
these limitations by devising location-aware caching mechanisms, allowing content
to be stored on devices that are physically close to the most likely content consumers
within the federated home.

Among these methods or architectures, content distribution networks (CDNs [14–
17]) which serve to deliver web objects have seen tremendous growth since its emer-
gence. To minimize the retrieving delay experienced by a user with a request for a
web object, caching strategies are often applied - contents are replicated at edges of
the network which is closer to the user such that the network distance between the
user and the object is reduced.

This paper [18] explains the caching techniques exploited for content delivery in
both CDN and p2p overlay from the viewpoint of network provider, especially when
discussing the localization of caches, which is in line with our simple cache-per-city
topology used in the simulation scenario.

This work [19] uses the aspect of social friend are geographically closer to each
other [4] to improve the caching in CDN. It describes how geographic information
extracted from social network can be exploited to improve caching of multimedia
files in a content delivery network. They take advantage of the fact that social
graph can propagate in a geographically limited area to discern whether an item is
spreading locally or globally. This informs cache replacement policies, which utlize
this geographical information to ensure that content is kept close to the users who
may be interested in it.

And our work is also similar with the p2p or friend-to-friend storage system,
in which [20] is to critically assess the current state of the centralized social web,
identify several novel research problems like privacy, data ownership and data porta-
bility etc. and outline the possible solution: friend-to-friend computing(F2F). F2F
is a completely decentralized architecture in which two computers can communicate
only if their owners know one each. But we are based on the home gateway, which
is with much higher availability than other devices.

Distributed content replication

The only way to assure reliability of irreplaceable content is to distribute such con-
tent by creating “redundant copies” that are stored on multiple devices; so a re-
dundancy scheme is needed to determine how to create redundant copies: the two
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techniques at hand are (i) replication [21, 22], i.e. making one ore more identical
copies and (ii) coding [23,24], where the original data are transformed (encoded) in
such a way that only a portion of the encoded data is sufficient to reconstruct the
original data.

In our vision, considering the potential interest of other friends, to make the
content sit in the storage of residential gateway easily be shared, we follow the
former method - replication. So, our work falls into the same category as several
recent research efforts tacked the problem of multiple replicas across different re-
sources. Solutions such as PRACTI [25] and Cimbiosys [26] additionally provide
partial replication capabilities to better utilize the available storage capabilities.
Podbase [27] provides a framework for automatically ensuring that multiple copies
are stored across devices. But none of these works leverages or exploits the potential
of social networking.

Parallel to the problem of cache placement is the one of replication, i.e., of
determining whether it makes sense (and to what extent it does) for multiple copies
of a content to be created and actively disseminated across the network (where
they may in turn be cached). Simple, widely used techniques for replication are
gossiping and epidemic dissemination [28,29], where the information is forwarded to
a randomly selected subset of neighbours. Another viable approach to replication
is represented by quorum-based [30] and cluster-base protocols [31]. Both methods,
although different, are based on the maintenance of quorum systems or clusters,
which in mobile networks are likely to cause an exceedingly high overhead. In our
work, we will focus on replication mechanism that exploits inference techniques to
tweak the rate of replication on the basis of the actual content demand or interest,
in order to lower the network overhead.

Also, for content backup there have been a number of research projects that
investigate peer-to-peer based backup [32–34]. There is also one paper [35] that
describes an experiment using S3 for backup. The innovation of this proposal is to
consider multiple storage providers that can be either located at the edges (peers)
or in the cloud and to insist on being both storage and bandwidth efficient at the
same time. What is missing, however, is a comprehensive approach that integrates
cloud backup, federation backup and local backup in a seamless, user-transparent
fashion, as the one pursued in our vision.

Social-aware content placement

Related to our problem there are also the works on content placement exploiting
information from social networking. The work in [36] proposes ContentPlace, which
is a social-oriented framework for data dissemination taking into consideration user
interest with respect to content. ContentPlace assumes that nodes can be aware of
the social communities they belong to. Using a general utility-based optimization
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framework, ContentPlace defines distributed algorithms for nodes to select which
content to locally replicate, out of what is available on encountered nodes. These
algorithms take into consideration the estimated distribution of content in the net-
work, and the interests of the users with respect to content. A similar approach
is taken in [37] where it is shown that mobility and cooperative content replica-
tion strategies can help bridge social groups. Another relevant work on an efficient
social-aware content placement in opportunistic networks is [38] in which the authors
model the content placement as the facility location problem.

[39] investigates how mobile systems could exploit people’s social interactions
to improve these systems’ performance and query hit rate. They build a trace-
driven simulator that are able to recreate the behaviour of mobile systems in a
social environment. Finally, they find that mobile systems can benefit substantially
from exploiting social information.

Tribler [40] introduces the notion of “friends” to peer-to-peer networks as special
nodes among which content sharing gets a boost. This can be, in turn, applied to the
federated home environment where nodes carrying “preferred content” within the
residential network or a neighbour’s residential network can be labeled as “friends”,
while nodes outside the federated environment are treated as “normal” peers. Such
vision can be further extended to include a user’s social networking contacts, whether
they are in the federated home or not. On the one hand, one of the main functionality
of a social networking service is to keep users updated on what events occurred in
their local social environment, through notifications. On the other hand, a social
networking service must allow any users to locate on demand the closest content
that matches a particular request.

Also, [41] presents a design of an overlay constructed on top of a social network
and shows that it gives a sizeable improvement in lookups, average round-trip delay
and scalability as opposed to other overlay topologies. Herein it uses a popular
real-world social network namely “Orkut” by evaluating the clustering behaviour of
its graph structure and the socializing pattern of its members.

[42] is to use the P2P network to deploy a directory service facilitating search
for friends by exploiting existing trust relations of the social network links. This
work is to demonstrate that only a subset of the whole social network is adequate
to build an efficient and reliable service.

In [43] “social cache” acting as the bridge among friends is introduced to alleviate
efficient information delivery in the distributed online social networks (dOSNs).
Given the topology of social graph, some nodes are selected as the “social caches”
such that 1) each node should either be a social cache or connect to at least one
social cache; and 2) a pair of friends should be connected by at least one social cache
if none of them is a social cache. So this social cache selection problem further is
formulated as the Neighbor-Dominating Set (NDS) problem. Because a node only
contacts the social caches it is associated with by pushing its content updates and
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fetching the updates of its friends. The use of social caches can significantly reduce
the total social traffic in the network. However, the selection decision is made when
the information of global social graph is given [44]. It also can bring “hot-spot”
problem especially for the nodes with high friend degree, due to not considering the
bandwidth allocation and user interest locality.

Social graph generation

In the simulation works, we need to derive a realistic social graph with the suit-
able scale of users for simulation. So we referred other works on the social graph
generation.

[45] uses short-range technologies (e.g., Bluetooth) on users’ mobile phones to
sense and keep track of other phones in the proximity. Then proximity records are
processed using a variety of algorithms that are based on social network theories
of geographical proximity and of link prediction. The result is a personalized and
automatically generated list of people the user may know.

[46] deals with a methodology to generate a social graph of users’ actions and
predict the future social activities of the users based upon the existing relationships.
This graph is updated dynamically based on the changes in the selected social net-
work site.

[47] presents a large-scale measurement study and analysis of the structure
of multiple online social networks (e.g., Flickr, YouTube, LiveJournal and Orkut).
They crawled the publicly accessible user links on each site, obtaining a large portion
of each social network’s graph. Their results confirm the power-law, small-world and
scale-free properties of online social networks including some observations of that
the in-degree of user nodes tends to match the out-degree; that the networks contain
a densely connected core of high-degree nodes; and that this core links small groups
of strongly clustered, low-degree nodes at the fringes of the network.

[48] studies in detail about user interactions in the social network. This paper
proposes the use of interaction graphs derived from Facebook user traces to impact
meaning to online social links by quantifying user interactions and shows they exhibit
significantly lower levels of the “small-world” properties shown in their social graph
counterparts. This means that these graphs have fewer “super nodes” with extremely
high degree, and overall network diameter increases significantly as a result. The
results reveal that studies of social applications should use real indicators of user
interactions in lieu of social graphs.

[49] is to define both a measure of local community structure and an algorithm
that infers the hierarchy of communities that enclose a given vertex by exploring
the graph one vertex at a time. They can use this algorithm to extract meaningful
local clustering information in the large recommender network of an online retailer.

[50] studies online auction networks rather than other online social networks

24



2.2 – Related works

by modelling and characterizing the structure and evolution of the network of user
interactions on eBay. This work observes that the graph exhibits both significant
differences and similarities to commonly studied graphs and studies the feedback
behaviour of users. Finally, they develops an intuitive model that captures key
properties of the graph in a visual and memorable way.
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Chapter 3

Optimization model

Our optimization problem aims at maximizing the utilities/benefits of users whose
residential gateways provide the storage space for caching their friends’ content. To
this optimization problem a series of constraints are added, including the bounded-
ness of the total resource capacity of every gateways.

3.1 Model assumptions
Consider there are N households in the federation network, each equipped with one
residential gateway, hence N is the number of residential gateways in the network. A
residential gateway GWi (i = 1, 2, . . . , N) acts as a repository managing and storing
content for all home users in the corresponding household. Its storage capacity
is split into a local data storage (i.e., for data primarily stored by its local users
and synchronized with the local devices) and into a “friend quota”, Qi, which we
define as the available storage capacity for caching the data uploaded by friends of
its associated home users. We define the upload and download bandwidth of the
gateway GWi as C(u)

i and C(d)
i , respectively. The bandwidth Cih from gateway GWi

to gateway GWh is assumed to be:

Cih = min{C(u)
i , C

(d)
h }

α(dih)
(3.1)

where α(dih) is a factor depending on the distance dih between gateway GWi and
GWh, and 1 6 α(dih) 6 10. In Section 5.1 we will provide a possible definition of
α(dih) used by realistic simulation scenario.

We then assume that there are also M home users in the federation network.
Each user registers himself/herself on the corresponding residential gateway equipped
inside of the household, where the users can access/store their content. For the pur-
pose of identifying which users are registered to which gateway, we define an N ×M
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matrix P whose generic element is given by:

Pij =
{

1 if Uj registered on GWi

0 otherwise. (3.2)

where i indicates the gateways, i = 1, 2, . . . , N , while j is the user index, j =
1, 2, . . . ,M .

As explained earlier, we assume that a crucial gateway functionality is the capa-
bility to collect the social information of its users by extrapolating such data from
the social networks they belong to. In particular, we are interested in collecting
user’s friend lists and user’s interests.

To represent the first dataset, we model the friendship between user Uj and user
Uf through a friendship function F (j, f):

F (j, f) =
{

1 if Uj and Uf are friends, j /= f ;
0 otherwise. (3.3)

The friend list Ej of user Uj can thus be denoted as follows:

Ej = {Uf : F (j, f) = 1} (3.4)

Secondly, the user’s interests are mapped from one or more social interest com-
munities that the user belongs to. The degree of user involvement with each such
community - which will come to represent the distribution of content type pref-
erences of the user - is captured by the user’s interest vector, defined as follows.
Let Ijl denote the interest factor of user Uj in interest type l, with 0 6 Ijl 6 1,
l = 1,2, . . . , L (L is the size of the interest area, i.e., the total number of interest
types considered in our system). Let the interest vector of user Uj be the collection
of all interest factors of the user associated with all the interest types, denoted by

Ij = (Ij1, Ij2, . . . , Ijl, . . . , IjL) (3.5)

where ∑L
l=1 Ijl

∆= 1− rj. rj is the probability of the user Uj to be interested in the
interest type out of the interest area L. Without loss of generality and in order not
to burden the presentation of this problem, we will just assume users to only have
interest in the interest types considered in the system, thus, ∑L

l=1 Ijl = 1 or rj = 0.
We assume that the content items in the network are finite, i.e., each user may

own any number of items out of K possible items. A generic item k, k = 1, 2, . . . , K
has the size D(k) and belongs to interest type l. The association between an item
and its interest type is assigned according to a uniformly random distribution. For
the sake of notation simplicity, we also assume that every user has the same average
number of items to share or backup.
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3.2 Mapping onto a BMC problem

Many applications arising in circuit layout, job scheduling, facility location, and
other areas, may be modelled using the maximum coverage problem (see [51] and the
references therein for examples of applications). The Budgeted Maximum Coverage
(BMC) problem introduces a more flexible model for the applications mentioned
above [52]. Consider, for example, the problem of locating k identical facilities so
that the market share is maximized, introduced in [53]. Namely, there exist clients
with associated profits, situated in known locations. A client will use a facility if
the facility is within the specified distance from the client. The goal is to locate k
facilities so that the total profit of the clients served by the facilities, is maximized. In
another version of this problem, considered in [54,55], and known as optimal location
of discretionary service facilities, facilities gain profits associated with travel paths
of customers; a facility covers a path if it is located in one of the nodes on the path,
or at some vertex “close” to the path. Clearly, the problems described above can
be modelled by the unit cost maximum coverage problem. However, in practice,
the cost of constructing a facility may depend on certain factors associated with the
location of the facility. For example, each candidate site for constructing a facility
is associated with some cost, and one is assigned a limited budget for constructing
the facilities. This generalization of the problem of locating facilities to maximize
market share is also discussed in [53]. The budgeted maximum coverage problem is
a model that allows us to handle this type of applications.

Our objective is to find a selection of friends from the user’s friend list where
to cache the user’s items onto these friends’ associated residential gateways; such
selection should maximize the benefit of the hosting users whose residential gateway
provide the storage space for caching their friends’ content, i.e., by closely matching
his/her interests; and it should also maximize the data transfer effectiveness, i.e.,
by maximizing the bandwidth between the respective gateways. So we cast this
optimization problem as a BMC problem [52,56].

In BMC problems, a collection of sets S = {S1, S2, . . . , Sm} with associated costs
{ci}mi=1 is defined over a domain of elements X = {x1, x2, . . . , xn} with associated
weights {wj}nj=1. The goal is to find a collection of sets S ′ ⊆ S, such that the
total cost of elements in S ′ does not exceed a given budget L, and the total weight
of elements covered by S ′ is maximized. The BMC problem is NP-hard, and [52]
presents a (1− 1/e)-approximation algorithm for it.

We assume that gateway GWi has already collected the user Uj’s friend list Ej
and the friends’ registration information (which friend of Uj is registered on which
gateway). In our case, the problem is that the user Uj has a content item k with the
size of D(k) to share or backup, and the content item k belongs to the interest type
l, so bins and elements of the BMC problem can be mapped in the following way.
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• The bin set Bj for user Uj is defined as follows: Bj = {bj1, bj2, . . . , bjh, . . . , bjN},
where bin bjh denotes the set of friends of user Uj who are registered on gateway
GWh, h = 1, 2, . . . , N :

bjh = {Uf ∈ Ej : Phf = 1}. (3.6)

We recall that Phf = 1 means that user Uf is registered on gateway GWh, and
that Uf ∈ Ej means that user Uf is in the friend list of user Uj, so bjh ⊆ Ej.
The cost c(k)

(bjh) of selecting the bin bjh is defined as the cost of caching the
content item k of size D(k) onto the gateway GWh, which can be defined as:

c
(k)
(bjh) = D(k) (3.7)

• The element set in our problem obviously is the user Uj’s friend list Ej.
For each element/user Uf ∈ Ej (user Uf is a friend of user Uj), we can define
the weight as the benefit w(k)

(Uf ) that element/user Uf can obtain when item
k is cached onto the gateway GWh where Uf is registered. The definition
of benefit is depending on the use case of home user. For example, in the
vision of “social backup” mentioned previously, the storage space on the friend
gateway is only reserved for caching the backup replica of friend owned content,
which is disabled to be shared with others. In this case, just considering the
interest locality of social friends and network bandwidth contributed for the
fast content backup recovery, the definition of benefit will depend both on
the interest that friend Uf will have in the cached content, and on how easily
accessible that content will be for the content owner Uj (i.e., on the bandwidth
between the uploader gateway and the hosting gateway). We can thus define
w

(k)
(Uf ) as:

w
(k)
(Uf ) = Ifl · Chi (3.8)

where Ifl denotes the friend interest of Uf in items of type l which content
k belongs to and Chi is the uploading bandwidth from the hosting friend
gateway GWh which provides the storage space for caching back to the content
owner’s gateway GWi, on which users Uj and Uf are registered, respectively
(Pij = Phf = 1). In short, the benefit is calculated in the view point of content
owner contributed by the friend gateway using its reliable storage space and
wide uplink bandwidth.
Another case of content caching for collaborative sharing is taken into account
not only for content backup, but also towards content sharing among the social
friends. In other words the cached file on the remote friend gateway is not only
used as a backup replica for the content owner, but also provided as another
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sharing source for the owner’s friends. So that the definition of user benefit
should consider the several aspects from more than one counterpart: one is
from the content owner, same as the Eq.(3.8) for content backup use case; the
other is from the other friends of the content owner.

w
(k)
(Uf ) = Ifl · Chi +

∑
α

Iαl · Chα (3.9)

The first half of the equation above is the same with Eq.(3.8) regarding to
the friend’s interest value and corresponding gateway’s network bandwidth,
and the second half takes the potential interest of the owner’s other friends α
and the available bandwidth from the contributing gateway to those friends’
gateways into account.

One constraint is about the gateway friend quota, Qi, which we recall is the
available storage capacity for caching the data uploaded by friends. The other is
about the selection constraint, if one user is covered by the cached item (y(k)

f equals
one), the corresponding home gateways must be selected as replica for that item
(x(k)

h = 1).
Finally, our problem can be formulated as follows:

maximize
∑K
k=1

∑
Uf∈Ej

w
(k)
(Uf ) · y

(k)
f

subject to
∑K
k=1 c

(k)
(bjh) · x

(k)
h 6 Qh

∑
Phf =1 x

(k)
h > y

(k)
f

x
(k)
h , y

(k)
f ∈ {0, 1}

(3.10)

where x(k)
h = 1 indicates that gateway GWh is selected to cache a replica of content

item k, while y(k)
f = 1 means that user Uf is covered by the cached content item k.

And K is the total number of the content items to share or backup by all the users
in the system.

3.3 Problem solving
As we know, the linear programming problem previously defined in Eq.(3.10) is NP-
hard. We solve it through the Gurobi solver [6], which is a powerful optimization
solver for linear programming (LP), mixed integer linear programming (MILP) and
quadratic programming (QP) etc., using advanced implementations of the latest
optimization algorithms.
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3.3.1 Problem size
The number of Boolean decision variables (x(k)

h and y
(k)
f ) is O(K〈N〉), where 〈N〉

denotes the average number of the friends per user. And the number of constraints
is O(K〈N〉 + M). The solution time for an instance with approximately 1,000
gateways, 3,000 users and an average of 5 content items for each user to share or
backup, is about 30 minutes using a 4-core 2.3 GHz system and a 4 GB RAM.

3.3.2 Optimal solutions
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Figure 3.1: Average benefit per user as a function of gateway quotas. (M = 1200)

In this section we only consider three different optimization methods of content
caching for the backup use case, and compare the optimal solution of these strategies
in the same scenario. We use a realistic synthetic social network assembled following
the procedure which will be outlined in the Section 5.1.1 later, and the parameters
listed in Table 3.1 for the test scenario. As previously described, we assume that
each user has an interest vector on the different content types, and the user’s interest
vector is shared among his/her friends in the whole network.

The first strategy is the joint optimization method, described in Section 3.2, in
which the friends who have the larger interest in the corresponding content item
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Figure 3.2: Average benefit per user as a function of gateway quotas. (M = 3000)

Table 3.1: Parameters used in the scenario

Parameter Name Notation Value
Number of Gateways N 1,000
Number of Users M 1,200 - 3,000

Number of content items K 6,000 - 15,000
Items to backup per user 5
Number of interest types L 10

Content item size D(k) 10MB
Uplink bandwidth C

(u)
i 4Mb/s

Downlink bandwidth C
(d)
i 8Mb/s

and the higher bandwidth connected will be selected (assuming their friend quota is
not used up). The second strategy is the bandwidth-based method, in which friends
reachable through gateways with the highest bandwidth will be selected, regardless
of their interest in the cached items. The last one is the random method, in which
the user just randomly chooses up to 10 friends to share the content item with, as
long as the friends have enough quota to store the item, not considering any other
factors.
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3 – Optimization model

We find the optimal allocation for the first two strategies through the Gurobi
solver, which uses a variant of the branch-and-cut algorithm. Solving the budgeted
maximum coverage problem in Eq.(3.10) yields the optimal joint content item place-
ment, i.e., the set of candidate friend gateways to select for each content item, as
well as the optimal benefit value that each user can obtain by being selected. The
optimal bandwidth-based placement is obtained again from Eq.(3.10) by changing
the benefit definition as:

w
(k)
(Uf ) = Cih (3.11)

Using the obtained optimal total benefit of all the users, we compute the average
per-user benefit obtained in the system, for various quota constraints, shown in
Figures 3.1and 3.2, forM = 1200 andM = 3000 users, respectively (resulting in 1.2
and 3 users per gateway). Even though the average benefit is lower when 3000 users
are considered (due to the larger number of users per gateway sharing the same
quota), the advantage of finding an optimal allocation for content caching jointly
depending on interest and bandwidth is clearly visible in both plots. Such advantage
amounts to twice the benefit obtained with a bandwidth-based strategy only, and to
ten times the benefit of a random placement selection.
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Chapter 4

Distributed heuristics

The greatest hurdles in translating the optimization model into a working imple-
mentation are (i) that the model paints a static picture, where all users take instan-
taneous decisions and (ii) that decisions are taken by a centralized, knowledgeable
entity.

In this chapter we propose a set of distributed heuristic algorithms that strive to
achieve the same goal as the model outlined in the previous section. The algorithms
take two different viewpoints: that of participating content owners who have data to
share or backup and that of remote gateways who provide their own storage space
for their social friends. In both cases, we follow the same arguments used in the
optimization problem definition.

From the viewpoint of content owners, not only do they wish to backup or share
the data as fast as possible, but, in the long run, they also wish that the remote
gateway keeps the content for as long as possible. Therefore, content owners are
naturally disposed to choose friends from whose gateways they can retrieve the
cached content items more quickly. Also, they would like friends to be interested
in the content they cache, because such friends are more inclined to store it for a
long time. If one wants to cache their kid’s pictures, what better place than the
grandparent’s gateway?

At the receiving end, the remote gateway can display two types of behaviour
that are arguably worth investigating. One is a selfish behaviour: regardless of the
caching requests received by friends of its users, the remote gateway will devote its
“friend quota” only to maximize the interests of its associated users, i.e., based only
on the first factor in the benefit w(k)

(Uf ) of Eq.(3.8). (Please notice that the selfish
behaviour is not considered for the sharing use case, due to its collaboration nature.)
The other one is a cooperative behaviour: the remote gateway fills up its friend quota
while trying to maximize the whole benefit of Eq.(3.8) or Eq.(3.9) depending on the
use case for backup or sharing, hence accounting for both its users’ interest and the
bandwidth toward the content owner’s gateway or other friends’ gateways.
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We will address either viewpoint through a specific distributed algorithm: a
Greedy Placement Algorithm (GPA) run by content owner gateways in order to
identify the most suitable places where to cache their content items, and the Re-
Placement Algorithm (RPA), run by each remote gateway upon receiving a caching
request.

4.1 The Greedy Placement Algorithm
We assume that a user has available all items it wants to share or backup when
the GPA procedure is started. Further, we assume time to be slotted in intervals
of fixed length and that the starting time slot of GPA procedure on a gateway is
random. On each gateway, the sequence in which users start GPA is also randomly
determined. To achieve the fairness among all the users in the system, each user
can run GPA only once per time slot.

When starting the GPA, a gateway GWi will have already collected the following
information from each of its associated users Uj:

• the friend list Ej;

• the remote friend gateway list RGj which includes the remote gateways on
which user Uj’s friends are associated;

• list Kj of items to share or backup;

• for each item k ∈ Kj, the benefit w(k)
(Uf ) of each friend Uf ∈ Ej as defined in

Section 3.2;

• for each remote friend gateway GWh ∈ RGj, a quantity referred to as gateway
aggregate benefit w(k)

h = ∑
Uf∈Ej

w
(k)
(Uf ) · Phf (recall that Phf = 1 indicates the

friend Uf is associated to gateway GWh);

• a query list Zj where each element is a pair (k,GWh) representing an item
and the IDs of a remote friend gateways, sorted by their gateway aggregate
benefit w(k)

h .

The main idea behind GPA, detailed in Algorithm 1, is the following: every time
the algorithm is scheduled, user Uj sends a caching request to the remote friend
gateway whose ID is in the element that tops the query list Zj. Such element is
then removed from the list if the request is accepted; otherwise, it is pushed back to
the bottom of Zj. After sending caching requests on behalf of a user Uj for a total
item size of S bytes, GPA stops and it is rescheduled randomly in the next time
slot.
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Algorithm 1 Greedy Placement GPA(Uj, Zj)
Require: RETRY counters for all elements of Zj
size← 0
loop

pop_front element (k,GWh) from Zj
if RETRY(k,GWh) > MAX_RETRY then
continue

end if
if size+D(k) > S then

insert_head element (k,GWh) into Zj
break loop

else
size = size+D(k)

end if
send Caching_REQ to GWh for k
if Caching request rejected then

push_to_back element (k,GWh) into Zj
RETRY(k,GWh) = RETRY(k,GWh) +1

end if
end loop
if Zj! = ∅ then
schedule GPA(Uj, Zj) next time slot

end if
return RETRY counters for all elements of Zj
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Since the query list Zj of user Uj is sorted by the gateway aggregate benefit for the
corresponding remote gateway, the pop_front operation corresponds to extracting
from the list the item k and the ID of the best candidate gateway where it can be
cached in the current time slot. A Caching_REQ message is then sent to such
gateway.

Once a gateway receives the Caching_REQ, it will first check whether it has
already cached this item. If not, and there is enough free space in its friend
quota1, it will set aside the corresponding size for this item in its storage space.
A Caching_REP message is returned to the item owner notifying it whether the
caching request was accepted. If the request is accepted, the content owner will
start the upload. If the request is denied, or no reply is received, the corresponding
list element is pushed at the bottom of the query list, for a later retry, up to a limit
of MAX_RETRY times.

Upon reaching the S bytes caching request limit, and if the query list is not
empty, the gateway schedules the next run of GPA, and the next batch of caching
requests for user Uj, at the next time slot. In order to achieve fairness across the
federated network, all users should use the same upper caching request limit S.

We finally remark that GPA can easily be modified so that the gateway attempts
to cache a single item k only onto a limited set of friends’ gateway. In this work,
we have only considered the most general (and most challenging) case in which the
gateway tries to cache all items on all the friends’ gateways. Using the above nota-
tion, when GPA eventually stops, an always successful gateway will have dislocated
|RGj| · |Kj| items across the federated network, for each of its users.

4.2 The Replacement Algorithm
If remote gateways “passively” accepted all caching requests until their quota is
filled up, their collection of cached items would not match the optimum allocation,
being strongly dependent on which users start the GPA procedure first, hence which
greedy requests they receive first. After all, the friends of the users associated to a
gateway share the quota on this gateway by competing with each other. In order to
alleviate such imbalance, we introduce the second algorithm, called RPA, RePlace-
ment Algorithm, to be run by every gateway upon receiving a caching request and
discovering that the quota is already filled up. We assume that a gateway GWi holds
a list Bi of items cached in its storage space, sorted by benefit, while we indicate by
qi the free space still available for caches out of the friend quota.

As explained above, when a gateway GWi receives a Caching_REQ message for

1We will discuss the case of no free space in the next section.
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Algorithm 2 The RePlacement Algorithm RPA(GWi, k)

Require: Bi, qi, w
(k)
i , D(k)

replace← false, F reeSpace← qi
DropWeight← 0, DropSize← 0
while Bi /= ∅ do
select k′ ∈ Bi with the lowest benefit
DropWeight← DropWeight+ w

(k′)
i

DropSize← Dropsize+D(k′)

FreeSpace← FreeSpace+D(k′)

if w(k)
i < DropWeight then

replace← false
break

else if w(k)
i == DropWeight then

if DropSize 6 D(k) then
replace← false
break

else
replace← true
break

end if
else
if D(k) > FreeSpace then
Bi ← Bi \ k′
continue

else
replace← true
break

end if
end if
if replace and D(k) · w(k)

i 6 DropSize ·DropWeight then
replace← false

end if
end while
return replace
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a new item k of size D(k), it will check whether it has the enough storage space for
it; if the space is not sufficient, the gateway will compute the aggregate benefit w(k)

i

of each cached item according to Eq.(3.8) or Eq.(3.9) depending on the use case for
backup or sharing respectively and start the RePlacement Algorithm, described in
Algorithm 2.

The gist of the RPA procedure is the following. In order to maximize the benefit
of the users associated to the receiving gateway, the replacement strategy considers
the removal of cached items with lower benefit than the incoming item. The Bi list
is sorted by benefit, and RPA checks if there are enough items with lower benefit
than w(k)

i that can be dropped to leave room for the incoming item. A second check
verifies if the product of the total benefit and total size of the items selected for
dropping is smaller than the benefit/size product on the incoming item. If so, the
latter replaces the dropped items in the storage space of GWi. Ideally, the second
check is aimed at preserving the network efficiency, so that a large cached item is
not easily dislodged by much smaller item with a marginally higher benefit.

If the remote gateway GWi replaces content item k′, a Caching_DEL message
must be sent to inform the content owner that it needs to find a new gateway where
to cache k′. The content owner will thus place a corresponding element in the Zi
queue of algorithm GPA (or start a new instance of GPA if Zi has been emptied in
the meanwhile).

4.3 Complexity analysis
The running time cost of GPA and RPA is minimal. For each user for which GPA
is run, the length of the query list Zj is O(K̂Ê), where K̂ is the average number of
items per user and Ê is the average number of remote friend gateways. So for the
individual gateway the running time is O(K̂Êm/n) with m/n denoting the average
number of users per gateway. As for the running time of RPA, the algorithm searches
the whole the cached item list Bi to check what can be replaced, while the maximum
number of iterations depends on the number of remote friends and their own items
to share or backup. So the complexity of RPA for one gateway also is O(K̂Êm/n).
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Simulation and evaluation

In this chapter, we will now investigate the validity of our distributed caching ap-
proaches by realistic simulations.

Firstly, we numerically solve the model and derive the maximal benefit obtained
for all the users according to Eq.(3.10). The results will be benchmarked against
two other, simpler caching (re)placement strategies, to evaluate the gain that comes
at the expense of extra complexity in the caching strategy. Secondly, we compare
the content allocation resulting from the optimal solution with what is achieved
through the distributed heuristics. In this case too, we will explore variants of GPA
and RPA.

Our evaluation will necessarily target a synthetic scenario. Recreating all the
conditions and variables of an actual online social network would be a daunting
task. We thus extrapolate its essential features and create a scaled-down version for
our simulation following the procedure we outlined in the following.

5.1 Simulation scenarios
Our first problem, however, is the definition of a suitable scenario that must exhibit
realistic features of a social network, namely the distribution of friends and their
position/distance on the network topology.

Then, we will give a brief description on the realistic gateway bandwidth and
network topology used in the simulation scenario.

5.1.1 A synthetic social network
To make our simulation scenario more realistic, we need to set up a synthetic so-
cial network that shares the basic common properties of real social networks. We
choose Facebook as a target, since it is one of most popular and largest online social
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networking sites nowadays. In particular, we use the findings in [57] and [4] to char-
acterize the network properties and to establish a relationship between geographical
distance and friendship probability that matched the one that can be measured in
Facebook. We then proceed according to the following three phases [58].

Phase 1: location and bandwidth assignment

At first we assign the geographical location information for each home gateway in
the scenario. We uniformly distribute the N gateways in an area of 1,000 × 1,000
square miles. Next, we compute the geographical distance between any two gateways
and we evaluate the bandwidth between them through equation (3.1). We define
the factor α(dih) so that, intuitively, it is small (hence the bandwidth is large) for
nearby gateways (up to 0.1 miles apart). Then, we let it grow linearly (hence the
bandwidth decreases) up to 1,000 miles, after which we keep it constant. The choice
of the values is clearly arbitrary, but it will serve our purpose of introducing a
distance-dependent inter-gateway bandwidth. The α(dih) factor is defined as:

α(dih) =


1 0 < dih 6 0.1

dih−0.1
111.1 + 1 0.1 6 dih < 1000

10 dih > 1000
(5.1)

where dih denotes the beeline distance between gateways GWi and GWh.

Phase 2: user assignment

The next step consists in distributing theM users onto the gateways, in a uniformly
random fashion, so that the average number of users per gateway is the same. Each
user will therefore have a geographical location according to the home gateway on
which it has been registered. We then compute the geographical distances between
each pair of users.

Phase 3: friendship grooming

The final step is the crucial one. The user graph we have constructed in the previous
two steps has some degree of plausibility but it does not reflect yet any properties
of actual social networks. In particular, if we established friendship between users
picked at random on the graph, we would lose the typical locality that is exhibited
by social networks, where most online friends tend to live in nearby areas, due to
habits, employment or existing relationships. In order to create a plausible synthetic
social graph based on the geographical location we were inspired by [59]. Such work
presents a stochastic model for spatially embedded social networks based on the
ideas of spatial interaction models. In it, each user is assigned an identical budget,
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5.1 – Simulation scenarios

and if two users establish a friendship link, the two users should both consume a
cost amount from their respective budgets. When a user’s budget reaches zero, the
user will not be assigned any more friends. We call this cost a “friendship cost” and
following [59] we define it depending on the geographical distance as follows:

cF (j,f)=1 = γln(djf ) + const (5.2)

where djf denotes the geographical distance between the user Uj and Uf , and
F (j, f) = 1 means user Uj and Uf are friends, as defined earlier. In our study, we
choose γ = 1.05 and const = 1 following the suggested values in [59].

Two details are still missing though: if every user has the same budget, the
friendship graph will not resemble a social graph. And we still need to factor in the
information on the distance distribution among friends in a social network.
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Figure 5.1: CDF of node degree distribution.

To address the first concern, we change the budget assignment so that users
initially receive a randomly assigned budget which follows a power-law distribution
with exponent −1.5. Thus, we can let the degree distribution in the social graph
(i.e., the number of friends per user) follow a power-law distribution as in realistic
social networks. Also we can adjust the average budget value to obtain the desired
average node degree.
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Figure 5.2: Probability of friendship as a function of distance.

Secondly, to tie in the distance distribution among friends we follow the findings
in [4], where the probability of a friendship link between two users in Facebook is
empirically determined given the two users’ geographical distance, as follows:

pF (j,f)=1 = 0.0019× (djf + 0.196)−1.05 (5.3)

where pF (j,f)=1 denotes the probability that user Uj and Uf are friends.
The resulting social graph is then costructed through the following steps: (i)

randomly pick a pair of users among those defined in Phase 2; (ii) use the friendship
probability in (5.3) to determine whether to establish a friendship link among them;
(iii) if the link is established, the budgets of Uj and Uf are decreased by the amount
in (5.2).

The above procedure is repeated until all budgets of all users have been con-
sumed1.

From the generated social graph, a sample CDF of the number of friends can
be shown in the Figure 5.1, we can see that 50% users have about 15 friends, 60%
users have less than 20 friends, and just 10% users have larger than 50 friends. It’s
a power-law distribution.

1up to a minimum tolerance value, since it is unlikely that a budget becomes exactly zero
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5.1 – Simulation scenarios

In order to validate whether this approach can get the realistic distribution of
friendship over the physical distance, we compare the resulting friendship distribu-
tion as a function of user distance with the empirical results in [4]. The comparison
is shown in Figure 5.2. The curve labeled “desired” is plotted following the results
in [4], where about one million Facebook users were sampled. The other curves show
the distributions derived from our procedure for varying number of users. Although
we were yet unable to find an optimized implementation of our procedure that allows
us to handle millions of users, the trend shown in Figure 5.2 is a clear indication
that the distribution we obtain can be considered plausible.

5.1.2 Realistic gateway bandwidth
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Figure 5.3: CDF of gateway uplink bandwidth.

To set up the realistic simulation scenario, we also need the data set of up-
link/downlink bandwidth of each home gateway. Uplink capacities of gateways are
obtained by sampling a real bandwidth distribution measured at more than 300,000
unique Internet hosts for a 48 hour period from roughly 3, 500 distinct ASes across
160 countries [60]. We randomly generate the uplink bandwidth of each gateway
with the identical distribution of the realistic source data, shown in Fig. 3. These
values have a highly skewed distribution, with a median of around 1030.4kbps and
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5 – Simulation and evaluation

a mean of about 5409.6kbps. To represent typical asymmetric residential Internet
lines, we assign to each gateway a downlink speed equal to four times its uplink.

5.1.3 Simulated network topology

Figure 5.4: Simulation network topology.

Also we create a realistic tiered network topology through organizing network of
routers structured in levels. In the first level there are 4 autonomous systems (ASes)
totally. In each AS, locate 5 Tier 3 city routers (e.g., Turin, Milan, Rome), which
have been suitably chosen latency. And inside each city, there are multiple (e.g., 10)
districts, which is made up of set of district routers with which the residential gate-
way are connected through different types of connections provided by ISPs allowed.
Obviously, herein the district is used to be acting as a local neighbourhood inside
which there are around 10 households on average.

Furthermore, we can test the distribution of friendship probability among these
tiered network structure. From Fig. 5.5 more than 40% friendship is assigned in
the same AS, and more than 20% and 10% friendship are distributed in the same
city and district respectively. This is another evidence that the friends are much
more closer to each other in terms of geographical distance shown in our simulation
scenario.
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5.2 – Evaluating optimal model and distributed heuristics

Figure 5.5: Percentage of friendship vs. distance.

5.2 Evaluating optimal model and distributed heuris-
tics

We will now investigate the validity of our approach by following two main directions.
Firstly, we numerically solve the model and derive the maximal benefit according to
Eq.(3.10). The results will be benchmarked against other, simpler content placement
strategy, to evaluate the gain that comes at the expense of extra complexity in the
placement strategy. Secondly, we compare the content allocation resulting from the
optimal solution with what is achieved through the distributed heuristics. In this
case too, we will explore variants of GPA and RPA.
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5.2.1 Optimization, heuristics and variants thereof
In order to extract meaningful comparisons between the optimization approach and
the distributed heuristics, sharing the same scenario is not enough. On the one hand,
we used Gurobi [6], which runs a variant of the branch-and-cut algorithm, to numer-
ically solve the BMC problem in Eq.(3.10). The solution yielded an optimal joint
content item placement, i.e., the set of candidate home gateways to be selected for
each content item, as well as the optimal benefit value that each user can obtain by
being selected. On the other hand, we simulated the heuristic approach in the net-
work simulator ns-3 [61]. So that we could not only focus on the resulting allocation
after requests, allocations and replacements have settled (i.e., the protocol part of
heuristics), but also study the actual content file transfer while working on the case
of sharing purpose (i.e., the impact on the content retrieval performance). Finally,
we compared the steady-state outcome to what the optimization had predicted.

We have tried to gauge the effectiveness of optimization and heuristics not only
by comparing one against the other, but also by running some variants of either
approach with the aim of catching a glimpse of what we would stand to lose or
gain, if we chose a simpler (or a more convolute) strategy than the ones outlined in
the previous chapter on optimization model (Chapter 3) and distributed heuristics
(Chapter 4).

As far as optimization was concerned we evaluated two different content place-
ment strategies. The first strategy is the joint optimization method, described in
Chapter 3, in which the friends who have the largest interest in the correspond-
ing content item and the highest uplink bandwidth will be selected first (assuming
their quota is not used up). The second strategy is a bandwidth-based optimization
method, in which friends reachable through gateways with the highest bandwidth
will be selected, regardless of their interests in the uploaded items. The optimal
bandwidth-based placement is still obtained from Eq.(3.10) by changing the benefit
definition into w(k)

(Uf ) = Chi.
Concerning the heuristics, we considered three versions of GPA:

• GPA-j, which corresponds to the definitions outlined for Algorithm 1;

• GPA-b, where the benefit of a friend Uf on GWh just depends on the uplink
bandwidth from GWh to GWi (where Uj is located) , i.e., w(k)

Uf
= Chi;

• GPA-r, where elements in Zj are randomly sorted. So users randomly choose
which friends to cache the content item, as long as enough quota is available,
not considering any other factors.

Likewise, we evaluated two versions of RPA, RPA-ns and RPA-s differing by the
sorting of Bi. The former corresponds to the definitions outlined for Algorithm 2. In
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5.2 – Evaluating optimal model and distributed heuristics

the latter, the benefit is defined just as the sum of interests of the associated users
who are also friends of the content owner, disregarding the uplink bandwidth to
the owner gateway; This behaviour is “selfish”, hence RPA-s, because the receiving
gateway only tries to maximize the interest of its own users.

Another variant, which affects the GPA procedure, concerns the size of items to
cache. At first, we assumed that all items have the same size. While not realistic per
se, it could be meaningful if the implementation of the caching system were limited
to a single class of items. In this case, tagged as “fixed size” in our results, we
assumed all items to have a 10 MB size. Then, we considered items of any possible
size within a bound. Such “variable size” case features random item sizes following a
truncated exponential distribution with expected value of 10 MB and maximum size
of 50 MB. While studying the latter case, though, we soon found out that allocation
results were dangerously biased toward smaller items, so we introduced a fair item
size balancing mechanism in GPA. Items were divided into size groups of 10 MB
each and GPA was modified so that a caching request for one item was sent only if
the total amount of data already cached in the item group did not exceed the total
amount already cached for items of the first size group bigger than it. For instance,
if a 15 MB item in the 10-20 MB size group increased the total amount of data
already cached for that size group to 95 MB, and the total amount of the 20-30 MB
size group were still 90MB, the request would be put on hold.

The previous variants are for the backup purpose, and the main change for the
sharing purpose is just the change on the definition of the user benefit, which is
defined in Chapter 3 already. However, two variant methods are not evaluated for
the sharing purpose. One is the bandwidth-basedmethods (including bandwidth-based
optimization method and GPA-b) which just consider the bandwidth resources, so
there is no change in the user benefit definition for sharing purpose. The other
missing one is RPA-s (“selfish” version), that’s due to in the case for sharing purpose,
the residential gateways play in the collaborative way.

5.2.2 Performance Evaluation
Our first set of plots aims at comparing the optimization results, in their variants,
with the corresponding variants of the distributed heuristics in which the GPA algo-
rithm alone in employed for the backup purpose. The rationale of such comparison is
to show the importance of the replacement management introduced by RPA (which
is not used in these first results). For reason of space, we cannot show the whole
possible parameter space, so we will just focus on a few representative cases to prove
our point. Throughout the section, the number of gateways is N = 1000, the num-
ber of users is M = 3000 and the number of item types is L = 10. Results with
L = 50 and L = 100 were qualitatively similar.

The plot in Fig. 5.6a clearly ranks the optimization and heuristics variants in
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(a) Variable quota, fixed item size.
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(b) Qi=500MB, fixed item size.
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(c) Variable quota, variable item size.
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Figure 5.6: Average user benefit obtained by different methods for backup purpose
under different cases.

terms of average user benefit as defined in Eq.(3.8) for backup purpose, for various
quota constraints and fixed item size. The average benefit is the average value
of user benefit which can be obtained by each user from the current used content
placement method. It shows that jointly optimizing bandwidth and benefit is a clear
winner. Even though the average benefit is low (due to that an average of three
users per gateway sharing the same quota), the advantage of finding an optimal
allocation for cached content depending on interest and bandwidth is clearly visible.
Additionally, GPA heuristics alone do not match the joint optimization results,
as expected. Similar conclusions can be drawn for the variable item size case in
Fig. 5.6c, where GPA-j fares even worse.
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5.2 – Evaluating optimal model and distributed heuristics

In the next set of results, we let receiving gateways run the replacement algo-
rithm, RPA, in its two (selfish and non-selfish) versions. Fig. 5.6b plays out the
Q = 500MB quota case over time, in the same scenarios just examined. It shows
that, given some time to converge, GPA-j with RPA-ns together yield an allocation
that progressively corrects the initial uneven caching distribution provided by the
distributed implementation of GPA-j alone. The selfish version of RPA, RPA-s, in-
stead shows that if the owner and the storing gateway are not on the same page, as
it were, when deciding what items are preferable to cache, the performance reverts
to that of GPA-j alone. The selfishness of RPA, however, seems to have a lesser
impact in the variable item size case, shown in Fig. 5.6d.
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(b) Qi=500MB, fixed item size.
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(c) Variable quota, variable item size.
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Figure 5.7: Normalized average user benefit obtained by different methods for
backup purpose under different cases.
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Furthermore, we normalized the average user benefit based on the value of av-
erage user benefit obtained by GPA-r, which is the random placement method, to
emphasize the difference among these placement or replacement strategies under the
same scenario settings. Fig. 5.7 indicates the same basic ideas with the Fig. 5.6.
Also we can infer that for both cases of fixed and variable content item size, the dif-
ference between the optimization and heuristics would be enlarged, when the quota
size on each friend gateway is decreased which means when the storage capacity
becoming the critical resource. And GPA-j with RPA heuristics can progressively
bridge the gap with the joint optimal method, shown in Fig. 5.7b and 5.7d.
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Figure 5.8: CDF of caching redundancy for backup purpose. (fixed item size and
Qi = 500MB)

We next plot the caching redundancy, i.e. the average number of a user’s own
items that have been replicated onto its friend gateways, upon reaching convergence
of the distributed heuristics. Caching redundancy for one user is defined to be the
ratio between the total number of replicas for all the items belonging to that user
and the number of remote friend gateways. The CDF of the caching redundancy
is useful to understand the thoroughness of the caching process. In the plot of
Fig. 5.8, RPA-ns allows the remote gateway to replace the items (all of the same
size) with smaller benefit and improve the storage thoroughness as much as the
optimal method (the two curve indeed overlap).
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Figure 5.9: Average cached item size as a function of gateway quota for backup
purpose. (variable item size)

Finally, the plot of Fig. 5.9 reports the average size of items cached in the “friend”
storage quota at remote gateways for backup purpose, when convergence is reached.
Recalling that the average item size in the variable item case is 10MB, we can
conclude that the loss of average user benefit with respect to the optimal case shown
in Fig. 5.6d is offset by a fairer distribution of item sizes in the gateway storage across
the federated network (i.e., the average size of cached item achieved by GPA-j with
RPA-ns is just 10% smaller than the average item size in the system, as opposed to
30% smaller in the joint optimization case). Also, the use of fair item size balancing
with GPA proves of some consequence to achieve this result.

Next, we turn our eye in the cases for the sharing purpose: the friend gateway
caches the content from the friends not only for the backup of owner’s original
copy, but also for providing another sources shared with the content owner’s other
friends. Similarly, in terms of average user benefit as defined in Eq.(3.9) for sharing
purpose, the plot in Fig. 5.10a compares the joint opimization and GPA heuristics
alone variants, under various quota constraints and fixed item size. The jointly
optimizing bandwidth and benefit is also a winner. Additionally, the gap between
GPA heuristics alone and the joint optimization results is even larger in the sharing
purpose than in the backup purpose, as it indicates the mistake in choosing the
candidate friend gateway for caching would be magnified by the circle of friends for

53



5 – Simulation and evaluation

50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Quota Size of Each Gateway (MB)

A
v
e

ra
g

e
 B

e
n

e
fi
t

 

 

Joint optimal

GPA−j

GPA−r

(a) Variable quota, fixed item size.

500 1000 1500 2000 2500 3000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time Slot

A
v
e

ra
g

e
 B

e
n

e
fi
t

 

 

GPA−j

GPA−j + RPA

GPA−r

(b) Qi=500MB, fixed item size.
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(c) Variable quota, variable item size.
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Figure 5.10: Average user benefit obtained by different methods for sharing purpose
under different cases.

sharing purpose, in which the objective is to improve the benefit or utilities for all
the friends of the content owner, not just the owner itself. Similar conclusions can
be drawn for the variable item size case in Fig. 5.10c.

Moreover, we let receiving gateways run the replacement algorithm, RPA, only
in the non-selfish mode, due to in the sharing case all the gateways run in the
collaborative way. Fig. 5.10b plays out the Q = 500MB quota case over time, in
the same scenarios just examined. It shows that, given some time to converge, GPA-j
with RPA together yield an allocation that progressively corrects the initial uneven
caching distribution provided by the distributed implementation of GPA-j alone,
under both cases of fixed and variable content size, which is shown in Fig. 5.10d.

Due to the user benefit definition for sharing purpose considers not only the
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(b) Qi=500MB, fixed item size.
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Figure 5.11: Normalized average user benefit obtained by different methods for
sharing purpose under different cases.

content owner’s interest and the bandwidth back to the owner, but also the inter-
ests of the owner’s other friends and the bandwith towards them. The absolute
value of average user benefit is much larger than for the backup purpose, shown in
Fig. 5.10a. We also normalized the average user benefit based on the value of average
user benefit obtained by GPA-r to emphasize the difference among these placement
or replacement strategies under the same scenario settings. Fig. 5.11 indicates the
same basic ideas with the Fig. 5.10. And GPA-j with RPA heuristics can progres-
sively bridge the gap with the joint optimal method, shown in Fig. 5.11b and 5.11d,
similarly with the backup purpose. So we can infer that GPA-j with RPA heuristics
can progressively converge to the optimial solution under various friend quota size
and any cases of variable content size, for both backup and sharing purpose.
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Figure 5.12: CDF of caching redundancy for sharing purpose. (fixed item size and
Qi = 500MB)

We next plot the caching redundancy, i.e. the average number of a user’s own
items that have been replicated onto its friend gateways, upon reaching convergence
of the distributed heuristics, for the sharing purpose. The notable difference between
the backup purpose and sharing case is, for backup purpose, the cache content item
could only be accessible by the content owner. Otherwise, for sharing purpose, the
cached content item would be shared among the circle of owner’s friends. So the
cached content might be quite popular among the friends, or plenty of friends might
hold high value of interest in the content. In the plot of Fig. 5.12, RPA allows the
remote gateway to replace the items (all of the same size) with smaller benefit and
improve the storage thoroughness as much as the optimal method (the two curve
indeed overlap). We also can see there are about half of users have no piece of item
cached on their friend gateways, that is due to the realistic social graph used in the
simulation scenario. With regarding to the CDF of friend degree in social graph
shown in Fig. 5.1, about 50% of users have only less than around 13 friends, and
10% of users can have one copy cached for each own content item on average (shown
in Fig. 5.12) because they have more than 50 friends.

As for the average cached item size for sharing purpose, the plot of Fig. 5.13
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Figure 5.13: Average cached item size as a function of gateway quota for sharing
purpose. (variable item size)

reports the similar results within the Fig. 5.9, achieved by GPA-j (selfish and non-
selfish version) with RPA heuristics.

Especially, for sharing purpose we tend to study the impact of caching techniques
adopted on residence gateways on the performance of content retrieval for the home
users.

Firstly we need to simulate the content retrieval procedure for the home users:
For each simulation run, first we start the content (re)placement algorithm for
caching user’s content on their friends’ gateways; around the halfway (nearly to
3000s) we randomly pick up 100 users starting to retrieve/access the content owned
by their friends till the end; they send the request to the geographically nearest
replica gateway and the access rate to one certain type of content is according to
the interest vector of the user itself.

Then we collect the statistics on the content retrieval duration, like the content
access delay, hops, geographical distance and the consumed network bandwidth etc,
when the simulation stops.

Finally we can compare the impact of three different caching algorithms (GPA-j
heuristic alone, GPA-j with RPA heuristic and random placement) on the content
retrieval performance. In the following are some interesting findings:

From the Fig. 5.14 showing the average access delay, which is defined as the
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Figure 5.14: The comparison of content access performance under different content
(re)placement strategies. (in terms of average access delay)

round-trip time starting from sending the content retrieval access to receiving the
whole content successfully, under the fixed and variable item size cases both, we
can infer that the GPA-j with RPA heuristic method defeats the other twos un-
doubtedly, the access delay is stable even when the quota size is extremely limited
(50M case). The interesting point for random placement algorithm, is the access
delay will turn to be stable after the quota size increasing up to 200MB. That is
due to the storage resource is not the bottleneck anymore for the content retrieval
performance when the friend quota size is larger than 200MB. And when the quota
size is not a bottleneck anymore, the performance of GPA-j heuristic alone method
can dramatically approximate to the replacement method.

In terms of hops (Fig. 5.15) or geographical distance (Fig. 5.16), which is defined
as the network link hops or geographical distance between the requesting residential
gateway and the replica gateway respectively, the user is always able to find the
appropriate replica inside of the same city or even the local residence/federation (3-
4hops) when using GPA-j with RPA heuristic method. Much larger number of hops
or distance is required when using GPA-j heuristic alone than the random placement
method. That’s due to, according to the objectives of GPA-j, it just pick up the
friend gateway with the higher bandwidth and the higher interest. On the other
hand, the random placement method will reflect the distribution of the friendship
probability on the geographical distance (most of friends are close to each other
geographically), which is used in our realistic simulation scenario.

Previously we measure the content performance from the side of content re-
questing gateway; now we take the side of content replica gateway to assess how
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Figure 5.15: The comparison of content access performance under different content
(re)placement strategies. (in terms of average number of access hops)
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Figure 5.16: The comparison of content access performance under different content
(re)placement strategies. (in terms of average access distance)

the caching techniques adopted on residential gateways could improve the content
retrieval performance. Fig. 5.17 depicts the difference in the percentage of content
retrieval request could be met by the replica gateway inside of the local neigh-
bourhood/federation under the random placement and GPA-j with RPA heuristic
method. Using the random placement for caching, around 40% of content requests
could be met within the same city and half of requests which are met in the same
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Figure 5.17: The percentage of retrieval request vs. distance.

city (about 20% in the absolute value) would be satisfied in the same district (which
is simulated as the neighbourhood). This also reflects the distribution of the friend-
ship probability on the geographical distance exactly. Under the GPA-j with RPA
heuristic method, around half of requests can be satisfied within the same city and
more than 30% could be met in the same district, that means using the GPA-j with
RPA heuristic method, the content item could be cached on the residential gate-
ways which are much closer to the potential interested home users. That’s also the
intention and value of our distributed heuristic caching algorithms.
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Chapter 6

Implementation works

This chapter concerns the implementation and evaluation works to deploy the caching
module on the real testbed environment. Firstly, the overview of gateway imple-
mentation architecture will be provided; followed by the design of a framework for
caching module and the detailed description on the caching module implementa-
tion. Finally, we use Common Open Research Emulator (CORE) to emulate a real-
istic network environment for residential gateways to test and evaluate our content
caching algorithms implementation.

6.1 Overview of gateway architecture

Firstly, we will provide the overview of gateway architecture providing home users
(and external gateways) with a unified content management mechanism to access
content, regardless of its location in the home network. The gateway content man-
agement, illustrated in Fig. 6.1, includes the following components:

• The unified content management view, mapping home network content into a
unified view of representation.

• The DAM achieves access unification at content level, abstracting the location
of the content.

• The caching module performs content caching either on local resources or on
external, federated resources, leveraging the home users’ social information.

And then proceed to describe each of them in details.
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6 – Implementation works

Figure 6.1: Architecture of the content management in the gateway.

6.1.1 Unified content management view

The unified content management view unifies the file systems and the network pro-
tocols. It offers a file system view of the home network. It is based on the Virtual
File System (VFS) provided by the Linux operating system. It therefore represents
the unified content management view of the residential network content as if it were
a local file system interface. It also contains a network organizer module, which is in

62



6.1 – Overview of gateway architecture

charge of managing the registration/mounting/unmounting operations and detect-
ing which device leaves the residential network. The unified content management
view mainly provides local file systems access. As such, mainly local devices (i.e.,
running on the same residential network), and properly configured via the network
organizer can access the gateway at the network file system level. Remote access
could also be provided at the same level using a VPN (Virtual Private Network)
connection.

The unified content management view layer also includes a UPnP/DLNA media
server, running on the content management view to expose all the residential network
content towards UPnP control points and media renderers.

6.1.2 DAM: Digital asset management
The DAM is an application, running on the top of the unified content management
view. It allows task such as content indexing and retrieval. It is based on a LAMP
(Linux Apache MySQL PHP) software package [62]. It uses the file system inter-
face provided by the VFS layer. Each resource has a unified resource ID, which is
allocated by the DAM when a new resource is imported. It contains a local storage
area, called filestore and a metadata database MySQL:

• Filestore: a directory tree containing the uploaded content. A file is stored (or
a symbolic link is created) and renamed resource ID with file extension in the
filestore. For example, picture01.jpg is stored in filestore as 152.jpg. These
folders contain also icon and preview of the pictures.

• Database: the database contains metadata related to resource ID: file type
(mp3 or jpg ...), tags like id3 or exif tags, the keywords related to the resource
that can be used to find the resource.

The DAM also provides a set of API allowing control by remote software appli-
cations. and the DAM provides 2 types of access interfaces: the user interface and
the software interface, which are described hereby.

User interface

The user has access to the system via a browser. Two types of front-ends are available
in the DAM: one for PCs or laptops and one for smartphones with touch screens.
The user access is protected via HTPP authentication. Therefore, the user needs to
be registered in a DAM or gateway so as to access it. Once authenticated, the user
can access the DAM either locally or remotely.
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Software application interface

The DAM can be interfaced to another application using a HTTP interface. As-
suming the application is properly authenticated, it can be interfaced to the DAM
whether it runs locally on the same gateway. The application can reside on a remote
device like PC or smartphone.

6.1.3 Caching module
The caching module interacts with the DAM in order to create copies of home
content following users’ directions and interests. This module will be in charge of
disseminating multiple copies of the same content among neighbouring gateways
for the purpose of having the content readily available when needed (though not
in a reliable way, i.e., the content may need to be downloaded from other sources
if not found in the caching system). Caching module can exploit the unified con-
tent access in order to manage all the resources in a transparent way, saving into
the cached content all the information about user-generated and file-system-level
metadata along with the resource themselves. It also query the DAM database to
retrieve the user-generated tags associated to each resource, to be stored and saved
as metadata. These metadata will then allow the selection of appropriate destina-
tion for the cached content (e.g., DAM-level user-generated tags such as “wildlife
pictures” could trigger the caching of users’ photos toward storage facilities shared
by federated users with the similar interests).

This is the socially-aware caching mechanism which leverages the interaction
between remote residential gateways in a social way, i.e., by exploiting the users’
social networking information, so that caching recipients are those gateways whose
users are most likely to be interested in accessing the shared content, as explained
in [5].

6.2 Architecture of caching module
This section concerns the design of a framework for caching module. Before we start
talking about architecture behind this module the entities that are part of the entire
framework is to be introduced, and then followed by the detailed description of the
caching module architecture.

The caching module operates on the top of the DAM layer as explained previously
and is composed of a caching decision algorithm module which runs a background
caching procedure by uploading selected content owned by home users to selected
remote friend gateways, and a social information-gathering module.

In the caching decision module, a low-complexity, distributed heuristic algo-
rithm will be included, to match remote friends’ interests with the content to cache
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6.2 – Architecture of caching module

by leveraging typical social networks indicators, such as interests, hobbies and pref-
erences of home users, and by having all personal digital data appropriately tagged.

The module takes two different viewpoints: that of content owners who have data
to share or backup and that of remote gateways which provides their own storage
space for their social friends. From the viewpoint of content owners, not only do
they wish to cache or restore the data as fast as possible, but in the long run, also
wish that the remote gateway keeps the content for as long as possible. Therefore,
content owner are naturally disposed to choose friends from whose gateways they
can retrieve the cached content more quickly. Also, they would like friends to be
interested in the content they upload, because such friends are more inclined to
store it for a long time. At the receiving end, the remote gateway will devote its
storage space for friends to maximize the whole benefit accounting for both its users’
interest and the bandwidth toward the content owner’s gateway.

Although the caching decision algorithm module is running in the background,
it still requires the home users to tag which content needs to be cached through the
DAM interface. The module must also be able to gather the knowledge of content
type tags by the DAM APIs.

The other module used by the socially-aware caching functions is the social
information-gathering module, which allows the gateway to interact with social net-
works. Clearly, given the specific characteristics of each social network, more than
one module will have to be designed and implemented so as to be tailored to online
social networks.

Also, the socially-aware caching functionalities can be exploited by the backup
module in the maintenance step of the process. Cached replicas of a specific content
can be used for generating new parity blocks in case the owner of the content (i.e.,
the backup module running on the content owner’s gateway) is offline, and, at the
same time, the number of parity blocks decreases below a lower bound.

6.2.1 Entities and terminology
The entities of the architecture related with caching module are summarized with
what names they are referred to as following:

• Lookup service (LS): a central logical entity providing global information
lookup features. The lookup service acts as a database server and a resource
manager. It stores authenticated users’ credentials, the mapping between au-
thenticated users and gateways. It has a comprehensive knowledge on the
federation, and interfaces to the gateways’ monitoring modules fro recording
availability and bandwidth statistics and providing thus detailed information
to caching module. Furthermore, it has an active part in knowing which gate-
ways are online in a given moment, by polling them at regular intervals. Also,

65



6 – Implementation works

for the caching service, it will keep track of the placement of each content
replica in the federation as well as the mapping between registered Figaro
users and social network users.

• Device: each connected and registered device on a local gateway (e.g., laptops,
smartphones ...).

• DAM: the Digital Asset Management. This is the main web application, run-
ning on each gateway and providing browsing functionalities of the currently
available content in a residential network.

• Home storage: the gateway’s storage exploited for storing cached copies (e.g.,
a network attached storage - NAS). We call it “home” as it is relative to a
single home network.

• Gateway: a node in the federation serving a single home environment.

• Federation: a set of gateways organized in some way (e.g., neighbourhood,
friendship ...).

6.2.2 Caching module and service
One of the drawbacks of personal or cloud backup approaches is the fact that data
of potential interest of other users sits unused in a storage device. Let us consider
the following example. George has a set of pictures of the latest family vacations
and he wants to show them to his friend John, while, at the same time backing
them up. George remotely uploads the pictures to John’s NAS, where a storage
quota is reserved for such purpose; John is then notified that a copy of the pictures
now exists in his NAS and that he is welcome to have a look, while keeping it in
its NAS as a backup. For fairness, a similar quota for John’s backups should be set
aside at George’s. The example could be extended to a close group of friends, as
defined within social networks, and the potential of such a scheme instantly become
apparent. By leveraging typical social networks indicators, such as interests, hobbies
and preferences, and by having all personal digital data appropriately tagged (at
the DAM level), the matching of remote users and content to cache allows achieving
social content sharing.

To efficiently speed up the access to user-generated content for end users in the
federated residential network, the caching service provides the home gateway with
information on what content to cache and what to discard, and for how long, based
on inter-gateway network bandwidth measurement and user interest information
learned and estimated from online social networks (OSNs).

The caching service is provided by the caching module, which operates on the
top of the DAM level and runs a background caching procedure in charge of:
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• Managing the home storage reserved for the caching service.

• Gathering the user’s social information from OSNs.

• Processing and extracting metadata associated to resources on caching.

• Taking the cache placement and replacement decision.

• Managing retrieval of content cached on neighbouring gateways.

Assisting the caching module is the Social Data Manager Unit (SDMU), a helper
module that could be deployed on a single, common server outside the residential
network (e.g., one per neighbourhood, or one per provider). The SDMU must have
a public address in order to interact with OSNs and does not permanently store
single user information.

Decomposed caching module architecture

We now provide a description of the internal functions of the caching module.
Fig. 6.2 shows the building blocks of the caching module.

Figure 6.2: Decomposed caching module architecture.

• DAM plugin: interacts with the DAM and provides access to content stored
in the home environment; it also allows a user to tag content files scheduled
for caching.
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• Metadata collector : extracts metadata from content files and matches it ac-
cording to a tree of predefined categories.

• Caching algorithm: ranks gateways in the preferred order to receive cached
content (among a candidate list provided by the SDMU) according to a heuris-
tics selection process that tries to maximize bandwidth availability and user
interests, or “benefit” according to different purposes of user for backup or
sharing.

• Content dispatcher and manager : manages signalling with remote gateways;
transfers the content to the selected gateways; accepts/rejects content (to be
cached locally) from remote gateways; tracks the location of cached content;
dispatches locally-cached content information to requesting users (either local
users or authorised neighbouring users).

Content caching procedure

The following steps, illustrated in shown in Fig. 6.3, are envisioned for the operation
of the Caching module.

Figure 6.3: Content caching procedure.
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• Step 1. Preliminaries.
Establish the interface communication with an OSN (e.g., Facebook in the
example).

• Step 2. Credentials access authorization.
The caching module authorizes the Social Data Manager Unit (SDMU) to
access the user’s Facebook credentials and to send them to Facebook to access
the user’s profile.

• Step 3. Information request (1).
The SDMU contracts Facebook and requests social information for the user
(e.g., his/her interests, the posts that he/she “liked”, the links he/she shared,
as well as a list of his/her friends) via Graph API [63].

• Step 4. Information delivery.
The SDMU receives the user’s social info from Facebook.

• Step 5. Information parsing.
The SDMU sends the list of OSN IDs of the user’s friends to the Lookup
Service (LS). Some interaction and authorization with the AA module are in
order at this point.

• Step 6. Friend identification.
The LS identifies the OSN IDs that corresponds to FIGARO users and returns
to the SDMU, for each identified FIGARO/OSN friends: the IP address of the
residential gateway where they reside and the bandwidth estimation informa-
tion for such home gateway. It is assumed that the bandwidth information is
either stored at the LS (through scheduled updates) or it is queried from the
monitoring module of the involved gateways.

• Step 7. Information request (2).
The SDMU contacts Facebook and requests social information for the FI-
GARO/OSN friends (a subset of the user’s total friends).

• Step 8. Social data collection.
Facebook returns the FIGARO/OSN friends info to the SDMU, which parses
and formats it.

• Step 9. Response.
The SDMU inputs to the caching algorithm module:
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– A list of candidate gateways and FIGARO/OSN users on those gateways,
including their reachability information (IP address and uplink/downlink
bandwidth estimation).

– The interests (likes and links) of each FIGARO/OSN user identified.

• Step 10. Content placement in the federation.
The caching module runs the caching algorithm detailed in Chapter 4 to de-
termine where to place content replicas among the candidate gateways. Upon
the selection of each gateway, the caching module interacts with the network-
ing module to start the appropriate signalling with the remote gateway and
request caching authorization. If accepted, the content will be transferred to
the remote gateway, where it is stored in the remote caching storage partition.
The remote DAM is triggered in order to index the new content.

• Step 11. LS update.
If the transfer to the remote gateway is successful, the caching module reports
to the LS the location (the gateway address) of the content just cached. The
content is identified through a unique ID (e.g., an XML tag).

Content retrieval procedure

The cached content can be retrieved as show in Fig. 6.4. The user on GW1 starts
the procedure by interacting with the caching module to identify which of his/her
neighbours are caching content that is described by one or more keywords. The
following steps are then executed:

• Step 1. Remote friend lookup.
The caching module identifies the friend which caches content matching the
keywords input by the user and asks the LS (or a local LS cache to speed up
the process and relieve the burden on the LS proper) to provide the friend’s
gateway information. The content is identified through a unique ID.

• Step 2. Content locator request.
Through the networking module, the remote gateway is contacted and a re-
quest for a specific content ID request is issued to its caching module.

• Step 3. Authorization verification.
The remote caching module interacts with the AA module to establish whether
the requesting gateway is authorised to receive content from it.
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Figure 6.4: Content retrieval procedure.

• Step 4. Retrieval of content resource locator.
The remote caching module identifies the content in its storage and retrieves
the DAM handle (henceforth called “content resource locator”) to return to
the requesting gateway.

• Step 5. Content locator response.
The content resource locator is returned to the requesting caching module
through the networking module.

• Step 6. Content downloading/file transfer.
The caching module on GW1 starts a file transfer procedure to acquire a local
copy of the content from GW2.

• Step 7. DAM update.
Upon transfer completion, the caching module tells the DAM plugin to index
the new content.

• Step 8. (optional) LS update
Similarly to the content caching case in the previous paragraph, the caching
module may choose (it will be implemented as user’s option) to inform the LS
that a new copy is available and its location (GW1).
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Local cache replacement

If remote gateways “passively” accepted all caching requests until their local storage
is filled up, their collection of cached items would not match any optimum allocation,
being strongly dependent on which “friend” started the caching procedure first,
hence which requests they receive first in a greedy fashion. After all, the friends
of the users associated to a gateway share the quota on this gateway by competing
with each other.

In order to alleviate such unbalanced situation, a replacement algorithm is run
by every gateway upon receiving a caching request and discovering that the quota
is already filled up. In order to maximize the benefit of the users associated to the
receiving gateway, the replacement strategy considers the removal of cached items
with lower benefit for local users than the incoming item. Of course, if a gateway
replaces a content item, a “cache-delete” message must be sent to inform the content
owner that it needs to find a new gateway where to store such item.

6.3 Description of implementation
There are two well-defined stages in the execution of the caching module totally
depicted in Fig. 6.5: the first phase is the preliminary configuration of the data
structures modelling the initial placement of gateways, users, and related files, and
the second one takes charge of the implementation of placement/replacement algo-
rithms in client and server side both.

To start the caching module the information on the associated home users, the
content items required to cache and the remote friends’ gateway should be initialised
at first. These interactive information should be obtained from the other modules
continuously, like DAM plugin and federation lookup service etc. In this section
focusing on the implementation of caching module alone, we simplify these informa-
tion, which are obtained in advance, as inputed in the corresponding configuration
files already. The first phase is to configure the current residential gateway through
parsing the related information from the data structure formatted in the configura-
tion files.

Configuration phase

As shown in Fig. 6.6, there are mainly two configuration files deployed on each
gateway, which are usr.conf and lookup.conf. Next, these two configuration files will
be introduced in details:

The first configuration file, usr.conf, describes the associated home users on the
current gateway and the content items belonging to the corresponding user which
are required to cache. This file is following a precise syntax to fill the data structures
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Figure 6.5: Temporal analysis of the two phases of configuration and caching request.

of the current residential gateway and respective home users. The first information
specified is that the identification number of the gateway, followed by a description
about each user, including its friends, interests and of course the set of items that
the user confirms to cache.

The second file, lookup.conf, is used to acquire the location information of other
remote friends in the federation. These are related to the friends of those home
users present in the current gateway. In the real deployment, these information
could be acquired from the lookup service, which is a DNS-like location service
in the federation, when the multiple modules are incorporated together through
interactive API. Moreover, the already-known location information of remote friends
can be cached in this file. We could obtain the remote friend’s associated gateway
with IP address and port information through the lookup by the friend identifier.

After the parsing of the configuration files, using the information of user’s friend
list (from usr.conf file) and each friend’s location (from lookup.conf file) we can
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Figure 6.6: Configuration phrase on each gateway.

compute the list of remote friends for each local home user associated on the current
gateway. The list of remote friends, including the basic information related with the
associated gateway for caching the user’s content potentially, would be stored in
the table called as lookup table. In details, for each remote friend, the associated
gateway identifier and the IP address with the port number for establishing network
connection would be recorded in the pre-defined format.

Then the configuration procedure would continue to proceed to the formation
of a new table that depends on the lookup table, named as addressing table. In
the lookup table, it in fact includes all the remote friends in the federation, and
the column of the associated gateway’s identifier could have duplicates. That’s due
to the fact that multiple remote friends could possibly are associated on the same
residential gateway. Moreover, the records with the same associated friend gateway
identifier would be extracted from the lookup table and combined into one record.
So for each local home user, the addressing table contains the list of remote friend
gateways that would potentially provide the storage space for caching the content
owned by the local users. Also the addressing tablemanages the network connections
to the respective remote friend gateway.

However, the two important factors - network bandwidth and friend interest,
on which our caching placement and replacement algorithms are based, are still
missing. As for the network bandwidth metric, it can be acquired from the network
monitoring module under FIGARO project. But here for simplicity, we use a famous
bandwidth measuring tool, named Iperf [64], to discover the bandwidth between
any two residential gateways. To obtain an average value for a better estimation
of the available bandwidth, the client-side script iperfs.sh is performed multiple
times to the specific address and port of a remote friend gateway. So the available
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bandwidth information of any specific remote friend gateway could be calculated
before performing any type of request to that corresponding gateway. And the
result of bandwidth information, which would be refreshed by calling the script
iperfs.sh in a pre-defined frequency, is stored in the addressing table afterwards.

In order to get the interests of friends for each item, the current home gateway
must request each remote friend gateway list in the addressing table for the total
amount of the item owner’s friends’ interest in the corresponding item type.

Figure 6.7: Representation of the request sending procedure and its implementation.

Each request to the remote gateway is done within the function requesttoGW()
depicted in Fig. 6.7. The caching module on each residential gateway runs both
two threads in two modes: client and server modes respectively. The request which
is sent by the current gateway in client mode will be received by server thread.
Once receiving the connection request, the server thread will create a child thread
to serve it. In Fig. 6.7 we present an example of request for the interest value of
remote friend gateway. We see the gateway making the request, GWclient, connects
to the remote gateway GWsf, the main server thread, which redirects the request
to the child GWsc, which responds directly to the client. In the request, the child
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server thread can identify two pieces of information: userid and itemtype. So the
child thread will check all the local home users who are also the friends of the user
with the specific userid, and return the sum of their interest value in the specific
type of content item.

When the current residential gateway has made requests to all remote friend
gateways’ interest for each content item, a query list for each item could be reached
to denote a sorted list of candidate remote friend gateways for caching the corre-
sponding content item. Then the query list for all the items owned by the same user
will be combined into one query list for that corresponding user. Furthermore, The
query list is sorted by the benefit, based on the factors of network bandwidth and
friends’ interest just acquired, defined in the Chapter 3 on the optimization model.
The remote friend gateway with the larger benefit will be requested earlier, that’s
due to caching the corresponding item on it would bring the larger benefit for the
users involved. Finally, the completion of the query list for each user will lead to the
next step, that is to start the caching placement request according to the algorithm
GPA.

GPA and RPA implementation

The GPA (Greedy Placement Algorithm) algorithm is executed multiple times within
a gateway until the query list for each user is empty. The basic idea of the algo-
rithm is already explained in the Chapter 4 on heuristic methods. The flow chart of
implementation details is illustrated in Fig. 6.8, in which it should be noticed that,
the block of GPA to GW means to send the GPA request to remote friend gateway,
which is depicted in the bottom half of Fig. 6.5. The GPA request contains the
content owner’s identifier and the information of the item to request including the
type, size and meta data etc.

Once receiving the GPA request, the residential gateway activates the server
thread to check whether there is enough storage space to cache the incoming content
item. If the space is not enough, it will call the replacement algorithm, RPA, for
whose details please refer to the Chapter 4 on heuristic methods. Also, the gateway
sends the RPA request to notify the removed item’s owner that the corresponding
item’s replica doesn’t exist any more.

Implementation of transferring files

Another issue to be noticed for the implementation work is the transferring of the
content files, when the response of GPA request is positive. To transfer the files
between residential gateways we use two tools: one is a C library called libcurl [65]
in the client side and the other is vsftpd [66] daemon program running for the server
side. Both of two transfer the content files exploiting the file transfer protocol, FTP.
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Figure 6.8: Flowchart depicting the algorithm of GPA.

The server-side tool vsftpd is a highly configurable and very versatile daemon
that runs in background on Linux as FTP server. Specifically the configuration file,
called vsftpd.conf, which is created during the installation, consists of options that
can be enabled to customize the behaviour of the ftp server. Meanwhile, the client-
side configuration for transferring files is also demanding as much as the server side.
The client side of the gateway does not have to worry about managing connections for
FTP file transfers, so the choice of this programming interface is almost inevitable.
The library libcurl is a very powerful tool, although it uses C functions, one can safely
say that the level of abstraction in the use of features can be very high. With this
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library you can play about 20 different network protocols, from the FTP to IMAP,
SCP, HTTPS supporting SSL certificates and various modes for authentication.

6.4 Evaluation via emulation

Figure 6.9: Emulation testbed.

To demonstrate the effectiveness and efficiency of the caching placement and
replacement algorithms implemented and give reasons for their use within the ar-
chitecture of FIGARO, it is desired to evaluation the impact of caching algorithms
on the performance of content retrieval and the comparison of different caching al-
gorithms implementation. The evaluation tests are divided into two portions, one
implements a random caching approach when placing files, while the other solves
the placement by making use of the caching algorithms GPA with RPA.

The evaluation has tried to recreate a realistic scenario in which multiple particu-
lar users wants to retrieve content from a remote residential gateway. We implement
the caching algorithms as the daemon application running on multiple Linux servers
located inside of main campus of Politecnico di Torino. The fact is these servers
connect to each other through a switch in a subnet with the link of 1Gbps capac-
ity. The data transfer among these servers would take place instantly and it can
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not demonstrate the difference between the two caching approaches under this net-
work configuration. So to this end, we need an emulator to emulate the connection
with much complex network topology among these servers. Also during the test the
background traffic is inserted between them (e.g. listening to music from YouTube,
measurement bandwidth, etc ...) to make a more realistic environment.

Fig. 6.9 illustrates the emulation network showed in the coloured box created
using CORE [67] (Common Open Research Emulator) which is a tool for emulating
networks on one or more machines. The emulation testbed is composed by a network
of routers structured in levels. The first level starting from the top represents a
possible Tier 2 Italian. The second level of the tree, however, reported a Tier 3 city
(e.g., Turin, Milan, Rome), which have been suitably chosen latency. The final level
is made up of set of district routers with which the residential gateway implemented
by Linux server are connected through different types of connections provided by
ISPs allowed.

The current emulated topology shown in Fig. 6.9 is only deployed by the pre-
liminary experiments to demonstrate the use of caching algorithms GPA with RPA
can proactively cache the content closer to the interested friends in the real testbed.
The emulation tests with much more complex topology, much larger scale of gateway
and more realistic content retrieval schema are already list in our ongoing work.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

The goal of this work is to look beyond traditional approaches of content sharing
and backup involving residential networks for home users. In particular, we be-
lieve the user’s utility accounting for user’s interests and network bandwidth can be
maximized by placing the content “outside the home” in a cloud formed by other
residential networks and exploiting the user’s social networking information. In our
vision, the user generated content could be cached on the friends’ residential gate-
ways which is located on the edge of Internet and could be tuned as a stable caching
layer for delivering the content owned by home users. We formulated this optimiza-
tion problem as a budgeted maximum coverage problem and solved it numerically
in a synthetic social network. Then we evaluated and compared the performance
of different content placement strategies across different home gateway quota cases
and showed that the joint interest/bandwidth optimization strategy is superior to
other one. Furthermore, distributed heuristic placement and replacement algorithms
are proposed to approximate the joint optimization strategy, and implemented and
evaluated under a realistic network environment.

The contribution of this thesis are summarized as following:

• We formulated this content placement problem as a Budgeted Maximum Cov-
erage (BMC) problem which is NP-hard, and we used Gurobi solver [6], which
runs a variant of the branch-and-cut algorithm, to numerically solve the op-
timization model and to obtain the optimal content placement solutions. We
also compared it with two different content placement strategies for gateways
with various quota sizes, under a realistic simulation scenario with synthetic
social network and realistic network environment.
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• We then devised and evaluated some low-complexity, distributed heuristic al-
gorithms which can be implemented on federated residential gateways to real-
ize a social caching strategy and use simulations in the same synthetic social
network scenario to show the final content placement among “friendly” gate-
ways well approximates the optimal solution under different network settings.
And we evaluated the impact of different content caching strategies on the con-
tent retrieval performance in terms of average access delay, hops and distance
using NS3 simulator.

• We also set up a synthetic social network that shares the basic common proper-
ties of real social networks, namely realistic degree distribution and the distri-
bution of friends and their position/distance on the network topology, to make
our simulation scenario more realistic. We chose Facebook as a target, since
it is one of most popular and largest online social networking sites nowadays.
In particular, we used the findings in other related works to characterize the
network properties and to establish a relationship between geographical dis-
tance and friendship probability that matched the one that can be measured
in Facebook.

• Last but not least, we proposed and implemented an implementation frame-
work prototype to connect the residential gateway with the online social net-
work (OSN) service through API services exposed by OSN (i.e. Facebook
Graph API) in the implementation work of federated residential gateways. So
each gateway can be allowed to collect its user’s social networking data with
the user’s permission, and to obtain the interest information shared by their
friends who also belong to the federation residential networks after checking
with lookup service (which is a naming service set up by us to manage the
information on the home users and their associated gateways). Meanwhile, we
exploited Common Open Research Emulator (CORE) to emulate a realistic
network environment for residential gateways to test and evaluate our content
caching algorithms implementation.

7.2 Perspectives
Our ongoing work prominently includes the evaluation work of the caching module
implementation with much more complex emulation topology, much larger scale of
gateway and more realistic content retrieval schema.

Some issues which are beyond the focus within this thesis are already outlined
in our working list. For example, the home user should not be required to explic-
itly manage and schedule caching. Instead caching should occur automatically and
transparently to the user. An intelligent scheduling mechanism for content caching

82



7.2 – Perspectives

should need a second thought running the caching module in the background es-
pecially during the off hours, the weekends or the working hours while only 10%
of available bandwidth is consumed allowing the home users to use the network for
other tasks. And the integration work between the caching module and other com-
ponents in the residential gateway architecture is under the discussion and ongoing.
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