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Blind Speckle Decorrelation for
SAR Image Despeckling

Alessandro Lapini, Tiziano Bianchi, Member, IEEE, Fabrizio Argenti Senior Member, IEEE, Luciano Alparone

Abstract—In the last decades, several methods have been
developed for despeckling synthetic aperture radar (SAR) images.
A considerable number of them have been derived under the
assumption of a fully developed speckle model in which the
multiplicative speckle noise is supposed to be a white process.
Unfortunately, the transfer function of SAR acquisition systems
can introduce a statistical correlation which decreases the de-
speckling efficiency of such filters.

In this work, a whitening method is proposed for processing a
complex image acquired by a SAR system. We demonstrate that
the proposed approach lets classical despeckling algorithms to be
successfully applied. First, we perform an estimation of the SAR
system frequency response based on some statistical properties
of the acquired image and by using realistic assumptions. Then,
a decorrelation process is applied on the acquired image, taking
into account the presence of point targets. Finally, the image is
despeckled. The experimental results show that the despeckling
filters achieve better performance when they are preceded by
the proposed whitening method; furthermore, the radiometric
characteristics of the image are preserved.

Index Terms—Synthetic aperture radar, correlated speckle
noise, blind decorrelation, despeckling.

I. INTRODUCTION

Speckle removal is a major problem in the analysis of syn-
thetic aperture radar (SAR) images. Speckle noise is a granular
disturbance that affects the observed reflectivity. Usually, it
is modeled as a multiplicative noise: this nonlinear behavior
makes the process of original information retrieval a nontrivial
task [1].

Speckle noise can be faced as an estimation problem, either
in the spatial domain or in a transformed domain. Spatial
domain filters were the first to be proposed and, successively,
refined versions appeared in the literature [2]–[6]. In the last
decade, multiscale analysis has been successfully applied to
the despeckling problem by using the wavelet transform [7]–
[15], or other multiresolution tools [16]–[18].

Spatial and multiresolution methods can be classified ac-
cording to the estimation criterion and to the models of the pro-
cesses that are involved. Bayesian methods, such as LMMSE
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and MAP criteria, have been taken into consideration by
using several assumptions about the statistics of the underlying
signal of interest (the reflectivity) and of the disturbance (the
speckle noise), e.g., the Γ distribution in the spatial domain
[3], [19] or the generalized Gaussian distribution in the wavelet
domain [13].

An assumption that is made in most of the methods that have
been proposed is that the speckle noise is an uncorrelated pro-
cess that affects the noise-free data. However, this hypothesis
does not often hold in practice and other issues inherent to the
acquisition system, such as band-limitedness, suggest the use
of a more sophisticated model. A model of a SAR acquisition
system, often considered as sufficiently realistic, includes a
linear time-invariant system, whose impulse response or point
spread function (PSF) spatially correlates the data. In actual
SAR data, the PSF must be considered as an unknown and
its estimation is based on the observed image. An accurate
description of a model that includes the presence of a PSF
and of the statistical properties of a SAR image satisfying
that model is given in [20].

Applying despeckling methods derived from the uncor-
related data hypothesis to actually correlated data yields a
significant loss of performance in speckle removal. Hence,
some methods have been developed relying upon the corre-
lated signal model. In [21], using a linear minimum mean
square error (LMMSE) estimation approach, a local Wiener
solution that assumes correlated data is proposed. In [22], a
whitening/Gaussianization approach is developed for despeck-
ling ultrasound images. Ultrasound (US) probes are incoherent
imaging systems that produce data having a model quite close
to that of SAR systems, so that despeckling methods developed
for US are also useful for SAR data. Spectrum flattening
is applied in [22] to the radiofrequency ultrasound signal;
the envelope of the signal is then followed by a logarithmic
transformation and Gaussianization process in order to apply
denoising algorithms developed for additive noise. In [23],
a Wiener filter for correlated SAR images working in the
stationary-wavelet domain is proposed. The method uses some
results derived in [20]. It also uses the hypothesis that the im-
aged scene is characterized by homogeneous statistics; hence,
a quad-tree decomposition is found before applying the filter.
The problem of estimating the PSF and image decorrelation
is also faced in [24].

In this paper, we propose a whitening approach to produce
single look complex (SLC) data that can be suitably processed
with despeckling filters designed for uncorrelated speckle
noise. For invertible PSFs, we demonstrate that the whitening
stage is optimal to achieve the information of interest, that
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is the variance of the underlying reflectivity. This result is
obtained both in the Bayesian and in the classical estimation
framework. The PSF is estimated by using the results in [20].
Several issues related to robustly decorrelating the SLC image,
such as the treatment of point targets, whose model deviates
from the fully developed speckle one, are also described. The
experimental results demonstrate that the whitening process is
effective and allow classical despeckling filters, derived under
the hypothesis of uncorrelated noise, to be fully exploited.
Three different filters, having different characteristics, have
been chosen in order to assess the generality of the proposed
procedure and to quantify the performance gain introduced
by the whitening stage. Our tests also show that whitening is
useful even when the invertible PSF hypothesis does not hold.
The experimental results have been produced by using both
synthetically speckled correlated images and true SAR images
acquired by the COSMO-SkyMed constellation of satellites,
which are affected by a strongly correlated speckle.

The paper is organized as follows. In Section II, the signal
model of SLC SAR data is described. In the same section, the
optimality of the inversion process for estimating the backscat-
ter coefficients, both in a Bayesian and classical estimation
framework, is stated. In Sections III and IV, a robust method
for estimating the PSF and decorrelating the SLC data are
described, respectively. In Section V, the experimental results
demonstrating the effectiveness of the proposed method are
given. Some concluding remarks are drawn in Section VI.

In the paper, the following notation is used: boldface upper
case and lower case letters denote matrices and vectors,
respectively; a superscript H indicates the Hermitian, i.e., the
transpose and conjugation, operator; the expectation operator
is denoted by E[·] (a subscript letter may be added to indicate
the variable it operates on); CN (µ,C) denotes a complex-
valued Gaussian variable with mean µ and covariance matrix
C.

II. SIGNAL MODEL AND FORMULATION OF THE
DESPECKLING PROBLEM

In [20], the spectral properties of a single look complex
(SLC) SAR image have been investigated and a generalization
of the fully–developed speckle model has been given. Assum-
ing the observed scene be composed by a set of point scatter-
ers, let σc(r) be the discrete complex backscatter coefficient
per area that describes the radar target scene for each 2–D
Cartesian coordinates r = (rx; ry). Under the hypothesis of
fully–developed speckle, σc(r) is modeled as a white complex
circular symmetric Gaussian process, having zero mean and
variance σ(r), where σ(r) is the radar backscatter or target
scene that we would like to estimate. Supposing that the entire
acquisition chain is likely represented by a cascade of linear
filters, we can denote the transfer function of the SAR system
as h(r). Using the previous assumptions, the complex radar
image g(r), i.e. the coherently acquired image, can be defined
as

g(r) = σc(r) ? h(r) (1)

where ? denotes spatial convolution, or, in an equivalent way,
using the 2-D Fourier transform, as

g(r) = F−1 {Σc(f) ·H(f)} (2)

where F−1 {·} denotes the inverse Fourier transform operator,
Σc(f) denotes the Fourier transform of σc(r), H(f) is the
Fourier transform of h(r), and f = (fx; fy) denotes 2-D
spatial frequencies. Hence, the despeckling problem consists
in finding the estimator of the non-stationary radar backscatter
σ(r) given the observation of g(r). Although its general
validity, the model expressed in (2) requires the knowledge of
the frequency response H(f) of the SAR system. The problem
of its estimation will be dealt with in a successive section.

The most used approaches to the despeckling problem in the
literature are based on the multiplicative, or fully–developed,
speckle model. If we assume h(r) = δ(r), then the model is
given by [25]

|g(r)|2 = |σc(r)|2 = σ(r) · us(r) (3)

where us(r) is a white random process having exponential
distribution, with unitary mean and variance.

A more general model assumes that

|g(r)|2 ≈ σ(r) · cs(r) (4)

where cs(r) is a noise process that is supposed to be sta-
tistically independent from σ(r) but spatially correlated. In
[20], it has been shown that the correlation of the process
cs(r) depends on the frequency response of the SAR system
and that the model expressed in (4) is valid when the power
spectral density (PSD) of σ(r) is narrower than the PSF of the
SAR system. However, even the model in (4) may not be very
accurate for a generic σ(r). According to (1), the expected
value of |g(r)|2 can be derived as

E[|g(r)|2] =
∑
r′

∑
r′′

h(r′)h∗(r′′)E [σc(r− r′)σ∗c (r− r′′)]

=
∑
r′

|h(r′)|2E
[
|σc(r− r′)|2

]
=
∑
r′

|h(r′)|2σ(r− r′)

(5)

where we have exploited the fact that σc(r) is a zero-mean
white process having variance σ(r). The above equation shows
that the expected value of |g(r)|2 is in general different from
σ(r), implying that cs(r) has not unit mean and should be
modeled as a nonstationary process, which is quite far from
the classical model in (3).

Despite of the fact that the model in (1) is more general
and more realistic, most of the despeckling filters present in
the literature are based on the multiplicative model with un-
correlated speckle, i.e., on (3), due to its simplicity. However,
applying despeckling methods derived from the uncorrelated
speckle hypothesis to SAR images satisfying the model in (1)
yields a significant loss of performances.

In this paper, we will show that, under the hypothesis that
the linear transformation in (1) is invertible, a whitening pre-
processing applied to g(r) allows classical despeckling meth-
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(a)

(b)
Figure 1. Despeckling model in the presence of a correlated signal (a);
inclusion of the whitening stage (b).

ods to be applied without loss of performances. In practice,
we divide the task of despeckling in two consecutive steps:

1 Whitening stage: an estimator of the complex backscatter
coefficients, σ̂c(r), is obtained from the complex image
g(r) using the general model given in (2).

2 Despeckling stage: despeckling filters based on the model
given in (3) are applied to σ̂c(r) in order to obtain the
estimated radar backscatter σ̂(r).

Hence, in this paper, we do not focus our attention in devel-
oping a new despeckling filter, but instead in showing that
the whitening stage permits to achieve optimal solutions by
using already known despeckling filters working on σ̂c(r).
Before stating such an optimality, some notation describing the
observed variables is given. In Fig. 1, the despeckling model
in the presence of a correlated signal and that including the
whitening stage are shown.

Equation (1) can be manipulated using R and I superscripts
in order to indicate real and imaginary parts, respectively.
Equation (1) can be rewritten as (the index r is dropped for
the sake of simplicity)

gR + j · gI =
(
hR + j · hI

)
?
(
σRc + j · σIc

)
=
(
hR ? σRc − hI ? σIc

)
+ j ·

(
hI ? σRc + hR ? σIc

)
(6)

where j =
√
−1. Without loss of generality, suppose that the

observed discrete complex backscatter signal g(r) is consti-
tuted by N samples. Thus, the model in (6) can be expressed
in vector notation as follows:

g = Hσc (7)

where

g =
[
gR(0) · · · gR(N − 1), gI(0) · · · gI(N − 1)

]T
σc =

[
σRc (0) · · ·σRc (N − 1), σIc (0) · · ·σIc (N − 1)

]T
(8)

and
H =

[
HR −HI

HI HR

]
(9)

where HR and HI are the matrix representations of the linear
filters hR and hI , respectively.

Considering that σc(r) is a realization of a white circular
symmetric complex Gaussian random process having zero
mean, we have that

σc ∼ CN (0,Cσc) , Cσc = diag
([

σT ,σT
]T)

/2 (10)

with σ = [σ(0) · · ·σ(N − 1)]
T .

Since g is a vector of linear combinations of σc, it follows
that

g ∼ CN (0,Cg) , Cg = HCσcH
T . (11)

In the following, we will state the optimality of a whitening
stage for the estimation of σ. The classical and Bayesian
estimation frameworks are dealt with separately.

A. Classical estimation theory framework

In a classical estimation framework, the vector of parameters
σ is a deterministic, but unknown, vector. Optimality of
estimators can be assessed by computing the Cramer-Rao
lower bound (CRLB) for any estimator of σ.

In Appendix A, it is shown that the CRLB for any unbiased
estimator σ̂ of the target scene σ given the acquired signal g
is given by

Cσ̂ − diag (σ)
2 ≥ 0 (12)

where Cσ̂ is the covariance matrix of the estimator and
the notation A ≥ 0 means that the matrix A is positive-
semidefinite. The relation in (12) shows that the CRLB is not
influenced by the presence of the frequency response of the
SAR system. This fact suggests that an estimator may remove
the influence of the SAR system frequency response in order
to reach the CRLB. Furthermore, it is interesting to note that
the performance of each estimator is locally bounded by the
local parameter itself, i.e., estimations of brighter points are
noisier than estimations of darker ones.

The inequality expressed in (12) has a general validity since
it has been derived only under the hypothesis that the filtering
matrix H (representing the SAR system impulse response)
is invertible. Interestingly, in this case an efficient estimator
based on the observation of g exists. Let’s define the N × 1
estimated vector σ̂eff as

[σ̂eff]n =
∣∣[H−1g]

n

∣∣2+
∣∣∣[H−1g]

n+N

∣∣∣2 , 0 ≤ n ≤ N−1.

(13)
or equivalently, in scalar form,

σ̂eff(r) =
∣∣h−1(r) ? g(r)

∣∣2 0 ≤ n ≤ N − 1, (14)

where h−1(r) denotes the inverse filter of h(r), that is
h−1(r) = F−1 {1/H(f)}. In appendix A, it is shown that
such an estimator is efficient for the despeckling problem.

The expression in (14) highlights that the efficient estimator
can be seen as a cascade of the whitening filter h−1(r)
followed by the squared modulus operator | · |2. In other
words, the whitening stage is the first part of the minimum–
variance estimation strategy within the framework of classical
estimation theory. It is interesting to note that no assumptions
have been made on the value of σ, except that it has no zero
entries.

B. Bayesian estimation theory framework

In this section, we reformulate the optimality of the whiten-
ing processing in the framework of Bayesian estimation, in
which the parameter vector σ is assumed as a random vector.
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In particular, we show that any Bayesian estimator based on
the observation of the variable g coincides with that obtained
observing any linear invertible transformation of g.

Let σ be the vector of parameters to be estimated, co-
inciding with the radar backscatter and let σc and g be
the observed signals in the whitened and correlated domain,
respectively. Bayesian estimation is based on the posterior
probability density function (pdf) of the parameter σ after
observing either σc or g, that is either p(σ|σc) or p(σ|g).

Let x = [σH gH ]H and y = [σH σc
H ]H be the random

vector obtained concatenating the parameter vector and the ob-
served variables, so that p(x) = p(σ,g) and p(y) = p(σ,σc).
According to (7), x is obtained from y by using a linear
transformation, that is

x = Ty (15)

where T denotes the invertible transformation given by

T =

[
I 0
0 H

]
. (16)

The relation between p(x) and p(y) is given by

p(x) = p(y)|JT(y)| (17)

where JT denotes the Jacobian of the transformation T,
defined by [JT(y)]i,j = ∂xi

∂yj
, and |A| denotes the determinant

of the matrix A. According to the previous definitions, we
have

JT(y) = T. (18)

Hence, the posterior pdf p(σ|g) is given by

p(σ|g) =
p(σ,g)

p(g)
=
p(x)

p(g)
=
p(y)|T|
p(g)

=
p(σ,σc)|T|

p(g)
=
p(σ|σc)p(σc)|T|

p(g)
.

(19)

Considering the transformation from σc to g, we have

p(g) = p(σc)|JH(σc)| (20)

where JH denotes the Jacobian of the transformation H given
in (7). Hence, we have

JH(σc) = H. (21)

Since |T| = |H|, substituting (20) and (21) into (19) yields

p(σ|g) = p(σ|σc). (22)

From this expression, we can conclude that any Bayesian
estimator, e.g., those based on the MAP and MMSE criterion,
can be derived in an equivalent way by using either the variable
σc or the transformed variable g.

III. ESTIMATION OF THE COMPLEX BACKSCATTER
COEFFICIENTS

The estimation of the source signal σc(r) given the observa-
tion of the output g(r) from an unknown linear system h(r) is
a typical problem of blind deconvolution [26]. Several methods
have been proposed in the literature in the last two decades
in the field of image restoration [26]–[28]. Many of them are

based on iterative algorithms and/or require some hypotheses
on the prior distribution and the hyperparameters of the source
signal in order to use the Bayesian inference framework.

In our approach, any assumption on the statistical distribu-
tion of the target scene σ(r) is avoided. We will use some
results from [20] as well as some hypothesis on the frequency
response of the SAR system.

From the observation of the spectrum of a real SAR
acquisition (see the experimental results section) it can be
inferred that the SAR system can be represented by a band-
limited lowpass filter with cutoff frequencies fc,x and fc,y ,
i.e., by defining Fp = {f : |fx| ≤ fc,x, |fy| ≤ fc,y} we have

H(f) ≈ 0 f /∈ Fp. (23)

Moreover, without loss of generality, we can assume that the
filter H(f) has unit energy, i.e.,∫

f∈Fp

|H(f)|2df = 1. (24)

Equation (23) implies that the PSF of a real SAR system
may not be invertible. In this case a true whitening operator
can not be defined. Nevertheless, we may intuitively assume
that flattening the spectrum of the received complex radar
image in the passband of the filter H(f) remains a good
strategy to approximate a white process. A flattening approach
to despeckle ultrasound images has been used in [22], [29].
Our experimental results show that the flattening strategy
yields a significant improvement in terms of despeckling
performance.

If Ĥ(f) is an estimate of H(f), then we can define an
estimate of the complex backscatter coefficients σ̂c(r) as

σ̂c(r) =

{
F−1 {W (f) ·G(f)} f ∈ Fp
0 otherwise

(25)

where W (f) = γĤ(f)−1 is the whitening filter, G(f) =
F{g(r)}, and γ is a suitable scaling constant. In Appendix
B, we show that the above solution yields the minimum norm
estimate of σ̂c(r).

A. Estimation of the SAR system frequency response

The estimation of H(f) can be performed by using the
results in [20], where it has been demonstrated that the average
spectrum of g(r), denoted as Sg(f), is given by

Sg(f) = F
{
Rg(r)

}
= σ |H(f)|2 , (26)

where Rg(r) is the average autocorrelation of g(r) taken over
an ND × ND spatial window D when ND tends to infinity
[20], that is

Rg(r) = lim
ND→∞

1

N2
D

∑
r′∈D

E[g(r + r′)g∗(r′)] (27)

and where the spatial average radar backscatter σ is given by

σ = lim
ND→∞

1

N2
D

∑
r′∈D

σ(r′). (28)
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It is worth noting that, under the hypothesis of a unit energy
filter H(f), the average radar backscatter of the scene is
preserved, since

∫
Sg(f)df = σ.

As in [23], we will use a nonparametric spectrum estimation
method to achieve the average spectrum Sg(f). By using the
Bartlett-Welch method [30], we have

Ŝg(f) =
1

NC

∑
c∈C

∣∣∣∣F{g(r) · w(r− c)

Nw

}∣∣∣∣2 (29)

where w(r) is a zero-centered Nw–points weighting window,
c is a shift applied to the window, C is the set of all shifts
of the window over the image, NC is the cardinality of C. It
is well-known that Ŝg(f) is an asymptotically unbiased and
efficient estimate of Sg(f), i.e.

Ŝg(f) = Sg(f) + ∆(f) (30)

where ∆(f) represents a zero-mean approximation error. As
to the average radar backscatter of the scene, this can be
estimated as

σ̂ =

∫
Ŝg(f)df . (31)

It is easy to verify that this is also an asymptotically unbiased
estimator, since

E [σ̂] =E
[∫ [

σ|H(f)|2 + ∆(f)
]

df

]
=E

[
σ +

∫
∆(f)df .

]
=σ

(32)

In order to facilitate the whitening process and to avoid
phase distortion in the detected image, we will assume that
the SAR system impulse response h(r) is a linear-phase FIR
filter. We will also assume that the SAR system frequency re-
sponse H(f) can be approximated by a real central–symmetric
nonnegative function with unit energy belonging to a set of
known parameter-dependent curves F (f ;φ), where φ is a
vector parameter. In the experimental results section, we will
show that a raised-cosine function fits quite well the observed
Ŝg(f). Formally, we assume that

∃φ0 ∈ Φ : F (f ;φ0) ≈ H(f) ∀f (33)

where Φ is the φ parameter space and where, for all φ, F (f ;φ)
satisfies the properties

F (f ;φ) ≥ 0

F (f ;φ) = F (−f ;φ)∫
f∈Fp

F 2(f ;φ)df = 1.

Hence, by using (33) together with (30), the approximation
model becomes

Ŝg(f) ≈ σF 2(f ;φ0) + ∆(f)

≈ σ̂F 2(f ;φ0) + ∆(f)
(34)

where, according to (32), we have assumed σ ≈ σ̂.

The least square (LS) solution to our approximation model
aims at minimizing the energy of ∆(f). Hence, the LS
estimator of φ0 is given by

φ̂LS = arg min
φ

∫
f∈Fp

∣∣∣Ŝg(f)− σ̂F 2(f ;φ)
∣∣∣2 df . (35)

Finally, the whitening filter can be obtained as

W (f) = γ · F (f ; φ̂LS)−1. (36)

IV. IMPLEMENTATION OF THE DESPECKLING ALGORITHM

In this section, we take into account some practical issues
that must be faced for implementing the proposed whitening
method in order to prevent undesired results. At the end, the
complete procedure of the proposed method is given.

A. LS fitting and average spectrum estimation

In order to simplify the estimation of the whitening fil-
ter, we assume that the band-limited frequency response
H(f) of the SAR system can be expressed by a separable
function F (f ;φ) = Fx(fx;φx) · Fy(fy;φy), where both
Fx(fx;φx) and Fy(fy;φy) are such that

∫
|Fx(fx;φx)|2dfx =∫

|Fy(fy;φy)|2dfy = 1. In this way, the approximation model
in (34) can be simplified as

Ŝg,x(fx) =

∫
Ŝg(f)dfy ≈ σ̂F 2

x (fx;φ0,x) +

∫
∆(f)dfy

(37)

Ŝg,y(fy) =

∫
Ŝg(f)dfx ≈ σ̂F 2

y (fy;φ0,y) +

∫
∆(f)dfx

(38)

and the decorrelating filter can be estimated by solving two
separate LS problems. The two quantities Ŝg,x(fx), Ŝg,y(fy),
corresponding to one-dimensional average periodograms along
the x and y coordinates, respectively, are estimated as follows

Ŝg,x(fx) =

∫
|F {g(r)}|2 dfy (39)

Ŝg,y(fy) =

∫
|F {g(r)}|2 dfx. (40)

According to (35), LS fitting only considers frequencies in
which H(f) is supposed to be nonzero. In our implementation,
the cutoff frequencies along each spatial frequency are either
supposed to be known from the technical specifications of the
SAR system or manually estimated from the inspection of the
average periodograms.

B. Choice of the scaling constant

The scaling constant γ influences the value of the radar
backscatter of the decorrelated signal σ̂c(r). In our implemen-
tation, we choose to preserve the average backscatter σ of the
observed scene, i.e., we impose∫

Sσ̂c
(f)df = σ (41)

which, from (25) and (26), is equivalent to∫
f∈Fp

|W (f)H(f)|2df = 1. (42)
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If we assume that the whitening filter is ideal, i.e., W (f) =
γH(f)−1, the above condition implies

γ =

(∫
f∈Fp

df

)−1/2
(43)

showing that the ideal scaling constant depends on the cutoff
frequency of the system.

By ensuring that the average radar backscatter is preserved
on the whole scene we also ensure that the backscatter is
approximately preserved in locally stationary areas affected
by fully developed speckle, i.e, in areas for which it is valid
the approximation in (4). Nevertheless, the above strategy does
not work well in highly heterogeneous areas that do not obey
the fully developed speckle model, e.g., in the presence of
point targets. In the following, we will see how to cope with
the above problem.

C. Processing of point targets

Real SAR images usually contain point targets, which are
due to man-made features or edges. Such strong scatterers
must be generally preserved because they show a high level
of reflectivity with no speckle noise. Since point targets do
not obey the zero-mean white complex circular symmetric
Gaussian model, they have to be detected and replaced in order
to estimate the complex backscatter coefficients according to
(25).

Let the set of non–point targets pixels of the complex image
g(r) be

Qg =
{
r ∈ Z2 : |g(r)|2 < τ

}
(44)

where τ is a suitable threshold, which can be experimentally
determined by observing the histogram of |g(r)|2. Then we
define the modified complex image gm(r) as

gm(r) =

{
g(r) r ∈ Qg
ε(r) r /∈ Qg

(45)

where ε(r) is a complex circular symmetric Gaussian variable
satisfying

ε(r) ∼ CN

0 ;
∑
r∈Qg

|g(r)|2 /|Qg|

 (46)

with |Qg| the number of the elements of Qg . In other words,
we substitute each point target of the original complex image
g(r) with a realization of a zero–mean white complex circular
symmetric Gaussian variable, whose variance is given by the
average energy of non–point targets pixels.

It should be pointed out that, in the case of a band-limited
SAR system, the replacement proposed in (45) is also useful
to prevent the whitening method from spreading the energy of
point targets in the surrounding areas and making cross-like
features appear around strong scatterers.

D. Summary of the complete despeckling procedure

1) Detect the set of point targets Qg according to (44);
2) Generate the modified complex image gm(r), removing

point targets as stated in (46);
3) Estimate the SAR system frequency response, Ĥ(f),

using (35), where the complex image g(r) is replaced
with the modified version gm(r);

4) Estimate the complex backscatter coefficients, σ̂c(r), by
means of (25), where the complex image g(r) is replaced
with the modified version gm(r);

5) Estimate the radar backscatter σ̂(r) applying a despeck-
ling filter based on the uncorrelated speckle hypothesis
to |σ̂c(r)|2;

6) Re–insert the point targets in σ̂(r):

σ̂(r) =

{
σ̂(r) r ∈ Qg
|g(r)|2 r /∈ Qg.

(47)

V. EXPERIMENTAL RESULTS

In this section, the experimental results obtained with the
proposed method are presented1. As to the despeckling stage,
we will consider three different filters: the Γ-MAP filter [19],
the MAP filter in the undecimated wavelet domain with the
assumption of generalized Gaussian distributed coefficients
and segmentation (MAP–GG–S) [14], and the probabilistic
patch–based (PPB) filter [6]. For each of them, we compare
the results obtained with the inclusion of the whitening stage
we have introduced (denoted in short as W) and without using
it (denoted as NW).

Tests have been carried out on both synthetically speckled
images and real SAR images. In all tests, we assumed that the
separable components of the frequency response of the SAR
system belong to the class of raised cosine functions, that is

Hz(fz) =

{
Az −Bz · cos[π(fz + fc,z)/fc,z] |fz| ≤ fc,z
0 otherwise

(48)
where z ∈ {x, y}, fc,z is the known cutoff frequency, and
Az > Bz > 0 are the model parameters chosen with the
constraint of unit energy.

As to the threshold used to select the point targets, described
in Section IV-C, we set τ = ∞ for synthetically degraded
images and τ = 5 ·median[|g(r)|2] for real SAR images.

A. Performance indexes

The performances of the filters have been assessed by using
different indexes. As to simulated images, the performances
are measured by computing the peak-signal-to-noise ratio
(PSNR) and the mean structural similarity index (MSSIM)
between the original and the filtered image. The PSNR is
defined as

PSNR = 10 log10

(
θ2peak

Er[(θ̂(r)− θ(r))2]

)
(49)

1An implementation of the proposed whitening approach can be tested
through a Web service available at http://iapp.dinfo.unifi.it/despeckle.
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where θ(r) =
√
σ(r) is the original amplitude image, θ̂(r)

is the filtered amplitude image, and θpeak is the peak value
(for 8-bit images, we assume θpeak = 255). The MSSIM is
defined as [31]

MSSIM = Er

[
(2µθ(r)µθ̂(r) + C1)(2σθθ̂(r) + C2)

(µ2
θ(r) + µ2

θ̂
(r) + C1)(σ2

θ(r) + σ2
θ̂
(r) + C2)

]
(50)

where µθ(r), σ2
θ(r), µθ̂(r), σ2

θ̂
(r), and σ2

θθ̂
(r) are the local

mean, variance, and covariance of the original and filtered
images, whereas C1 and C2 are two suitable constants [31].

A more general method to assess the effectiveness of the
different filters, which can be used also when the noise-free
reference image is not available, is based on the statistics of
the ratio image, defined as ûs(r) = |g(r)|2/σ̂(r), where σ̂(r)
represents the estimated noise–free reflectivity. When a fully–
developed uncorrelated speckle model can be assumed, the
above image represents the filtered out speckle noise. Hence,
for a good despeckling filter ûs(r) should satisfy E[ûs(r)] = 1
and Var[ûs(r)] = 1 [1]. When the above statistics are com-
puted on local windows, the method is accurate also in the
case of real SAR images, for which the assumption of fully–
developed speckle is not valid everywhere and global statistics
would be biased due to the presence of outliers. However,
when the SAR signal follows the general model in (1), the
expected value of |g(r)|2 is different from σ(r), as shown
in equation (5). As a consequence, even in the presence of
an ideal despeckling filter the statistics of ûs(r) would differ
from the expected ones. Hence, in the presence of correlated
speckle we re-define the ratio image as

ûs(r) =
|g(r)|2∑

r′ |h(r′)|2σ̂(r− r′)
(51)

where in the case of real SAR images the impulse response of
the SAR system is replaced by the estimated response ĥ(r) =
F−1{F (f ; φ̂LS)}.

In the case of SAR images, we also compute some other
indexes. The effectiveness of despeckling is evaluated by
computing the equivalent number of look (ENL) of the filtered
image, defined as

ENL(r) =
E[|σ̂(r)|]2

Var[|σ̂(r)|]
. (52)

Since the ENL measures the ability of the filter to remove
speckle in homogeneous areas [32], the value in (52) is usually
computed by taking the average over manually selected regions
in which we assume a homogeneous backscatter.

The effectiveness of the whitening procedure is evaluated
by estimating the normalized autocorrelation of the speckle.
Following the approach in [20], this is computed as

ρ(r) =
|ρg(r)|2

|ρg(0)|2
(53)

where ρg(r) = 1
N(r)

∑
r′∈Qg

g(r + r′)g∗(r′) and N(r) takes
into account both the size ofQg and the number of overlapping
points between translated replicas of g(r).

Table I
PERFORMANCE INDEXES OBTAINED ON Lena BY MEANS OF DIFFERENT

FILTERS APPLIED IN THE ABSENCE (NW) AND IN THE PRESENCE (W) OF A
WHITENING STAGE (BEST INDEX VALUES FOR EACH CUTOFF FREQUENCY

ARE HIGHLIGHTED IN BOLD).

fc Γ–MAP MAP–GG–S PPB
NW W NW W NW W

PSNR

0.6 20.31 21.64 18.33 23.23 21.11 24.53
0.7 21.04 22.07 20.88 24.75 23.60 25.23
0.8 21.61 22.31 23.30 25.43 25.06 25.62
0.9 21.78 22.31 24.26 25.70 25.47 25.96

MSSIM

0.6 0.405 0.447 0.273 0.529 0.453 0.606
0.7 0.431 0.467 0.381 0.650 0.557 0.638
0.8 0.454 0.481 0.525 0.702 0.618 0.651
0.9 0.464 0.489 0.593 0.716 0.637 0.658

E[ûs]

0.6 0.989 0.988 0.904 0.926 0.914 0.936
0.7 0.997 0.999 0.923 0.949 0.929 0.946
0.8 1.000 1.007 0.936 0.962 0.936 0.949
0.9 1.001 1.009 0.952 0.967 0.939 0.948

Var[ûs]

0.6 0.750 0.825 0.477 0.698 0.614 0.807
0.7 0.791 0.863 0.593 0.819 0.716 0.859
0.8 0.803 0.883 0.672 0.894 0.762 0.881
0.9 0.807 0.870 0.785 0.932 0.806 0.881

The preservation of radiometric features is measured using
the target-to-clutter ratio (TCR), defined as

TCR = 10 log10

|P| ·maxr∈P |g(r)|2∑
r∈P |g(r)|2

(54)

and the bias between the original and the whitened image,
measured as

Bias = 10 log10

∑
r∈P |σ̂c(r)|2∑
r∈P |g(r)|2

(55)

where P denotes an appropriate image patch.

B. Results on synthetically degraded images

A set of synthetically speckled images have been gener-
ated according to (2). A reference test image has been first
multiplied with a white circular complex Gaussian process,
with zero mean and unit variance, and then filtered by H(f).
As reference target scene, we have used four optical 8 bit,
512× 512, images (Lena, Barbara, San Francisco, Stockton),
which are shown in Fig. 22.

In order to avoid the results to be biased by a specific shape
of the filter, the parameters (Az, Bz) have been randomly
generated for each realization of the complex images. Ten
realizations have been used for the computation of each
performance index and the mean taken.

In Table I–IV, the PSNR, the MSSIM, the mean and the
variance of the ratio image ûs are presented. The results are
shown by using the cutoff frequency fc (normalized to half
the sampling frequency) as a parameter. For each considered
despeckling filter, the results obtained by using the whitening
stage (W) and without using it (NW) are reported. From the
observation of the Tables, some considerations can be made.

2The corresponding degraded and filtered images are available at
http://iapp.dinfo.unifi.it/index.php/decorrelation-despeckling-results.
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(a) (b) (c) (d)

Figure 2. Original optical images: Lena (a), Barbara (b), San Francisco (c), Stockton (d)

Table II
PERFORMANCE INDEXES OBTAINED ON Barbara BY MEANS OF DIFFERENT
FILTERS APPLIED IN THE ABSENCE (NW) AND IN THE PRESENCE (W) OF A
WHITENING STAGE (BEST INDEX VALUES FOR EACH CUTOFF FREQUENCY

ARE HIGHLIGHTED IN BOLD).

fc Γ–MAP MAP–GG–S PPB
NW W NW W NW W

PSNR

0.6 19.13 20.04 17.62 21.04 19.64 21.70
0.7 19.61 20.32 19.48 21.90 21.19 22.12
0.8 19.91 20.39 20.99 22.27 22.03 22.46
0.9 20.12 20.32 22.02 22.47 22.70 22.93

MSSIM

0.6 0.385 0.414 0.286 0.460 0.420 0.520
0.7 0.407 0.431 0.366 0.535 0.495 0.547
0.8 0.426 0.445 0.458 0.567 0.544 0.565
0.9 0.445 0.459 0.536 0.582 0.584 0.594

E[ûs]

0.6 0.984 0.983 0.901 0.919 0.907 0.927
0.7 0.993 0.990 0.919 0.936 0.923 0.931
0.8 0.997 0.996 0.933 0.948 0.930 0.933
0.9 0.998 1.003 0.944 0.953 0.931 0.931

Var[ûs]

0.6 0.740 0.822 0.473 0.695 0.597 0.795
0.7 0.790 0.852 0.599 0.811 0.714 0.840
0.8 0.805 0.867 0.702 0.895 0.774 0.866
0.9 0.801 0.862 0.781 0.938 0.801 0.864

The whitening stage always improves reference–based perfor-
mance indexes, i.e., PSNR and MSSIM, except for two specific
cases in III. This trend can be observed irrespective of the test
image and of the despeckling filter. The performance gain is
higher for lower cutoff frequencies. This fact is not surprising,
since for lower cutoff frequencies speckle correlation is higher
and poorer performances of despeckling filters based on the
uncorrelated noise assumption are expected. The filter that
benefits more from the use of whitening is the MAP–GG–
S, followed by the PPB. This can be explained by the fact
that these filters rely more heavily on the uncorrelated speckle
assumption.

The whitening stage also improves nonreference–based
performance indexes, i.e., E[ûs] and Var[ûs]. The gain is
particularly evident for Var[ûs]. In fact, all despeckling filters,
in the presence of correlated noise, tend to underestimate the
speckle–noise variance, so that their effectiveness in speckle
removal is degraded.

C. Results on real SAR images

The results on true SAR data have been assessed by using
two 16 bit, single–look complex images, extracted from 3–m

Table III
PERFORMANCE INDEXES OBTAINED ON San Francisco BY MEANS OF

DIFFERENT FILTERS APPLIED IN THE ABSENCE (NW) AND IN THE
PRESENCE (W) OF A WHITENING STAGE (BEST INDEX VALUES FOR EACH

CUTOFF FREQUENCY ARE HIGHLIGHTED IN BOLD).

fc Γ–MAP MAP–GG–S PPB
NW W NW W NW W

PSNR

0.6 21.41 21.96 20.53 22.79 21.77 23.21
0.7 21.65 22.10 21.75 23.29 22.78 23.48
0.8 21.92 22.11 23.03 23.51 23.58 23.68
0.9 21.91 22.02 23.41 23.67 23.88 23.93

MSSIM

0.6 0.469 0.497 0.378 0.544 0.521 0.581
0.7 0.488 0.511 0.457 0.586 0.573 0.594
0.8 0.511 0.523 0.555 0.601 0.605 0.601
0.9 0.521 0.533 0.583 0.607 0.617 0.610

E[ûs]

0.6 0.992 0.998 0.904 0.930 0.918 0.946
0.7 0.998 1.003 0.920 0.947 0.931 0.951
0.8 0.999 1.006 0.936 0.958 0.939 0.953
0.9 0.998 1.011 0.948 0.963 0.941 0.953

Var[ûs]

0.6 0.767 0.847 0.499 0.709 0.637 0.835
0.7 0.799 0.875 0.604 0.828 0.732 0.890
0.8 0.811 0.880 0.714 0.907 0.797 0.918
0.9 0.803 0.868 0.810 0.955 0.838 0.930

Table IV
PERFORMANCE INDEXES OBTAINED ON Stockton BY MEANS OF DIFFERENT
FILTERS APPLIED IN THE ABSENCE (NW) AND IN THE PRESENCE (W) OF A
WHITENING STAGE (BEST INDEX VALUES FOR EACH CUTOFF FREQUENCY

ARE HIGHLIGHTED IN BOLD).

fc Γ–MAP MAP–GG–S PPB
NW W NW W NW W

PSNR

0.6 20.20 21.64 18.20 23.18 21.23 24.24
0.7 20.95 22.16 20.67 24.73 23.41 24.78
0.8 21.56 22.42 22.88 25.32 24.36 25.00
0.9 21.82 22.42 24.08 25.48 24.80 25.13

MSSIM

0.6 0.317 0.364 0.199 0.436 0.366 0.492
0.7 0.343 0.384 0.300 0.533 0.450 0.516
0.8 0.367 0.401 0.416 0.567 0.493 0.525
0.9 0.380 0.408 0.486 0.571 0.515 0.529

E[ûs]

0.6 0.995 1.007 0.909 0.952 0.933 0.966
0.7 1.002 1.015 0.928 0.972 0.947 0.972
0.8 1.005 1.018 0.945 0.982 0.954 0.973
0.9 1.007 1.018 0.964 0.986 0.957 0.968

Var[ûs]

0.6 0.760 0.842 0.490 0.744 0.666 0.852
0.7 0.802 0.877 0.606 0.863 0.757 0.894
0.8 0.824 0.894 0.712 0.934 0.811 0.911
0.9 0.834 0.886 0.833 0.966 0.849 0.905
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Table V
VALUES OF ρ(r) FOR Peretola, ORIGINAL IMAGE g(r) AND WHITENED

IMAGE σ̂c(r).

g(r) σ̂c(r)
rx = 0 rx = 1 rx = 0 rx = 1

ry = 0 1.000 0.296 1.000 0.044
ry = 1 0.276 0.090 0.032 0.003

Table VI
VALUES OF ρ(r) FOR Campi Bisenzio, ORIGINAL IMAGE g(r) AND

WHITENED IMAGE σ̂c(r).

g(r) σ̂c(r)
rx = 0 rx = 1 rx = 0 rx = 1

ry = 0 1.000 0.315 1.000 0.049
ry = 1 0.302 0.103 0.034 0.004

resolution COSMO–SkyMed HImage Stripmap acquisitions.
We used calibrated and focused in slant range-azimuth pro-
jection SAR data, referred to as Level 1A SCS product in
the COSMO-SKyMed handbook [33]. The images represent
two areas near Florence, Italy, denoted as Peretola and Campi
Bisenzio, having dimensions 1024 × 1024 and 2048 × 2048,
respectively. The images are shown in Fig. 3.

Apart from the normalized autocorrelation ρ(r), the values
of ENL, E[ûs], Var[ûs], and Bias have been evaluated on
four homogeneous areas manually selected in each of the two
test images, whereas TCR has been computed on five patches
containing point targets (the areas are indicated with squares
in Fig. 3). The size of the homogeneous areas are 40 × 40
and 64 × 64 for the images Peretola and Campi Bisenzio,
respectively, whereas the TCR patches are 64 × 64 for both
images.

In the case of real SAR images, it is interesting to evaluate
the effectiveness of the whitening stage before despeckling,
both in terms of decorrelation properties and preservation of
radiometric features. In Fig. 4, the fitting of the periodograms
computed on the COSMO–SkyMed images are shown. The
results, presented for both the range and azimuth directions,
demonstrate that a raised cosine function fits well the shape of
the periodograms. It has to be noted that the periodograms of
the original SAR data relative to the azimuth direction, shown
in Fig. 4-(b) and 4-(e), are affected by a frequency shift that
has been compensated before fitting.

The normalized autocorrelation measured before and after
applying the proposed whitening stage is shown in Tables V
and VI, for Peretola and Campi Bisenzio, respectively. For both
images, it is evident that the whitening approach effectively
reduces speckle correlation.

As to the preservation of radiometric features, the values of
TCR measured before and after the whitening stage, shown
in Table VII, and the value of the bias, shown in Table VIII,
show that the whitening stage yields a good preservation of
point targets and introduces only a small bias on homogeneous
areas.

Regarding the effect of the decorrelation approch on de-
speckling performance, the values of the ENL and the statistics

Table VII
TCR VALUES FOR ORIGINAL IMAGE g(r) AND WHITENED IMAGE σ̂c(r).

zone Peretola Campi Bisenzio
g(r) σ̂c(r) g(r) σ̂c(r)

1 31.22 31.08 26.95 26.78
2 34.10 34.33 31.25 31.28
3 11.90 11.37 10.88 10.52
4 11.27 11.27 22.37 22.48
5 23.63 23.76 24.94 24.89

Table VIII
BIAS (dB) MEASURED BETWEEN THE ORIGINAL AND THE WHITENED

IMAGE.

zone Peretola Campi Bisenzio

A -0.25 -0.14
B -0.60 -0.31
C -0.55 0.05
D -0.44 -0.29

of ûs evaluated on Peretola and Campi Bisenzio are reported
in Table IX and Table X, respectively. We can observe that
introducing the whitening stage always improves the ENL
value for all the despeckling filters. The improvement is
particularly significant for the MAP–GG–S and the PPB filters.

As to the extracted speckle statistics, we note that the
whitening stage has a beneficial effect as concerns Var[ûs] that
becomes quite close to the theoretical value for all despeckling
filters. We observe also that the whitening stage produces also
a small increment of E[ûs]: while this fact tends to degrade the
performance of the Γ-MAP filter, it usually compensates the
bias affecting the MAP–GG–S and PPB filters when applied
without the whitening stage.

For a visual inspection, some results of the filtering are
shown in Fig. 5 and Fig. 6. Specifically, a 512 × 512 detail
of the two COSMO-SkyMed images is presented, together
with the whitened image and the images filtered with the
MAP–GG–S and the PPB filters in the W and NW cases. As
can be observed, the whitening stage produces a significant
improvement of the visual quality of the filtered images.
Even though some blurring can be noticed in Fig. 6-(f), it
is interesting to note that the whitened image shown in Fig. 6-
(b) still preserves all the details of the original image shown in
Fig. 6-(a), so that blurring has to be ascribed to the despeckling
filter applied after the whitening stage.

As to the computational complexity, a MATLAB R© imple-
mentation on an Intel R© CoreTM2 Quad 2.0 GHz processor
with 8 GB RAM performs the whitening step in about 4.7
seconds for the 2048×2048 Campi Bisenzio image. Such time
is negligible with respect to the despecking step, which on the
same image requires about 240 seconds for the MAP-GG-S
filter and 1560 seconds for the PPB filter.

VI. CONCLUSIONS

In this paper, the problem of despeckling single look com-
plex SAR images affected by correlated noise has been ad-
dressed. Several despeckling filters in the literature have been
developed under the hypothesis of white speckle noise, so that
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(a) (b)

Figure 3. Original SLC SAR images: Peretola (a), 1024× 1024, and Campi Bisenzio (b), 2048× 2048

Table IX
PERFORMANCE INDEXES OBTAINED ON Peretola (BEST INDEX VALUES

ARE HIGHLIGHTED IN BOLD).

zone Γ–MAP MAP–GG–S PPB
NW W NW W NW W

ENL

A 19.27 24.64 27.90 142.29 78.44 153.19
B 17.75 29.87 19.26 184.24 60.76 150.21
C 18.03 29.17 30.52 329.48 90.91 224.91
D 20.86 24.94 27.62 196.06 118.28 173.17

E[ûs]

A 1.005 1.033 0.940 0.997 0.921 0.979
B 0.989 1.080 0.929 1.052 0.929 1.037
C 1.008 1.092 0.964 1.070 0.962 1.062
D 1.002 1.111 0.950 1.069 0.967 1.069

Var[ûs]

A 0.847 0.928 0.702 0.936 0.740 0.887
B 0.844 1.063 0.684 1.087 0.767 1.021
C 0.804 0.975 0.707 1.036 0.761 0.985
D 0.788 0.972 0.661 0.994 0.749 0.962

Table X
PERFORMANCE INDEXES OBTAINED ON Campi Bisenzio (BEST INDEX

VALUES ARE HIGHLIGHTED IN BOLD).

zone Γ–MAP MAP–GG–S PPB
NW W NW W NW W

ENL

A 12.53 20.71 15.21 83.57 37.86 90.58
B 12.12 18.87 22.07 105.50 68.28 98.03
C 16.73 24.88 24.87 243.45 82.78 146.27
D 14.40 15.18 22.45 123.23 79.52 126.68

E[ûs]

A 1.012 1.035 0.944 1.003 0.959 0.984
B 1.018 1.091 0.947 1.045 0.956 1.042
C 1.002 1.017 0.949 0.991 0.971 0.972
D 1.003 1.064 0.943 1.032 0.958 1.028

Var[ûs]

A 0.842 0.939 0.681 0.965 0.802 0.904
B 0.879 1.070 0.731 1.100 0.834 1.052
C 0.808 0.887 0.699 0.931 0.808 0.864
D 0.801 0.939 0.682 1.001 0.784 0.972

they suffer from a significant loss of performance when used
in the correlated speckle case. We have demonstrated that this
is not the case if a whitening stage, restoring the hypothesis of
whiteness on the single look complex image, is introduced be-
fore filtering. The motivation of the whitening stage has been
formally derived by using classical and Bayesian estimation
frameworks. Specifically, it has been shown that estimators
can be derived equivalently in the correlated and whitened
domain, and that the approach is optimal if the SAR system
has an invertible transfer function.

Based on Madsen’s work, a robust estimation of the SAR
system point spread function, relying only upon the acquired
single look complex SAR image, has been proposed; practical
implementation issues, such as the treatment of point targets,
has been faced as well. The experimental results confirm that
despeckling filters based on the uncorrelated speckle assump-
tion can be successfully applied also in the correlated speckle
case when the proposed procedure is applied. Interestingly, a
significant performance gain is obtained even when a perfect
whitening of the single look SAR image can not be achieved,
for example when the SAR system frequency response is zero
in some interval. Results on true SAR images also demonstrate
that the proposed decorrelation technique adequately preserves
radiometric features.

APPENDIX A
CRLB AND EFFICIENT ESTIMATORS OF σ

In order to prove the efficiency of the whitening stage, we
firstly derive the CRLB for the estimation of the target scene
σ = [σ(0) · · ·σ(N−1)]T given the observation of g expressed
by (7). Since g is a zero-mean Gaussian vector, the Fisher
information matrix Ig(σ) relative to any estimator of σ is
given by [34]

[Ig(σ)]n,m =
1

2
tr
[
Cg
−1 ∂Cg

∂σ(n)
Cg
−1 ∂Cg

∂σ(m)

]
(56)
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Figure 4. Periodograms of Peretola (above) and Campi Bisenzio (below) and relative estimation of |H(f)|2: along range (a),(d); along azimuth (b),(e) ; along
azimuth after frequency shifting recovery (c),(f).

where, from (11), we have

Cg
−1 = H−TCσc

−1H−1

∂Cg

∂σ(p)
= H

∂Cσc

∂σ(p)
HT (57)

for 0 ≤ p < N . From (10) we get

Cσc

−1 = 2 · diag
([

σT ,σT
]T)−1

[
∂Cσc

∂σ(p)

]
n,m

=

{
1
2 , for m = n = p,m = n = p+N,

0, otherwise.
(58)

In (57), both H and Cσc are required to be invertible; while
the former condition is strictly dependent on the the expression
given in (9), the latter one is always verified if σ has no zero
entries. Hence, substituting (57) into (56) yields

[Ig(σ)]n,m =
1

2
tr
[
H−TCσc

−1H−1H
∂Cσc

∂σ(n)
HT

× H−TCσc

−1H−1H
∂Cσc

∂σ(m)
HT

]
=

1

2
tr
[
H−TCσc

−1 ∂Cσc

∂σ(n)
Cσc

−1 ∂Cσc

∂σ(m)
HT

]
=

1

2
tr
[
HTH−TCσc

−1 ∂Cσc

∂σ(n)
Cσc

−1 ∂Cσc

∂σ(m)

]
=

1

2
tr
[
Cσc

−1 ∂Cσc

∂σ(n)
Cσc

−1 ∂Cσc

∂σ(m)

]
(59)

where the property tr(AB) = tr(BA) has been used in the
third equality. Furthermore, from (58), it follows that[

Cσc

−1 ∂Cσc

∂σ(p)

]
n,m

=

{
σ−1(p), for m = n = p,m = n = p+N,

0, otherwise
(60)

that is, such an N×N matrix has all zero entries but in the pth
and (N + p)th positions of the main diagonal. Consequently,
for p 6= q we have

Cσc

−1 ∂Cσc

∂σ(p)
Cσc

−1 ∂Cσc

∂σ(q)
= 0 (61)

whereas for p = q we have[
Cσc

−1 ∂Cσc

∂σ(p)
Cσc

−1 ∂Cσc

∂σ(p)

]
n,m

=

{
σ−2(p), for m = n = p,m = n = p+N,

0, otherwise.
(62)

Substituting relations (61) and (62) into (59) yields

[Ig(σ)]n,m =

{
σ−2(n) n = m

0 otherwise
(63)

or, more compactly,

Ig(σ) = diag (σ)
−2 (64)
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Peretola, left to right, top to bottom: original detail (a); after the whitening stage (b); MAP–GG–S filtering obtained in the NW (c) and W (d)
cases; PPB filtering obtained in the NW (e) and W (f) cases.



13

(a) (b)

(c) (d)

(e) (f)

Figure 6. Campi Bisenzio, left to right, top to bottom: original detail (a); after the whitening stage (b); MAP–GG–S filtering obtained in the NW (c) and W
(d) cases; PPB filtering obtained in the NW (e) and W (f) cases.
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By applying the CRLB theorem [34], the covariance matrix
Cσ̂ of every unbiased estimator σ̂ of σ satisfies

Cσ̂ − Ig
−1(σ) ≥ 0 (65)

where equality holds if the estimator is efficient. Hence,
substituting (64) into the last inequality yields the explicit
expression of the CRLB of the despeckling problem given
in (12).

Now, we demonstrate that the estimator in (14) is efficient.
It is straightforward to show that σ̂eff is unbiased, that is (for
the sake of clearness, vector entries are indicated by a subscript
index)

E {[σ̂eff]n} = E
{∣∣[H−1g]

n

∣∣2 +
∣∣∣[H−1g]

n+N

∣∣∣2}
= E

{
|[σc]n|

2
}

+ E
{∣∣[σc]n+N ∣∣2}

= [σ]n /2 + [σ]n /2 = [σ]n

(66)

where equation (7) and the statistical model (10) have been
used in the second and third equality, respectively. Similary,
it can be shown that

E
{∣∣∣[H−1g]

p

∣∣∣2 ∣∣∣[H−1g]
q

∣∣∣2}
= E

{∣∣∣[σc]p∣∣∣2 ∣∣∣[σc]q∣∣∣2}

=


E
{∣∣∣[σc]p∣∣∣2} · E{∣∣∣[σc]q∣∣∣2} , p 6= q

E
{∣∣∣[σc]p∣∣∣4} , p = q

=

[σ]p [σ]q /4 , p 6= q

3 ·
∣∣∣[σ]p

∣∣∣2 /4 , p = q,

(67)

where we have exploited the fact that the entries of σc are
independent Gaussian variables. By using the last expression,
each entry of the autocorrelation matrix of σ̂eff, Rσ̂eff , is given
by

[Rσ̂eff ]n,m = E {[σ̂eff]n [σ̂eff]m}

= E
{[∣∣[H−1Hσc

]
n

∣∣2 +
∣∣∣[H−1Hσc

]
n+N

∣∣∣2]
·
[∣∣[H−1Hσc

]
m

∣∣2 +
∣∣∣[H−1Hσc

]
m+N

∣∣∣2]}
=

{
[σ]n [σ]m ,m 6= n

2 · |[σ]n|
2

,m = n.

(68)

The covariance matrix of σ̂eff, Cσ̂eff , obtained by its definition
and (68), is given by

[Cσ̂eff ]n,m = [Rσ̂eff ]n,m − [σ]n [σ]m =

{
0 ,m 6= n

|[σ]n|
2

,m = n,
(69)

or, in compact form,

Cσ̂eff = diag (σ)
2
. (70)

By replacing Cσ̂ with Cσ̂eff in (12), the equality is verified;
thus σ̂eff is an efficient estimator for the despeckling problem.

APPENDIX B
PSEUDO-INVERSE OF H(f).

Let us rewrite the model in (1) in complex vector notation
as

g̃ = H̃σ̃c (71)

where g̃ = [g(0), . . . , g(N − 1)]T and σ̃c =
[σc(0), . . . , σc(N − 1)]T whereas H̃ models 2-D convolution
by h(r). When the matrix H̃ has not full rank, it is well
known that the minimum `2 norm solution of (71) is given
by

ˆ̃σc = H̃†g̃ (72)

where H̃† denotes the Moore-Penrose pseudo-inverse of H̃
[35].

In the case of a circular 2-D convolution, the matrix H̃ is
block circulant and can be diagonalized using a unitary 2-D
discrete Fourier transform (DFT) matrix W2D [36], that is

H̃ = WH
2DΛHW2D (73)

where ΛH is a diagonal matrix whose diagonal contains the
2-D DFT of h(r), rearranged by stacking its columns. If we
assume that H(f) is different from zero only on a given
passband, this can be expressed as

H̃ = WH
2D,PΛH,PW2D,P (74)

where ΛH,P is a diagonal matrix obtained by removing the
zero diagonal elements from ΛH and W2D,P is obtained by
removing the corresponding columns from W2D. In this case,
the Moore-Penrose pseudo-inverse of H̃ is readily found as

H̃† = WH
2D,PΛ−1H,PW2D,P . (75)

Hence, the above formula shows that equation (25) is equiva-
lent to computing the minimum norm solution of the whitening
problem.
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