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6. Identification of nonlinear and 

hysteretic systems 
 

 

 

In structural and seismic reliability assessment, dynamic identification is a 

powerful tool for increasing the level of knowledge of an historic structure. In Chapter 3 

linear identification techniques were discussed and applied to relevant real cases of 

cultural heritage structures. However, when subject to events such as earthquakes, 

structures typically exhibit a nonlinear and hysteretic behaviour.  At this regard, Chapter 

5 has reported a wide gamma of models suitable for describing the nonlinear and 

hysteretic behaviour of masonry elements and structures. In this sixth chapter, several 

nonlinear identification algorithms will be reviewed with particular emphasis on the 

distinction among traditional methods and on-line or instantaneous methods. Similarly to 

the linear case, the identification of a nonlinear system is an inverse problem, whose 

solutions are functional laws describing the input-output relationships of the system. 

Conversely, nonlinear identification is a very complex and challenging matter, and has 

been seldom applied to full-scale structures. 

6.1 Identification of nonlinear and evolving systems 

 Though a reliable evaluation of structural safety conditions should take into 

account the nonlinear and evolving (e.g. degrading, hysteretic ...) nature of the dynamic 

response, the experimental identification of a nonlinear behaviour under dynamic and 

seismic loading is, to date, an unsolved problem. In this context, instantaneous or possibly 

on-line identification certainly represents an enhancement of the classical approach to 

nonlinear analysis and control. For instance, on-line implementations of identification 

methods, such as those based on the restoring force, may provide checks on the 

consistency of assumptions about the models.   

Performance based design of engineering structures subject to dynamic loads 

calls for expensive experimental tests, whose outcomes, in terms of strength, ductility and 

dissipation properties, should be assimilated by nonlinear and/or time-varying models. 

Within the framework of nonlinear structures, the identification process presupposes the 

availability of a huge quantity of experimental data, much greater than is necessary in 

linear identification. In this sense, a classification of possible sources of nonlinearity 
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might still retain a practical interest in structural identification, even if the word 

nonlinearity has a tautological character. Noteworthy reviews exist in literature about 

nonlinear identification: for instance, the textbook by Worden and Tomlinson [1] and 

several comprehensive state-of-the-art papers: e.g. [2,3].  

Traditional identification strategies for nonlinear structures are based on the 

assumptions of weak nonlinearities and on applying small perturbations to the underlying 

linearised system (e.g. see the recent linearization technique proposed by Sracic et al [4]). 

Nonetheless, the first nonlinear identification approaches were also called linearization 

techniques such as those proposed by Caughey [5] with the equivalent linearization or by 

Kazakov [6] with statistical linearization. The harmonic balance method, in particular, 

has been the basis for several nonlinear system identification techniques (among others 

see the recent work by Ozer et al [7]). This commonly used approach has proved useful in 

most applications, particularly for the random vibration analysis of systems where the 

nonlinear restoring force is hysteretic. However, in experimental applications, the 

extraction of a linear model requires the knowledge of the functional form of the restoring 

force (see for instance Hagedorn and Wallaschek [8]).  

Methods for identifying nonlinear systems are commonly framed into the 

parametric and the non-parametric approach, respectively: in the parametric case, an a 

priori selection of a specific model for the dynamic behaviour of the system is needed and 

the identification process consists of determining the coefficients for such a model. Clearly 

enough, traditional linearization techniques are usually parametric. Non parametric 

methods, by contrast, do not require any assumption of the type and localisation of 

structural nonlinearities but, generally, the quantities identified cannot be directly 

correlated to the system equation of motion.  

A further classification, more relevant to this thesis, can be made among non-

instantaneous and instantaneous methods (see table 6.1). The latter can be further 

framed into on-line methods and off-line methods. An on-line method allows for an 

identification of the system during the excitation phase and the system parameters are 

updated at each instant. On the other hand, off-line methods need more data work, and 

require that the complete excitation process is ended or they need a considerable time-lag 

for the identification process to be performed. 
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Table 6.1 - Classification of nonlinear identification method

Non-linear identification 
methods 

Non-Instantaneous 
methods 

Direct parameter estimation (Gifford & 
Tomlinson 1989; Mohammad 1992) 

Restoring force surface method (Masri & 
Caughey 1979, Benedettini et al 1995; 

Smyth et al 2002; Masri et al 2004) 

Volterra representation (Vinh 1986, 
Collins et al 1998) 

Conditioned reverse path (Richards & 
Singh 1998) 

Instantaneous 
methods 

On-line methods 

Extended Kalman Filter, Unscented 
Kalman Filter (Wu & Smyth 2008; 
Chatzy, Smyth & Masri 2010; Xie, 

Feng 2011) 

Neural Networks (Walczak & Cerpa 
1999; Pei et al 2004) 

NARMAX, TARMA (Billings 1985; 
Poulimenos & Fassois 2009) 

Time-frequency (Bursi, Ceravolo, 
Erlicher, Zanotti Fragonara 2010) 

Off-line methods 

Time-frequency (Spina et al 1996; 
Ceravolo, Demarie & Erlicher 2007; 

Le & Argoul 2003) 

Hilbert transform (Feldman 1995) 

Hilbert-Huang transform (Huang 
1998) 
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6.2 Models and methods for the identification of 

nonlinear and evolving systems 

6.2.1 Direct Parameter Estimation 

The Direct Parameter Estimation (DPE) method is aimed at the identification of 

the coefficients of the equations of motions for a MDoF system ( [1,9,10]). 

In MDoF systems the equations of motion are usually assembled by concentrating 

the mass in N points (see figure 6.1): the mass im , concentrated in the thi  point, interacts 

with the mass jm  through the force ijl  and to the ground by the force iil . It is assumed 

that internal forces are dependent only on relative displacements and forces: 

 

 

 

,

,

ij ij ij ij

ii ii ii ii

l f

l f

 

 

 






 (6.1) 

with , , ,ij i j ij i j ii i ii ix x x x x x         . 

 
Figure 6.1 - Link model for a 3DoF system. 

In common physical systems ijl  is equal to jil  therefore the following relation 

holds: 
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      , , ,ij ij ij ji ji ji ji ij ijf f f           (6.2) 

Equations (6.1) and (6.2) allows for writing the set of nonlinear differential 

equations which describes the motion of the system: 

  
1

, 1,...
N

i i ij ij ij i

j

m x f u i N 



    (6.3) 

Experimental measures generally consist of the acceleration input to the system 

and the absolute acceleration of each mass of the system. From the latter, the relative 

displacements and velocities can be obtained. 

A polynomial approximation of the model can be used for fij: 

      
1 0 0

1,...

p qN
lk

i i ij ij iij kl
j k l

m x a u i N 

  

    (6.4) 

then, one can use least-square parameter estimation in order to determine which 

parameters im  and  ij kla  best fit the data. 

Worden and Tomlinson [1] noticed that an a priori estimation of the masses is not 

necessary in order to perform an identification, which can be accomplished in two 

successive steps. In a first step the parameters of the equation of motions which have 

excitation directly applied are estimated (for instance, DOF 1 in equation (6.5)). 

Successively, the parameters of the equation with no excitation are identified. 
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
   
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



 (6.5) 

where 
   

' /
ij kl ij kl

ia a m . The coefficients for i=2 can be known up to the scale factor 

m2. The coefficients can be determined up to the scale factor m1 by multiplying both the 

members of the equation by the ratio m2/m1. The procedure can be repeated for all the 

homogeneous equations recurring to the same scale factor m1. Once the parameters of the 

first equation are estimated one can determine the parameters 
 

'

ij kl
a and the ratio among 

masses as follows: 

 
 

 

1 10

1 10

'

'
1

i

i

i
am

m a
  (6.6) 



Luca Zanotti Fragonara - “Dynamic models for ancient heritage structures” 

 

198 

 

An advantage of this method is that it allows for a natural definition of the 

restoring force surface for each link. In fact when the model coefficients are identified, 

forces fij can be plotted as a function of ij  and ij .  

6.2.2 Restoring Force Surface method (RFS) 

The Restoring Force Surface (RFS) method was originally developed by Masri et 

al [11,12] in order to achieve a non-parametric identification of nonlinear systems. The 

basic idea behind the method is that the restoring force of a nonlinear system can be 

expressed in terms of the state variables of the system itself. The method has been also 

developed autonomously by Crawley and Aubert [13] and by Crawley and O’Donnell [14] 

through the so-called Force-State Mapping. A further version of the method is present in 

the literature, as proposed by Duym et al [15], and renamed Local RFS. 

The motion of an oscillator with nonlinear stiffness is described by Newton’s 

second law in the form: 

 
   ,mx f x x u t   (6.7) 

where m represents the mass of the system, x the displacement, u the external 

force, f the internal restoring force of the system. The original RFS method assumes that 

the restoring force is described by a function of the state variables x and x : in this way the 

restoring force can be represented as a surface in the plane  ,x x . Once the restoring force 

surface is defined, it is possible to set the parameters of an analytical model in terms of x 

and x  using a least square approximation. Masri at first [11] used a Chebyshev 

polynomial representation to construct a model of the restoring force:  

      
0 0

,
m n

ij i j

i j

f x x C T x T x

 

  (6.8) 

with iT  being the Chebyshev polynomial term of order i. Chebyshev polynomials are 

orthogonal and their coefficients can be determined with an easier numerical integration.  

An extension proposed in other papers [16,17] defines the XV (displacement-

velocity) model as follows: 

 

     
max

0

ˆ, , , XV model
i

i i
i

f x x f x x B F x x


    (6.9) 

Where Bi are unknown coefficients and Fi are a set of basis functions of the state 

variables. Several papers are devoted to problems that may arise in the application of 

these methods: from the potential lack of measured state variables, because usually only 

one state variable is directly measured, to the analysis of the type of excitation signal to 

be used to perform a better identification [16,18,19]. 

The RFS method is not directly applicable to certain types of nonlinear systems, 

and specifically to hysteretic systems, where the pattern of the hysteretic force is rate-

independent. In this case, the restoring force derivative does not depend on the state 
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variables only, but also on the internal force itself. As already stated, the RFS of a 
hysteretic system is multi-valued if represented just by x  and x . Several authors 

proposed extensions of the RFS method in order to identify hysteretic systems. Among 

others, Benedettini et al [20] and Lo et al [21] proposed models of the following type: 

 
 , VF modelf g x f   (6.10) 

where VF stands for Velocity-Force. Such models allow for a representation of the surface 

of the restoring force derivative in the plane  ,x f . Also parametric approaches have been 

pursued [22]. Benedettini et al [20] and Masri et al [23] used an alternative approach by 

proposing a polynomial base approximation of the restoring force as a function of velocity, 

displacement and the excitation.  

A further generalization of Equation (6.10), leads to the model used in this paper, 

consists of identifying a Duhem hysteretic model [24] as follows: 

 
 , , XVF modelf g x x f   (6.11) 

where XVF stands for displacement, velocity, force. Once a mathematical model has been 

identified, it is possible to predict and simulate the behaviour of the system under 

different excitations. The identification of systems defined as Equation (6.10) and (6.11)  

can be viewed as extensions of the original RFS method (Equation (6.9)). 

The method has been extended to MDoF systems by the same authors [25], by resorting to 

the representation of the dynamic equation of motion in modal coordinates. In fact, in the 

case of system described by the following equation: 

         ,M x f x x u      (6.12) 

where M    is the mass matrix,     ,f x x  contains the restoring actions for the different 

DoF,  x  is the displacement vector and overdots represent time differentiation. One can 

rewrite equation (6.12) in terms of modal coordinates by pre-multiplying both sides of the 

equation by the matrix of the eigenvalues    of the underlying linear system: 

 
        

 mod, 1 1

,

,..., , ,...,i i i i i N N

m p h p p u

h u m p h p p p p

          

  

 (6.13) 

where  p is the vector of modal displacements, m    is the diagonal matrix of modal 

masses, ih  is the ith restoring force and mod,iu  is the exciting force acting on the ith mode. 

In such a case the components ih  are quantifiable in the same way as in the SDoF case. 

The modal matrix does not allow for the decoupling of the equation of motion but 

decoupling can be forced by using some corrective coefficients (see [25]). 

6.2.3 NARMAX modelling 
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The NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous 

inputs) method has been developed by Billings and others during a long time span 

[26,27,28]. It consists in the extension of autoregressive models with moving average 

model already applied in linear identification.  

The method can be applied to a wide range of nonlinear systems as it is witnessed 

by the literature about the method [26,27,28].  

A NARMAX model is a discrete approximation of the motion equation expressed 

in continuous form, and one can write the regressive model as: 

  1 2 1 2 1 2, ,... ; , ,... , , ,...
x ui i i i n i i i n i i i nx F x x x u u u


              (6.14) 

where F is a nonlinear function and ix , iu  and i  are the system response, the excitation 

and the noise at instant it , respectively. The subscripts ,  x un n  and n  represents the 

maximum lags in the output, the input and the noise. In the case of a system polynomial 

by nature, equation (6.14) will approximate the model in a good fashion for all levels of 

excitation [26,27]. In the case of a not polynomial nonlinearity, the coefficients of (6.14) 

can approximate the system arbitrarily over a given range of their arguments but in such 

a case the model will be input sensitive due to the Weierstrass approximation theorem. In 

such a case, one can improve the fitting on the response of the system by adding non-

polynomial terms to the regression [29].   

Generally speaking the identification process can be performed by using a least 

square optimisation [28] or on the basis of the statistical characteristics of the model, in 

particular on the error reduction index [30]. Tao [31] proposed also an extension of the 

method in the case of “output-only” series. 

The accuracy of the identified model is evaluated a posteriori, by checking if the 

model has prediction capabilities. Different validation tests have been proposed, but the 

most stringent is the correlation test. One can compute the cross-correlation function 

 k  between the identified series and the predicted one. One has to check that the 

residual signal   is uncorrelated with the input sequence. If this condition is satisfied the 

NARMAX model is complete and can represent the behaviour of the system in an 

adequate fashion.     

Billings et al [29] have shown that this condition is satisfied when the following 

relationships between auto- and cross-correlation function of the sequences  iu ,  2
iu , 

 i ,  2
i  hold: 
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 (6.15) 

6.2.4 Reverse Path method and Conditioned Reverse Path method 

The time-domain is usually considered the standard domain in the field of 

nonlinear identification. Nonetheless, reverse path spectral methods were introduced in 

order to accommodate the presence of nonlinearities. In the nonlinear field the frequency 

response functions (FRFs) cannot lead to the identification of the modal parameters, 

because the FRFs in nonlinear field can change their parameters depending on the 

excitation level.   

The Reverse Path method (RP) was firstly developed by Bendat et al [32] in order 

to identify nonlinear SDoF systems. Successively, Richards & Singh [33] introduced the 

Conditioned Reverse Path method (CRP) which allowed for a generalisation of the method 

for MDoF structures excited in a number of point less than the number of DoF. 

The RP method requires to write the equation of motion as follows: 

          
1

n

jj
j

M x C x K x A y u



                   (6.16) 

with M   , C    and K    being respectively the mass, damping and stiffness 

matrixes,  x  and  u  the vector of displacement and of the excitation. The system may 

be characterised by different types of nonlinearities: they are considered by using n 

vectors  
j

y . The size of these vectors is 1jq  and the terms describe the nonlinear 

relationship between the DoF and the internal restoring forces. For instance, in the case 

of polynomial nonlinearity one can write    jm
kj

y x   with kx  being the relative 

displacement between two DoF and jm is the polynomial degree of the jth vector. The 

matrixes 
j

A    identify the entity of the internal nonlinear forces and have size jN q .  By 

transforming both sides of equation (6.16) one can rewrite the equation of motion in the 

frequency domain: 
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           
1

n

L j j
j

B X A Y U   



         (6.17) 

where   2
LB M i C K                    is the dynamic stiffness matrix while   X  , 

  U   and   Y   are the Fourier transforms of displacements, excitation and nonlinear 

terms   
j

y t , respectively. 

The method takes its name after equation (6.17), where the excitation plays the 

“role” of output while the displacements act as input. By exploiting the difference in the 

representation of the input-output relationship and by using the matrix of FRFs, the RP 

method allows to distinguish between linear and nonlinear terms. Therefore, it is possible 

to determine auto- and cross-power spectral densities of displacements and excitations: 
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 (6.18) 

Where  XUS  
  ,  

1YUS  
 

, …,  
nY US  

 
 are the power spectral density matrixes, E is 

the expected value operator, T is the length of the time window an * is the conjugation 

operator. Usually, equation (6.18) is employed in its matricial form:  
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 (6.19) 

Richard and Singh observed that the matrix     can be determined by inversion 

only in the cases with a number of excitations equal to the number of measured DoF of the 

system. In experimental cases, this condition is rarely satisfied, therefore equation allows 

only for determining the rows of     corresponding to the DoF where an excitation force 

acts. Moreover, the problem is characterised by numerical ill-conditioning because there is 

a strong correlation among the power spectral density of the nonlinear terms at the 

different frequencies. 

The CRP method is based upon the determination of a certain number of 

uncorrelated input by using the conditioned power spectral densities. This approach 

overcomes the difficulties shown by RP method: the numerical problem in this case is 

well-conditioned and it can be applied also in the case in which the number of excited 

point is less than the number of measured DoF. On the other hand, the computation of 

conditioned power spectral densities is quite expensive. Numerical an experimental 

application were proposed by Bendat et al [34], Marchesiello et al [35], Garibaldi and 

Marchesiello [36], Kerschen and Golinval [37], Marchesiello [38].  

6.2.5 Nonlinear identification through feedback and output (NIFO) 

The NIFO technique has been proposed by Adams and Allemang [39,40,41] and it 

is based upon the concept of “feedback” of the output, namely the possibility to interpret 

the internal nonlinear restoring forces as a series of input acting on the corresponding 

linear system. These forces are functions of the system response and, if they are neglected, 
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introduce in the input/output relationship an effect which is similar to the one exercised 

by the noise in the structural response. 

The formulation of the NIFO method is analogous to the one introduced for the 

Reverse Path method and it resorts as well to the dynamic stiffness to represent the 

dynamic equilibrium in the frequency domain. It is possible to distinguish among linear 

and nonlinear terms as follows: 

 

            
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     





    

    





 (6.20) 

where  LB  
   is the dynamic stiffness matrix and   X   and   U   are the Fourier 

transform of the system response and of the excitation force, respectively. The internal 

nonlinear restoring forces are expressed by the scalar functions  njX   while  j   

represents the entity of these forces.  njB  is a column vector (whose terms can assume 

the values +1, 0 or -1)  which applies the respective thj  force    j njX     to the 

corresponding DoF. 

Unlike the RP method, which relies on a specific model for desribing the dynamic 

behaviour of the system, equation (6.20) does not require any assumption on the type of 

nonlinearity. The assumption is that any type of nonlinear internal actions can be 

expressed as a linear combination of the system response and the system excitation. 
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 

 
 

 (6.21) 

 x niB  
   and  u niB  

   being the matrices which projects the thj  nonlinear vector in 

the output or input, respectively. This makes it possible to neglect the nonlinear feedback 

of the output, substituting it with quantities that are function of the measured data only. 

By introducing equation (6.21) in (6.20) one has: 
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 (6.22) 
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Both members of equation (6.22) are multiplied by the matrix

   
1

L LH B 


       , which contains the FRF of the equivalent linear system. This leads 

to the formulation of the NIFO method: 
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 (6.23) 

where:  
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 (6.24) 

 x MH  
   and  u MH  

  are called modulation matrices because they modulate the 

FRF of the equivalent linear system in order to adequately describe the input/output 

relation of the system. These matrices reflect the corresponding nonlinear systems: in 

detail, they are depending on the excitation level and are not symmetric. The NIFO 

method is not parametric; in fact it does not require any a priori assumption on the nature 

nor localisation of the nonlinearities. This information can be inferred from the 

modulation matrices. Experimental applications of this method are limited (see Kerschen 

and Golinval [37] or Garibaldi and Marchesiello [36]), therefore it is difficult to figure out 

direct applications of this method to full-scale structures. 

6.2.6 Volterra series and higher order frequency response functions 

The dynamic response  x t  for a general SDoF time-invariant linear system to an 

external excitation  u t  can be expressed by the Duhamel’s integral or convolution 

integral: 

      x t h u t d  





   (6.25) 

where  h t  is the impulse response function (IRF) or order 1 kernel. The IRF is zero for 

t<0 because in causal systems the response cannot depend on future values of the 

excitation force. Moreover, if  x t  and  x t   are the responses to the excitations  u t  

and  u t   the system can be called time-invariant. 
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The extended form of (6.25) has been obtained by Volterra [42] and it is expressed 

by a series of functions. All the terms of the series are defined by generalising (6.25) with 

a convolution integral on a multidimensional domain: 

 

       

       
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 

 

    

   
 (6.26) 

By  kx t  being the thk  term of the series, and where the function  1 2, ,...,k kh t t t is 

called Volterra kernel or HIRF (Higher-order Impulse Response Function). Expression 

(6.25) simply represents the lowest-order truncation which is exact only for linear 

systems. 

Schetzen [43] demonstrated that kernels can be considered symmetric without 

any loss of generality (i.e.    2 1 2 2 2 1, ,h h    ). 

The expansion in Volterra series exists also in the frequency-domain. In such a 

case, one can define the HOFRF (Higher-Order Frequency Response Function) or Volterra 

kernel transforms as  1,....,k kH   : 

      1 1 ...
1 1 1,..., ... ,..., ...k ki

k k k k kH h e d d
  

     

 
  

 

    (6.27) 

In the frequency domain, the system response will be given by the following set of 

equations: 
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 (6.28) 

One of the main uses of Volterra series is the construction of analytic 

approximation to various quantities of interest in structural analysis. The approximation 

of the FRFs for SDoF and MDoF systems with cubic nonlinearities and excited by 

Gaussian noise can be found in [44,45]. The approximations derived are of interest 

because the FRFs constructed have all their poles in the upper-half of the complex 

frequency plane. This explains why the FRFs of randomly excited nonlinear systems 

appear to be invariant under the Hilber transform. The HOFRFs can be expressed 

analytically with the method of the harmonic probing (see [3]). 

It is worth mentioning also the approximated solution method proposed by 

Vasquez et al in [46,47] and recently extended to MDoF systems [48]. They proposed to 
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model the behavior of the Volterra operators by linear equations that map the kth-order 

operator from an excitation of the same order produced by a combination of lower-order 

operators. This group of equations is called Associated Linear Equations (ALEs). The 

main advantage of this approach is that the nonlinear system is represented as a series of 

linear system and the theory developed for linear systems may be used. This approach has 

been applied also in the identification of hysteretic systems using polynomial forms, see 

for instance the works by Demarie et al [49] or [50]. 

Volterra [42] series is an interesting means of establishing a non-parametric 

model of a nonlinear input-output process. Moreover, the kernel transforms allows 

identifying and interpreting interactions between input frequencies and give a 

visualization equivalent to the Bode plot for linear systems. The main limitation of this 

approach is the existence and convergence of the series. Many nonlinearities of practical 

interest have discontinuous or non-smooth nonlinearities and the corresponding systems 

do not strictly have a Volterra representation. A related problem is that the radius of the 

convergence of the series may be restricted or that low-order truncations may not be 

accurate. 

6.2.7 Neural Networks 

Another possible approach to nonlinear identification, completely alternative to 

the methods aforementioned, is the “black-box” approach. In such approach, one can 

completely avoid the physical modelling but the only aim of the method is to describe the 

functional link between input and output of the system. In this framework, in the last 

decades more importance has been given to neural networks, because they can 

approximate continuous functions with different levels of accuracy. The exposition of the 

theory of neural networks does not fit with the purpose of this thesis, and for brevity’s 

sake, only a review of the principal application of neural networks in nonlinear 

identification will be made. For an extensive dissertation on neural networks, one can see 

[51]. 

A neural network is a mathematical object which can reproduce the input-output 

relationship of a system. The network is composed generally of different elementary 

object, called neurons, disposed on different layers, and connected among them in order to 

reproduce a simplified neurobiological network (see figure 6.2). 
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Figure 6.2 - Simplified scheme of feed-forward Neural Network 

The single neurons can process only one data at a time, and can make operations 

of weighting and threshold on the data. The connections between neurons can be linked to 

some weights, which are determined during the “training” phase of the network. In fact, 

neural networks are adaptive systems which can learn and improve their accuracy. 

Once the structure of the network is defined (type, number of neurons and 

number of connections) and it is trained (value of the weighting coefficients) one can use 

the network to predict the response of the system. Since the 80s a lot of efforts have been 

made in order to use these tools in the field of identification, control and diagnosis of 

structures. The most relevant works are those of Chen [52] and Masri [53]. The most 

common used neural networks are of the type “Multi-Layer Perecptron” (MLP) and 

“Radial Basis Function” (RBF). The first type has been used together with NARMAX 

modelling by Billings et al [54,55] and in order to identify the internal restoring forces (see 

Masri [53]), while the latter have been used in the experience of Chen [52]. Furthermore, 

Wray & Green in [56] demonstrated that exist a correlation between the weighting 

coefficients of neural networks and higher FRF of the modelled system. 

It is worth mentioning the importance of neural networks in the framework of 

structural diagnostic, which is usually the successive phase with respect to identification. 

Anyway, in diagnostic empirical approaches are usually preferred in comparison to 

symptomatic approaches (see [57]), and they exploit the discerning capability of neural 

networks more than their capability to identify the systems.  

On the other hand, the symptomatic approach can be used in order to detect the 

type of nonlinearity and to choose the better suited identification method. 

6.3 Instantaneous and on-line methods for nonlinear 

identification 

In this section a review of instantaneous nonlinear identification methods will be 

made. Some of the principal methods will be successively analysed and explained also by 

using numerical examples.  

In structural dynamics it is often useful to detect changes in the modal (or model) 

parameters. Moreover, a simple way to check the consistency of a given model consists of 
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extracting instantaneous estimates of the model parameters. This may be obtained via 

standard identification methods applied sequentially on blocks or subsets of the full data 

so one can detect whether the parameters change slowly with time, or better by applying 

instantaneous approaches, which provide estimates of quantities that are inherently time-

varying (e.g. an instantaneous frequency, degradation in stiffness or strength etc.). 

Approaches based on instantaneous estimation had been already considered in the 1960s 

for problems in acoustics and vibrations [58], but it is only from the 1990s that they 

gained widespread popularity within the structural dynamics community. A survey of the 

analysis of non-stationary signals using time-frequency methods is available in Hammond 

and White [59], Hammond and Waters [60], Ceravolo [61]. 

Feldman showed how to use the traditional definition of the analytic signal and 

the time-domain Hilbert transform in order to identify nonlinear models of SDOF 

systems. The FREEVIB and FORCEVIB (see 6.3.1 for further details) approaches can be 

used to construct the instantaneous damping and stiffness curves for a large class of 

nonlinear systems, but are only suitable for single component signals [62]. A method for 

the decomposition of signals with multiple components into a collection of single 

component signals, termed intrinsic mode functions (IMFs), was proposed in Huang et al 

[63] and is now referred to as the Hilbert-Huang transform in the time-frequency 

literature. The IMFs are constructed such that they have the same number of extrema 

and zero-crossings, and only one extremum between successive zero-crossings. As a result, 

they admit a well-behaved Hilbert transform. The method now has several applications in 

structural dynamics including linear system identification [64,65] and damage detection 

[66]. 

Other time-frequency representations are also suitable for the analysis of 

nonlinear oscillations. Linear representations have been used, for instance, by Spina et al 

[67] and Demarie et al [49]. An overview of the use of the wavelet transform in nonlinear 

dynamics can be found in Staszewski [68], while interesting applications are reported by 

Newland [69] and Erlicher and Argoul [70] among others. Quadratic representations 

which include the Wigner-Ville distribution and the Cohen-class of distributions have also 

received some attention [71,72,73].  

Today, the instantaneous identification of the parameters of a system is a 

suitable way to detect and quantify a degradation or damage. Unfortunately, not all 

instantaneous approaches admit an on-line or real-time implementation which, for 

instance, is necessary in structural control. In other words, on-line methods do not require 

the acquisition process to be completed to perform the identification, while off-line 

methods retain this limitation. Despite leading to instantaneous or time-varying 

parameters, a time-frequency method cannot be strictly termed a real-time approach (see 

for instance [74]). In fact, at least in theory, the time-frequency uncertainty principle does 

not allow for an on-line implementation [61,75]. This said, in actual practice the choice of 

using on-line or off-line predictions depends on the type of transform: an analysis based on 

running windows (as in the case of the spectrogram) can loosely support an on-line 

implementation, unlike a correlative transform structure (e.g. Wigner-Ville transform). 

In the time domain, the least squares approach is not always practical for on-line 

identification of the parameters of a nonlinear system, even if it is possible to find some 

important examples in literature [76]. Many other identification methods have been 

investigated: the Extended Kalman Filter (EKF) [77,78,79,80,81,82], the H∞ filter [83], or 

Sequential Monte Carlo (SMC) methods [84,85,86]. Andrieu et al [87] states that the 
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advent of SMC, due to good approximation of the optimal filter under weak assumptions, 

does not mean that SMC is the best candidate for on-line implementations. In fact SMC 

methods (also referred as particle filters) suffer from the so-called “degeneracy problem” 

and are also computationally expensive. Instead, the EKF procedure, which is currently 

the most exploited, derives from the state-space formulation of the differential equation of 

motion. The main advantage is that the EKF technique has seen several applications. In 

this procedure, the estimation problem is linearized using an extended state space 

representation of the system. The initial guess is then updated recursively when new 

observations are available. A family of auto-regressive moving average (ARMA) model 

have been investigated by Fassois et al [88,89], applied to the identification of time-

varying systems. In the same connection, Xiuli and Wang [90] proposed a Gaussian 

multivariate variation of ARMA model. 

We should also mention the recent work of Wu and Smyth [74], who have 

successfully applied the Unscented Kalman Filter (UKF) for on-line identification of 

parameters of hysteretic SDoF systems with both degrade in term of stiffness and 

strength and pinching. The Unscented Kalman Filter is a technique which allows dealing 

with nonlinear systems and it is able to deal with any type of nonlinearity with respect to 

the EKF. In detail, UKF does not require the computation of the Jacobian of the nonlinear 

function; in fact it does not approximate the measurement equation of the system but it 

approximates the posterior probability density by a Gaussian density, by using a set of 

deterministic points (the so-called Sigma points). When the Sigma points are propagated 

through the nonlinear transform, they capture the mean and the covariance of the system. 

Xie and Feng [91] proposed to use a further development of the UKF, the Iterated 

Unscented Kalman Filter (IUKF) to nonlinear and hysteretic springs. In this last case, 

also 2DoF systems with polynomial nonlinearities were investigated. The main advantage 

of these techniques when applied to hysteretic systems is their capability to deal with any 

type of functional nonlinearity.  

6.3.1 Hilbert transform 

The frequency-domain Hilbert transform has been used for nonlinearity 

detection, but a time-domain implementation of the method have been introduced in the 

field of nonlinear identification with two different approaches which were proposed by 

Feldman in [92] and in [93]: one is based on systems subject to free oscillations 

(FREEVIB) and one on systems subject to forced vibration (FORCEVIB).  

The analytic signal can be computed for a large number of processes and it is 

defined by calculating the Hilbert transform of a signal. Accordingly, the signal can be 

represented as a combination of two slow varying functions called envelope and 

instantaneous phase [58,94]: 
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where  x t  is the vibration of a generic system, H  and  x t  represent its Hilbert 

transform,  X t  denotes the analytic signal and  A t  and  t  are the envelope and the 

instantaneous phase, respectively. 

 The Hilbert transform, differently from the Fourier transform, transform a 

process remaining in the same domain and can be generally defined by the following: 

     
 1 x

x t x t PV d
iπ t







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The nonlinear behaviour of processes can be noticed by the link between 

frequency and damping to the amplitude of the excitation. This has lead Feldman to the 

use of the previously defined analytic signal and the concepts of instantaneous frequency 

and damping. In fact, by resorting to the concept of instantaneous phase, one can define 

the instantaneous frequency [95]: 
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 (6.31) 

The FREEVIB [92] method has been formulated in the case of SDoF system with 

free oscillations: 

    2
0 0x h A x A x    (6.32) 

where  x t  is the system solution, overdots represent time derivatives,  h A  represents 

the nonlinear damping function and  2
0 x  represents the nonlinear stiffness function. 

Feldman assumes that the functions  h A ,   2
0 A   and the structural response  x t  have 

non-overlapping Fourier spectra: this is usually verified because whilst the first two are 

lowpass the latter is generally highpass. The main consequence of these assumptions is 

the invariance of  h A  and  2
0 A  with respect to the Hilbert operator which leads to the 

following differential relationship: 

    2
0 0x h A x A x    (6.33) 
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One can substitute equation (6.29) in (6.33) and it is possible to obtain the 

dynamic equilibrium in terms of the analytic signal: 

    2
0 0X h A X A X    (6.34) 

The derivatives of the analytic signal can be defined by resorting to equation 

(6.29): 

 

   
 
 

 

   
 
 

 
   
 

 
2

2

A t
X t X t i t

A t

A t A t t
X t X t t i i t

A t A t




 

  
   
   

  
     
   

 (6.35) 

Consequently, one can obtain the analytic expressions of the nonlinear stiffness 

and damping, which are the basis of the FREEVIB method: 
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 
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h t

A t t
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t t

A t A t A t t






 




  




  
     

   

 (6.36) 

In the case of free damped vibrations the amplitude  A t  is a decreasing 

monotonic function therefore the inverse function  t A  can be defined. One can therefore 

determine the instantaneous damping and instantaneous frequency in function of the 

amplitude:     h A h t A   and     2 2
0 0A t A  . The plot of amplitude versus 

instantaneous frequency is usually indicated as “backbone diagram”.   

The FORCEVIB [93] method was proposed as an extension of the previous 

method in the case of forced vibration. In this case, the dynamic equation of motion for an 

analytic signal is the following: 

    
 2

0

U t
X h A X A X

m
    (6.37) 

 with m being the mass of the system (assumed to be known) and  U t  is the analytic 

signal corresponding to the excitation force  u t . 

With the same assumptions made for the FREEVIB method, one obtains: 
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 (6.38) 

where      Re /t U t X t      and      Im /t U t X t     . The case     0t t    is a 

particular case of (6.38) when it becomes equal to equation (6.36), therefore it renders the 

FREEVIB method as a particular case of the FORCEVIB method. 

This method has been applied, due to its simplicity, with some success to 

experimental data particularly in the mechanical field [96]. In within the Civil 

Engineering framework, it is worth mentioning the works of Petrangeli [97] and De 

Stefano [98]. 

6.3.2 Instantaneous identification with time-frequency estimators 

The concept of instantaneous identification with time-frequency representations 

has already been proposed in [61] and already applied to nonlinear oscillators in [99] or to 

experimental structures in [100,101].  

To start with, in the time domain the identification of a parameters vector  p  

might be performed in the time domain [22] by minimising an error function ε(p), 

          
 

  
2

-
, - arg minm id p

p v t p v t dt p  p 


 

 
       

 
 , (6.39) 

where ν is a general state variable (displacement, acceleration, etc…), namely a nonlinear 

function of  p , whilst mv is the corresponding measured response, both functions of t. 

However, the optimisation process defined via (6.39) lacks frequency localisation, 

i.e. it cannot use direct information about the localisation in time of harmonic components. 

As a result, to localise the nonlinear evolution of system parameters both in frequency and 

time [61], we define the error function as follows, 

            
 

  
- ,

, , ; - , arg min ,
mx x id p t t

t p T t f p T t f df  p t  t p 


  

 
      

 
   (6.40) 

where  xT  denotes the time-frequency transform operator applied to the acceleration 

variable x . At any instant t , the minimisation process leads to an associated optimal 

vector    
id

p t , which supplies instantaneous estimates of the model parameters. Notice 
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that the time-frequency transform could also be applied to the displacement x or any other 

state variable. 

In this case the time-frequency representation was given a spectrogram form  

[75]. The instantaneous identification is based on the following minimisation at the 

discrete time  [99,61]: 

            
 

  
-1

,
0

, , ; - , arg min ,
m

N

x x id p j j
k

j p SPEC j k p SPEC j k  p t j t  j p


 
 



                


 (6.41) 

where   1 2 3{      }np m      is the vector of parameters, referred to a general model 

capable to describe the dynamics of the identified system. 
 SPEC ,

mx
j k


    and 

   SPEC , ;x j k p
 
   are the values of the spectrogram of the displacement x (or 

acceleration, etc…) at a discrete time instant j∙Δt and frequency k∙Δf, respectively 

measured and calculated, while γ is a short time analysis window and N is the number of 

frequency samples. In recent published articles the authors have investigated the 

problems related to the choice of the optimal window analysis  [61,102,75].  

The “error function”  provides the modulus of the difference between the 

instantaneous energy of the measured response xm and that of the system output x 

corresponding to a given configuration of the unknown parameter vector p. By resorting to 

optimisation procedures, one can determine the minimum value of   ,j j p   at every 

instant.  

In some circumstances the system’s response x may be calculated using Volterra 

series representations, this being convenient from the computational point of view [99]. 

Anyway, in the following examples the numerical response is calculated by solving the 

dynamic equation via a Runge-Kutta algorithm, in order to avoid limitations imposed by 

the type of nonlinearity.  

6.3.2.1 Polynomial identification in the time-frequency domain 

The first numerical investigations discussed here concern the identification 

strategy proposed by Masri et al [23,11]. Masri et al [23] state that the nonlinear or 

possibly hysteretic restoring force can be approximated by a polynomial function of the 

state variables of the system (XV type restoring force), with constant coefficients.  

The form used for the simulations retains polynomial terms up to the 3rd order: 

 

 

2 2 2 2 3 3
1 2 3 4 5 6 7 8 9

mx f u t

f x x x x xx x x xx x x        

  


                  

 (6.42) 

The identification problem reduces to the estimation of the time-variant 

coefficients   in Equation (6.42). In this case the vector {p} reads:    1 9,...,p   . The 

instantaneous identification is based on the minimisation of the error function defined by 
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Equation (6.41) (the restoring force f has been chosen among the state variables to define 

the penalty function). The minimisation has been performed by using a Pattern Search 

algorithm [103]. Pattern Search algorithms allow generally for a fast convergence of the 

solution, and they are a good choice in problems where is required to locate the global 

maximum of the solution. Generally, for each minimisation, a maximum of 1000 

evaluations of the cost function has been set in the following simulations.  

In the simulations proposed afterwards it is generally assumed that the external 

excitation as well as the mass m are known. Although polynomials are often associated to 

non-parametric identification, some terms of the polynomial may retain a physical 

meaning, e.g. coefficients 1  and 2  of Equation (6.42) clearly represent a linearized 

stiffness and a viscous damping, respectively. 

6.3.2.1.1 Example 1: Instantaneous identification of a SDoF system with Duffing nonlinearity under 
random excitation 

In the first numerical example, a single degree of freedom (SDOF) system with 

Duffing nonlinearity is identified on an instantaneous base.  

The system is excited by a stationary random process n(μ,σ), characterised by 

zero mean and a standard deviation σ=1.0. The sampling frequency of the random process 

is 100 Hz, and the length of the process is of 40 s. The parameters of the system 

characterise an underlying linear system with a frequency of 1 Hz. The system is defined 

by the following differential equation: 

 
 3

nlmx cx kx k x u t     (6.43) 

The system’s real parameters are reported in table 6.2 together with the initial 

guesses for each parameter, while time histories are plotted in figure 6.3. As previously 

stated, the minimisation procedure is performed via a Pattern Search algorithm and 

parameters are bounded in a reasonable interval defined in table 6.2 as well.  

 
Parameter m [kg] c k [N/m] knl [N/m3] 

Value 0.0253 0.0159 1.0  0.1 

Initial guess fixed 0.01 0.8 0 

Lower bound fixed 0 0.5 0 

Upper bound fixed 0.05 1.5 1 

Table 6.2 - Duffing system parameters 
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Figure 6.3 - Duffing oscillator: (a) phase plot of restoring force versus displacements; (b) input time history; (c) phase 

space; (d) acceleration time history 

Through the identification process described by Equation (6.41), the polynomial 

coefficients have been identified instant by instant (analysis window used for the 

spectrogram: 400 samples, equivalent to 4 complete cycles of the response of the system, 

in order to minimise noise). In order to calculate the response of the identified system, 

estimates supplied at each time instant j by Equation (6.41) were averaged over smaller 

time intervals (1 s long). 

The two time-history signals, measured and identified, show a good agreement. In 

order to give an index of the quality of the results, the Normalized Root Mean Squared 

(NRMS) error is introduced: 
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x x
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x







 (6.44) 

 

The NRMS errors for each one of the state variable are listed in table 6.3. It is 

possible to notice that the quality of fitting is good; in fact none of the errors is above the 

1%. 
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NRMS x  x  x  f  

Value 0.62% 0.35% 0.73%  0.77% 
Table 6.3 - NRMS error of the different state variables for the Duffing system. 

The instantaneous coefficients evaluated through this model, defined in 

Equation(6.42), in the case of a Duffing oscillator have a physical meaning. In fact the 

coefficient α8 is the nonlinear stiffness, whilst α1 and α2 define the linear stiffness and the 

viscous damping. 

 

  

  
Figure 6.4 - Instantaneous coefficients identified (the straight dashed line represents the real value of the 

parameter):  linear stiffness α1, viscous damping α2, Van der Pol term α7 (which should be 0), nonlinear stiffness 

cubic term α8. 

Results in figure 6.4 show the instantaneous values of the estimated parameters 

in the exposed case of a Duffing oscillator. It is interesting to point out that only the 

parameter that are expected to have a value are activated by the optimisation process, 

while, for instance, the Van der Pol term 7  is not activated significantly. Furthermore, 

the identification process reaches the exact value of the parameters after a few seconds 

and then stabilises. This may be not obvious because Equation (6.41) does not directly 

allow for correlation between the parameters estimated at each analysis window; anyway, 

the values of the parameters identified at the previous time block are used as initial guess 
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for the following step. This allows for a stabilisation of the results in the case of constant 

values of the real parameters.  

6.3.2.1.2 Example 2: Instantaneous identification of a Duffing-Van der Pol oscillator with time-
varying nonlinearity under random excitation 

In this second example, a Duffing-Van der Pol oscillator will be identified. The 

system is defined by the following differential equation: 

 
   3 2

,1 ,2nl nlmx cx kx k t x k x x u t      (6.45) 

The nonlinear coefficient knl,1 is assumed to vary linearly in time from a value 

knl_init,1 to knl_fin,1. The values assumed by the parameters of the system are listed in table 6.4 

together with their initial guesses for the identification process. 

 
Parameter m [kg] c k [N/m] knl_init,1 [N/m3] knl_fin,1 [N/m3] knl,2 [N/m3/s] 

Value 0.0253 -0.0253 1.0  0.005 -0.005 0.00796 

Initial guess fixed 0 0.8 0 // 0 

Lower bound fixed  0.5  // 0 

Upper bound fixed  1.5  // 1 
Table 6.4 - Duffing-Van der Pol system parameters 

   
Figure 6.5 - Exact and estimated response for a system characterised by Duffing Van der Pol nonlinearity: (a) Exact 

force-displacement loop, (b) Identified force-displacement loop 

Also in this case, the system is excited by the white Gaussian used for the 

previous example, noise characterised by µ=0.0 and σ=1.0 and the polynomial coefficients 

introduced by (6.42) have been identified minimising Equation (6.41).  

Figure 6.5 shows the outcomes of the identification process. Apparently the model 

performs well in terms of fitting both the nonlinear restoring force and the phase plot of 

displacement and force. 
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Figure 6.6 - Instantaneous coefficients identified (the straight dashed line represents the real value of the 

parameter): linear stiffness α1, viscous damping α2, nonlinear Van der Pol term α6, nonlinear stiffness cubic term α8  

In the case of the Duffing-Van der Pol oscillator the coefficients α6 and α8 assume 

the values of the nonlinear terms, while the coefficients α1 and α2 define respectively the 

linear stiffness and the viscous damping of the system. In fact, figure 6.6 highlights that 

the linear trend of the coefficient α8 is captured by the algorithm. The NRMS error in 

terms of displacement and force is 0.50% and 0.31%, respectively. 

6.3.2.2 Instantaneous identification of a  f=g x,x,f
 
polynomial form 

Benedettini et al [20] observed that a  ,f g x x  form for the restoring force is 

not suitable in the presence of hysteresis, which is typical of engineering structures. This 

is made evident when considering a hysteretic formulation such as the Bouc-Wen model 

[104,105,106]: 
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 

  sgn
n

mx f u t

f A f f x x 

  



      
   

 (6.46) 

In Equation (6.46) the parameter A is the linear stiffness of the oscillator, β>0, γ 

 [-β, β] and n>0 are constants affecting the form of the hysteresis loops. When n is large 

enough, force-displacement loops are similar to those of an elastic-perfectly-plastic model. 

Despite its simplicity and the fact that it fulfils the 2nd principle of thermodynamics, the 

Bouc-Wen model is affected by the so-called “violation of the Drucker-Prager postulate”. A 

comprehensive discussion of these topics is presented in [107,108] and [109]. 

In the case of Equation (6.46) a XVF model can be used for the identification 

process.  For identification purposes, Equation (6.42) is rewritten with the polynomial 

terms up to the 3rd order as follows: 
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2 2 2
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2 2 2
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2 2 2 3 3 3
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     
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        



     



     

 (6.47) 

What is crucial for the identification process is selecting the dominant polynomial 

terms. Actually, in most cases a polynomial form with a limited number of dominant 

terms ensures a good fitting, while the other terms can be set equal to zero.  

6.3.2.2.1 Example 3: Instantaneous identification of a SDoF system with Duffing nonlinearity under 
random excitation 

In Example 1 (6.3.2.1.1), a XV polynomial approximation has been used to 

identify a system characterised by a Duffing nonlinearity. The same system will be 

hereinafter identified through the more general XVF polynomial. So, in this case, the 

identification process consists of extracting punctual estimates for the polynomial 

coefficients in Equation (6.47). It is worth remarking that in most engineering 

applications only odd polynomial terms are considered, hence a simpler XVF polynomial 

approximation has been used in the following: 
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 (6.48) 
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While in the previous example the viscous damping was estimated directly as a 

part of the polynomial form, the new formulation in terms of restoring force derivative 

does not allow a direct estimation (there are no polynomial terms depending on 

acceleration). In this case, viscous damping must be evaluated separately from the 

polynomial coefficients that approximate the restoring force derivative. 

Figure 6.7 shows the estimated instantaneous values of the coefficients and 

highlights that estimates of polynomial terms that are not included in the Duffing model 

are stable around zero (only α4 term is reported for brevity’s sake). Consider that, when 

working in terms of f , the exact value for α5 is three times the cubic nonlinear stiffness 

reported in table 6.2. In this case the NRMS error is of 0.89% for displacement and 0.48% 

for the force which is comparable to the error given by the XV model (Table 6.3). 

 

  

  
Figure 6.7 - Instantaneous coefficients identified (the straight dashed line represents the real value of the 

parameter): viscous damping c, linear stiffness α2, α4 term (which should be 0), nonlinear stiffness cubic term 

α6  
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6.3.2.2.2 Example 4: Instantaneous identification of a SDoF system with Bouc-Wen hysteresis under 
seismic excitation 

The f  formulation is the most natural for the identification of hysteretic 

systems. In this example a Bouc-Wen model (Equation (6.46)) is identified through a XVF 

model. For the parameters of the Bouc-Wen model read table 6.5. 

 
Parameter M [kg] A [N/m] β γ n 

Value 43000 3e6 10 5 1 

Initial guess fixed 3e6 0 0 1 

Lower bound fixed 2.5e6 0 -30 0.5 

Upper bound fixed 3.5e6 30 30 4 
Table 6.5 - SDoF Bouc-Wen system parameters (the bound values refers to example 5). 

“Measured” response has been obtained by numerical simulations on the Bouc-

Wen model subjected to the El Centro earthquake record, with two different intensity: the 

25% and the 100% of the El Centro earthquake pga, respectively. In Figure 6.9 it is 

possible to notice that the response produced by the lower excitation is basically linear, 

while, at the highest level of excitation, the loops are wider and they show a strongly 

nonlinear behaviour. 

 It is worth noting that a few polynomial terms approximating a Bouc-Wen model 

are directly associated to the polynomial coefficients in (6.48). For instance by comparing 

Equation (6.46) and (6.48) one can set Aα2, and the following approximate relationship 

holds: 

    2
9sgn

n
x f f x f     (6.49) 

based on the fact that x  and 2x  have the same sign at every instant. Consequently, it is 

possible to determine the polynomial coefficient, related to the Bouc-Wen parameter β: 

  
1

9

n
f

t
x






  (6.50) 

when the exponent n is equal 1, the ratio reduces to β over the modulus of the velocity. 
According to (6.50), the coefficient is not constant in time, especially when x is close to 

zero. As the spectrogram is virtually unable to provide on-line estimates, the values 

supplied by the estimators should be compared to the result of time-averaging on the 

interval ( t -Δt, t +Δt), i.e. the duration of the analysis window of the spectrogram. 

Similarly, for γ coefficient one has:  

  
22

10 10           
n n

x f x f t f   


        (6.51) 

Also in this case, assuming that n is equal 1, the instantaneous coefficient will be 

the ratio between γ and the modulus of the hysteretic force. Eqs. (6.50) and (6.51) show 

the dependence of the polynomial coefficients on the excitation level, as implied by the 
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Weierstrass approximation theorem [110]. Eqs. (6.50) and (6.51) are employed to verify 

the consistency of the polynomial identification. 

In order to initialise the identification procedure of Equation (6.41) the values of 

the coefficients were all set to zero, except for the linear stiffness terms, whose starting 

value was supposed to be known.  

 

25% 

pga 

 
  

100% 

pga 

   
Figure 6.8 - Instantaneous coefficients identified for the 25% pga level (a)-(b)-(c) and for the 100% pga level (d)-(e)-(f) 

(continuous line) compared to the expected ones as defined by equations (6.50) and (6.51) (dashed line) 

Figure 6.8 shows the estimated parameters for the two excitation levels; one may 

notice that the instantaneous coefficients matches the expected values obtained by time-

averaging over the analysis window length (Equation (6.50) and (6.51)). The quality of the 

fitting apparently decreases with the level of excitation (Figure 6.9). 
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25% pga 

  

100% pga 

  
Figure 6.9 - Polynomial identification of a SDoF: exact hysteretic cycles (a)-(c) compared with the estimated ones (b)-

(d) for the different excitation levels 

6.3.2.2.3 Example 5: Polynomial identification of a MDoF system under earthquake excitation with 
different levels of noise 

Identification methods must admit generalisations to multi-degrees of freedom 

systems, which represent a vast majority of engineering systems. In this section nonlinear 

identification techniques will be applied to a 2DoF system, characterised by a Bouc-Wen 

nonlinearity (figure 6.13 and figure 6.14). The equations of motion of the system are 

defined as follows: 

       

     

       

    

1 2

1

2

2

1 2 1 1 2 1 1 1 2 2 2 2 1 2 2 1

2 2 2 2 1 2 2 1

   

 

sgn sgn

sgn

g

NL

n n
NL

n
NL

M x f M t x t

f K x f

f f f f f x x f f x x x x

f f f x x x x

   

 

         



    


              

   

       
  

 (6.52) 

where [M] and [K] are the lumped mass and linear stiffness matrixes,  {t} is a unitary 

connectivity vector and gx  is the ground acceleration, whilst 
1NLf and 

2NLf  are the 

nonlinear parts of the restoring forces transmitted to the first and second floor, 

respectively, in the assumption that they have a chain-like Bouc-Wen form. 
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Parameter 
m1 

[kg] 

m2 

[kg] 

k11 

[N/m] 

k12 

[N/m] 

k22 

[N/m] 
β1 β2 γ1 γ2 n1 n2 

Value 43000 39000 1.8e7 -8.0e6 5.5e6 15 10 2 -2 1 0.8 

Initial 

guess 
fixed fixed 1.8e7 -8.0e6 5.5e6 0 0 0 0 1 1 

Lower 

bound 
fixed fixed 1.62e7 -8.8e6 0.49e6 0 0 

-

40 

-

40 
0.5 0.5 

Upper 

bound 
fixed fixed 1.98e7 -7.2e6 0.61e6 40 40 40 40 4 4 

Table 6.6 - Values of the parameters for the 2-DoF system (the bounds will be used in the next example 6.3.2.3.2). 

 

The identification has been performed using the same numerical earthquakes 

which have been previously applied to the SDoF example, with the same pga levels.  The 

frequencies of the underlying linear system are f1=1.01 Hz and f2=3.62 Hz. In order to fit a 

whole hysteresis loop, the length of the analysis window used in the identification process 

was chosen to 200 samples, which corresponds to a time length of about 2 s. This example 

will be recalled in the next section (6.3.2.3.2). 

The polynomial approximation of the system, resorting to the XVF representation 

of the restoring force derivative, assumes the following form: 
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 (6.53) 

In Equation (6.53) the derivatives of the restoring forces are identified through 

XVF polynomial models. In this example, it is deemed convenient to use 3rd order 

polynomial neglecting cross polynomial terms between different DoF. It is assumed that 

those terms are not relevant in this context. 
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Nonlinear terms are supposed to be unknown, while the linear stiffness is 

initialised to its exact value, as in the SDoF examples. 

Also in this case, the XVF identified polynomial was seen to describe the system 

in a satisfactory manner (Figure 6.10), especially at the lower excitation level.  The 

polynomial terms show the typical trends as in SDoF examples, those depending on the 

same considerations as section 6.3.2.2.2. 

 

25% pga 

  

100% pga 

  
Figure 6.10 - Polynomial identification of a 2DoF system: exact hysteretic cycles (a)-(c) compared with the estimated 

ones (b)-(d) for the different excitation levels. 

In this case both the input and the output have been contaminated in turn with 

three different levels of noise: zero, 2% and 5% noise. The results in table 6.7 show that 

the NRMS error increases with noise, but errors remain in a satisfactory range.  

 

 
Polynomial 

25% pga 100% pga 

Noise x  f  x  f  

0% 0.3% 1.13% 0.5% 2.1% 

2% 1.1% 1.76% 0.96% 2.3% 

5% 1.5% 2.8% 1.4% 2.8% 
Table 6.7 - NRMS error of displacement and hysteretic force for different noise levels: 0%, 2% and 5% SNR for the 

polynomial identification approach of the 2DoF hysteretic system. 
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6.3.2.3 Parametric identification in the time-frequency domain 

When the type of model is known a priori, nonlinear instantaneous identification 

may identify directly the parameters of the model in question. In this case, instantaneous 

estimates are to be optimised so that the response, obtained by direct integration, matches 

experimental data. For instance, in the case of a Bouc-Wen hysteretic system, as defined 

by Equation (6.46), it will be possible to minimise the following vector of parameters 

 , , ,A n p . This approach evidently lacks of generality, but, whenever applicable, is 

expected to be more direct and accurate [111,112]. 

6.3.2.3.1 Example 6: Parametric identification of an oscillator with Bouc-Wen nonlinearity under 
seismic excitation 

In the parametric estimation of a Bouc-Wen model it is possible to introduce some 

constraints over the parameters. For the thermodynamic admissibility of the model and 

other considerations [107,109,113], the following relationships apply: 

 

, 0

0

A

n



  





  

 (6.54) 

Moreover, the maximum value that the restoring force may assume is limited by 

the following relationship (for 0   ): 

 max n
A

f
 




 (6.55) 

Equation (6.54) and (6.55) have been used in the identification process in order to 

define a set of linear and nonlinear constraints, respectively, to better identify the 

parameters to be estimated by minimising (6.41) via a Pattern Search algorithm. 

This numerical example identifies the same signals used in the example of section 

6.3.2.2.2 and the parameters to be estimated were listed in table 6.5. 

The initial values of the nonlinear parameters β and γ are assumed to be zero and 

1 for the exponent n, whilst the linear stiffness is initialized with its correct value (see 

Table 6.5). As it is possible to notice from figure 6.11 with parametric identification the 

fitting of the time-history response and of the hysteretic cycle is improved with respect to 

the polynomial estimation, especially in the case of higher level of excitation. Figure 6.12 

shows that estimates of the Bouc-Wen parameters become more stable at the higher 

excitation levels. Indeed, with lower excitations, nonlinearity is still latent. Table 6.8 

shows the NRMS errors in the identification, which are seem to be smaller than 1%. 
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25% 

 
 

100% 

 
 

Figure 6.11 - Parametric identification of a SDoF: exact hysteretic cycles (a)-(c) compared with the estimated ones 

(b)-(d) for the different excitation levels 

 

 

 

 

 

 

NRMS x  x  x  f  

25% pga 0.67% 0.94% 1.00% 1.06% 

100% pga 0.17% 0.73% 0.18% 0.25% 
Table 6.8 - NRMS error of the different state variables for the Bouc-Wen identification of the SDoF hysteretic 

system. 
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Figure 6.12 - Identified parameters of the Bouc-Wen model at different excitation levels (dashed line: identified 

parameters, continuous line: exact parameters) 

 

6.3.2.3.2 Example 7: parametric identification of a 2-DoF hysteretic system under earthquake 
excitation 

The parametric identification directly employs the response calculated through 

Equation (6.52). Bouc-Wen parameters to be estimated are subject to constraints, as in the 

SDoF case [107,109]: 

 

1 2

1 2

1 1 1 2 2 2

, 0

, 0

   

n n

 
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



     

 (6.56) 

Equation (6.56) has been used in the identification process in order to define a set 

of linear constraints for the parameters to be estimated by minimising (6.41) via a Pattern 

Search algorithm. 
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100% pga 

  
Figure 6.13 - Parametric identification of a 2DoF system: exact hysteretic cycles (a)-(c) compared with the estimated 

ones (b)-(d) for the different excitation levels. 
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Figure 6.14 - Identified Bouc-Wen parameters at 25% pga excitation level (continuous line: identified parameters, 

dashed line: exact parameters) 

Figure 6.13 shows the results of the parametric identification at the two different 

excitation levels. It is possible to notice that the two responses are virtually identical, both 

in terms of displacements and of hysteretic force. Figure 6.14 lists the identified 

parameters with the 100% pga earthquake. Nonlinear parameter estimates appear to be 

relatively stable and their mean value is close to the real values.  

As in the polynomial identification, the identification process has also been 

performed in the presence of noise at 2% and 5%. As in the SDoF case, the initial value of 

nonlinear parameters is zero, except for the parameters ni, which were assumed to be 1. 

The linear parameters are initialised with their correct values. The estimation of the 

parameters seems to perform better when the excitation level is higher (as already noticed 

in the SDoF example). The performances of the identification are satisfactory even at the 

higher excitation level. In this case, the quality of the fitting is very high (Table 6.9) and 

seems to be robust with respect to the data corruption.  

 
 Parametric BW 

 25% pga 100% pga 

Noise x
 f

 
x

 f
 

0% 0.03% 0.10% 0.08% 0.14% 

2% 0.65% 0.91% 0.59% 0.76% 

5% 1.51% 2.23% 1.38% 1.97% 
Table 6.9 - NRMS error of displacement and hysteretic force for different noise levels: 0%, 2% and 5% SNR for the 

parametric identification approach of the 2DoF hysteretic system. 

6.3.2.3.3 Example 8: parametric identification of a 2-DoF pinching-hysteretic system under 
earthquake excitation 

In this example, a 2-DoF system with pinching is identified using the model 

proposed in equation (5.42). As in the previously examples, the system has been excited by 

the El Centro earthquake and the parameters are estimated by minimising (6.41) via a 

Pattern Search algorithm. 

 

 

100% pga 

  
Figure 6.15 - Parametric identification of a 2DoF system with pinching: exact hysteretic cycles (a) compared with 

the estimated ones (b). 
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Figure 6.16 - Identified Bouc-Wen parameters at 100% pga excitation level (continuous line: identified parameters, 

dashed line: exact parameters) 

Figure 6.16 shows the results of the parametric identification at the 100% of pga 

for the pinching 2-DoF system. The most significant parameters have been plotted: it is 

possible to notice a good agreement in terms of K, γ and s, while the parameter β shows a 

little bias probably due to the relatively low hysteresis of the cycles. Anyway, the quality 

of the identification is still reliable, in fact the normalised error in term of displacements 

is of the 3.20% and in term of forces is 4.67%. 
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6.3.3 Kalman filter and its application to nonlinear systems 

The Kalman Filter [114] is a classical method applied to linear systems that have 

Gaussian white noise disturbances in the system states and outputs. This method allows 

to “clean” the process (this is where it comes from the name filter) and to determine the 

optimal state of the system. The Kalman Filter procedure allows also for identifying the 

system parameters if they are unknown. Within the nonlinear field, different extensions of 

the method have been proposed in the last decades.  

6.3.3.1 The Extended Kalman Filter (EKF) 

The first approach to parameter estimation in nonlinear field is the one proposed 

through the so-called Extended Kalman Filter (EKF) [115]. When working with nonlinear 

processes the optimality of the estimation is lost and, even worst, the estimate may 

diverge [116]. The EKF extends the Kalman Filter to nonlinear optimal filtering. It forms 

a Gaussian approximation to the joint distribution of state and measurements by 

resorting to a Taylor series based transformation.  

In detail, it is possible to define the continuous equations of a general dynamic 

system by resorting to the state-space equation and it measurement equation as follows: 

 

                    

                 

, ,        ~ 0 ,

,           ~ 0 ,

X t f X t u t q t q t N Q t

Y t h X t r t r t N R t

    



   

 (6.57) 

where   u t  is the system input,   w t  is the system process noise vector and   v t  is 

the measurement noise, and  .f  and  .h  are nonlinear functions. 

The discrete formulation of the previous equation allows applying Kalman 

Filtering to the system: 

 

        

      

1 1
,

k k k k

k k k

X f X u q

Y h X r

 
 

 

 (6.58) 

 The Extended Kalman Filter procedure can be initialised by defining the initial 

state vector     0 0X E X t 
 

 and covariance matrix     0 0P Var X t 
 

.  Like all the 

algortihms based on Kalman Filter, the EKF algorithm involves two basic steps in the 

estimation process: a prediction phase, where the next state of the system is predicted 

given the previous measurements, and an updating phase, where the current state of the 

system is estimated given the measurement at that time step.  

For what concerns the prediction phase, a guess of the state vector based on the 

system state can be done as follows: 
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      

         

1 1

1 1 1 11

,

, ,

k k k

T
X Xk k k kk k k

X f X u

P F X u P F X u R



 



   

 





           

 (6.59) 

Where XF  and XH  are the Jacobians of f  and h , defined as follows: 

 

    
    

  
  

1 1

1 1 , ' '

, ' '

,
,

j k k
X k k j j j

j k
X k j j j

f X u
F X u

x

h X
H X

x

 

 


  
   


  
   

 (6.60) 

The updating step involves the definition of optimal Kalman gain, and may be 

defined as follows: 

 

         

       

      

1

ˆ ˆ ˆ

T T
X X Xk k kk k k k

kkk k k

TT
X Xk kk k k k k k

K P H X H X P H X R

X X K Y h X

P P K H X P H X R K


 

 

 


                   




  
        

  

                           


 (6.61) 

The EKF has some flaws: as previously mentioned, the EKF is not an optimal 

estimator; moreover if the initial estimate of the state vector is wrong, or the process is 

modelled incorrectly the filter may diverge due to its linearization approach. Furthermore 

the estimated covariance matrix in the EKF tends to underestimate the true covariance 

matrix so that it risks becoming inconsistent in the statistical sense without the addition 

of a “stabilising noise”.  

6.3.3.2 The Unscented Kalman Filter (UKF) 

The Unscented Kalman Filter (UKF) is a recently proposed technique (see for 

reference [117,118]) which has the advantage with respect to the canonical EKF of being 

able to handle any type of nonlinearity.  In detail, UKF does not require the computation 

of the Jacobian of the nonlinear function; in fact it does not approximate the measurement 

equation of the system but it approximates the posterior probability density by a Gaussian 

density, by using a set of deterministic points (the so-called Sigma points). When the 

Sigma points are propagated through the nonlinear transform, they capture the true 

mean and covariance of the Gaussian random variables, and the posterior mean and 

covariance accurately to the 3rd order Taylor series expansion for any nonlinearity. 

Starting from the discrete equations for a dynamic system (6.58), one can define 

the augmented state vector as: 



Luca Zanotti Fragonara - “Dynamic models for ancient heritage structures” 

 

236 

 

      
1 1 11

  
a T

k k kk
X X q r

  
      

 (6.62) 

which can be initialised as follows: 

          
0 0

ˆ ˆ 0 0
a Ta

X E X X
         

 (6.63) 

Accordingly, it is possible to define an augmented covariance matrix and initialise 

it: 

        0 00 0 0

ˆ ˆ
T

a aa a a
P E X X X X

   
        
    

 (6.64) 

Successively, one can compute a deterministic set of sample points (or Sigma points), with 

associated weights: 

            
1 1 11 1 1

ˆ ˆ ˆ
a a aa aa

k k kk k k
X X L P X L P 

    

 
           
 

X  (6.65) 

where L is the dimension of the augmented state vector and λ is a scale factor (for an 

extensive discussion on this, see [119,120]). Once the sigma points  
1

a

k
X  are computed it 

is possible to determine the predicted state vector  ˆ
k

X


 and the predicted covariance 

ˆ
k

P


 
 

 by propagating the sigma points as follows: 
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 (6.66) 

The values of the weights for the mean (
 m

iW ) and for the covariance (
 c

iW ) can be 

computed as reported in [119]. Once the predicted values are computed, one has to 

compute the predicted measurement vector by using the Sigma point approximation: 
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The measurement update can be performed as follows: 
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 (6.68) 

The main step of the UKF is the unscented transformation described in equation 

(6.65) which uses a set of deterministically chosen sigma points to parametrize the mean 

and covariance of the probability distribution. The statistic of the propagated points is 

then calculated to form an estimate of the nonlinearly transformed mean and covariance. 

As previously stated, it is possible to notice from above that the UKF does not require the 

calculation of any Jacobian for linearizing the system and measurement equations. 

Therefore, the UKF can be used also in the case of system equations which are not 

differentiable (such as in the case of most hysteretic models). The UKF has been 

successfully applied for real-time estimation of hysteretic degrading systems with 

pinching in [74]. 

6.3.3.2.1 Example 9: Parametric identification of an oscillator with Bouc-Wen nonlinearity under 
seismic excitation 

In order to apply the UKF, the example number 4 is presented again hereinafter. 

In this case the Bouc-Wen model (Equation (6.46)) is identified by defining the state vector 

{X} as follows: 

   1 2 3 4 5 6 7, , , , , , , , , , , ,X x x x x x x x x x f A n         (6.69) 
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 (6.70) 

The UKF allows performing an online identification of the hysteresis parameters 

reported in table 6.10. Notice that the initial guess of the parameters must be not-zero in 

order to avoid computational problems. At the second excitation level (100% pga) the 

parameter are initialised by using the identified values at the lower excitation level. 

 
Parameter M [kg] A [N/m] β γ n 

Value 43000 3e6 10 5 1 

Initial guess fixed 3e6 1 1 1 
Table 6.10 - SDoF Bouc-Wen system parameters and initial guesses in the identification process. 

25% 
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Figure 6.17 - Identification of a SDoF with UKF: exact hysteretic cycles (a)-(c) compared with the estimated ones 

(b)-(d) for the different excitation levels 

It is possible to notice from figure 6.18 the good match between identified values 

and real values of the parameters, even better than in the previous example TF 

identification. Anyway, UKF seems to have problem when the number of parameters to be 

identified increase significantly (for instance, in the MDoF examples proposed before). 
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Figure 6.18 - Identified parameters of the Bouc-Wen model at different excitation levels (dashed line: identified 

parameters, continuous line: exact parameters). 

6.3.3.3 The Iterated Unscented Kalman Filter (UKF) 

A further improvement to the UKF algorithm was firstly proposed in [121] with 

the name of Iterated Unscented Kalman Filter (IUKF). The idea is that improved 

performance may be expected if iterations are to be implemented in the UKF algorithm. 

The steps of the IUKF can be summarised as: 

 For each instant k≥1 one can evaluate the estimate  ˆ
k

X  and the corresponding 

covariance matrix 
k

P    through equations (6.66)-(6.68). 

 Let    
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k k

X X
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,0k k

P P
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k k

X X , 
,1k k

P P        and get iteration 

index j=2 and g=1. 

 Generate new sigma points in the same way as (6.65): 

            
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X  (6.71) 

 Recalculate all the previous steps in (6.66)-(6.68): 
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where the subscript j denotes the jth iteration,  
,i j

Y  represents the ith component of  
j

Y .  

 One can define the following three equations:    
, ,

ˆ ˆ
k j k j

Y h X
 

  
 

, 

     
, , , 1

ˆ ˆ
k j k j k j

X X X


   and      
, ,

ˆ ˆ
kk j k j

Y Y Y  . 

 If the following inequality holds: 

            1 1

, 1, , , , , 1 , 1

T T TT

k j k kk j k j k j k j k j k j
X P X Y R Y Y R Y

 

  
             (6.73) 

and j≤N (maximum number of iteration allowed), then one has to set g=ηg (with η 

being a decaying factor chosen between 0 and 1), j=j+1 and return to the 

generation of sigma points, otherwise it is possible to exit from the iterative 

process and to perform the last step.  

 If the inequality is not satisfied or if j is too large the procedure stops and one 

obtains:    
,

ˆ ˆ
k k j

X X  and 
,k k j

P P       . 

With respect to the standard UKF, the IUKF can adjust the state estimate to 

adaptively approach the true value through corrections of the measurements, so after 

the iterative process terminates, a lower state of error can be expected. Moreover, this 
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filter can respond to new measurements as quickly as possible with the adjustment of 

state and covariance matrix, making a faster convergence speed possible in situations 

where the initial error is large. This method has been successfully applied to 

hysteretic SDoF systems and to a 2DoF system with polynomial nonlinearity in [91] 

by Xie and Feng. 
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