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Abstract When using formal methods, security protocols are usually modeled at a high level of abstrac-
tion. In particular, data encoding and decoding transformations are often abstracted away. However, if no
assumptions at all are made on the behavior of such transformations, they could trivially lead to security
faults, for example leaking secrets or breaking freshness by collapsing nonces into constants.

In order to address this issue, this paper formally states sufficient conditions, checkable on sequential
code, such that if an abstract protocol model is secure under a Dolev-Yao adversary, then a refined model,
which takes into account a wide class of possible implementations of the encoding/decoding operations, is
implied to be secure too under the same adversary model. The paper also indicates possible exploitations
of this result in the context of methods based on formal model extraction from implementation code and of
methods based on automated code generation from formally verified models.

1

http://dx.doi.org/10.1007/s00165-012-0267-y
http://porto.polito.it
http://porto.polito.it
http://www.sherpa.ac.uk/romeo/search.php?issn=0934-5043


1 Introduction

In the last years, several techniques based on formal methods have been developed to analyze abstract models
of security protocols. These models, initially introduced by Dolev and Yao [DY83], represent messages as
instances of high level abstract data types. This high abstraction level makes automated verification viable,
so that Dolev-Yao verification is now a well-established technique for security protocol verification, even
within reach of non-experts. However, one question arises about how to ensure that the logical correctness
of an abstract protocol is preserved when more concrete versions of the protocol are defined and when their
implementations are developed using programming languages.

This paper focuses on one research line that consists of extending the application of the Dolev-Yao
approach from very abstract models, where only the main message components and working scenarios are
considered, to more detailed models capturing more closely all the real data structuring and the real program
flow of protocol implementations.

Two different strategies have been proposed in order to cope with this extension: automatic code gener-
ation from abstract models, e.g. [PSD04, TH04, GHRS05], and automatic model extraction from implemen-
tation code, e.g. [BFGT06, Jür05, GLP05, BFG06].

Methods based on automatic code generation start from a high-level, formally verified, specification of the
protocol, which abstracts away from many details about cryptographic and communication operations and
data representations, and fill the semantic gap between formal specification and implementation, guided by
implementation choices provided by the user. In [PS10], a formally sound algorithm is provided to automat-
ically translate abstract models to source Java code. Notably, the code responsible for data transformations
is not automatically generated, potentially allowing security flaws to be introduced by incorrect manual im-
plementation of such code. Indeed, in the case study reported in [PPS12], about 30% of the code is dealing
with data transformations and is manually implemented.

Methods based on automatic model extraction start from an already existing, full blown implementation
code, from which an abstract model is extracted and formally verified. In this case, a formal soundness
proof has been given for the method presented in [BFGT06]. One of the things that can be observed by
looking at the results reported in [BFGT06, Jür05, BFG06], is that the part of the extracted formal model
that describes data encoding and decoding operations can be quite complex, as big in size as the rest of the
protocol model. This occurs even though in [BFGT06, BFG06] the implementations of some low-level library
operations, such as those for basic XML manipulation, are not included in the model but rather assumed to
correctly refine their symbolic counterpart.

The wrong implementation of data transformations may be responsible for security faults. For this
reason, it is not possible to simply neglect them when analyzing security protocols. For example, consider
this very simple RPC-like protocol in the Dolev-Yao model (where perfect encryption with a private shared
key also subsumes authentication), expressed abstractly in Alice and Bob notation:

1 : A→ B : {n,M,REQ}Kab; where n is a nonce and REQ a constant tag

2 : B → A : {n, f(M), RES}Kab; where RES is a constant tag

Assume that, before sending message 2, B emits a begin(A,B, n) event, meaning that a session of the pro-
tocol was started between A and B with nonce n, and that, when receiving message 2, A first checks that
the received tag is RES and the received n matches the local one, and only then emits an end(A,B, n)
event, meaning that a session between A and B with nonce n was correctly terminated. On this abstract
model, assuming Kab is initially not known by the adversary, one can prove the injective correspondence
end(A,B, n)⇒ begin(A,B, n), meaning that, even in the presence of a Dolev-Yao adversary, in each execu-
tion of the protocol each end(A,B, n) has its own corresponding begin(A,B, n).

Now consider a refined model, where each field of the encrypted content of a message is encoded before
applying encryption. Suppose the correct encoding for REQ is 0 and the correct encoding for RES is 1,
but the implementations of the encoding and decoding transformations used by A and B have some bugs.
More precisely, suppose that, erroneously, eA(REQ) = 1, where eA(·) is the implementation of the encoding
transformation used by A. Suppose also that B uses a different implementation having the reverse bug,
i.e. dB(1) = REQ, where dB(·) is the implementation of the decoding transformation used by B. Because
of these errors, both message 1 and 2 have the same value for the tag and the refined protocol model has a
security flaw, because the adversary can play message 1 back to A, and A will accept her own message as a
valid message 2, breaking the injective agreement. In conclusion, formal analysis can catch this flaw if using
a detailed model, close to the real implementation, while the flaw is missed if using a more abstract model.

This kind of errors does not necessarily affect interoperability (in the previous example, A and B can
run the protocol successfully despite their errors). This implies more difficulty in discovering such errors by
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classical program testing.
The aim of this paper is to formally state and prove sufficient conditions under which the detailed models

of data transformations, such as the ones extracted from protocol code in [BFG06], can be avoided and
replaced by much simpler models or assumptions that can be checked on sequential code and in isolation
(i.e. without considering the behavior of the adversary), while obtaining the same kind of security assurance
on the protocol implementation.

In this work, two different kinds of data transformation functions are identified (and named in this paper
as follows):

Marshaling functions Data transformation functions that operate on public data sent to or received from
the network, such as the ones transforming between the internal representation of a protocol message
and its external wire representation;

Encoding functions Data transformation functions that operate on possibly private data, such as a
padding function applied before block-encryption, or functions creating keys from raw key material.

Encoding functions are more general than marshaling functions, because the former can operate on both
private and public data, while the latter only operate on public data. So, finding sufficient conditions to
safely abstract encoding functions from security protocol models would be enough to cover both classes of
data transformation functions. However, exploiting the assumption that marshaling functions only operate
on public data allows for weaker sufficient conditions for their abstraction. Hence, first specialized results
for safe abstraction of marshaling functions are presented, which lead to weaker sufficient conditions; then
generalized results for encoding functions are presented, where stronger sufficient conditions are required if
private data can be accessed by the data transformation functions.

Specifically, marshaling functions operate on data that can be made available to the adversary without
compromising any security property. So, in order to be able to soundly abstract these functions away, it is
sufficient to assume that they can do no worse than the adversary itself can do. In practice, the results in
this paper formally justify the intuition that, provided marshaling functions do not access private data, any
implementation cannot harm the protocol security.

This clearly does not hold for more general encoding functions that can access private data, as showed
by the example above, where a wrong encoding of the encrypted REQ tag could lead to a security flaw. For
instance, injectivity is one of the sufficient conditions identified for safe abstraction of encoding functions,
while this is not required for marshaling functions.

The approach presented in this paper uses Communicating Sequential Processes (CSP) [Hoa85, Ros97,
Ros10] as the formal language for representing protocol models. Classically, a CSP model of a security
protocol is fairly abstract: message exchanges are represented, and checks on received data are modeled by
pattern matching. These are the models on which formal verification is usually performed. Normally, such
models have no notion of marshaling or encoding functions, and pattern matching is not the way typical
implementations of security protocols would discriminate on received data: normally a stream of bytes is
received and interpreted by the implementation, before checks on the received values are performed. Hence,
the formal verification results have limited scope, because they do not say anything about those neglected
details.

One contribution of this paper is to find sufficient conditions such that verification of a typical abstract
CSP model of a security protocol also implies correctness of a more refined CSP protocol model that takes
those details into account. This saves verification of the refined – and more complex – model, which requires
more verification resources or more advanced verification techniques.

So, the first problem that is addressed in this paper is to find a general way to refine a typical abstract
CSP model, into a more refined CSP model that faithfully represents how encoding functions work and how
messages are handled within a typical implementation.

For each class of transformations, the refinement is expressed by defining a particular structure of con-
current processes in CSP, where data transformation operations are represented by separate processes, inter-
acting with the core processes that operate on the unencoded data. This modeling approach is quite general
and close to real implementations. In addition to the process structure, only some general assumptions are
introduced about the data transformation processes. Apart from these assumptions, such processes can be
any process. Verifying a concrete protocol implementation using this modeling strategy can thus be reduced
to verifying that the protocol implementation fulfills the assumptions made about data transformations, and
verifying that the CSP refined protocol model built according to such assumptions satisfies the required
security properties. This approach makes verification modular, according to an assume-guarantee style.

Even under the assumptions introduced, refined protocol models can get much more complex than their
original fully abstract versions, thus making verification more challenging. To address this second problem,
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we formulate sufficient conditions under which these refined models can be soundly simplified. Soundness in
this case means that, provided the sufficient conditions hold, all the security faults related to a certain class
of security properties are preserved when the model is simplified. This implies that it is enough to prove the
absence of these faults in the simplified model to conclude that they are not present in the refined model
too, under the same adversary model (Dolev-Yao).

Simplifications are divided into two steps, and the sufficient conditions for applying each step are expressed
separately. The first simplification step is the main one, and already leads to a model close to the fully
abstract one, while the second step completes the simplification leading to the fully abstract model (without
any reference to data transformations).

The concept of fault-preserving simplifying transformations applied to security protocols is not new. It
was introduced by Hui and Lowe [HL01], who identified some general classes of such transformations, and
sufficient conditions to apply them. In this paper, some of the work by Hui and Lowe is adapted and exploited
for our purposes. However, only the second, minor simplification step is reduced to Hui-Lowe simplifications
in order to show its soundness. For the main simplification step, instead, a different proof technique is used,
which also leads to more general results.

For marshaling functions, the idea is to prove the soundness of the main simplification step by considering
that the more abstract model is a re-parenthesization of the CSP expression describing the refined model,
where the data transformation layer is moved out of the honest agent and made part of the adversary. The
sufficient conditions (data transformations should do nothing more than what the adversary itself could
do) imply that this simplification step does not add any new functionality that the adversary could not
previously perform. Hence the same attacks that the adversary could carry out against the protocol in the
refined model can be carried out against the abstract version.

This proof strategy cannot be used with encoding functions, which access secret data, because the
adversary would get to handle some protocol secret values, thus easily breaking for instance confidentiality.
So, encoding functions are safely abstracted by showing that a refined CSP model, where encoding functions
are separate processes, is a trace refinement of a more abstract CSP protocol that uses pattern matching to
implement such encoding functions. To complete this proof, a weak simulation relation and trace refinement
properties of some CSP operators are used, and some standard assumptions on pattern matching (like the
aforementioned injectivity) are made explicit sufficient conditions.

The results of this work can be exploited both when using the model extraction approach and when
using code generation. In the former case, the assumptions and sufficient conditions on data transformations
must be checked on the (sequential) code that implements them. If the conditions hold, this code can be
safely abstracted during model extraction. With code generation, if the starting point is an already verified
abstract protocol model, the results given in this paper formally prove that the same security properties still
hold in a refined model where code is generated so as to satisfy our assumptions and sufficient conditions.
Then, such assumptions and sufficient conditions can be regarded as requirements on how the code must
be generated, and the formal proofs given in this paper can be used as a basis for proving the soundness of
refinement in methods based on code generation.

The remainder of the paper is organized as follows. Section 2 introduces the notation and the modeling
approach, based on CSP, that is used to reason about security protocols throughout the paper. Then, fol-
lowing the distinction identified between marshaling and encoding functions, section 3 focuses on marshaling
functions, while section 4 generalizes the results considering encoding functions. Section 5 discusses how
the results can be applied when equational theories are introduced. Then, section 6 discusses experimental
application of the results, using as examples the protocols for secure web services and the SSH transport
protocol. Finally, section 7 concludes.

2 Abstract Protocol Models and Notation

2.1 The CSP Language

Table 1 illustrates the syntax of the CSP subset that is used in this work. Let e be an event and P,Q
processes. The prefixing operator combines an event e and a process P into the process e → P , which
can only emit the event e and then behave like P . It is said that e is the prefix of e → P . The external
choice P�Q is the process that behaves like either P or Q, with the choice between the two made by the
environment. Similarly, if I is a set, the �i∈IPi process behaves like Pi, the choice of i being made by the
environment among the elements of I. In this case, i may occur in Pi and is bound in Pi. The internal choice
operator u is similar, but the choice is made internally, not influenced by the environment. The parallel
composition P ‖ Q lets P and Q execute in parallel (subject to event synchronization, described below).
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Table 1: Syntax of the CSP subset used in this work.
Process Description
e→ P Prefixing
P�Q External choice
�i∈IPi External choice with binding
P uQ Internal choice
ui∈I Pi Internal choice with binding
P ‖ Q Parallel composition
‖i∈I Pi Parallel composition with binding
P \ E Event hiding
P |< b |> Q If/else branching

P [[e
′
/e]] Renaming

P [x/y] Substitution
let x = expr within P Let binding
STOP Stuck process

Similarly, the ‖i∈I Pi process behaves like the parallel execution of several Pi processes, one for each element
of I, where in each process i is bound to a different element of I. The P \E process behaves like P where all
the events in the set E are removed from P . The P |< b |> Q process behaves like P if the boolean expression
b is true, otherwise it behaves like Q. If e and e′ are events, P [[e

′
/e]] is the process that can emit e′ whenever

P can emit e. The process P [x/y] is P with all occurrences of free variable x substituted by y. The process
let x = expr within P evaluates expression expr, binds variable x to its value v, and then behaves like
P [x/v]. The STOP process is the stuck process.

The alphabet of a process P , denoted by αP , is the set of events that can occur in P .
In the CSP semantics, when a process is ready to emit an event it blocks until the environment or a

corresponding process can emit a matching event. When the environment or a corresponding process become
ready to emit the matching event, the processes (or the process and the environment) can synchronize, and
both simultaneously emit the event and evolve atomically into the next state. By default, the P ‖ Q process
requires that P and Q synchronize on all events in αP ∩αQ (informally, on all events that they share), while
the environment can match the remaining events. When synchronization between P and Q is desired on a
different set of events E, the notation P ‖E Q is used. Thus,

P ‖ Q , P ‖
αP∩αQ

Q

An interesting case is P ‖{}Q, which means that P and Q run interleaved, that is in parallel without any
internal synchronization. For convenience, the interleaving process is defined as

P ||| Q , P ‖
{}
Q

together with the interleaving with binding process |||i∈IPi.
Events can be extended to have data after their name. For example, the events e1.A and e2.B.C are the

events e1 and e2 with associated data values A and B,C respectively. A data type can be defined to specify
the possible data values that can occur in events. The notation e!A→ P means that event e can occur with
value A, i.e. event e.A can occur (and a corresponding matching event must occur in the environment for
the process to evolve to P ). The notation e?x → P means that event e can occur, and it will match any
other event e.A, evolving to P [A/x], where A can be any data value belonging to the data type. Pattern
matching can be used even in more general ways. For example, e.A?x!A matches events e.A.B.A where B
can be any value in the data type. Sometimes, when using data associated with events, an event is also
called a channel.

The notation {|e1, . . . , en|} denotes the set containing all events that match one of the ei event forms.
For example, e.A.B ∈ {|e|}, and e.A.B.C ∈ {|e?x.B|}.

A sequence of events starting with event e1 and terminating with event en is denoted by 〈e1, . . . , en〉. A
trace tr of a process P is a sequence of events that can occur in P . tr ↓ e denotes the number of events e
occurring in trace tr.

The set of all the traces of a process P is denoted by traces(P ). If traces(P ) ⊆ traces(Q) then P is a
trace refinement of Q, written Q v P .
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Table 2: Syntactic sugar for the proposed datatype.
Message Representation
Pair M N (M,N)
ShKey M M∼

PubKey M M+

PriKey M M−

ShKeyEncrypt M K {M}K
PubKeyEncrypt M K {[M ]}K
PriKeyEncrypt M K [{M}]K
Hash M H(M)

A trace specification SPEC(tr) is a predicate whose free variable tr represents a trace. A process P
satisfies a specification if the corresponding SPEC(tr) predicate is true for all the traces of P :

P sat SPEC ⇔ ∀ tr ∈ traces(P ) · SPEC(tr).

2.2 Modeling Security Protocols with CSP

The datatype definitions and protocol models defined in this work are an extension of the ones used in [HL01].
Essentially, they follow the Dolev-Yao approach. It is believable that the extended datatype proposed in
this paper can be enough to abstractly model the most common security protocols. Nevertheless, further
extensions or modifications can be made to the datatype. The results presented here will still be valid,
provided the new datatype satisfies some properties explicitly stated in this paper.

The main extension that we introduce w.r.t. [HL01] is an added support for non-atomic keys. This
extension enables modeling protocols where the key is constructed from non-atomic data. The new datatype
Message is defined recursively as

ShKey ::= ShKey Message;
PubKey ::= PubKey Message;
PriKey ::= PriKey Message;
Message ::= Atom Atom | Pair Message Message |

Hash Message | ShKey |
PubKey | PriKey |
ShKeyEncrypt Message ShKey |
PubKeyEncrypt Message PubKey |
PriKeyEncrypt Message PriKey.

where Atom represents the atomic messages used as building blocks for any other message. This definition
has been developed using the following guidelines:

• Each key is typed. It is possible to obtain a key from generic material (that is, any generic Message).
It is not possible to use raw material directly as a key; instead, the material must first be fed to a key
construction operator.

• There is no longer need (as in [HL01]) for the inverse K−1 of a key K. Indeed, the key construction
operators PubKey and PriKey fulfil this role.

• No new types are added in order to represent encoding parameters or encoded data, because the idea
is to have a single datatype that can be used to model protocol data at different detail levels.

From now on, M,N and O range over Message, K over ShKey, PubKey and PriKey, U and S over
2Message, A and B over honest protocol agents, P,Q and R over processes.

In order to get better reading for processes, the syntactic sugar reported in table 2 is also provided.
Once the datatype is defined, it is also necessary to define the adversary knowledge derivation relation

` which models the adversary data derivation capabilities: U ` M means that M can be derived from U .
The relation ` is defined as the smallest relation that satisfies the rules reported in table 3.

The following lemma about the relation ` is introduced here because it will be needed in the rest of the
paper:
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Table 3: Rules for the knowledge derivation relation `
Name Definition
member : M ∈ U ⇒ U `M
pairing : U `M ∧ U ` N ⇒ U ` (M,N)
splitting : U ` (M,N)⇒ U `M ∧ U ` N
key derivation: U `M ⇒ U `M∼ ∧ U `M+ ∧ U `M−
shared key encryption: U `M ∧ U ` N∼ ⇒ U ` {M}N∼
public key encryption: U `M ∧ U ` N+ ⇒ U ` {[M ]}N+

private key encryption: U `M ∧ U ` N− ⇒ U ` [{M}]N−
shared key decryption: U ` {M}N∼ ∧ U ` N∼ ⇒ U `M
public key decryption: U ` {[M ]}N+ ∧ U ` N− ⇒ U `M
private key decryption: U ` [{M}]N− ∧ U ` N+ ⇒ U `M
hashing : U `M ⇒ U ` H(M)

Lemma 2.1

U `M ∧ U ⊆ U ′ ⇒ U ′ `M, (1)

U `M ∧ U ∪ {M} `M ′ ⇒ U `M ′. (2)

This lemma has been proved in [HL01] for a similarly defined relation based on the datatype defined
there, and can be proved to hold for the definition of ` in table 3, by structural induction. In order to apply
the results given in this paper to an extension of this datatype, it is necessary to ensure that lemma 2.1
holds for the extended datatype.

Honest agents and the adversary are defined as in [HL01]. For completeness, they are briefly recalled
here.

A honest agent can take part in a protocol by using the following events:

send.A.B.M agent A sends message M , with intended recipient B;

receive.A.B.M agent B receives message M , apparently from agent A;

claimSecret.A.B.M A thinks that M is a secret shared only with B; if B is not the adversary, then the
adversary should not learn M ;

running.A.B.M A thinks it is running the protocol with B; M is a message, recording some details about
the run in question.

finished.A.B.M A thinks it has finished a run of the protocol with B; M is a message, recording some
details about the run in question.

The send and receive events can also be interpreted as channels, used by the agents to exchange data; the
remaining events are used to formally define the desired security properties of the protocol. Honest is the
set of all honest agents.

The adversary acts as the medium, thus being allowed to see, modify, forge or drop any message. It uses
the knowledge derivation relation ` to forge new messages from the previously learnt messages. The set of
messages the adversary can derive from a knowledge S is defined as

deds(S) , {M ∈Message | S `M}.

Finally, the formal definition of the adversary is

ADV (S) , �M∈Messagesend?A?B!M → ADV (S ∪ {M})
2 �M∈deds(S)receive?A?B!M → ADV (S)
2 �M∈deds(S)leak.M → ADV (S)

where S is the current adversary knowledge, and leak.M is the event that signals that the adversary can
derive M from its current knowledge. The set of all agents is defined as Agent = Honest ∪ {ADV }.

The model representing all the honest agents and the adversary is called SYS , and is formally defined as

SYS , (|||A∈HonestPA) ‖ ADV (AK 0)
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send.A.*

receive.*.A receive.*.B

send.B.*

ADVPA PB

B

Figure 1: Actors A and B with ADV in SYS .

where, for each A ∈ Honest, PA is the CSP process that describes A’s behavior, and AK 0 is the initial
adversary knowledge. By definition, in SYS the adversary and the honest agents synchronize on the send
and receive events. For actors A and B, the SYS process can be depicted as in figure 1.

In this model decryption operations are represented by the CSP pattern matching feature on receive
channels. For example, receive?{x}N∼ → P can receive an encrypted message, decrypt it by using key N∼

and bind x to the obtained plaintext.
In this work, it is assumed that any trace property SPEC(tr) is such that its truth does not depend on

the send and receive events that may appear in trace tr. Equivalently, process P satisfies a specification
SPEC, iff the process P \ {|send, receive|}, where send and receive events are hidden, satisfies the same
specification SPEC. Formally

P sat SPEC ⇔ P \ {|send, receive|} sat SPEC (3)

Assumption (3) is reasonable, because security properties are normally obtained by correct use of special
events, such as claimSecret, running or finished, and not directly by observing the sequence of messages
exchanged on the communication channels.

Two predicates, namely secrecy and injective authentication (or simply authentication), define the two
most common properties.

Secrecy states that if agent A believes that message M is shared only with honest agent B, then the
adversary must not be able to derive M from its knowledge:

Secrecy(tr) , ∀ A ∈ Agent;B ∈ Honest ·
claimSecret.A.B.M in tr ⇒ ¬leak.M in tr

In order to define authentication, a formal definition of AgreementSet is first needed.

M ∈ AgreementSet⇔ ∃ tr ∈ traces(P );A ∈ Agents;B ∈ Honest ·
tr ↓ finished.A.B.M > 0 ∨ tr ↓ running.B.A.M > 0

(4)

Informally, AgreementSet is the set of all the possible messages upon which the agents should agree (e.g. if
the agents should agree on a key and an atom, the AgreementSet includes pairs with the first item that is
a key and the second one that is an atom).

Authentication states that, for each protocol run that A thinks it has finished with B, B must have
started a protocol run with A, and both A and B must agree on some message M ∈ AgreementSet:

AgreementAgreementSet(tr) , ∀ A ∈ Agent;B ∈ Honest;M ∈ AgreementSet ·
tr ↓ finished.A.B.M ≤ tr ↓ running.B.A.M

Weaker types of authentication have also been defined, for instance non injective authentication, where
there is no one-to-one correspondence between the runs of actors A and B, or weak authentication, where
there is no agreement on session data; they are described, for example, in [Low97]. It is believable that the
results proved in this paper for injective authentication hold for weaker forms of authentication too.

3 Handling the Marshaling Layer

In interoperable protocol implementations, all actors must exchange data encoded by the specified external
representation, however, they can store data encoded in any internal representation, provided there exist
some functions that can translate to and from the two representations. For example, one such function
could transform a variable-length sequence of items, stored internally in some way, into an external standard
representation made up of an integer (the length of the sequence) followed by the encoding of each item of
the sequence, with separators between items. The inverse function would do the inverse transformation.

This section focuses on data transformation functions that operate on messages sent to or received from
the network, which are called marshaling functions in this paper, after the “marshaling” term that is normally
used to denote the operation of encoding data objects for transmission over a communication channel.
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payload

payloadct pv len

TLS Record Layer
Marshaling

(a)

payload

payloadplenlen padding

SSH BPP
Marshaling

(b)
B

Figure 2: Example of marshaling functions in the (a) TLS and (b) SSH protocols.

send.A.*

receive.*.A

int_send.A.*

int_receive.*.A

send.B.* int_send.B.*

receive.*.B int_receive.*.B

ADV

Pm
A Pm

B

PLm
A PLm

BMLA MLB

B

Figure 3: Actors A and B with ADV in SYSm .

Simple examples of such marshaling functions can be found in the popular TLS and SSH protocols. In
TLS, the Record Layer Protocol is responsible for marshaling the encrypted payload of a “record” (a packet
in TLS terminology) by prefixing it as depicted in figure 2(a): the content type ct indicates the kind of
data contained in the payload, e.g. if the data are TLS handshake messages, or user application data; the
protocol version pv indicates which TLS protocol version is in use; and the length len indicates the length
of the upcoming payload . The marshaled packet is then the concatenation of (ct, pv, len, payload).

In SSH, during the handshake phase, when encryption is not in place, the Binary Packet Protocol (BPP)
is responsible for marshaling the SSH packets containing handshake messages according to figure 2(b). Given
a handshake message payload , the BPP adds a header containing the payload length len, followed by the
padding length plen. Then the plaintext payload is concatenated and finally the padding is appended.

In this work it is assumed, and thus modeled accordingly, that, as usual, the marshaling layer is imple-
mented separately from the protocol logic layer.

In SYS the actors exchange the abstract representation of data with the adversary. In order to model the
marshaling layer, a refined model SYSm (where m stands for marshaling) is defined as depicted in figure 3
for actors A and B.

Basically, SYSm acts like SYS , but it is explicitly modeled that the external representation of data
is being exchanged over send and receive. Hence, even if the same names (send and receive) are used for
channels in SYS and in SYSm , the data associated with these channels are different in the two models. More
precisely, the model of each honest agent A is refined into Pm

A , which is composed of two coupled processes
PLm

A and MLA, representing the protocol logic and the marshaling layer of a program respectively. Each
PLm

A in SYSm acts like its corresponding PA in SYS , but it is explicitly modeled that it sends its internal
representation to its coupled marshaling layer MLA, which in turn sends the external representation to the
adversary, and vice versa.

This refined model can be described in CSP for all the honest agents as

SYSm , (((|||A∈HonestPLm
A ) ‖ (|||A∈HonestMLA)) \ {|int send, int receive|}) ‖ ADV (AKm

0 )

It could be argued that, potentially, this model allows each honest agent to send messages to any mar-
shaling layer, and vice versa. However, the implementations of protocol logic and its coupled marshaling
layer are very often part of the same application, so errors that would lead honest agents or marshaling
layers to communicate with the wrong process are not realistic. For this reason, it is assumed that PLm

A and
MLA emit events in the set {|int send.A, int receive?B.A|}. This means that PLm

A only exchanges messages
with its coupled marshaling layer model MLA, and vice versa. Indeed, this assumption implies that such
errors cannot happen in the model too. For the same reason, it is reasonable to hide the program internal
communication channels int send and int receive from the adversary’s view.

The initial adversary knowledge AKm
0 in SYSm has some relation with AK 0 in SYS , however this relation

now is irrelevant, and can be explained later.
Finally, the relation between each PA and the corresponding PLm

A and the formal definition of each MLA
are given. For each PA, PLm

A can be built by refining PA so as to model the information that the protocol
agent must provide to the marshaling layer for its proper working. More precisely, PLm

A is obtained from PA
by replacing in PA each event taking the form send.A.B.M with int send.A.B.(Atom L, (a,M)), and each
event taking the form receive.B.A.M with int receive.B.A.(Atom L, (a,M)). Here, Atom L is a special
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MLA ,

2
�a∈Marshaling,M∈Message int send!A?B!(Atom L, (a,M)) → send!A!B!eA(a,M) → MLA

�y∈Message receive?B!A!y → �a∈Marshaling int receive!B!A!(Atom L, (a, dA(a, y))) → MLA

Figure 4: Formal definition of the MLA process.

atom not present in the definition of PA, whose only purpose is to tag the messages added by the refinement
to PLm

A , and a is such that a ∈Marshaling ⊆Message where Marshaling is the set of messages that can
be used as marshaling parameters, i.e. additional information needed by the marshaling layer for its proper
operation (e.g., an element of Marshaling may include the name of the marshaling algorithm to be applied
and any related parameters, such as length of paddings etc.). Throughout the rest of the paper, a, b, c and
d range over Marshaling.

The elements of Marshaling that are used in refining the protocol actor model may already appear in
the abstract version PA as well. For example, if the marshaling parameters a are being negotiated within
the protocol logic, then a will be present in PA. So, the message (a,M) may be in PA as well. When refining
PA into PLm

A , new messages of the form (a,M) are introduced, wherever message M is output in PA. Now,
to simplify back PLm

A to PA (done formally in section 3.1.2), only the terms of the form (a,M) that have
been added during refinement should be abstracted to M , while those (a,M) terms originally present in PA
should be left untouched. The Atom Lmarker (not present in PA by definition) is introduced to syntactically
distinguish the (a,M) terms already present in PA, from the (Atom L, (a,M)) terms added by refinement, so
that only the latter will be the target of abstraction. Since Atom L is just a syntactic marker, it is assumed
that neither PA nor PLm

A ever accept Atom L on inputs or send it on outputs, with the only exception
when Atom L is explicitly needed as syntactic marker. Similarly, it is assumed that Atom L 6∈ AKm

0 : this
assumption makes some proofs simpler, while not reducing the power of the adversary, since the protocol
logic behavior is assumed to never depend on Atom L anyway.

Each process MLA models the behavior of the marshaling layer. Because of this, it can perform two
kinds of actions:

• receive from its coupled process PLm
A internal representations of data, along with marshaling parame-

ters, and send marshaled data to the ADV process;

• receive marshaled data from the ADV process, and send to its coupled process PLm
A the internal

representation, obtained using the unmarshaling parameters specified by PLm
A .

Apart from these assumptions about the possible interactions of MLA, it is assumed that internally MLA
can behave in any way, thus even including erroneous implementations of data transformations. The only
restriction is that MLA can access only the data explicitly provided from outside. This lets us see MLA as
part of the adversary, which is the intuition that will be used later on to abstract MLA from the model.

The behavior of MLA can be represented by the CSP process in figure 4, where eA(a,M) and dA(a, y)
represent the result of the encoding and decoding operations implemented in actor A respectively. Each one
of them can be any message that can be derived from a and M or a and y respectively; formally:

eA(a,M) ∈ deds({a,M}) ∧ dA(a, y) ∈ deds({a, y}) (5)

By this definition, the properties of the marshaling layer model MLA can be stated. The result eA(a,M)
of encoding M with parameters a can be anything that can be derived from M and a, thus accounting for
arbitrary complex encoding schemes. Two aspects of this definition are particularly interesting:

• eA(a,M) can contain the same or less information than M ;

• all information in eA(a,M) that is not present in M must be present in a.

That is, a possibly incorrect encoding function can lose some information on M , but can only use information
that comes from the internal representation and from the marshaling parameters. In order to model some
information that is hard-coded into the marshaling function implementation, that information needs to be
added to a explicitly. For example, the marshaling parameters used for a message of the TLS protocol would
look like a = (rlp, ct, pv), where rlp is the name of the record layer protocol encoding algorithm, and ct
and pv are the content type and version. In this case, eA(a,M) would be such that eA((rlp, ct, v3.0),M) =
(ct, v3.0, lenght(M),M).
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The same reasoning applies to the result dA(a, y) of decoding y with parameters a, but the case when y
is not recognized as a valid encoding for parameters a must be taken into account as well. In the latter case,
it is assumed that dA(a, y) = Atom E , where Atom E is a special atom that represents a decoding error
code. Since this error code is part of the decoding function, it is assumed that Atom E ∈ deds(a) for any
a ∈ Marshaling. Moreover, to ensure the adversary capabilities are not restricted, it is assumed that for
all adversary knowledges AK , Atom E ∈ AK . For example, a decoding function for the TLS record layer
protocol that just accepts version v3.0 could be defined as:

dA((rlp, ct, v3.0), (ct, v3.0, lenght(M),M)) = M
dA(a,M) = Atom E

where as usual the second case is taken if the arguments do not match the first case.
In the marshaling layer model analyzed here, it is modeled that decoding error conditions are reported

to the protocol logic, through the use of the special Atom E error code. A marshaling layer model that gets
stuck when a decoding operation fails, so that the protocol logic is never delivered the special Atom E , is
possible, and is actually a refinement of the model analyzed here. So the results obtained in this paper for
the marshaling layer model that reports the errors to the protocol logic, are also valid for the refined model
of the marshaling layer that immediately stops in case of error and does not require the protocol logic to
handle error conditions.

Another property implied by this model is that one computation of eA(a,M) and of dA(a, y) has no side
effects and is memoryless. Encoding mechanisms with memory are not considered here for simplicity, but
this model could be extended to include them.

All the properties of the modeled marshaling layer, namely that the only data accessed by the marshal-
ing/unmarshaling functions, including hard-coded values, are their input parameters and that no side effect
occurs, are information flow properties that can be verified on implementation code, by means of static
analysis techniques for sequential code.

3.1 Model Simplifications

The aim of this subsection is to prove that under some light conditions the simplification of the refined
model into the abstract one does not lose security faults. This result justifies the possibility to formally claim
properties on the refined model by performing verification on the (simpler) abstract one. The simplification
can be divided into two subsequent steps as depicted in figure 5. The first one removes the marshaling
layer while the second one completes the transformation into the abstract system by removing the encoding
parameters from the protocol logic.

3.1.1 Removing the marshaling layer

SYSm can be simplified by removing processes MLA and turning processes PLm
A into their renamed versions

PLm
A [[send/int send]][[

receive/int receive]], so as to connect them directly to the adversary through the right
channels send, and receive.

With abuse of notation, the PLm
A symbol will be used from now on to refer to both the process com-

municating on int send, int receive, and the one communicating on send and receive. In fact, these two
processes are the same, up to a renaming of communication channels. Keeping them under the same symbol
actually helps in the explanation of the results, still allowing to produce rigorous proofs.

Along with the above transformation, the initial adversary knowledge is also changed from AKm
0 into

AKm-noML
0 , AKm

0 ∪Marshaling ∪ {Atom L} (6)

This is done in order to make sure that in the simplified model the adversary knows the encoding parameters
and the special marker Atom L. Actually this is the sufficient condition introduced to guarantee the
soundness of the simplification.

The final result of the transformation is a new process SYSm-noML defined as

SYSm-noML , (|||A∈HonestPLm
A ) ‖ ADV (AKm-noML

0 )

whose graphical representation is given in figure 5.
This simplified model is very close to the abstract model SYS , the only difference being that when

in SYS a send.A.B.M or a receive.B.A.M occurs, in SYSm-noML a send.A.B.(Atom L, (a,M)) or a
receive.B.A.(Atom L, (a,M)) occurs. In other words, SYSm-noML is like SYS , but with each sent or
received message tagged by its intended marshaling parameters and by Atom L.
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Figure 5: The simplification steps from SYSm to SYS , using the intermediate SYSm-noML.

int_send.A.*

int_receive.*.A

send.A.*

receive.*.A

int_send.B.* send.B.*

int_receive.*.B receive.*.B

ADVPLm
A PLm

BMLA MLB

ADV -ML
B

Figure 6: Actors A and B with ADV -ML in SYSm-advML.

Another possible intuition to interpret SYSm-noML is that it can be seen as an abstraction of SYSm , where
the MLA processes have been embedded into the adversary (and the communication channels renamed). This
intuition is the basis for the proof justifying the first refinement step.

Preservation of security properties in this transformation is expressed by:

Theorem 3.1
∀SPEC · SYSm-noML sat SPEC ⇒ SYSm sat SPEC

That is, all security properties defined on traces that are satisfied by SYSm-noML, are satisfied by SYSm too.
This means that if one has a protocol model like SYSm , including a marshaling layer complex at will, one
can verify any security property defined on traces on the simpler SYSm-noML, where there is no marshaling
layer. By theorem 3.1, if the property is verified on SYSm-noML then it can be concluded that the property
holds on SYSm too.

The proof of theorem 3.1 is given in appendix A.1; here only a sketch is provided.
[Proof sketch of theorem 3.1.] Let us change SYSm by swapping channels int send, int receive with

channels send, receive, and by re-parenthesizing processes as showed in Figure 6, so as to make the marshaling
layer become part of the adversary.

In the resulting SYSm-advML, the adversary (in this sketch denoted by ADV -ML) is the parallel compo-
sition of ADV (the adversary of SYS ) with MLA.

To keep the proof sketch simple, we are using the same process name for MLA and ADV , even when
they communicate on swapped channels. (However, the proof given in appendix A.1 makes this distinction
explicit to avoid ambiguities.)
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Any fault trace of SYSm is also a fault trace of SYSm-advML, because only an injective renaming of public
and private channels relates the two models. The re-parenthesization is irrelevant because of the associative
property of parallel composition. So, any trace property that holds on the intermediate SYSm-advML is also
implied to hold on SYSm .

Now, the goal is to prove that the intermediate SYSm-advML is a trace refinement of SYSm-noML. This
implies that any trace property that holds on SYSm-noML also holds on SYSm-advML, thus closing the chain
between SYSm-noML and SYSm and the proof of the theorem.

SYSm-advML and SYSm-noML only differ by the definition of the adversary, ADV -ML and ADV respec-
tively. So, the proof reduces to prove a trace refinement between the latter pair of processes. This part of the
proof is divided into two steps. Step (i): define the knowledge MAK of ADV -ML as the adversary knowledge,
plus the messages possibly being stored by MLA, when the latter received a message over a public (private)
channel, but not yet delivered its encoded (decoded) form onto the private (public) channel. Then, show
that MAK does not change when internal events happen inside ADV -ML (namely, private communication
between MLA and the adversary).

Step (ii): show, by induction over the length of a trace tr, that for any trace tr of ADV -ML that
leads to some knowledge MAK ′, the same trace tr can lead ADV to a state with some AK ′, such that
deds(MAK ′) ⊆ deds(AK ′).

This proves that ADV -ML is no more powerful than ADV is, and as a corollary leads to the required
proof item showing that SYSm-advML is a trace refinement of SYSm-noML.

2

Theorem 3.1 states that in a protocol specification where the marshaling layer is modeled as previously
described, only the protocol logic represented by PLm

A is responsible for the security properties of the whole
protocol, while any possible implementation of the marshaling layer MLA of arbitrary complexity can be
considered as part of the adversary, provided that the latter knows all required marshaling schemes and
parameters (because Marshaling ⊂ AKm-noML

0 ). One further condition required by theorem 3.1 is that the
adversary knows the syntactic marker Atom L. This is not an issue, since it is assumed that Atom L will
only be treated as a marker by honest agents.

No assumption on the invertibility of encoding functions has been made, thus even erroneous specifications
of encoding schemes are safe (though probably not functioning). For instance, an erroneous specification
that requires to collapse all nonces into a constant cannot be responsible for replay attacks, since it is
protocol logic duty to check that the internal representation of the locally generated nonce is equal to the
internal representation of the received unmarshaled nonce. Moreover, since no assumption on implementation
correctness has been made, even erroneous implementations of the encoding scheme are safe, provided they
satisfy the data flow assumptions made.

3.1.2 Removing the marshaling parameters

This second step simplifies each PLm
A back to PA, thus simplifying SYSm-noML to the fully abstract SYS .

For the main simplification step from SYSm into SYSm-noML, presented in the previous section, it was
possible to prove a preservation theorem that applies to any security property that can be defined on traces
(theorem 3.1). For this second minor simplification step, instead, the proof technique exploits the Hui and
Lowe’s theory of fault-preserving simplifying transformations [HL01], which lets us prove preservation on
specific security properties rather than on any security property that can be defined on traces. Then, in this
paper the preservation theorem for the second step applies only to the main security properties, i.e. secrecy
and authentication, leaving extensions to other security properties as future work.

The preservation theorem for the second step can be formulated as follows.

Theorem 3.2 If AK 0 = AKm-noML
0

SYS sat Secrecy ⇒ SYSm-noML sat Secrecy (7)

SYS sat AgreementAgreementSet ⇒ SYSm-noML sat AgreementAgreementSet (8)

In practice, it means that if secrecy and authentication have been verified on SYS then the same prop-
erties hold on SYSm-noML too, independently of encoding parameters. Putting together this theorem and
theorem 3.1 we get finally that if secrecy and authentication have been verified on SYS then the same
properties hold on SYSm too, provided the adversary knowledge in SYS includes encoding parameters and
Atom L. However, the verification of security properties other than secrecy and authentication does not
benefit of theorem 3.2, but only of theorem 3.1, i.e. these properties can be safely verified on SYSm-noML.

Before giving the proof of theorem 3.2, let us recall the part of the theory of fault-preserving simplifying
transformations [HL01] that will be used.
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In its simplest form, a fault-preserving simplifying transformation is a renaming transformation, i.e.
a function f : Message → Message that defines how messages in the original protocol are replaced by
messages in the simplified protocol. The function f is then overloaded to take events, traces and processes,
in such a way that f(e) is e with any message M occurring in e replaced by f(M), f(tr) is tr with any event
e occurring in tr replaced by f(e) and f(P ) is a CSP process having as traces the ones that result from the
application of f to the traces of P , i.e. such that traces(f(P )) = f(traces(P )).

Let
SYSRef = (|||A∈HonestPRefA ) ‖ ADV (AKRef

0 )

be a refined protocol model with associated initial adversary knowledge AKRef
0 , and

SYSAbs = (|||A∈Honestf(PAbsA )) ‖ ADV (AKAbs
0 )

one of its abstractions with associated initial adversary knowledge AKAbs
0 . As proved in [HL01], if f(·) is a

renaming transformation that satisfies conditions

U ∪AKRef
0 `M ⇒ f(U) ∪AKAbs

0 ` f(M) (9)

f(AKRef
0 ) ⊆ AKAbs

0 (10)

then
SYSAbs sat Secrecy ⇒ SYSRef sat Secrecy.

For the preservation of authentication Hui and Lowe add another condition to the previous ones. In this
work, the following slightly different additional condition is used that is weaker than the one given in [HL01]:

∀ M,M ′ ∈ AgreementSet · M 6= M ′ ⇒ f(M) 6= f(M ′) (11)

That is, f(·) must be locally injective on AgreementSet, and not on the whole Message set, as in [HL01].
The result about authentication is that if equations (9), (10), and (11) are satisfied, then

SYSAbs sat Agreementf(AgreementSet) ⇒ SYSRef sat AgreementAgreementSet

The proofs of this and other extensions can be found in [Pir10].
The reason why the preservation results obtained by the theory of Hui and Lowe are property-dependent

is that the renaming transformations introduced in [HL01] can in principle alter any event in the trace, even
the special ones used to define security properties. So, for each renaming transformation and each security
property, it is necessary to prove that, although the special events are modified, faults in the refined system
are preserved as faults in the abstract one (hence the fault-preserving name) by appealing to additional
conditions that are property-dependent. In the transformation from SYSm to SYSm-noML, instead, for any
trace of the refined SYSm , it is possible to find a corresponding trace in SYSm-noML where any event that
is neither send nor receive is the same. This is why in that case a property-independent result could be
obtained.

The proof of theorem 3.2 uses one of the fault-preserving renaming transformations that were studied
in [HL01]. This transformation collapses each pair (M,M ′) belonging to a given set Pairs into its first item
M . The formal definition of this function, here named f , is:

f(Atom A) = Atom A,

f((M,M ′)) =

{
f(M),
(f(M), f(M ′))

if (M,M ′) ∈ Pairs ∧ ¬isPair(M ′),
if (M,M ′) /∈ Pairs ∧ ¬isPair(M ′),

f((M, (M ′,M ′′))) =

{
f((M,M ′′))
(f(M), f((M ′,M ′′)))

if (M,M ′) ∈ Pairs,
otherwise,

f({M}K) = {f(M)}f(K)

f({[M ]}K) = {[f(M)]}f(K)

f([{M}]K) = [{f(M)}]f(K)

f(H(M)) = H(f(M))
f(K∗) = f(K)∗

where K∗ ranges over {K∼,K+,K−}.
As showed in [HL01], one way of having conditions (9) and (10) satisfied with this transformation is to

ensure that the knowledge of the adversary in SYSAbs includes the transformed versions of the data known
by the adversary in SYSRef plus the transformed versions of all the removed messages, i.e.

AKAbs
0 ⊇ f(AKRef

0 ) ∪ {f(M ′)|(M,M ′) ∈ Pairs} (12)
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The proof that if this condition is satisfied then (9) and (10) are satisfied too for our modified datatype
is very similar to the one given in [HL01], by induction on the relation `. Condition (12) is needed in
order to prove condition (9), because otherwise some source of information for the adversary could be
removed by the transformation. In particular, suppose the {f(M ′)|(M,M ′) ∈ Pairs} terms were not
included in the right hand side of (12). In this case we would have that, for any U = {(M,M ′)} with
(M,M ′) ∈ Pairs, the condition U ` M ′ would be true while f(U) ` f(M ′) would not necessarily be true,
because f(U) = f({(M,M ′)}) = {M}, thus possibly invalidating condition (9). Hence the definition of
condition (12).

In order to preserve agreement, f(·) must also satisfy condition (11). In order to achieve this, only one
additional constraint is required:

∀ M ∈ AgreementSet; subM ∈ subterms(M) · isPair(subM)⇒ subM /∈ Pairs (13)

where subterms(M) is the set containing M and all its subterms. Constraint (13) means that no subterm of
any M ∈ AgreementSet that is a pair must be in the Pairs set, that is if agreement is required on a pair,
then that pair must not be collapsed.

Using these results about function f(·), it is possible now to prove theorem 3.2.
[Proof of theorem 3.2.] The proof is based on the fact that the function f(·) collapsing pairs can be safely

used to transform PLm
A into PA, and thus SYSm-noML into SYS . Indeed, PLm

A has been obtained from PA
by replacing each sent or received message M with (Atom L, (a,M)). Then, the following two steps take
PLm

A back to PA:

1. P tmpA = f(PLm
A ), with Pairs = {(Atom L, a) | a ∈Marshaling}

2. PA = fsym(P tmpA ), with Pairs = {(Atom L,M) | M ∈Message}

where fsym(·) is the symmetric function of f(·), that coalesces pairs of the form (M,M ′) into their second
item M ′.

In step 1, the syntactic marker Atom L is used to find and remove all marshaling parameters that have
been added to represent the marshaling layer. Then, step 2 removes the syntactic marker, finally obtaining
PA.

Exploiting the results proved in [HL01], each one of these transformations preserves secrecy and authen-
tication if the required sufficient conditions (12) and (13) hold.

In step 1, the preservation results apply by assigning

PAbsA = P tmpA ; PRefA = PLm
A ; AKRef

0 = AKm-noML
0

By setting AKAbs
0 = AKm-noML

0 condition (12) becomes

AKm-noML
0 ⊇ f(AKm-noML

0 ) ∪ {f(M ′)|(M,M ′) ∈ Pairs} (14)

It is now showed that (14) is satisfied. By the definition (6) of AKm-noML
0 , and since Atom L 6∈ AKm

0 and
Atom L 6∈Marshaling, it follows

f(AKm-noML
0 ) = f(AKm

0 ) ∪ f(Marshaling) ∪ f({Atom L})
= AKm

0 ∪Marshaling ∪ {Atom L}
= AKm-noML

0

Moreover, {f(M ′)|(M,M ′) ∈ Pairs} = Marshaling, because the only elements collapsed by f(·) in step 1
are marshaling parameters. So, (14) is finally reduced to AKm-noML

0 ⊇ AKm-noML
0 , which is trivially true.

Condition (13) holds too because Pairs∩ subterms(AgreementSet) = ∅. Indeed, in step 1 each element
in Pairs has the form (Atom L, a); but Atom L can never appear in any running or finished event, and
thus in any subterm of the AgreementSet, because it is assumed that no honest agent will ever input or
internally generate the Atom L value, except when the syntactic marker is explicitly needed.

In step 2, the preservation results apply with

PAbsA = PA; PRefA = P tmpA ; AKRef
0 = AKm-noML

0 ; AKAbs
0 = AK 0

Condition (12) is clearly satisfied because of the theorem hypothesis AK 0 = AKm-noML
0 , and with a

reasoning similar to the one done in step 1. Also condition (13) holds because of the same reasoning used
for step 1.
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Figure 7: Example of encoding function in the TLS protocol.

Summing up, since each transformation consists of applying the renaming function f(·) with condi-
tions (12) and (13) satisfied, we can conclude that both transformations preserve secrecy and authentication,
which proves the theorem.

2

Since (9) depends on the derivation relation `, this condition must be checked each time the datatype is
updated.

4 Handling the Encoding of Data to be Ciphered and Key Mate-
rial

Cryptographic protocols must define, for interoperability, not only the encoding of messages that are sent
and received on communication channels, but also the encoding of data on which cryptographic operations
are applied. For instance, when block ciphers are in use, the plaintext must normally be padded before
encryption, so that the length of the padded plaintext is a multiple of the encryption block size.

For example, the TLS protocol uses a MAC-then-Encode-then-Encrypt (MEE) scheme whose encode
step is depicted in figure 7. The encoding function concatenates the plaintext of a packet with the MAC
computed in the first step of the MEE scheme. Then some padding is added to ensure the final length is
block aligned with the encryption scheme block size, and finally the padding length plen is appended. The
resulting byte array is finally encrypted, performing the last step of the MEE scheme. The message is sent
after applying the marshaling transformation showed in figure 2(a). At the receiver side, the unmarshaling
is first performed, which returns the encrypted byte array of the message. After decryption, the resulting
byte array is decoded by first computing the plaintext length (using plen and the fixed size of MAC) and
then extracting the various components from the byte array.

In SSH, when encryption is in place, the BPP operations described in figure 2(b) become the encoding
operations performed before encryption, and the marshaling layer becomes transparent. That is, the result
of the BPP encoding is first encrypted, and then directly sent over the network (concatenated with a MAC
of constant size). Interestingly, when some data are received from the network, the marshaling layer just
passes the byte stream as is to the protocol layer, which decrypts the received ciphertext unconditionally.
Then, as soon as the first 4 bytes are decrypted, it is the decoding function responsibility to check the value
len of the length field, to decide on how to process the subsequent data. This design was meant to hide the
length of the exchanged data by keeping it secret, in order to avoid attacks based on the knowledge of the
length of the exchanged messages. However, checking the length field from decrypted data that is not yet
authenticated by a check of the MAC leads to a confidentiality flaw [APW09], if the adversary alters the
first block of an encrypted message. Unfortunately, in the standard Dolev-Yao model of perfect encryption,
where messages are values of abstract types and the adversary can only encrypt/decrypt messages if it has
the correct key, this kind of attacks cannot be caught because encryption is implicitly authentic if the key
stays secret.

The modeling of marshaling functions introduced in the previous section lets one soundly abstract the
marshaling layer under very few sufficient conditions (the adversary must know the encoding parameters).
Unfortunately, that layered model only applies to the marshaling layer, which operates on already protected
data, and not on encoding operations performed on data to be further processed by cryptographic operations.
The main difference between the two cases is that the data on which the marshaling layer operates could be
accessed by the adversary in their unmarshaled form without compromising the protocol security anyway,
while the other encoding functions operate on possibly confidential data.

For this reason, in this section a more general model of encoding functions is introduced. This more
general model can handle encoding functions operating on confidential data, as well as marshaling functions.
However, when using this general model, the sufficient conditions for the sound abstraction of the encoding
functions need to be much stronger. For this reason, it is convenient to apply the results found in this section
using the more general model only to encoding functions that operate on possibly confidential data, where
such generality is required, and one has to be satisfied with stronger sufficient conditions. For marshaling
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functions, instead, it is convenient to use the specialized model of section 3, because it requires weaker
sufficient conditions.

Accordingly, and for simplicity, when presenting the general model developed in this section, reference
will be made only to the encoding functions applied to data to be fed to cryptographic functions. As showed
in section 6, the general and specialized models can be combined together to handle both marshaling, and
encoding of possibly confidential data, in the most convenient way.

The refinement of the abstract protocol model into the general model that includes data encoding can
be seen as divided into two steps. In the first step, encoding operations are introduced, but using pattern
matching for the corresponding decoding operations. In the second step, a more realistic model of a real
implementation is finally considered, where decoding operations occur explicitly.

4.1 The First Refinement Step

The starting point is the abstract protocol model SYS , where the encoding of data is completely abstracted
away. The result of the first refinement step is denoted SYS e-pm (where e stands for encoding and pm for
pattern matching) and is formally defined as

SYS e-pm , |||A∈HonestP e-pm
A ‖ ADV (AK e-pm

0 )

where P e-pm
A incorporates the capability of encoding data before applying cryptographic operations on them,

and of decoding the outcome of decryption operations.
Similarly to section 3, encoding parameters are formalized as messages a ∈ Encoding, and the encoding of

message M performed by actor A using parameters a is formalized as eA(a,M). As in section 3, condition (5),
i.e. the assumption that encodings and decodings are deducible, is assumed to hold, and absence of side
effects and of memory between calls is also assumed.

Process P e-pm
A differs from PA only by the addition of encoding operations, one before each cryptographic

operation. More precisely, in P e-pm
A , each abstract term {N}K occurring in PA is refined into {eA(a,N)}K ,

where the choice of a is made so as to comply with the protocol specification documents. Similarly, terms
{[N ]}K , [{N}]K , H(N), and K∗ (where, as stated above, K∗ ranges over {K∼,K+,K−}) are refined into
{[eA(a,N)]}K , [{eA(a,N)}]K , H(eA(a,N)), and eA(a,K)∗ respectively.

The meaning of this refinement is that, when encrypting data, the encoded plaintext is encrypted, instead
of its internal representation. Similarly, when building a key, the encoded key material is used instead of its
internal representation.

In P e-pm
A the decoding operations dA(a, ·), corresponding to eA(a, ·), are not represented explicitly. In-

stead, they are represented implicitly by pattern matching, in the same way as decryption is represented im-
plicitly in the abstract CSP model. For example, receive.B.A.{eA(a, x)}K → P means receiving {eA(a, x)}K ,
decrypting the received message with key K, decoding the outcome of decryption by using the inverse of
eA(a, ·), and finally binding x to the result of decoding, before proceeding with P .

Of course, this model is still rather abstract, because of the pattern matching mechanism, which is not the
way decoding is normally implemented. Moreover, using pattern matching introduces a further assumption
about eA(a, ·), i.e. eA(a, ·) is assumed to be injective. Encoding functions used in protocols should always
be defined so as to be injective, because otherwise there could be encoded data that cannot be decoded
uniquely. However, one particular implementation eA(a, ·) of an injective encoding function could be non-
injective, because of implementation errors. For example, let us denote length(M) the length in bytes of
a message M , and let us consider the trivial definition of an injective encoding function that encodes a
message M as the concatenation of a binary representation of length(M) followed by the length(M) bytes
of M . A wrong implementation of this injective function that, for example, trims M to a maximum length
K, is non-injective, because it maps all the messages longer than K that have the same prefix to the same
encoded message.

After having introduced the first refinement step from SYS to SYS e-pm , sufficient conditions are now
introduced under which secrecy and authentication are preserved when transforming back SYS e-pm into
SYS . The conditions for preservation of authentication are stronger than those for secrecy.

One first condition, which is common for both secrecy and authentication, is

∀a,O . eA(a,O) = e(a,O) (15)

where e(a,M) denotes the definition of the encoding function (in contrast with eA(a,M), which denotes
its implementation in agent A). This condition means that the encoding implementation in each actor is
correct with respect to the specification of the encoding scheme. In practice, if (15) holds, then all actor’s
implementations of encoding functions are equivalent, so that implementing actors can be ignored. So, the
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e(a,O) symbolic form of encoding will be used from now on, regardless of the implementing actor, when
condition (15) is assumed to hold.

A second condition, common for both authentication and secrecy, is the injectivity of e(a, ·), which
normally holds for any well-defined encoding algorithm, as already observed.

A data renaming transformation fd(·), that transforms P e-pm
A into PA, and thus SYS e-pm into SYS , is

defined as the identity function except for the following cases:

fd(M,M ′) = (fd(M), fd(M
′))

fd({e(a,M)}K) = {fd(M)}fd(K)

fd({[e(a,M)]}K) = {[fd(M)]}fd(K)

fd([{e(a,M)}]K) = [{fd(M)}]fd(K)

fd(H(e(a,M))) = H(fd(M))
fd(e(a,K)∗) = (fd(K))∗

This function is well-defined because e(a, ·) is injective. It is the key for proving our preservation results, via
Hui and Lowe’s theory.

Finally, a third condition, common for both authentication and secrecy, has to be added about the
adversary knowledge:

AK 0 ⊇ fd(AK e-pm
0 ) ∪ fd(Encoding) (16)

Hypothesis (16) is reasonable because it simply requires that the adversary in the abstract system knows
at least the simplified form of messages that are known by the adversary in the refined system, along with
the encoding parameters.

Preservation of secrecy in the refinement from SYS to SYS e-pm can now be expressed by the following
theorem.

Theorem 4.1

If (15) holds and e(a, ·) is injective and (16) holds

SYS sat Secrecy ⇒ SYS e-pm sat Secrecy

In order to prove that secrecy in the abstract system implies secrecy in the refined system, it is enough
to show that fd(·) is actually a fault preserving simplifying transformation that preserves secrecy, which
amounts to check that conditions (9) and (10) are satisfied.

Satisfaction of condition (9) can be proved by induction over the knowledge derivation relation `; while
satisfaction of condition (10) can be proved by hypothesis (16). 2

In order to prove that authentication is preserved when refining SYS into SYS e-pm , one further condition
that must hold for messages in AgreementSet has to be stated. Let us introduce now the symbolic expression
of a message, that is a term that represents the message but leaving all data encoding operations in their
symbolic form e(a,O) (in contrast to resolve them to the resulting term obtained by encoding message O
with parameters a).

Using the symbolic expression concept, the AgreementSet can be partitioned into equivalence classes.
Two messages M and M ′ belong to the same equivalence class if their symbolic expressions are equal, modulo
a renaming of the first argument of each encoding operation occurring in them (namely the a argument of
e(a,O)). The M ∼M ′ notation means that M and M ′ belong to the same equivalence class. For example, if
(H(e(a,O)), N) is the symbolic expression of M , and (H(e(b,O)), N) is the symbolic expression of M ′, then
M ∼M ′ is true; in contrast, if (H(e(b,O)), N ′) is the symbolic expression of M ′ and N 6= N ′, then M �M ′,
because their symbolic expressions also differ by the N 6= N ′ terms. In other words, each equivalence class
contains all the messages that can be obtained by applying encodings with various encoding parameters to
the same unencoded message.

The condition to be added for the preservation of authentication is:

∀ M,M ′ ∈ AgreementSet · M ∼M ′ ⇒M = M ′ (17)

which states that each equivalence class must have only one element. In other words, it must never happen
that AgreementSet contains two messages that share the same symbolic expression, except for some encoding
parameters. To show why (17) is necessary, consider the following counter-example. Suppose (17) does not
hold. In a refined model, agreement could fail because one agent emits his running event on H(e(a,M)),
while another agent emits his finished event on H(e(b,M)). However, such a fault would not be preserved
in the corresponding abstract model, where both events would be done on H(M), letting agreement succeed.
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Indeed, the SSH protocol discussed in section 6 performs agreement on a final hash, requiring a careful
evaluation on whether (17) is satisfied. In practice, (17) is enforced by explicitly including, within each
message upon which agreement is required, the parameters that must be used to encode each part of the
message itself. For example, agreement on H(e(a,M)) becomes agreement on (a,H(e(a,M))). In this way,
parameter a is not abstracted away in the abstract model, where agreement happens on (a,H(M)).

Preservation of authentication in the refinement from SYS to SYS e-pm can now be expressed by the
following theorem.

Theorem 4.2

If (15) holds and e(a, ·) is injective and (16) holds and (17) holds

SYS sat Agreementfd(AgreementSet) ⇒ SYS e-pm sat AgreementAgreementSet

In order to prove that fd(·) preserves agreement, since conditions (9) and (10) have already been proved
for theorem 4.1, it is enough to prove (11), that is fd(·) is locally injective on AgreementSet. In other words,
if by hypotheses (15), (16) and (17), fd(·) satisfies condition (11), then this theorem is proved.

Now, function fd(·) is showed to be locally injective on AgreementSet.
Let M,M ′ ∈ AgreementSet with M 6= M ′. If M � M ′, then M and M ′ are terms with different

structures, or, if they have the same structure, there exist two subterms N and N ′ with N 6= N ′, in the
same position in M and M ′ respectively, that cause them to differ. In this case, fd(M) 6= fd(M

′) because
it can be easily showed, by structural induction over messages, that fd(·) preserves message structure and
does not alter subterms, except for removing symbolic encoding operations, and their first parameter, which
is not what is making M and M ′ different in this case.

If M ∼M ′, then, by (17), if follows that M = M ′, which contradicts the hypothesis, so this case cannot
happen. 2

By theorem 4.1, one can verify secrecy on the simpler abstract model SYS , and the same property is
implied to hold on the more refined model SYS e-pm , under the hypotheses that encoding functions are
injective and correctly implemented in all protocol actors (plus the fact that the adversary in the abstract
model knows all encoding parameters used by the protocol). By theorem 4.2, proving authentication on
SYS implies authentication in SYS e-pm , under the further condition that the encoding parameters used in
the agreement terms are themselves agreed upon.

As with theorem 3.2, if extensions of the proposed datatype are used, structural inductions used in the
proofs of theorems 4.1 and 4.2 must be checked to hold for the new datatype.

4.2 The Second Refinement Step

As already observed, SYS e-pm is still very abstract, because of the pattern matching mechanism used for
decoding. Sometimes, models like SYS e-pm are used, with e(a, ·) simply defined as a symbolic injective
function, and correctness of data encoding and decoding assumed by hypothesis. These models are not
much more complex than the corresponding abstract models where data encoding is fully abstracted away,
because most of the complexity of data encoding stands in the implementation of encoding and decoding
algorithms, which is not represented when encoding functions are symbolic.

The second step of refinement that will be introduced shortly in this section makes the application of
data encoding and decoding operations explicit in the model, like it was for the analogous operations in
section 3. In this way, the possibility to represent significant parts of the actual implementation of data
encoding and decoding algorithms in non-symbolic form is enabled.

In order to make data decoding explicit in the model, the same notation introduced in section 3 is used
here: the decoding of message M with parameters a done by actor A is denoted dA(a,M) and the special
atom Atom E represents a decoding error code returned by the decoding algorithm when M is not recognized
as a valid encoding.

For simplicity, in this second refinement step the application of eA is kept inline, while the application
of dA is delegated to a separate process, which is convenient in order to eliminate the unrealistic pattern
matching mechanism for decoding, and make the latter explicit, as typical protocol implementations do.

More precisely, each process P e-pm
A is refined into a process P e

A, composed of the protocol logic PLe
A

coupled with a decoding process DECA. Each pair of PLe
A and DECA processes internally communicates

by the p sendA and p receiveA hidden dedicated channels. The refined system is denoted SYS e .
The structure of SYS ewith two actors A and B is depicted in figure 8. The formal definition of SYS e is

SYS e , (|||A∈HonestP e
A) ‖ ADV (AK e

0)

19



send.A.*

receive.*.Ap_send
A

send.B.* p_receive
B

receive.*.B p_send
B

p_receive
A

ADVPLe
A PLe

BDECA DECB

P e
A P e

B

Figure 8: Actors A and B with ADV in SYS e .

where P e
A , (PLe

A ‖ DECA) \ privA and privA = {|p sendA, p receiveA|}.
The PLe

A process incorporates the capability of encoding data before applying cryptographic operations
on them, and delegates to DECA the task of decoding the plaintext after having decrypted a ciphertext.
The call of the decoding function dA(a,M) is represented by the event p sendA.(M,a) while the successful
termination of the operation is represented by the event p receiveA.N , where N = dA(a,M) is the result
of decoding. If decoding is unsuccessful, i.e. dA(a,M) = Atom E , DECA gets stuck, and PLe

A gets stuck
too. This behavior, which is realistic for the kind of encoding considered in this section, corresponds to an
aborted session.

Each DECA process is formally defined as follows:

DECA , � y∈Message
a∈Encoding

p sendA!(y, a)→

(p receiveA!dA(a, y)→ DECA) |< dA(a, y) 6= Atom E |> STOP
(18)

In order to obtain P e
A from P e-pm

A , each receive.B.A.M in P e-pm
A must be turned into a receive.B.A.M ′,

followed by zero or more p sendA.(y, a)→ p receiveA.N
′ prefix pairs, representing the interaction with the

DECA process. For example, receive.A.B.{eA(a,M)}K → P must be turned into receive.A.B.{y}K →
p sendA.(y, a)→ p receiveA.M → P .

The refinement transformation from P e-pm
A to PLe

A can be formalized by a function r from processes to
processes such that PLe

A = r(P e-pm
A ).

Function r can be defined as

r(ev → P ) = (re(ev)→ r(P ))
r(ω(P1, . . . , Pnω )) = ω(r(P1), . . . , r(Pnω ))

where ev ranges over event prefixes, ω ranges over CSP operators, nω stands for the arity of ω, and re is
another refinement function that describes how event prefixes are refined. In this definition the usual con-
vention applies according to which the first matching rule is applied. Therefore, according to this definition,
only event prefixes are refined, while all other operators are unaffected by the refinement.

According to the idea expressed previously, only receive prefixes are refined. Each receive event is refined
into a similar receive event, followed by zero or more pairs of p sendA p receiveA events. The formalization
of re is

re(receive.B.A?N) = receive.B.A?FN GN
re(ev) = ev

where (FN , GN ) = rt(N) and rt is another function that describes how terms are refined. rt takes a term
N and returns a pair where the first element FN is the refined term and the second one GN is a possibly
empty sequence of prefixes that have to be added after the receive event being refined and that represent
the interactions with the decoding process.

rt can be defined by refining encryption terms like {eA(a,N)}K into {y}K , where y is a new fresh
variable for storing the received message. The decoding of y is represented by appending the prefixes
“→ p sendA.(y, a)→ p receiveA.N

′”, where N ′ is obtained by recursively applying the same procedure to
N .

Formally,

rt((N,O)) = ((FN , FO), GNGO)
rt(εK(eA(a,N))) = (εK(y), “→ p sendA.(y, a)→ p receiveA.FN” GN ) with y new fresh variable

rt(N) = (N, ε)

where here (FN , GN ) = rt(N), (FO, GO) = rt(O), εK(·) represents any encryption operator (either {·}K
or {[·]}K or [{·}]K) for which the inverse of K is known to the process, ε represents the empty string and
GNGO represents the simple concatenation of strings GN and GO.
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As an example, let us consider the refinement of a process P e-pm
A defined as

receive.B.A. {eA(a, [{eA(b,Atom A)}K1
])}eA(c,K2)+ → P

where K1 is a shared key known by P e-pm
A (in this example K1 is opaque, e.g. P e-pm

A has received it as
an opaque message), and eA(c,K2)+ is a public key for which the corresponding private key eA(c,K2)− is
known by P e-pm

A . The refined process PLe
A, to be coupled with its decoding process DECA, is in this case

receive.B.A.{[y1]}eA(c,K2)+ → p sendA.(y1, a)→ p receiveA.{y2}K1
→

p sendA.(y2, b)→ p receiveA.Atom A→ r(P )

In order to be able to perform decryption operations, PLe
A must know the symmetric key K1 and the private

key eA(c,K2)−, as P e-pm
A does. In this example, PLe

A receives {[y1]}eA(c,K2)+ , i.e. a message encrypted
with public key eA(c,K2)+, and decrypts it by using the known refined private key (eA(c,K2)− (because the
private key is required to decrypt public-key ciphered data). Then, the encoded message y1 and the decoding
parameters a are sent to the coupled DECA process, which returns the decoded representation. The returned
message must match {y2}K1

, where y2 is again in the encoded form required by the cryptographic algorithm.
This means that PLe

A decrypts the returned message with K1 and gets y2. Finally, PLe
A sends y2 and the

decoding parameters b to DECA, obtaining the decoded plaintext, which is checked to match Atom A.
As a second example, let us consider the abstract process P e-pm

A defined as

receive.B .A.{eA(b,H (eA(c,Atom A)))}eA(a,K )∼ → P

where P e-pm
A is assumed to know K, and thus also eA(a,K)∼. The refined process PLe

A, to be coupled with
its decoding process DECA, is

receive.B.A.{y}eA(a,K)∼ → p sendA.(y, b)→ p receiveA.H(eA(c,Atom A))→ r(P ) (19)

In this example, P e-pm
A receives a message and decrypts it using the symmetric key eA(a,K)∼, which must

be known by PLe
A too. The obtained plaintext y should be the encoding, with the parameters b required

by the cryptographic algorithm, of the original message H(eA(c,Atom A)). Here y is treated by PLe
A as an

opaque message and it is sent along with b to the coupled decoding process DECA. The latter returns the
internal representation of y, which is checked to match H(eA(c,Atom A)).

The inverse of r, i.e. the function that takes back from PLe
A to P e-pm

A , will be denoted f . Note that f
can simply be defined as:

f(receive.B.A?M → p sendA.(y, a)→ p receiveA.N → P ) = f(receive.B.A?M
[
eA(a,N)/y

]
→ P )

f(ω(P1, . . . , Pnω
)) = ω(f(P1), . . . , f(Pnω

))

Although function f is defined for any CSP process, in order to keep the proofs simpler, from now on it
will be assumed that PLe

A is a sequential process. This assumption does not narrow the generality of our
results, since multi-threaded implementations of protocol logics can be simulated by corresponding sequential
implementations.

Now that the formal relation between SYS e and SYS e-pm has been defined, the following sufficient
conditions for fault preservation when abstracting from SYS e to SYS e-pm can be formulated:

∀ a, y dA(a, y) 6= Atom E ⇒ eA(a, dA(a, y)) = y (20)

AK e-pm
0 ⊇ AK e

0 (21)

Condition (20) is true if, for each actor, the implementation of the encoding function eA(a, ·) is the inverse
of the implementation of the decoding function dA(a, ·). This property will be named the “e/d round-trip
property”. Condition (21) is true if, at the beginning of the protocol run, the adversary in the intermediate
system knows at least the same messages known by the adversary in the refined system.

Differently from section 4.1, no assumption on implementation correctness with respect to any encoding
scheme specification is made here, and no relationship is being assumed between encoding scheme imple-
mentations of different actors. That is, the e/d round-trip property (20) can be checked in isolation on each
implementation alone, without referring to any encoding scheme specification. In addition to the above con-
ditions, the injectivity of eA(a, ·) has to be assumed, otherwise the pattern matching mechanism in SYS e-pm

would not work.
Canonicalization schemes are neglected, because they transform data between two different items of the

same equivalence class, and all such items are normally represented by a single term in an abstract formal
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model. Indeed, as stated in [KR06] too, canonicalization does not impact security properties, as long as all
elements of the same canonicalization equivalence class have the same meaning (which actually is the aim
of canonicalization). Moreover, representing canonicalization operations in abstract models would introduce
non injective functions, whose interaction with some security properties (e.g. authentication) would be rather
complex, despite not so significant.

The fault preservation property in this case can be proved with respect to any trace property (and is
based on a different reasoning w.r.t. the simplifying transformations introduced by Hui and Lowe). The
intuition is that, by defining P e

A , (PLe
A ‖ DECA) \ privA, and assuming the e/d round trip property (20),

P e-pm
A and P e

A behave in the same way except for receive events. While P e-pm
A gets stuck on receive events

of non matching messages, P e
A receives those messages but subsequently deadlocks, within DECA. Then, if

communication events are disregarded, it is possible to prove that any (fault) trace in SYS e is also a (fault)
trace in SYS e-pm , provided the adversary in SYS e-pm is not less powerful than the adversary in SYS e (this
condition is expressed by (21)).

Formally, the fault preservation property is expressed by the following theorem and corollary.

Theorem 4.3 Let comm = {|send, receive|}, and let eA(a, ·) be injective. Then, the e/d round-trip prop-
erty (20) and condition (21) imply

SYS e-pm \ comm v SYS e \ comm (22)

Corollary 4.4 Under the same hypotheses of theorem 4.3,

∀SPEC · SYS e-pm sat SPEC ⇒ SYS e sat SPEC (23)

Summing up the results of theorem 4.3 and corollary 4.4, if the adversary knowledge in the abstract
system is no less than the adversary knowledge in the refined system, and the e/d round-trip property holds
(i.e. the implementation of the encoding function of each actor is the inverse of the implementation of the
decoding function of the same actor), then the more abstract SYS e-pm can be verified instead of SYS e , for
any security property.

By this result, when a model extraction approach like the one presented in [BFGT06] is used, the
verification of any security property can be safely divided into two distinct verifications. On one hand, the
verification of the property on an abstract protocol model, where all the decoding functions that are modeled
in this work by the DECA processes are left out. On the other hand, the verification that the sequential
code of each encoding procedure implements the inverse of the corresponding decoding procedure.

The proof of corollary 4.4 is now given, and the proof of theorem 4.3 is sketched. The full proof of
theorem 4.3 is available in appendix A.2.

[Proof of Corollary 4.4] From theorem 4.3, the trace refinement relation (22) implies

SYS e-pm \ comm sat SPEC ⇒ SYS e \ comm sat SPEC

Then, by using the ⇐ side of assumption (3), it follows that (23) holds. 2

The proof of theorem 4.3 uses the following lemma, which states the trace refinement relationship that
binds P e-pm

A and P e
A.

Lemma 4.5 Let commA , {|send.A, receive?B.A|}. If (20) and (21) hold, then, for any A ∈ Honest,

(P e-pm
A ‖ ADV (AK e-pm

0 )) \ commA v (P e
A ‖ ADV (AK e

0)) \ commA (24)

This lemma descends from the fact that, as already observed, the difference between P e-pm
A and P e

A

stands only in receive?B.A events. If such events are hidden, and P e-pm
A is combined with an adversary that

is not less powerful than the one combined with P e
A, the fault traces occurring in P e

A can occur in P e-pm
A

too. Technically, the proof of lemma 4.5, which is in appendix A.3, is based on proving that the two sides
of (24) are bound by a weak simulation relationship. This relationship, which formalizes the intuition given
above, implies trace refinement.

[Proof sketch of theorem 4.3] Let us start from SYS e-pm and let us substitute, one by one, each P e-pm
A

into the corresponding P e
A. At each substitution step a new process is obtained that can be proved, by using

lemma 4.5, to be a trace refinement of the previous one. More precisely, this part of the proof is done by
induction.

The base of the induction is

∀ X ∈ Honest · SYS e-pm \ comm v
((
|||A∈Honest\{X}P e-pm

A |||P e
X

)
‖ ADV (AK e

0)
)
\ comm
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This relation can be proved to hold by using lemma 4.5, the property of v according to which for
any context C[] we have A v R ⇒ C[A] v C[R], and a distribution-like property of hiding over parallel
composition in CSP.

The induction step is formulated as

∀ X ∈ Honest \ Ref((
|||A∈Honest\Ref P

e-pm
A ||| |||B∈Ref P

e
B

)
‖ ADV (AK e

0)
)
\ comm

v
((
|||A∈Honest\(Ref∪{X})P

e-pm
A ||| |||B∈Ref∪{X}P

e
B

)
‖ ADV (AK e

0)) \ comm

The induction step can be proved in a way similar to the base. 2

5 Introducing Equational Theories

Equational theories are sometimes useful in security protocol models, when different forms of a message need
to be considered equal. For example, one may want to identify nested pairs with different associativity, like
for example ((M,N), O) and (M, (N,O)), if one is just interested in the ordered list of elements contained
in a nested pair.

A way to introduce an equational theory in the protocol model is explained in [HL01], and is based on
the definition of a normal form for messages. As the equational theory introduces an equivalence relation on
the set of messages, for each equivalence class a unique message of that class is selected as the normal form
of all the messages belonging to the class.

Formally, a normal form function nf : Message→ Message is introduced that turns a message into its
normal form. The property that nf must satisfy in order to be a valid normal form function is

nf (M) = nf (N) ⇐⇒ M =E N (25)

where =E means equality modulo the equational theory while = is the original syntactic equality of the term
algebra. In other words, if we take the normal form of messages, equality modulo the equivalence relation is
reduced to syntactic equality.

In [HL01], it is showed how a normal form function can be defined for pairs, so that, for example,
(M, (N,O)) and ((M,N), O) are considered equal, but, of course, a normal form can be defined for other
equational theories as well.

After having defined nf , the models of protocol actors are constrained to use only messages in normal
form by applying nf to any message expression occurring in any protocol actor process. In particular, since
send and receive action prefixes now take the form send.A.B.nf(M) and receive.B.A.nf(M) respectively,
each actor process can only send and receive messages in normal form. Similarly, all claimSecret, running
and finished events can only occur with messages in normal form. Only leak events, that are executed by
the adversary without synchronization with actor processes, may in principle lead messages that are not in
normal form.

In order not to limit the adversary power, when a normal form is introduced it is necessary to ensure that
the adversary can always compute nf (M), so that all the messages that are in the adversary’s knowledge can
be leaked in the normal form. To do this, the following new rule is added to the definition of the knowledge
derivation relation:

normal form: U `M ⇒ U ` nf (M)

Should this be omitted, our definition of secrecy would not catch the right Dolev-Yao secrecy concept.
For example, it would be possible that claimSecret happens on a normal form message nf (M), and the
adversary can derive an equivalent message M that is not in normal form, but he cannot derive nf (M) itself.
In this case, secrecy as defined in this paper would hold, despite the message not being really secret according
to the Dolev-Yao secrecy concept in the presence of an equational theory. The normal form derivation rule
solves this issue, making the secrecy definition of this paper match with the Dolev-Yao secrecy concept.

With some equational theories the additional derivation rule is superfluous: for example, with equality
modulo associativity of pairs, the only way for the adversary to derive a message M that is not in normal
form is by the pairing rule, and nf(M) can also be derived using the pairing rule in a different way. However,
with other equational theories it is necessary to keep the normal form derivation rule explicit; an example
will be provided in the next section.

As also observed in [HL01], the definition of a normal form is very much orthogonal to how the results
about fault-preserving simplifying transformations have been obtained. In particular, it can be proved that
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all the theorems about fault preservation of renaming transformations that are used in this paper are still
valid when using a normal form for messages in the way explained above. This implies that theorems 3.2,
4.1, and 4.2 still hold.

Let us now consider the other theorems that do not rely on renaming transformations.
The proof of theorem 3.1 is based on a re-parenthesization of processes, which, of course, can be done in

the same way when normal forms are used. The core of the proof is then the proof that ADV -ML is a trace
refinement of ADV . This still holds when using a normal form for messages because the ADV process can
always derive the normal form of any known message.

In theorem 4.3, the exploited CSP properties are valid under the condition that the alphabets of the
protocol agents are disjoint, which is still satisfied in case the normal form of messages is used. Indeed, the
protocol agents’ alphabets are disjoint (so that they use the adversary as the proxy for their communication)
due to the agent names used within the events, rather than the exchanged messages.

In lemma 4.5, the simulation relation is not defined on messages, and so it remains unchanged. Finally,
all analyzed traces can happen, and the subset relation between the adversary knowledges in the two systems
still holds when a normal form is used, because the adversary can always generate messages in normal form.

6 Applications and Examples

This section shows some practical applications of the results illustrated in this paper. First, it is showed how
all sufficient abstraction conditions stated in this paper can be met on a class of concrete encoding schemes,
that includes XML encodings.

Then, the modeling of an SSH Transport Layer Protocol client is presented. Both an abstract model and
a refined one are provided, along with checks or assumptions needed on implementation code in order to
preserve security properties from the abstract model to the refined one. The refined model includes altogether
marshaling/unmarshaling functions for network messages, as explained in section 3, and encoding/decoding
functions for data on which cryptographic operations are applied, as illustrated in section 4.

6.1 A Class of Data Encodings including XML Encodings

The encoding schemes considered in this example simply add a header to each part of the message being
encoded, and do not alter the message content itself. Formally:

e(a, (M,M ′)) = (e(a,M), e(a,M ′))
e(a,M) = (head(a,M),M)

(26)

where head(a,M) ∈ deds({a,M}) is a header that may depend on parameters a and on message M . The
peculiarity of this kind of encoding function is that it distributes headers across pairs. It is possible to
define the symmetric encoding function, that adds a trailer, or padding, to data; it is furthermore possible
to combine the two.

This class of encoding schemes is general enough to include, for example, XML encodings. Then, it can
be used to model the data encodings used in the protocols of the WS-Security [NKHBM06] standard.

In [BFG06], an implementation of the XML encoding scheme where XML fragments are internally rep-
resented as F# (an ML dialect) records is described. For example, the XML security header specified in the
WS-Security standard is internally stored as:

type security = {
timestamp: ts;
utoks: utok list;
xtoks: xtok list;
ekeys: encrkey list;
dsigs: dsig list }

Then, a set of gen* and parse* functions, implemented in F#, is used to translate internal records to and
from XML, for example when an XML fragment must be encrypted.

In the CSP modeling framework for cryptographic protocols used in this paper, an F# record (i.e. the
internal data representation) can be modeled by means of nested pairs. The F# functions translating to and
from XML, are actually encoding functions that add some XML header and trailer to each element of the
record, that is to the nested pairs. Thus, the gen* and parse* functions behave like the encoding scheme
defined in (26).
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If these functions can be proved side-effect free and memoryless, and if they only use the given input pa-
rameters or hard-coded values (which amounts to check an information flow property on the implementation
code), then all the sufficient conditions required in section 3 are satisfied. So, if these functions are used to
generate the XML encoding that is exchanged on communication channels, then they can be safely left out
when using the model extraction approach.

Moreover, assuming that the conditions required in section 3 are met, in order to check that the im-
plementation of these functions satisfies theorem 4.3, it is enough to additionally check that, on one hand,
the gen* functions only add a tagged fragment before and after any record element, leaving the record
element unchanged (with the exception of canonicalization operations, which are abstracted in the model).
The added tagged fragment may be anything that can be correctly recognized in the decoding phase. This
implies that the tagged fragment is something that cannot occur as part of a normal message to be encoded,
which also implies injectivity of the encoding function implementation. For theorem 4.3 to hold, correctness
of implementation w.r.t. the XML specification is not required. On the other hand, it is enough to check that
the parse* functions match some expected tagged header and trailer, that must comply with the expected
record type and value, and that they store the data between header and trailer into the proper record field
without further modification (with the exception of canonicalization operations).

For applying theorems 4.1 and 4.2, the correctness of the encoding functions implementation w.r.t. their
specification is additionally needed. This amounts to the extra check that the tagged data added by the en-
coding gen* functions, and recognized by the decoding parse* functions, actually comply with the XML and
WS-Security standards. However, this simplification step is less important, because most of the complexity
is eliminated in the first step.

6.2 Experimental Results

In [BFGT06], a model extraction approach for security protocols was proposed. The FS2PV tool auto-
matically extracts a ProVerif [Bla01, AB05] model from the F# implementation of a protocol, and then
security properties are checked with the ProVerif tool on the extracted model. A ProVerif model is specified
in applied pi calculus [AF01]. Although a formal mapping between applied pi calculus and CSP is outside
the scope of this paper, both modeling languages rely on a Dolev-Yao algebraic datatype and adversary.
So, when experimentally evaluating our approach, the ProVerif tool and applied pi calculus will be used,
although the results in this paper are formally developed in CSP only.

In [BFGT06], when model extraction is performed, a model is extracted from the gen* and parse*

function implementations too, and a global protocol model including the model of these encoding functions
is formally analyzed. Moreover, messages are modeled in their encoded, complex form. As reported by some
of the same authors in [BBF+11] when reviewing the model extraction approach with FS2PV,

“Even if ProVerif scales up remarkably well in practice, beyond a few message exchanges, or a
few hundred lines of F#, verification becomes long (up to a few days) and unpredictable (with
trivial code changes leading to divergence).”

Applying the simplifications proposed here is a way to reduce model size and verification complexity.
In this section, the gain obtained with the proposed approach is evaluated in terms of verification time

on a case study based on FS2PV and ProVerif.
In order to provide a fair evaluation, the most recent (and optimized) versions of the tools are used. The

current version of FS2PV comes with the Otway-Rees example only, the other examples presented in [BFG06]
having been discontinued. Hence, our evaluation is done on the Otway-Rees protocol.

The ProVerif model extracted from the full F# implementation of the protocol is 578 lines long, while
the ProVerif model extracted by ignoring the gen* and parse* functions is almost half in size, counting 324
lines. Verification of the simplified model is on average 1.32± 0.01 times faster than verification of the same
properties on the refined model. The reductions in size and verification time can in general mitigate the
problems exposed in [BBF+11]. In particular, the reduction in model size seems a key factor for reducing
unpredictability and divergence, according to the experience reported in [BBF+11].

With the current version of the FS2PV tool, we had to manually alter the F# code so that the encod-
ing/decoding functions could be ignored. However, it would be fairly easy to extend the FS2PV tool so that
functions belonging to user-specified F# modules would be ignored. So, at the cost of implementing the
extension once, one could get the benefit of smaller models and faster verification every time the tool is used.
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1. SSHClient(IDC,me, you,CAlgs) =
2. send!me!you!IDC → receive!you!me?IDS →
3. ucookieC∈Cookies send!me!you!(cookieC,CAlgs) →
4. receive!you!me?(cookieS, SAlgs) →
5. let g = Negotiate(CAlgs, SAlgs, ‘g’) ∈ CryptoParameter within

6. let p = Negotiate(CAlgs, SAlgs, ‘p’) ∈ CryptoParameter within

7. ux∈DHSecrets send!me!you!EXPp(g, x) →
8. receive!you!me?(PubKeyS,DHPublicS, [{H(finalHash)}]PriKeyS) →
9. GO(EXPp(DHPublicS, x), finalHash, PubKeyS, IDS)

Figure 9: A possible fully abstract model of an SSH-TLP client.

6.3 Modeling an SSH Transport Layer Protocol Client

In this example, lists of messages, like for example (M,M ′,M ′′), stand for corresponding nested right-
associating pairs, i.e. (M,M ′,M ′′) stands for (M, (M ′,M ′′)).

The SSH Transport Layer Protocol [YL06b] (SSH-TLP) is part of the SSH three protocols suite [YL06a];
in particular it is the first protocol that is used in order to establish an SSH connection between client and
server. SSH-TLP gives server authentication to the client, and establishes a set of session shared secrets.

6.3.1 Modeling SSH-TLP abstractly

A possible fully abstract model of an SSH-TLP client is reported in figure 9. According to our modeling
approach, this model is part of the abstract SYS , where one or more instances of SSHClient can partake
together with one or more instances of the SSH-TLP server model, and with the adversary.

The SSHClient process starts a protocol session with the server at line 2 by sending it the client
identification string denoted IDC. The server responds with IDS, the server identification string, which
is received by the client at the same line. Then, at line 3, the client generates and sends a nonce cookieC,
followed by the client lists of supported algorithms CAlgs. The generation of a nonce is represented in CSP
as an internal choice on the set Cookies ⊆ Atom of all possible nonces. The server responds by sending
a nonce cookieS, followed by the server lists of supported algorithms SAlgs, which are received by the
client at line 4. Then, at lines 5–6, the client computes the value of the Diffie Hellman (DH) parameters g
and p by computing the Negotiate(CAlgs, SAlgs, Param) function, which returns the requested negotiated
algorithm parameter named Param, obtained from the supported client and server algorithms CAlgs and
SAlgs. CryptoParameter ⊆ Message is the set of messages that can be used as cryptographic algorithms
or parameters. Once g and p have been obtained, at line 7 the client generates a random private key x and
sends EXPp(g, x) (its DH public key, as explained below), which is a message representing the result of the
modular exponentiation e = gx mod p.

At line 8, the client receives a message containing the opaque server public key PubKeyS, the opaque
server DH public key DHPublicS and the server signed final hash [{H(finalHash)}]PriKeyS . As prescribed
by the signature algorithm, the server signature of finalHash is performed by encrypting, with the private
key, the hashing of the message to be signed, rather than the message itself. The server computes its DH
public key as DHPublicS = EXPp(g, y), where y is the server’s DH private key. However the client is
modeled to receive an opaque DHPublicS message, because the server DH public key is an opaque value
from the client’s point of view. Analogous reasoning holds for public and private server keys PubKeyS and
PriKeyS. The term finalHash is the value upon which agreement is required, and contains all the relevant
data of a protocol session. At line 8 of figure 9, this term has not been expanded for simplicity. Its expansion
is:

finalHash = H(IDC, IDS, (cookieC,CAlgs), (cookieS, SAlgs), PubKeyS,

EXPp(g, x), DHPublicS,EXPp(DHPublicS, x))

The term EXPp(DHPublicS, x), that is used inside the final hash, is the DH shared key as computed by the
client. This is the main session secret, shared between the client and the server. Finally, the GO(·) process
invoked at line 9 deals with the security events of the protocol and is defined as

GO(DHKey, finalHash, PubKeyS, IDS) =
(claimSecret.me.you.DHKey → finished.me.you.finalHash→ STOP )

|< PubKeyS == TrustedKeyOf(IDS) |> STOP
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That is, if the received server public key PubKeyS corresponds to the locally stored trusted key for the
server identified by IDS, which is retrieved by the function TrustedKeyOf(IDS), then the protocol run
ends well, and all security properties can be claimed, namely the secrecy of the DH shared key DHKey, and
the agreement on the server signed finalHash. Agreement on finalHash implies agreement on all the data
items on which it is computed. However, since the final hash is used in later phases of the SSH protocol with
other data in order to establish a set of session keys, it is required that actors agree explicitly on finalHash,
and not only on its contents.

To model the DH modular exponentiation properties, a new operator Exp is added to the datatype:

Exp Message Message Message

along with the syntactic sugar Exp M N O = EXPO(M,N). From the point of view of the adversary
knowledge derivation relation `, Exp represents a non invertible function like a hash. Accordingly, only a
single exponentiation rule is needed, defined as

exponentiation: U `M ∧ U ` N ∧ U ` O ⇒ U ` EXPO(M,N)

This rule is like the hashing one. For this reason, all previously proved results still hold.
Now, to model the DH property such that the same DH shared key is obtained by a pair of agents via

modular exponentiation of their own private DH key with the other agent’s public DH key, the following
equation must be modeled

EXPO(EXPO(M,N), N ′) = EXPO(EXPO(M,N ′), N) (27)

The two sides of the equation represent the same DH shared key, as computed by each agent. Then,
equation (27) is such that this DH shared key is considered the same by all parties, regardless of the agent
that computed it.

Equation (27) entails an equational theory in the CSP model, and this can be treated by the approach
explained in section 5.

The equational theory induced by (27) is a commutative property, so a normal form can be defined by
first defining a total ordering of messages and then taking as the normal form of equivalent messages the
one where the arguments that can commute occur in the order defined by the total ordering.

The total ordering on messages can be defined by first introducing a total ordering on the set of atoms
and a total ordering on the set of data operators. Formally, let us denote <A the strict total order relation
on Atom, ∆ the set of datatype operators, <∆ the strict total order relation on ∆ and < the strict total
order relation on Message. Also, let δ range over ∆ and n(δ) denote the arity of δ.

Then, < can be defined as the least relation that satisfies the following implications:

A <A A
′ ⇒ Atom A < Atom A′

δ <∆ δ′ ⇒ δ Arg1 · · · Argn(δ) < δ′ Arg′1 · · · Arg′n(δ′)

Mi < M ′i ∧ ∀j ∈ [1, i− 1] Mj = M ′j ⇒ δ M1 · · · Mn(δ) < δ M ′1 · · · M ′n(δ)

It is straightforward to prove that < is transitive and such that for any M,N ∈Message exactly one of
M < N , M = N , and N < M holds, which implies that < actually defines a total ordering on Message.

The normal form function can finally be defined as follows:

nf (Atom A) = Atom A

nf (EXPO(EXPO(M,N), N ′)) =

{
EXPnf (O)(EXPnf (O)(nf (M),nf (N)),nf (N ′))
EXPnf (O)(EXPnf (O)(nf (M),nf (N ′)),nf (N))

if nf (N) < nf (N ′)
else

nf (EXPO(M,N)) = EXPnf (O)(nf (M),nf (N))
nf (δ M1 · · · Mn(δ)) = δ nf (M1) · · · nf (Mn(δ))

The proof that (25) holds with this definition (and hence this is a valid normal form) can be done by induc-
tion on the size (i.e. number of operators) of M . The base case (size=1) corresponds to M = Atom A and is
trivially true, while the induction case can be proved by using the definition of nf . Interestingly, this normal
form function is one that could not necessarily be computed by the adversary unless we give explicitly the
adversary the capability to do so, because EXPO(EXPO(M,N), N ′) 6∈ deds({EXPO(EXPO(M,N ′), N)})
without the addition of the normal form derivation rule U `M ⇒ U ` nf (M).

Finally, such definition of the normal form leads to the desired DH property. In the DH key exchange
algorithm, if K and K ′ are the DH private keys, then EXPp(g,K) and EXPp(g,K

′) are the DH public keys,
where g and p are the DH group parameters, while EXPp(EXPp(g,K),K ′) and EXPp(EXPp(g,K

′),K)
both represent the DH shared key that can be obtained by each actor. Only one of the two forms (the normal
form) will actually occur in the protocol, the other one being converted to the normal form by function nf .
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6.3.2 Refining the SSH-TLP model and checking sufficient conditions for abstraction

This section shows how the abstract model presented in the previous section can be refined, according to
the modeling approach presented in this paper, and how the checks required to safely abstract the refined
model can be done.

Two kinds of details that have been studied in isolation, namely the marshaling layer, as modeled in
section 3, and the encoding of data to be ciphered or hashed and key material, as modeled in section 4, are
applied altogether in this model.

Moreover, a new kind of refinement, related to cryptographic algorithms and parameters, is needed in
this example. For example, it is needed to distinguish whether a hash is performed by using the MD5 or
the SHA-1 algorithms, or whether encryption is 3DES or AES. The abstract datatype defined in section 2,
intentionally represents encryption or hashing independently of how they are concretely implemented.

Different real cryptographic algorithms (e.g. SHA-1 or MD5) implement cryptographic primitives (e.g. a
hash function) in different, incompatible ways, and missing information on the used algorithms may lead to
miss possible security faults. For example, the SSH-TLP itself requires agreement on the value of the final
hash, which is then used as the material to build a set of shared session keys. If both actors are to obtain
the same finalHash, and compute the finalHash∼ key, it is a prerequisite to key agreement that they have
previously agreed on the same hashing algorithm and key construction algorithm. Otherwise, they could
obtain the same symbolic value (a shared key obtained from a non invertible representation of the hashed
data), but different concrete values. Then, key agreement may fail in the concrete world, even if the actors
agree on the abstract finalHash∼ key.

In order to faithfully describe this issue, cryptographic algorithms and their parameters are sometimes
introduced in abstract descriptions. For example, in [HL01, BFGT06], encryption functions are distinguished
according to the algorithm and parameters they use.

In this example, in order to handle cryptographic algorithms and parameters, one could extend the
datatype and the associated derivation relation ` showed in section 2. The obtained datatype would be
similar to the one presented in [HL01]. However, this approach would not give us the opportunity to easily
discuss about the conditions under which abstracting these details is safe.

So, the idea is to fit cryptographic algorithms and parameters inside the current datatype, and then to
abstract them away, by reusing some results already obtained in this paper. In practice, the cryptographic
algorithms and parameters are taken from the set CryptoParameter ⊆Message and are added as the first
argument of each cryptographic operation. The refined model that is obtained in this way corresponds to
the ones used in [HL01, BFGT06] where different encryption, decryption and hashing functions are used for
each different choice of algorithms and parameters.

For example, the refined encryption

[{RSA, H(SHA 1 ,M)}]PriKey

expressed in the modeling framework being presented here, corresponds, using an approach like the one
presented in [HL01, BFGT06], to a term like RSAEncrypt(PriKey, SHA1Hash(M)), i.e. the hashing of M
performed using the SHA-1 algorithm and associated parameters, encrypted with the RSA algorithm and
associated parameters.

The three different kinds of refinements must be applied on the same system in the correct order, so as
to avoid improper interactions: first, data to be ciphered or hashed and key material should be refined; then
cryptographic algorithms and parameters should be added; finally the marshaling layer should be introduced.

The refined model for the SSH-TLP client includes, in addition to a refined model of the client protocol
logic, which can be rewritten as in figure 10, a marshaling layer model MLA, and a decoding process model
DECA. Most of the complexity of the protocol indeed stands in MLA and DECA.

In figure 10, string denotes the SSH string encoding, bytes denotes a raw encoding (a sequence of bytes),
mpint denotes the SSH encoding of a multiple precision integer and namelists denotes the SSH encoding
of a list of lists of strings. The bin pack parameter specifies that the SSH-BPP encoding as depicted in
figure 2(b) must be used, with a payload made up of as many fields as the number of subsequent parameters,
each of which in turn specifies the encoding to be applied to each field. So, for example, KEX specifies
the encoding of an SSH key exchange packet, which is an SSH-BPP packet with a payload that includes a
sequence of bytes followed by a list of strings.

Similarly to the abstract model, at line 2, the client exchanges client and server identification strings
by the first two protocol messages, while at lines 3–4 the client and server key exchange messages are sent,
containing the client and server nonces and the lists of supported algorithms. Then, at lines 5–10 algorithms
negotiation takes place. While in the abstract model only p and g where explicitly negotiated, because they
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1. SSHClientRef(IDC,me, you,CAlgs) =
2. send!me!you!(Atom L, (string, IDC)) → receive!you!me?(Atom L, (string, IDS)) →
3. ucookieC∈Cookies send!me!you!(Atom L, (KEX, (cookieC,CAlgs))) →
4. receive!you!me?(Atom L, (KEX, (cookieS, SAlgs))) →
5. let g = Negotiate(CAlgs, SAlgs, ‘g’) ∈ CryptoParameter within

6. let p = Negotiate(CAlgs, SAlgs, ‘p’) ∈ CryptoParameter within

7. let FinalHashAlg = Negotiate(CAlgs, SAlgs, ‘FinalHashAlg’) ∈ CryptoParameter within

8. let SignHashAlg = Negotiate(CAlgs, SAlgs, ‘SignHashAlg’) ∈ CryptoParameter within

9. let SignMode = Negotiate(CAlgs, SAlgs, ‘SignMode’) ∈ CryptoParameter within

10. let SignPadding = Negotiate(CAlgs, SAlgs, ‘SignPadding’) ∈ CryptoParameter within

11. ux∈DHSecrets send!me!you!(Atom L, ((bin pack,mpint), EXP e
p (g, x))) →

12. receive!you!me?(Atom L, ((bin pack, string,mpint, string),
(PubKeyS,DHPublicS, [{((SignMode, SignPadding), y)}]PriKeyS))) →

13. int sendme!(y, (SignMode, SignPadding)) →
14. int receiveme!H(SignHashAlg, eme(SignHashAlg, finalHash enc)) →
15. GO(EXP e

p (DHPublicS, x), finalHash enc, PubKeyS, IDS)

where:
KEX = (bin pack, bytes, namelists)

EXP e
p (a, b) = EXPeme(p)(eme(a), eme(b))

finalHash enc = H(FinalHashAlg, eme(FinalHashAlg, (IDC, IDS, (cookieC,CAlgs),
(cookieS, SAlgs), PubKeyS,EXP e

p (g, x), DHPublicS,EXP e
p (DHPublicS, x))))

Figure 10: A possible refined model of an SSH-TLP client.

were needed by the EXP function anyway, in the refined model all negotiated algorithms and parameters
occur. In particular, the FinalHashAlg, SignHashAlg, SignMode, and SignPadding variables represent
the cryptographic algorithms and parameters (such as SHA-1 for FinalHashAlg or RSA for SignHashAlg)
that are negotiated for the protocol run. As in the abstract model, at line 11, the client sends his DH
public key to the server, while at line 12 he receives the server public key, the server DH public key, and the
server signature of the final hash, performed with the server private key. Interestingly, since the client has
the corresponding server public key (also received at line 12), at line 12 the result of decrypting the server
signature is stored into variable y, which represents the encoded form of the data signed by the server. At
lines 13–14, the client deals with his encoding layer DECA, sending the encoded signed data to DECA, and
getting back the internal representation of such signed data. Finally, the protocol run ends at line 15 with
the invocation of the GO process, dealing with the security events for the protocol run.

The eme(·) function used in this refined model represents the implementation of encoding transformations.
Its detailed description is omitted here for simplicity.

Let us show now how, by the results presented in this paper, this refined model can be simplified
to perform formal verification of security properties, and what checks or assumptions are needed on the
sequential code that implements encoding/decoding functions in order to safely apply each simplification.

In order to remove the models of the marshaling layer MLA from the refined system model SYSm , the
two steps described in figure 5 are applied in order. Step 1, which is justified by theorem 3.1, requires by the
definition (6) that the adversary knowledge used for verification in the abstract system includes encoding
parameters (already showed to be a reasonable constraint). Moreover, the implementation of the marshaling
functions must be checked to be memoryless, and to access no external data but their input parameters
(which amounts to check an information flow property on sequential code). Since the properties to be
verified for this protocol are secrecy and authentication, also step 2 can be performed, further abstracting
the Atom L term and the messages in Marshaling that have been added by the marshaling layer refinement
procedure. This step, justified by theorem 3.2, can be applied without the need of further checks.

In order to abstract away the decoding processes DECA, added by the refinement about encoding func-
tions applied to data to be ciphered or hashed, according to theorem 4.3 three conditions have to be checked:
(i) the injectivity of the encoding function implementation eme(·) must be checked on its sequential code;
(ii) the e/d round-trip property (20) must be checked on the sequential code of the implementation of the
encoding and decoding functions eme(·) and dme(·); and (iii) the same data flow properties already specified
for the marshaling and unmarshaling functions must be checked. Finally, the adversary knowledge must not
be smaller in the abstract system w.r.t. the adversary knowledge in the refined system, which is enforced
when verifying the abstract system.

When verifying secrecy, by theorem 4.1 even data encodings can be abstracted, by removing the eme(·)
functions from the client role model, provided the implementation of the sequential encoding/decoding
functions is showed to be correct with respect to their specification; this check can be done in isolation. The
same simplification can be applied when verifying authentication, by exploiting theorem 4.2, but in this case
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condition (17) must be guaranteed to hold too. As discussed in section 4.1 when introducing condition (17),
this can be ensured by explicitly adding the negotiated parameters to the internal actions used to specify
agreement. For example, the finished action should become

finished.me.you.(finalHash enc, F inalHashAlg)

This condition is needed even though the negotiated algorithm is already included in the agreed CAlgs
and SAlgs, because it is necessary to ensure that the specific negotiated algorithm is agreed, rather than
the sets of algorithms from which it is selected.

The models of cryptographic algorithms and parameters only affect data terms including cryptographic
operations. As previously hinted, the idea is to reuse some results presented in this paper, namely the
modeling approach developed in section 4, in a particular way, such that the models of cryptographic
algorithms and parameters can be represented as encodings in the current datatype, rather than being
explicitly added to it. The main advantage is that the sufficient abstraction conditions already showed in
section 4 can be directly reused in order to abstract cryptographic algorithms and parameters too.

So, referring to the modeling approach presented in section 4, let us define the following encoding:

e(a,M) = (a,M)
d(a, (a,M)) = M

d(a,N) = Atom E , if N does not take the form (a,M)
(28)

that formally defines the refinement that models cryptographic algorithms and parameters. Clearly, by these
definitions e(a, ·) is injective and the e/d round-trip property (20) is satisfied. Here, a ∈ CryptoParameter
are the cryptographic algorithms and parameters chosen according to the protocol specification documents.
However, this refinement is only a data refinement; in particular it does not add any decoding process, nor
the associated int send and int receive actions, because there is no direct mapping of this refinement to
protocol implementations. Indeed, the Dolev-Yao model used in this paper assumes perfect cryptography,
so the only errors that can be found by this refinement are logic ones, not implementation specific ones.

Then, in order to verify the secrecy property, by the results stated in section 4, cryptographic algorithms
and parameters can be abstracted away with no additional check. When verifying authentication, they can
be abstracted away if condition (17) holds, which can be ensured as already explained for the abstraction of
encodings applied to data on which cryptographic operations are performed.

7 Conclusions

The work presented in this paper is a useful step towards the verification of refined security protocol models
that take data transformations into account, thus allowing formal verification to get closer to protocol code
written in a programming language.

The main contributions of the paper are:

• the formulation of a set of sufficient conditions under which the models of data encoding and decoding
functions can be safely simplified or even completely abstracted away under the Dolev-Yao assumption

• the formal justification of the above conditions

It has been showed that different conditions apply to different kinds of encoding and decoding operations.
Specifically, two kinds of data transformations can be distinguished.

For what concerns marshaling functions, a refined protocol model corresponding to a typical layered
implementation of such operations has been defined. It has been proved that, in order to verify secrecy or
authentication properties on the refined model, it is enough to verify those properties on the corresponding
abstract model, provided that the adversary knows the encoding parameters, which is a reasonable assump-
tion. Alternatively, in order to check a generic security property defined on protocol traces, still a simplified
refined model, that excludes explicit models of encoding and decoding functions but preserves the parameters
of such operations, can be used in place of the full one.

The model of encoding schemes that has been developed in this work is general enough to take into account
a widely used class of encoding schemes and implementations, namely the memoryless and side effect free
ones. Moreover, no assumption has been made about invertibility nor about implementation correctness
of marshaling functions; instead, it is only required that the implementation of such marshaling functions
satisfies some information flow properties, that can be checked by standard static analysis techniques. The
consequence of this result is that, if such information flow properties are satisfied on implementation code,
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then even erroneous specifications or implementations of encoding schemes cannot be more harmful than a
Dolev-Yao adversary is.

Then, in order to deal with the wider class of encoding functions, including the ones applied to data
to be ciphered or hashed, a more general model supporting a wide class of data encoding schemes has
been introduced. On this model, it has been showed that the models of the decoding operations can be
safely omitted when verifying security properties, but under stricter constraints: it is required that the
implementations of encoding functions are injective and that they are the inverses of the corresponding
decoding functions for each actor. If secrecy is being verified, then the encoded form of messages can also
be safely abstracted away, by additionally checking that the implementation of the encoding and decoding
functions is correct w.r.t. their specification and by ensuring that encoding parameters are in the adversary
knowledge. If instead authentication is being verified, then the encoded form of messages can be abstracted if
all actors agree on the same encoding parameters too. This condition can be checked as part of the abstract
protocol verification, as shown in section 6.

Therefore, an important distinction in criticality has been showed to exist between marshaling functions,
for which neither invertibility nor correctness is needed, and encodings applied to key material or to data to
be encrypted, for which both are needed in order to use the fully abstract model.

A previous work related to our approach is [KR06], where it is showed that any Dolev-Yao model of a
WS-Security protocol, where the XML encoding is embedded into the datatype, can be simplified into a more
abstract protocol, still preserving secrecy and agreement, by abstracting away XML tag encodings and just
keeping the contents of XML elements. Another related work is [BCFG07], where WS-Security protocols
are verified for security properties. In those works, XML tags are part of the datatype. It turns out that
the results being presented here can be reused to generalize in two directions the works of [KR06, BCFG07].
On one hand, the work presented here takes the implementation of encoding functions into account, and is
not limited to consider only how they are specified. On the other hand, the results proposed here apply to
any encoding scheme, XML and WS-Security being a particular instance of it.

Although some of the results presented in this paper are probably not so surprising, all of them have
been formally proved for the first time in this paper, and they find application in improving the development
of formally verified implementation code of security protocols, both using the code generation approach or
the model extraction approach.

An important step towards a formally safe refinement process in methods based on code generation
has been made. For example, when dealing with marshaling operations, the developer only needs to write
and verify the abstract protocol model, and the code generation engine can take care of ensuring that the
generated code meets the data flow assumptions made about the refined model. A similar approach can be
used to deal with encoding and decoding operations made on data on which cryptographic operations are
applied. In this case, more constraints are required on the generated implementation code. By the way, it
has been showed that, at least for the important class of XML encodings, the check on the correctness of
the encoding and decoding functions is simple enough.

When adopting a model extraction approach, the results presented in this paper can be used to simplify
the extracted model. We have showed that, by abstracting away implementation details from the model, a
reduction in the time needed for formal verification and the possibility to analyze more complex protocols are
finally achieved. It may be argued that, in order to abstract details away, some properties have to be verified
on the implementation code. This is true, however, the implementation code to be checked is sequential
and independent from the adversary, and thus simpler to be checked in isolation than it is checking a full
protocol model, which is a concurrent system that includes a detailed model of the encoding and decoding
functions and an adversary.

Moreover, sometimes the source code that implements encoding and decoding functions may not be
available (e.g. for libraries). In such cases, code extraction is even impossible. The results presented in this
paper show what are the requirements on this code, which can be used to derive specifically targeted testing
procedures in order to get a good assurance level in these cases too.

Some issues on the topics presented in this paper are still open for future work. In particular, the con-
ditions under which the final transformation back to the original abstract model is safe for other security
trace properties or for security properties not defined on traces (e.g. strong secrecy) could be further ex-
plored. Furthermore, one could consider verification with computational models or timed models instead of
verification with Dolev-Yao models. For example, in [BCF07] it is explicitly stated that being able to safely
exclude some parts of protocol implementations would be useful in model extraction, when dealing with
a computational model too; it is believable that stricter constraints on the implementation code than the
ones presented in this paper will be required, however. After all, a Dolev-Yao model provides a simple but
rigorous way to reason about security protocols, but it also provides a limited form of security assurance. It
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can uncover and avoid several kinds of logical errors in security protocols, which makes it very useful, but
it should be complemented by more low-level risk analysis techniques, in order to get best security assur-
ance. Specifically, protocols formally verified by using Dolev-Yao models can still be affected by lower-level
security faults, like for example the ones showed in [BKN02, APW09]. Extending the work presented here
to computational models and timed models could then undoubtedly broaden its application scope.
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APPENDIX: Proofs of Theorems

A.1 Proof of Theorem 3.1

The following statement is proved, that implies the theorem: for all traces tr′ of SYSm such that an attack
exists in tr′, there exists a trace tr′′ of SYSm-noML, such that an attack exists in tr′′ too. Formally,

∀ tr′ ∈ traces(SYSm) · ¬SPEC(tr′)⇒
∃ tr′′ ∈ traces(SYSm-noML) · ¬SPEC(tr′′)

In order carry out the proof, the intermediary SYSm-advML depicted in figure 6 is used. It is formally
defined as

SYSm-advML , (|||A∈HonestPLm
A )||ADV -ML

where PLm
A is communicating on the send and receive channels. To avoid ambiguities in the remainder of

the proof, the ADV -ML process, which is the part inside the dashed box in figure 6, is formally defined as

ADV -ML , (((|||A∈HonestMLsA) ‖ ADV s(AKm
0 )) \ {|int|}) (29)

where the swapping of the communication channels is made explicit by defining

ext = send, receive

MLsA = MLA[[int,ext/ext,int]]

ADV s(AKm
0 ) = ADV (AKm

0 )[[int/ext]]

A lemma is now introduced. It is needed to complete the proof of this theorem.

Lemma A.1 The adversary of SYSm-advML is a trace refinement of the adversary of SYSm-noML;

ADV (AKm-noML
0 ) v ADV -ML

By lemma A.1 and by refinement properties exposed in [Ros97], it follows that

SYSm-noML v SYSm-advML

Let us assume that a fault trace tr′ exists in traces(SYSm). Recall that SYSm-advML is obtained from
SYSm , by injectively renaming communication channels of the processes appearing in SYSm . In particular,
only the send, receive, int send and int receive channels are renamed by each other, so that they are in
fact swapped. Moreover, since every renaming is injective, no non-determinism is introduced in the whole
SYSm-advML. So, by assumption (3), and by taking into account that events on private channels do not
affect the truth of a security property, the trace tr′′′ ∈ traces(SYSm-advML), that is obtained by swapping
channels in tr′, is a fault trace too. Finally, since SYSm-noML v SYSm-advML holds, tr′′′ is also a (fault)
trace in SYSm-noML. Then, having showed that faults are preserved from SYSm to SYSm-noML, the theorem
is proved.

[Proof of lemma A.1.] In order to carry out the proof, the reachable states of ADV -ML are written
explicitly. For this reason, let MLi be defined as a generic state reachable from |||A∈HonestMLsA. Moreover,
for each state MLi, let MK i be the “marshaling layer knowledge”, that is the set of all the encoded messages
ready to be delivered to the ADV s component of ADV -ML, but not yet dispatched to it.

Formally, MK i is a set of messages that can be defined inductively. In the initial state

ML0 = |||A∈HonestMLsA

we have MK 0 = ∅. The evolution of MK i after an event e can be represented by an extension of the
e−→

state transition relation as follows: MK i
e−→ MK j means that the occurrence of e in a state where the set

of encoded messages ready to be delivered to ADV s is MK i leads to a new state where the new set is MK j .

Now, since the events e occurring in MLi can only take 4 different forms, the relation
e−→ on sets of messages
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can be defined by enumeration. By the definition of process MLA in figure 4, and taking into account that
MLsA has swapped channels, it follows that

MK i
send.A.B.(Atom L,(a,M))−→ MK i ∪ {eA(a,M)}

MK i
receive.A.B.(Atom L,(a,M))−→ MK i

MK i
int send.A.B.eA(a,M)−→ MK i \ {eA(a,M)}

MK i
int receive.A.B.y−→ MK i

A generic state of ADV -ML then takes the form

ADV -MLi , (MLi ‖ ADV s(AKm
i )) \ {|int|}

where AKm
i is the current adversary knowledge. The initial state is

ADV -ML0 = ADV -ML

i.e.
ADV -ML0 = (ML0 ‖ ADV s(AKm

0 )) \ {|int|}

Finally, the total knowledge MAK i associated with state ADV -MLi is defined as

MAK i , MK i ∪AKm
i

By lemma 2.1, in state ADV -MLi, we have deds(AKm
i ) ⊆ deds(MAK i).

Let us preliminary prove the following

Lemma A.2
ADV -MLi

τ−→ ADV -MLj =⇒ MAK i = MAK j

where
τ−→ represents the occurrence of an internal event (i.e. an event not visible from the environment,

like for example a hidden event). There are two possible cases: τ comes from an int send event, or τ comes
from an int receive event.

case τ comes from event int send.A.B.eA(a,M) By the definition of each process MLsA, a corresponding
send.A.B.(Atom L, (a,M)) must have previously occurred. So, by the definition of MK i,

eA(a,M) ∈ MK i

and
MK j = MK i \ {eA(a,M)}

and, by the definition of ADV s,
AKm

j = AKm
i ∪ {eA(a,M)}

so MAK i = MAK j .

case τ comes from event int receive.A.B.y By the definition of MK i,

MK j = MK i

and, by the definition of ADV s,
AKm

j = AKm
i

so MAK i = MAK j .

2

Now that lemma A.2 is proved, the following property can be proved for each trace tr, which implies
lemma A.1:

(ADV -ML0
tr

=⇒ ADV -MLf ) =⇒

∃ AKm-noML
f | (ADV (AKm-noML

0 )
tr

=⇒ ADV (AKm-noML
f ) ∧ deds(MAK f ) ⊆ deds(AKm-noML

f ))

The proof is based on induction on the length of trace tr.
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Base (length(tr) = 0) Since tr is the empty trace

ADV -ML0
τ−→
∗

ADV -MLf

Then, by lemma A.2, we have that

MAK f = MAK 0 = MK 0 ∪AKm
0 = AKm

0

Moreover, ADV (AKm-noML
0 ) cannot execute internal events, so if we take

AKm-noML
f = AKm-noML

0

then, considering that by definition (6) it follows that

AKm
0 ⊂ AKm-noML

0

we can conclude deds(MAK f ) ⊆ deds(AKm-noML
f ).

Induction (length(tr) = n+ 1) The trace tr is then composed of a subtrace tr′ of length n, followed by
the n+ 1th event. There are three possible cases: the n+ 1th event is a send, receive or leak event.

case n+ 1th event is a send event By the definitions of processes and by inductive hypotheses

ADV -ML0
tr′

=⇒ ADV -MLi

Moreover:

ADV -MLi
τ−→
∗ send.A.B.(Atom L,(a,M))−→ τ−→

∗
ADV -MLf

By lemma A.2, MAK i will remain unchanged for each τ transition before the send event, and
MAK f will remain unchanged for each τ transition after the send event. Moreover, by definition,

MAK f = MAK i ∪ {eA(a,M)}

At the other side, by inductive hypotheses, there exists AKm-noML
i such that

ADV (AKm-noML
0 )

tr′
=⇒ ADV (AKm-noML

i )

and

ADV (AKm-noML
i )

send.A.B.(Atom L,(a,M))−→ ADV (AKm-noML
f )

where AKm-noML
f = AKm-noML

i ∪ {(Atom L, (a,M))}
By inductive hypotheses, deds(MAK i) ⊆ deds(AKm-noML

i ); by definition (5) of eA(a,M) and by
lemma 2.1, it follows that deds(eA(a,M)) ⊆ deds((Atom L, (a,M))). So

deds(MAK i ∪ {eA(a,M)}) ⊆ deds(AKm-noML
i ∪ {(Atom L, (a,M))})

thus deds(MAK f ) ⊆ deds(AKm-noML
f ).

case n+ 1th event is a receive event By process definitions and by inductive hypotheses

ADV -ML0
tr′

=⇒ ADV -MLi

Moreover:

ADV -MLi
τ−→
∗ receive.A.B.(Atom L,(a,dA(a,y)))−→ τ−→

∗
ADV -MLf

By lemma A.2, MAK i will remain unchanged for each τ transition before the receive event, and
MAK f will remain unchanged for each τ transition after the receive event. Moreover

MAK f = MAK i

At the other side, by inductive hypotheses, there exists AKm-noML
i such that

ADV (AKm-noML
0 )

tr′
=⇒ ADV (AKm-noML

i )
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Then, we need to show that

ADV (AKm-noML
i )

receive.A.B.(Atom L,(a,dA(a,y)))−→ ADV (AKm-noML
f )

where AKm-noML
f = AKm-noML

i , because the adversary knowledge does not change on receive
events.

Since, by inductive hypotheses, deds(MAK i) ⊆ deds(AKm-noML
i ), and it has been showed that

both MAK f = MAK i and AKm-noML
f = AKm-noML

i hold, it is possible to conclude that

deds(MAK f ) ⊆ deds(AKm-noML
f )

holds too. In order to complete the proof of this case, it is enough to show that the receive event
indeed can happen in ADV (AK ′′i ), that is, in order to send (Atom L, (a, dA(a, y))) on the receive
channel, ADV (AKm-noML

i ) must be able to derive the required message from its knowledge.

If a and y are derivable from AKm-noML
i , then, by definition (5), dA(a, y) is derivable too, and, by

applying the pairing rule, (a, dA(a, y)) is derivable too. Message a is derivable from AKm-noML
i

with the member rule, since

a ∈Marshaling ⊂ AKm-noML
0 ⊆ AKm-noML

i

Message y is derivable from AKm-noML
i because, since the receive event can happen in ADV -MLi,

then
y ∈ deds(MAK i)

and, by inductive hypotheses,

deds(MAK i) ⊆ deds(AKm-noML
i )

thus y ∈ deds(AKm-noML
i ).

Finally, if Atom L is derivable from AKm-noML
i , then, by applying the pairing rule, the re-

quired (Atom L, (a, dA(a, y))) message can be obtained. The message Atom L is derivable from
AKm-noML

i with the member rule, because

Atom L ∈ AKm-noML
0 ⊆ AKm-noML

i

case n+ 1th event is a leak event By process definitions and by inductive hypotheses

ADV -ML0
tr′

=⇒ ADV -MLi

Moreover:
ADV -MLi

τ−→
∗ leak.M−→ τ−→

∗
ADV -MLf

By lemma A.2, MAK i will remain unchanged for each τ transition before the leak event, and
MAK f will remain unchanged for each τ transition after the leak event. Moreover, the leak event
is not engaged by the MLi process, so MK f = MK i, and, by the definition of adversary, Sf = Si,
so MAK f = MAK i.

At the other side, by inductive hypotheses, there exists AKm-noML
i such that

ADV (AKm-noML
0 )

tr′
=⇒ ADV (AKm-noML

i )

and
ADV (AKm-noML

i )
leak.M−→ ADV (AKm-noML

f )

where AKm-noML
f = AKm-noML

i . So, by inductive hypotheses, it follows that deds(MAK f ) ⊆
deds(AKm-noML

f ). Finally, the leak.M event can indeed happen in ADV (AKm-noML
i ) because,

by hypotheses, the leak.M event can happen in ADV -MLi, which implies M ∈ MAK i. Since, by
inductive hypotheses, deds(MAK i) ⊆ deds(AKm-noML

i ), it follows that M ∈ AKm-noML
i too, so

the leak.M event can happen in ADV (AKm-noML
i ).

2

37



A.2 Proof of Theorem 4.3

As explained in the proof sketch, the proof idea for theorem 4.3 is to refine all abstract protocol logics P e-pm
A

in SYS e-pm into their refined counterparts P e
A, one at a time, thus refining the whole SYS e-pm to SYS e .

Unfortunately, it is not possible to trivially infer this result directly from lemma 4.5. Indeed, it is true that,
for any processes A and R, and for any context C[ ],

A v R⇒ C[A] v C[R]

So, let us consider that lemma 4.5 holds for honest actor H. Then, setting the context to

C[X] = (|||A∈Honest\{H}P e-pm
A ‖ X) \ comm

leads to a process

(|||A∈Honest\{H}P e-pm
A ‖ ((P e-pm

H ||ADV (AK e-pm
0 )) \ commH)) \ comm

which is not trivially proved to have all and the same traces of SYS e-pm .
The proof steps of trace refinement reported here use two CSP operator properties that are introduced

now.
The first property states that, for any processes P,Q,R, if αP ∩ αQ = ∅, then

P ‖ (Q ‖ R) = (P ||| Q) ‖ R

This property follows by the definition of the parallel and interleaved operators.
Informally, this property means that if P and Q cannot communicate directly (because, being the intersec-

tion of their alphabets empty, they cannot synchronize on any event), then, on one hand, P communicating
with Q ‖ R, is actually only communicating with R; on the other hand, Q is only communicating with R,
and never with P . Thus, R acts as a proxy between P and Q, while the latter two processes can execute in
interleaving.

The second property states that, for any processes P,Q,R, if αP ∩ αQ = ∅, then

(P ‖ (Q ‖ R)) \ (αQ ∩ αR) ∪ (αP ∩ αR) = (P ‖ ((Q ‖ R) \ (αQ ∩ αR))) \ (αP ∩ αR)

Informally, this property means that, since P and Q never communicate directly, and R is their proxy,
from P ’s view it is irrelevant whether communication between Q and R is observable or not, thus allowing to
put P in parallel either with Q ‖ R or with (Q ‖ R) \ (αQ ∩ αR). However, from an observer point of view,
communication between Q and R must always be hidden, so if it is not hidden with the (Q ‖ R)\ (αQ∩αR)
process, it must be hidden at the top level process.

Indeed, in the used Dolev-Yao approach, any pair of protocol actors has disjoint alphabets, because the
adversary is the only proxy between any pair of actors, and they can never communicate directly. Thus,
these properties directly apply when P and Q are two processes representing interleaved actors and R is the
adversary.

Trace refinement is proved by induction over the number of protocol logics that are step by step refined
in SYS e-pm .

base It will be proved that SYS e-pm , where all protocol logics are abstract, is refined by a process where
one protocol logic is refined, that is

∀ X ∈ Honest ·
(|||A∈HonestP e-pm

A ‖ ADV (AK e-pm
0 )) \ comm v((

|||A∈Honest\{X}P e-pm
A |||P e

X

)
‖ ADV (AK e

0)
)
\ comm
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The proof steps are:

(|||A∈HonestP e-pm
A ‖ ADV (AK e-pm

0 )) \ comm

=
((
|||A∈Honest\{X}P e-pm

A ||| P e-pm
X

)
‖ ADV (AK e-pm

0 )
)
\ comm

=
〈
by letting Others = |||A∈Honest\{X}P e-pm

A

〉
((Others ||| P e-pm

X ) ‖ ADV (AK e-pm
0 )) \ comm

= 〈by property of ||| and ‖, and by α(Others) ∩ αP e-pm
X = ∅〉

(Others ‖ (P e-pm
X ‖ ADV (AK e-pm

0 ))) \ comm

= 〈by hiding property; letting comm− = comm \ commX〉

(Others ‖ (P e-pm
X ‖ ADV (AK e-pm

0 ) \ commX)) \ comm−

v 〈consider the context Others surrounding the process refined in lemma 4.5〉

(Others ‖ ((P e
X ‖ ADV (AK e

0)) \ commX)) \ comm−

= 〈by hiding property〉

(Others ‖ (P e
X ‖ ADV (AK e

0))) \ comm

= 〈by property of ||| and ‖, and by α(Others) ∩ αP e
X = ∅〉

= ((Others ||| P e
X) ‖ ADV (AK e

0)) \ comm

= 〈by definition of Others〉

=
((
|||A∈Honest\{X}P e-pm

A ||| P e
X

)
‖ ADV (AK e

0)
)
\ comm

induction It will be showed that if the refinement relation holds when n actors have been refined, then it
keeps holding when the n+ 1th actor is refined too. Let Ref be the set of already refined actors, then
∀ X ∈ Honest \ Ref ((

|||A∈Honest\Ref P
e-pm
A ||| |||B∈Ref P

e
B

)
‖ ADV (AK e

0)
)
\ comm

=
((
|||A∈Honest\(Ref∪{X})P

e-pm
A ||| |||B∈RefP e

B ||| P
e-pm
X

)
‖ ADV (AK e

0)) \ comm

v
〈
by setting Others = |||A∈Honest\(Ref∪{X})P

e-pm
A ||| |||B∈Ref P

e
B ;

by using the same steps as in base case〉((
|||A∈Honest\(Ref∪{X})P

e-pm
A ||| |||B∈Ref P

e
B ||| P e

X

)
‖ ADV (AK e

0)) \ comm

=
((
|||A∈Honest\(Ref∪{X})P

e-pm
A ||| |||B∈Ref∪{X}P

e
B

)
‖ ADV (AK e

0)) \ comm

In the inductive step, the adversary knowledge in the abstract system (the one having n refined actors)
is set to AK e

0 , and not AK e-pm
0 . Indeed, after the first refinement step made in the base case, the adversary

knowledge is “restricted” to AK e
0 , the refined one. This is not an issue during the inductive step, because

condition (21) in lemma 4.5 requires, in the abstract system, that the adversary knowledge is a weak superset
of the adversary knowledge in the refined system.

39



A.3 Proof of Lemma 4.5

Lemma 4.5 states that, under the same assumptions used by theorem 4.3, if communication channels are
hidden, then one abstract protocol logic P e-pm

A acting with the adversary, is refined by its more detailed
protocol logic P e

A, that explicitly models the decoding process, acting with the adversary. A weak simulation
relation between the abstract process

P e-pm
A ‖ ADV (AK e-pm

0 ) = f(PLe
A) ‖ ADV (AK e-pm

0 )

and the refined process

P e
A ‖ ADV (AK e

0) = ((PLe
A ‖ DECA) \ privA) ‖ ADV (AK e

0)

is first proved, which is then showed to imply the desired trace refinement. Briefly, a weak simulation relation
binds the transitions between external states of an abstract process to the transitions between external states
of a refined (also called concrete in other works) process, but each process is still allowed to perform any
internal step in between two external states. More details about the weak refinement used here can be found,
for example, in [Sch05].

An external state of the refined protocol logic of actor A is defined as a generic state PLe
Ai

of the process
PLe

A, such that PLe
Ai

does not begin with an event in the privA set; that is, PLe
Ai

does not take the form
ev → Q, with ev ∈ privA (by construction of PLe

A, if an event ev ∈ privA can occur, it is the only event
that can occur). Accordingly, an external state of the refined process takes the form

SYS e
Ai

= ((PLe
Ai
‖ DECA) \ privA) ‖ ADV (AK e

i )

because, by construction of PLe
A and DECA, the latter process will always be in its initial state, which is

DECA, when the former is in an external state.
In the same way, an external state P e-pm

Ai
of the abstract protocol logic is defined as a generic state of

f(PLe
A) that is not ready to perform an event that is in privA. With this definition it turns out that any

state of f(PLe
A) is an external state, since all events in privA have been removed by f(·). Then, any external

state of the abstract process takes the form

SYS e-pm
Ai

= P e-pm
Ai

‖ ADV (AK e-pm
i )

The relation R that binds external states of the abstract process to external states of the refined one is
formally defined as

R(SYS e-pm
Ai

,SYS e
Ai

)⇔ P e-pm
Ai

= f(PLe
Ai

) ∧ AK e-pm
i ⊇ AK e

i

Relation R holds on the initial states of the abstract and refined processes. Indeed, PLe
A must be an ex-

ternal state, because, by construction, it cannot begin with an event in privA. Moreover, by hypothesis (21),
AK e-pm

0 ⊇ AK e
0 holds.

Let us denote with P/ev (“P after ev”) the state of process P after it has engaged the event ev; if
P/ev is not applicable, that is, P cannot engage the event ev, then P/ev = P . With this definition, the
operator / (“after”) is distributive with respect to the operator ‖, which synchronizes on the intersection of
the alphabets, that is

(P ‖ Q)/ev = P/ev ‖ Q/ev

The after operator is then overloaded to sequences of events in the obvious way.
In order to show that the weak simulation relation holds, it is enough to show that, for any external

states SYS e
Ai
,SYS e-pm

Ai
, and event sequence evs:

R(SYS e-pm
Ai

,SYS e
Ai

) ∧ SYS e
Ai

evs→ SYS e
Ai
/evs

=⇒
SYS e-pm

Ai

ev∗s→ SYS e-pm
Ai

/ev∗s ∧ R(SYS e-pm
Ai

/ev∗s ,SYS e
Ai
/evs, )

(30)

where
evs→ denotes the concatenation of state transitions for all events in evs, and ev∗s is the sequence of

events obtained by stripping all τ events from evs.
By the definition of adversary,

ADV (AK e-pm
i )/ev∗s = ADV (AK e-pm

j )
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where AK e-pm
j is the new adversary knowledge reached after ev∗s , and, by the distribution property of the

after operator
SYS e-pm

Ai
/ev∗s = (f(PLe

Ai
) ‖ ADV (AK e-pm

i ))/ev∗s
= f(PLe

Ai
)/ev∗s ‖ ADV (AK e-pm

i )/ev∗s
= f(PLe

Ai
)/ev∗s ‖ ADV (AK e-pm

j )

The same reasoning applies in the refined model.
Now all the possible event sequences evs that can lead to one of the next external states must be con-

sidered. evs cannot start with a τ step, because it starts from an external state. Moreover it is enough to
prove (30) for event sequences evs such that no proper subsequence of evs leads to an external state because
then the most general case descends by induction. Then, if evs starts with a claimSecret, running, finished, leak
or send event, it is possible to consider only the case when it is composed of just one event, because after
the first event an external state is reached.

Let us first consider these cases, where evs = 〈ev〉 = ev∗s and let us show that (30) holds.

case ev = claimSecret.A.B.M By hypothesis this event can happen in the refined system. If we let PLe
Aj

=
PLe

Ai
/ev, we have

((PLe
Ai
‖ DECA) \ privA)/ev = (PLe

Ai
/ev ‖ DECA/ev) \ privA

= (PLe
Aj
‖ DECA) \ privA

because ev /∈ privA and DECA is only engaged in the events in privA.

Since ev can occur in PLe
Ai

, and PLe
Ai

ev→ PLe
Aj

, by the properties of f(·), it can be concluded that

f(PLe
Ai

)
ev→ f(PLe

Aj
)

that is, ev can also happen in the abstract system, and the states of the abstract and refined protocol
logics after ev are bound by f(·).
Moreover, after event ev, adversary knowledges remain unchanged in both systems, so AK e-pm

j ⊇ AK e
j

holds, and it can be concluded that R holds after ev.

The same reasoning also applies for the running and finished events.

case ev = leak.M Since this event is engaged by the adversary process, and not by the protocol logic, if ev
can happen in the refined system, then M must be in the adversary knowledge, that is M ∈ AK e

i .
Consequently, by the assumption AK e-pm

i ⊇ AK e
i , it follows that M ∈ AK e-pm

i too, and ev can happen
in the abstract system too. Moreover, the state of the protocol logic and the adversary knowledge
remain unchanged after this event in both refined and abstract processes, so relation R still holds after
it.

case ev = send.A.B.M If this event can happen in the refined system, it can also happen in the abstract
system, because, as with the claimSecret event,

PLe
Ai

ev→ PLe
Aj

implies
f(PLe

Ai
)
ev→ f(PLe

Aj
)

While the reasoning about the protocol logic states is the same as explained in the claimSecret.A.B.M
case, the reasoning about adversary knowledges changes. After the event ev happens in the refined
system, we have

AK e
j = AK e

i ∪ {M}

and similarly, in the abstract system,

AK e-pm
j = AK e-pm

i ∪ {M}

Since, by hypothesis, AK e-pm
i ⊇ AK e

i holds, then AK e-pm
j ⊇ AK e

j holds too.
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The cases that remain to be considered are when evs starts with a receive.B.A.M event. This event
is followed by the τ steps coming from the sequence of the pairs of priv sendA.(y, a) → priv receiveA.N
prefixes that have been added during refinement after the receive event. An external state is reached only
after all these τ steps have been completed and, after a receive event, the protocol logic is obliged by
construction to execute the sequence of private actions before any further external action. Then, there is a
single external state that can be reached by the protocol logic after a receive event. Moreover, being the
protocol logic synchronized with the adversary, the latter can execute only internal actions, i.e. leak actions,
while the protocol logic is executing the internal steps that follow a receive event. These leak events do not
change the global state. In conclusion, the only event sequences that start with a receive event and that
lead to an external state are those that, after the receive event, have a sequence of τ events, corresponding
to all the private actions that follow the receive event in the protocol logic, with interleaved leak events
generated by the adversary. All these sequences lead to a single external state. If the refined protocol logic
cannot execute one of the private actions that follow a receive event, the protocol logic gets stuck and no
external state is ever reached. So, the only case that must be considered in order to check (30) is when all
the private actions are executed.

By using the distributive property of the after operator, again we analyze protocol logics first, and then
adversary knowledges.

In the refined system we have

((PLe
Ai
‖ DECA) \ privA)/evs = (PLe

Aj
‖ DECA) \ privA

The state of DECA does not change because after each pair of priv sendA and priv receiveA events, it
returns to its initial state, and we are under the hypothesis that all private events happen.

Let

receive.B.A.T → priv sendA.(y1, a1)→ priv receiveA.T1 → . . .

→ priv sendA.(yn, an)→ priv receiveA.Tn → PLe
Aj

be the sequence of prefixes that are executed in PLe
Ai

when evs occurs.
By the definition of DECA it follows that the data exchanged between the protocol logic and DECA

in each pair of events priv sendA.(M,a), priv receiveA.N must satisfy equations N = dA(a,M) and N 6=
Atom E . Then, if all private events can occur in the refined system, the previous receive.B.A.T event must
have bound variables in T in such a way that Ti = dA(ai, yi) for all 1 ≤ i ≤ n. But, by (20), this also implies
that

eA(ai, Ti) = eA(ai, dA(ai, yi)) = yi

By the definition of f(·), we have that the abstract protocol logic in state f(PLe
Ai

) is ready to execute

receive.B.A.T ∗ → f(PLe
Aj

)

where T ∗ = T
[
eA(a1,T1)/y1

]
. . .

[
eA(an,Tn)/yn

]
, i.e. where T ∗ is T with the same binding of variables that

occurs in the concrete system when all private events occur.
Then, if in the refined system an event receive.B.A.M followed by all the subsequent private events can

occur, the same event can occur in the abstract system too, and

f(PLe
Ai

)
receive.B.A.M→ f(PLe

Aj
)

With respect to the adversary, since the event receive.B.A.M can happen in the refined system, it follows
that M ∈ AK e

i . Since AK e-pm
i ⊇ AK e

i , it follows that the event can happen in the abstract system too,
because M ∈ AK e-pm

i . Moreover, since after a receive event adversary knowledges remain unchanged, it
also follows that AK e-pm

j ⊇ AK e
j .

In order to complete the proof of the simulation relation, we have to show that leak events interleaved in
evs can happen in the abstract system too. This descends from the fact that neither the receive event nor
the τ events change the adversary knowledge. Then, the occurrence of a leak.N event in evs implies that
N ∈ AK e

i , which, in turn, by the hypothesis AK e
i ⊆ AK e-pm

i , implies N ∈ AK e-pm
i , which finally means

that leak.N can be executed by the adversary in the abstract system too.
The weak simulation relation that has been proved implies that any trace of the refined system P e

A ‖
ADV (AK e

0) that leads to an external state is also a trace of the abstract system P e-pm
A ‖ ADV (AK e-pm

0 ).
However it is still possible that a trace that leads to an internal state in the refined system is not a trace of
the abstract system. By the cases that have just been analyzed, it can be realized that a trace of the refined
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system can lead to an internal state only when the last action performed by the protocol logic is a receive.
Moreover, in this trace, the last receive event can be followed only by leak events. The longest prefix of
this trace that leads to an external state is the one that is obtained by removing the last receive event and
the subsequent leak events, and the proof previously given ensures that this is also a trace of the abstract
system. Moreover, since the receive event does not change the adversary knowledge, we can conclude that
any leak event following the receive event in the refined system could also occur, both in the refined and
in the abstract systems, before the receive event. Then, we have that even when a trace tr of the refined
system is not a trace of the abstract system, the abstract system can still execute a trace tr∗ that differs
from tr only in the last receive event. This lets us conclude that lemma 4.5, which involves processes with
hidden send and receive events, holds. 2
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