
    

C.1. ECC Principles

Table C.1 shows that each (valid) codeword of a code is far at least dmin from all the

other (valid) codewords.

C.1.1 Error Detection

Fig. C.2 shows how a single-bit error can modify a 0000 codeword.

Figure C.2: A "0000" codeword after a single-bit error

E.g., if we read the 0001 codeword from the memory, it is not a valid codeword. In

fact, 0001 does not belong to the code of Table C.1. Therefore, the error can be detected.

Fig. C.3 provides a generic example of the encoding/decoding process.

Figure C.3: Generic case Codeword

Fig. C.3 shows that each (valid) codeword is far from the other (valid) codeword at

least dmin. At least dmin single-bit errors have to occur in order to produce another valid

codeword. As a consequence, all dmin-1 single-bit errors can be detected.

"A code with dmin=d+1 is able to detect d single-bit errors"

E.g., the code of Table C.1 has dmin = 2. Therefore, it is able to detect all 1-single-bit

error. In fact, a single-bit error on a valid codeword never provides a valid codeword.
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C.1.2 Error Correction

Let us discuss the correction. Supposing a single bit error, Fig. C.4 shows how the wrong

0001 codeword can be corrected.

Figure C.4: The wrong "0001" read codeword

0001 is "halfway" between any pair of these codewords1. Therefore, it is not possible

to understand which codeword 0001 originally was. In other words, this code can only

detect 1-single-bit errors and is not able to correct any error.

If the codeword Ca of Fig. C.3 is affected by less than dmin/2 single bit errors, then the

closest codeword to the faulty one is Ca itself.

"Any codeword affected by #er r or s ≤ (dmi n −1)/2 is correctable. Therefore,

the correcting power of the code is t = b(dmi n −1)/2c"

In order to correct t errors, we need a code with:

dmi n ≥ 2t +1 (C.1)

C.1.3 Hamming bound

Let us assume to have a n-bit codeword, a k-bit data, q symbols2, minimum Hamming

distance dmin and a correction capability t = b(dmi n −1)/2c.

Eq. C.2 has to be satisfied in order to proof the validity of Eq. C.1.

n −k ≥ l ogq

{
t∑

i=0

[(
n

i

)(
q −1

)i

]}
(C.2)

We usually refer to Eq. C.2 as Hamming bound [56].

1"0101" and "1001" are not valid codewords and will be not valid options
2if q = 2, symbols are called bits
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C.2 Bose-Chaudhuri-Hocquenhem Codes Design Flow

Fig. C.5 resumes the BCH codes design flow.

Figure C.5: BCH Code Design Flow

Three main functional steps compose the BCH design flow: (i) Design Requirements,

(ii) Parameters Evaluation, and Code Characterization. After the last step, the BCH code

is completely defined.

C.2.1 Design Requirements

The first step of each BCH code design flow is to define the mission-critical requirements.

ECC algorithm works on data of fixed length (i.e., Data Length). The correction capability

is determined w.r.t. probabilistic studies. The Bit Error Rate (BER) of the page [90], i.e.,

the fraction of its erroneous bits, is mainly composed by two values: (i) Raw BER (RBER)

and (ii) UBER.

The former is the Raw BER (RBER), i.e., the BER before applying the error correction.

RBER is technology/environment dependent and is not constant; it increases with aging

of the page [13, 90].

The latter is the Uncorrected BER (UBER), i.e., the BER after the application of the

ECC, which is application dependent. It can be computed as the probability of having
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more than t errors in the codeword (calculated as a binomial distribution of randomly

occurred bit errors) divided by the length of the codeword [34]:

U BER = P (E > t )

n
= 1

n

n∑
i=t+1

(
n

i

)
·RBER i · (1−RBER)n−i (C.3)

if n ·RBER ¿ 1, [56] rewrites Eq. C.3 as:

U BER ≈ 1

n
·
(

n

t +1

)
·RBER t+1 · (1−RBER)n−t−1 (C.4)

C.2.2 Parameters Evaluation

The Bit Error Rate (BER) of the page [90], i.e., RBER and UBER, is the key factor used to se-

lect the correction capability. Fig. C.6 shows the resulting UBER for k = 214 = 16,384bi t s

= 2K by tes and t = {0,1, 5,10, 15}.

Figure C.6: Examples of Raw BER and Uncorrected BER

The second parameter is the Galois Field (GF). Many codes are based on the abstract

algebra and, in particular, on GF [2]. A GF is a finite field with order q , i.e., it has a finite

number of elements represented with q symbols). The set of m-tuples of elements from

GF is the GF(qm) vector space. Linear q-ary are a set of m-tuples over GF(q) or, in other

words, are subspaces of GF(qm) [56]. A GF(qm):
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• contains qm elements, defined as pm(x =α) = 0 ⇐⇒αm = bm−1am−1+bm−2am−2+
...+b0;

• all elements can be expressed as αi with iε
(
0, ..., qm −2

)
;

• always αqm−1 = 1 =α0;

• is closed with respect to addition and multiplication (i.e., the sum or the product of

two codewords is a codeword);

Different GFs matches different codes. In particular, two main parameters set the GF:

(i) the data length k and (ii) the correction capability t.

E.g., if q = 2, Eq. C.5 set the minimum GF(2m) required for the data length k [81].

k +m × t ≤ 2m −1 (C.5)

E.g., replacing k = 214 = 16,384 bits = 2KBytes into Eq. C.5, we need at least a Galois

Field with 2m = 215 = 32,767 elements.

Spare area and parity bits Eq. C.5 set the minimum m to generate the related GFm. The

number of parity bits is denoted as r = m × t . Such r parity bits are usually stored in the

spare area of the flash memory. Therefore, a proper trade-off is needed when designing

the ECC in terms of resources overhead.

C.2.3 Code Characterization

Finally, we exploit the correcting power t and the Galois Field to generate the Minimal

Polynomials ψ1(x), ψ2(x), ..., ψ2t (x) [2, 81]. They fully characterize the BCH code.

The set of Minimal Polynomials defines the Polynomial Generator g(x) of the BCH

code [2] as:

g (x) = LC M
[
ψ1 (x) ,ψ2 (x) ...,ψ2t (x)

]
(C.6)

LC M is the Least Common Multiple operator among the 2t minimal polynomials de-

fined above.

Table C.2 summarize the main BCH code properties.
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Table C.2: BCH code properties

Specified by
zeroes α,α2,α3, ...,α2t of all

the codewords w(x)

Codewords Length n = 2m −1

Information Symbols
k = n −deg r ee of the

generator polynomial g (x)

Minimum Distance d ≥ 2t −1

Error Control Capability Corrects t errors

C.2.4 Shortened Codes

In system design, a code of suitable natural length or suitable number of information

digits usually cannot be found. Therefore, it may be desirable to shorten a code to meet

the requirements. Whenever n = k + r < 2m − 1, the BCH code is called shortened or

polynomial. In a shortened BCH code the codeword includes less binary symbols than

the ones the selected Galois field would allow. The missing information symbols are

imagined to be at the beginning of the codeword and are considered to be 0. A shortened

code has at least the same error-correcting capability as the code from which it is derived

[74].

E.g., protecting k = 214 = 16,384 bits data length implies to adopt a GF with 32,767 el-

ements (refer to Eq. C.5). Assuming to correct t = 5 errors, we have a resulting codeword

n = k+m×t = 16,384 + 15×5 = 16,459 bits < 32,767 = 215-1. Therefore, we may adopt a code

which is shortened of 32,767 - 16,459 = 16,308 bits. A complete BCH[n, k, t] = [32,768,

16,384, 5] becomes a shortened BCH[16,459, 16,384, 5] BCH code.

C.3 Error Detecting and Correcting Codes: The actual trend

ECCs are moving toward two main directions [42]: (i) stronger ECCs and (ii) larger data

block.

A stronger ECC has higher correcting power t . However, bigger t implies a higher

number r = m × t of check bits. An higher complexity is also required to detect/correct

higher number of errors.

On the other hand, the current trend is to adopt k = 512 Byte. A bigger data length size

k may better handle higher concentration of errors. However, bigger k implies bigger
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symbol size (see Eq. C.5).

Fig. C.7 shows an example of moving toward bigger data length.

Figure C.7: ECC Example for point "Large Block..."

The first part of Fig. C.7 has two data blocks with k = 512 Bytes. Each block is protected

with an ECC with t = 8. This is usually denoted as ECC-8. The second part of Fig. C.7 has

one block with k = 1,024 Bytes with ECC-16.

Although the situation looks similar, having 9 and 5 errors in the two k = 512 Bytes

block implies a critical failure. Having 9 + 5 = 16 errors are correctable within the k =

1,024 Bytes data blocks.

C.3.1 Examples

Fig. C.8 shows the UBER for several ECCs.

Figure C.8: Uncorrected BER for different ECCs

Fig. C.8 shows that moving toward bigger data blocks improves the UBER. Further-

more, a 512B-ECC16 and a 1024B-ECC16 are equivalent from a UBER standpoint. We

provide some simple examples to understand the trade-off to tackle during ECC design.
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Example 1 Fig. C.9 shows a first possible example.

Figure C.9: 512B-ECC16 protecting a 2KB page

Let us assume k = 512 Bytes protected by ECC16 (i.e., 16 errors can be corrected). This

is usually denoted as 512B-ECC16. We need:

• Parity Symbol Size (m): Eq. C.5 set m = 13, i.e., 13-bit parity symbols;

• Correcting Power(t ): t = 16, which implies 13 bit × 16 parity symbols/block = 26

Bytes/block;

• Complexity: a 512B-ECC16 requires 4×26 Bytes = 104Byte;

Example 2 Fig. C.10 shows another example.

Figure C.10: 1KB-ECC16 protecting a 2KB page

Let us assume k = 1 KBytes protected by ECC20 (i.e., 20 errors can be corrected). This

is usually denoted as 1KB-ECC20. We need:

• Parity Symbol Size (m): Eq. C.5 set m = 14, i.e., 14-bit parity symbols;

• Correcting Power(t ): t = 20, which implies 14 bit × 20 parity symbols/block = 35

Bytes/block;

• Complexity: a 1KB-ECC20 protecting a 2KB page requires 2×35 Bytes = 70Byte/-

page;

As well as Fig. C.8 shows, the 1KB-ECC20 (Fig. C.9) provides a better UBER than

512B-ECC16 (Fig. C.10), but at lower resource overhead in terms of occupied spare area.
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C.4 Error correcting techniques for future NAND flash memory

Thanks to their lower RBER, a 512B-ECC1 (i.e., single-bit correction) may be sufficient

for Single Level Cell (SLC) NAND flash. Multi Level Cell (MLC) NAND flashes have higher

RBER. Therefore, they require higher correction capability (e.g., at least 512B-ECC4) [48].

20nm NAND flash The continuous scaling-down and the related increasing density of

NAND flash implies to adopt proper ECC controllers and algorithms. The first 20nm

NAND flash devices are currently available [85]. Such a quick scaling-down implies fewer

electrons to enter the Floating Gate (FG). Therefore, there is a higher uncertainty about

the charge in the FG.

More bits per cell Nowadays, MLC-based NAND flash can store up to 4 or 8 bit per cell.

Although the density of the memory is dramatically increased, also the possible distur-

bances are much worse. As a consequence, ECCs have to increase their correcting power.

Larger page size The current trend is to increase the page size. 4KB or also 8KB is the

most common page size, especially for Solid State Drive.
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LIST OF SYMBOLS AND ACRONYMS

Due to the large number of symbols used in this thesis to support the descrip-

tion of covered material, we provide the following list of symbols and ab-

breviations. This list is intended to help the reader identify the meaning of

a given symbol or acronym in a fast and easy way.

ADAGE ADaptive ECC Automatic GEnerator

ARM Advanced RISC Machine

B Bulk

BC BL Coupling

BCH Bose-Chaudhuri-Hocquenhem

BED Bit-line Erase Disturbance

BF Bridging Fault

BL Bit-Line

BED Bit-line Erase Disturbance

BER Bit Error Rate

BPD Bit-line Program Disturbance
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CC Capacitive Coupling

CFAC Coupling Fault between Adjacent Cells

CFFS Core Flash File System

CG Control Gate

D Drain

DC Direct Coupling or Direct field effects

DC−E DC-Erase

DC−P DC-Programming

DD Drain Disturbance

DED Double Error Detection

DRAM Dynamic RAM

ECC Error Correcting Code

EEPROM Electrically Erasable-programmable read-only memory

EOL End-Of-Life

exFAT The ExtendedFAT

ext2 Second Extended File System

FARM Fault Activation Readout Measure

FAT File Allocation Table

FFS Flash File System

FG Floating Gate

FIFO First In First Out

FIT Failure In Time

FLARE FLash ARchitecture Evaluator
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FlexFS Flexible FFS

FTL Flash Translation Layer

GF Galois Field

GNU GNU is Not Unix

HD Hard Disk

LSB Least Significant Byte

JTAG Joint Test Action Group

JFFS Journaling Flash File System

KLE Kernel Level Emulation

MLC Multi Level Cell

MMFU Mass Memory Formatting Unit

MP3 Moving Picture Expert Group-1/2 Audio Layer 3

MSB Most Significant Byte

MTBF Mean Time Between Failures

MTD Memory Technology Device

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NOP Number Of PPP

NTFS New Technology File System

NVRAM Non Volatile RAM

OED Over-Erase Disturbance

OEP Over-Erase Program

ONFi Open NAND Flash interface
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OPD Over-Program Disturbance

OS Operating System

P/E Program/Erase

PD Program Disturbance

PPP Partial Page Programming

RAM Random Access Memory

RD Read Disturbance

RBER Raw BER

RDA(E) RD Addressed Erase

RDA(P) RD Addressed Program

RDI Remote Debug Interface

RDU(E) RD Unaddressed Erase

RDU(P) RD Unaddressed Program

RISC Reduced Instruction Set Computer

RS Reed-Solomon

S Source

SAF Stuck-At Fault

SDRAM Synchronous DRAM

SEC Single Error Correction

SG Select Gate

SLC Single Level Cell

SRAM Static RAM

SSD Solid State Drive
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TrueFFS True FFS

UBER Uncorrected BER

ULE User Level Emulation

USB Universal Serial Bus

WED Word-line Erase Disturbance

WL Word-Line

WPD Word-line Program Disturbance

YAFFS Yet Another Flash File System

YDI YAFFS Direct Interface
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