

C.1. ECC Principles

Table C.1 shows that each (valid) codeword of a code is far at least dmin from all the

other (valid) codewords.

C.1.1 Error Detection

Fig. C.2 shows how a single-bit error can modify a 0000 codeword.

Figure C.2: A "0000" codeword after a single-bit error

E.g., if we read the 0001 codeword from the memory, it is not a valid codeword. In

fact, 0001 does not belong to the code of Table C.1. Therefore, the error can be detected.

Fig. C.3 provides a generic example of the encoding/decoding process.

Figure C.3: Generic case Codeword

Fig. C.3 shows that each (valid) codeword is far from the other (valid) codeword at

least dmin. At least dmin single-bit errors have to occur in order to produce another valid

codeword. As a consequence, all dmin-1 single-bit errors can be detected.

"A code with dmin=d+1 is able to detect d single-bit errors"

E.g., the code of Table C.1 has dmin = 2. Therefore, it is able to detect all 1-single-bit

error. In fact, a single-bit error on a valid codeword never provides a valid codeword.

147

C. PRINCIPLES OF ERROR CORRECTING CODES

C.1.2 Error Correction

Let us discuss the correction. Supposing a single bit error, Fig. C.4 shows how the wrong

0001 codeword can be corrected.

Figure C.4: The wrong "0001" read codeword

0001 is "halfway" between any pair of these codewords1. Therefore, it is not possible

to understand which codeword 0001 originally was. In other words, this code can only

detect 1-single-bit errors and is not able to correct any error.

If the codeword Ca of Fig. C.3 is affected by less than dmin/2 single bit errors, then the

closest codeword to the faulty one is Ca itself.

"Any codeword affected by #er r or s ≤ (dmi n −1)/2 is correctable. Therefore,

the correcting power of the code is t = b(dmi n −1)/2c"

In order to correct t errors, we need a code with:

dmi n ≥ 2t +1 (C.1)

C.1.3 Hamming bound

Let us assume to have a n-bit codeword, a k-bit data, q symbols2, minimum Hamming

distance dmin and a correction capability t = b(dmi n −1)/2c.

Eq. C.2 has to be satisfied in order to proof the validity of Eq. C.1.

n −k ≥ l ogq

{
t∑

i=0

[(
n

i

)(
q −1

)i

]}
(C.2)

We usually refer to Eq. C.2 as Hamming bound [56].

1"0101" and "1001" are not valid codewords and will be not valid options
2if q = 2, symbols are called bits

148

C.2. Bose-Chaudhuri-Hocquenhem Codes Design Flow

C.2 Bose-Chaudhuri-Hocquenhem Codes Design Flow

Fig. C.5 resumes the BCH codes design flow.

Figure C.5: BCH Code Design Flow

Three main functional steps compose the BCH design flow: (i) Design Requirements,

(ii) Parameters Evaluation, and Code Characterization. After the last step, the BCH code

is completely defined.

C.2.1 Design Requirements

The first step of each BCH code design flow is to define the mission-critical requirements.

ECC algorithm works on data of fixed length (i.e., Data Length). The correction capability

is determined w.r.t. probabilistic studies. The Bit Error Rate (BER) of the page [90], i.e.,

the fraction of its erroneous bits, is mainly composed by two values: (i) Raw BER (RBER)

and (ii) UBER.

The former is the Raw BER (RBER), i.e., the BER before applying the error correction.

RBER is technology/environment dependent and is not constant; it increases with aging

of the page [13, 90].

The latter is the Uncorrected BER (UBER), i.e., the BER after the application of the

ECC, which is application dependent. It can be computed as the probability of having

149

C. PRINCIPLES OF ERROR CORRECTING CODES

more than t errors in the codeword (calculated as a binomial distribution of randomly

occurred bit errors) divided by the length of the codeword [34]:

U BER = P (E > t)

n
= 1

n

n∑
i=t+1

(
n

i

)
·RBER i · (1−RBER)n−i (C.3)

if n ·RBER ¿ 1, [56] rewrites Eq. C.3 as:

U BER ≈ 1

n
·
(

n

t +1

)
·RBER t+1 · (1−RBER)n−t−1 (C.4)

C.2.2 Parameters Evaluation

The Bit Error Rate (BER) of the page [90], i.e., RBER and UBER, is the key factor used to se-

lect the correction capability. Fig. C.6 shows the resulting UBER for k = 214 = 16,384bi t s

= 2K by tes and t = {0,1, 5,10, 15}.

Figure C.6: Examples of Raw BER and Uncorrected BER

The second parameter is the Galois Field (GF). Many codes are based on the abstract

algebra and, in particular, on GF [2]. A GF is a finite field with order q , i.e., it has a finite

number of elements represented with q symbols). The set of m-tuples of elements from

GF is the GF(qm) vector space. Linear q-ary are a set of m-tuples over GF(q) or, in other

words, are subspaces of GF(qm) [56]. A GF(qm):

150

C.2. Bose-Chaudhuri-Hocquenhem Codes Design Flow

• contains qm elements, defined as pm(x =α) = 0 ⇐⇒αm = bm−1am−1+bm−2am−2+
...+b0;

• all elements can be expressed as αi with iε
(
0, ..., qm −2

)
;

• always αqm−1 = 1 =α0;

• is closed with respect to addition and multiplication (i.e., the sum or the product of

two codewords is a codeword);

Different GFs matches different codes. In particular, two main parameters set the GF:

(i) the data length k and (ii) the correction capability t.

E.g., if q = 2, Eq. C.5 set the minimum GF(2m) required for the data length k [81].

k +m × t ≤ 2m −1 (C.5)

E.g., replacing k = 214 = 16,384 bits = 2KBytes into Eq. C.5, we need at least a Galois

Field with 2m = 215 = 32,767 elements.

Spare area and parity bits Eq. C.5 set the minimum m to generate the related GFm. The

number of parity bits is denoted as r = m × t . Such r parity bits are usually stored in the

spare area of the flash memory. Therefore, a proper trade-off is needed when designing

the ECC in terms of resources overhead.

C.2.3 Code Characterization

Finally, we exploit the correcting power t and the Galois Field to generate the Minimal

Polynomials ψ1(x), ψ2(x), ..., ψ2t (x) [2, 81]. They fully characterize the BCH code.

The set of Minimal Polynomials defines the Polynomial Generator g(x) of the BCH

code [2] as:

g (x) = LC M
[
ψ1 (x) ,ψ2 (x) ...,ψ2t (x)

]
(C.6)

LC M is the Least Common Multiple operator among the 2t minimal polynomials de-

fined above.

Table C.2 summarize the main BCH code properties.

151

C. PRINCIPLES OF ERROR CORRECTING CODES

Table C.2: BCH code properties

Specified by
zeroes α,α2,α3, ...,α2t of all

the codewords w(x)

Codewords Length n = 2m −1

Information Symbols
k = n −deg r ee of the

generator polynomial g (x)

Minimum Distance d ≥ 2t −1

Error Control Capability Corrects t errors

C.2.4 Shortened Codes

In system design, a code of suitable natural length or suitable number of information

digits usually cannot be found. Therefore, it may be desirable to shorten a code to meet

the requirements. Whenever n = k + r < 2m − 1, the BCH code is called shortened or

polynomial. In a shortened BCH code the codeword includes less binary symbols than

the ones the selected Galois field would allow. The missing information symbols are

imagined to be at the beginning of the codeword and are considered to be 0. A shortened

code has at least the same error-correcting capability as the code from which it is derived

[74].

E.g., protecting k = 214 = 16,384 bits data length implies to adopt a GF with 32,767 el-

ements (refer to Eq. C.5). Assuming to correct t = 5 errors, we have a resulting codeword

n = k+m×t = 16,384 + 15×5 = 16,459 bits < 32,767 = 215-1. Therefore, we may adopt a code

which is shortened of 32,767 - 16,459 = 16,308 bits. A complete BCH[n, k, t] = [32,768,

16,384, 5] becomes a shortened BCH[16,459, 16,384, 5] BCH code.

C.3 Error Detecting and Correcting Codes: The actual trend

ECCs are moving toward two main directions [42]: (i) stronger ECCs and (ii) larger data

block.

A stronger ECC has higher correcting power t . However, bigger t implies a higher

number r = m × t of check bits. An higher complexity is also required to detect/correct

higher number of errors.

On the other hand, the current trend is to adopt k = 512 Byte. A bigger data length size

k may better handle higher concentration of errors. However, bigger k implies bigger

152

C.3. Error Detecting and Correcting Codes: The actual trend

symbol size (see Eq. C.5).

Fig. C.7 shows an example of moving toward bigger data length.

Figure C.7: ECC Example for point "Large Block..."

The first part of Fig. C.7 has two data blocks with k = 512 Bytes. Each block is protected

with an ECC with t = 8. This is usually denoted as ECC-8. The second part of Fig. C.7 has

one block with k = 1,024 Bytes with ECC-16.

Although the situation looks similar, having 9 and 5 errors in the two k = 512 Bytes

block implies a critical failure. Having 9 + 5 = 16 errors are correctable within the k =

1,024 Bytes data blocks.

C.3.1 Examples

Fig. C.8 shows the UBER for several ECCs.

Figure C.8: Uncorrected BER for different ECCs

Fig. C.8 shows that moving toward bigger data blocks improves the UBER. Further-

more, a 512B-ECC16 and a 1024B-ECC16 are equivalent from a UBER standpoint. We

provide some simple examples to understand the trade-off to tackle during ECC design.

153

C. PRINCIPLES OF ERROR CORRECTING CODES

Example 1 Fig. C.9 shows a first possible example.

Figure C.9: 512B-ECC16 protecting a 2KB page

Let us assume k = 512 Bytes protected by ECC16 (i.e., 16 errors can be corrected). This

is usually denoted as 512B-ECC16. We need:

• Parity Symbol Size (m): Eq. C.5 set m = 13, i.e., 13-bit parity symbols;

• Correcting Power(t): t = 16, which implies 13 bit × 16 parity symbols/block = 26

Bytes/block;

• Complexity: a 512B-ECC16 requires 4×26 Bytes = 104Byte;

Example 2 Fig. C.10 shows another example.

Figure C.10: 1KB-ECC16 protecting a 2KB page

Let us assume k = 1 KBytes protected by ECC20 (i.e., 20 errors can be corrected). This

is usually denoted as 1KB-ECC20. We need:

• Parity Symbol Size (m): Eq. C.5 set m = 14, i.e., 14-bit parity symbols;

• Correcting Power(t): t = 20, which implies 14 bit × 20 parity symbols/block = 35

Bytes/block;

• Complexity: a 1KB-ECC20 protecting a 2KB page requires 2×35 Bytes = 70Byte/-

page;

As well as Fig. C.8 shows, the 1KB-ECC20 (Fig. C.9) provides a better UBER than

512B-ECC16 (Fig. C.10), but at lower resource overhead in terms of occupied spare area.

154

C.4. Error correcting techniques for future NAND flash memory

C.4 Error correcting techniques for future NAND flash memory

Thanks to their lower RBER, a 512B-ECC1 (i.e., single-bit correction) may be sufficient

for Single Level Cell (SLC) NAND flash. Multi Level Cell (MLC) NAND flashes have higher

RBER. Therefore, they require higher correction capability (e.g., at least 512B-ECC4) [48].

20nm NAND flash The continuous scaling-down and the related increasing density of

NAND flash implies to adopt proper ECC controllers and algorithms. The first 20nm

NAND flash devices are currently available [85]. Such a quick scaling-down implies fewer

electrons to enter the Floating Gate (FG). Therefore, there is a higher uncertainty about

the charge in the FG.

More bits per cell Nowadays, MLC-based NAND flash can store up to 4 or 8 bit per cell.

Although the density of the memory is dramatically increased, also the possible distur-

bances are much worse. As a consequence, ECCs have to increase their correcting power.

Larger page size The current trend is to increase the page size. 4KB or also 8KB is the

most common page size, especially for Solid State Drive.

155

 A
P

P
E

N
D

I
X

D
LIST OF SYMBOLS AND ACRONYMS

Due to the large number of symbols used in this thesis to support the descrip-

tion of covered material, we provide the following list of symbols and ab-

breviations. This list is intended to help the reader identify the meaning of

a given symbol or acronym in a fast and easy way.

ADAGE ADaptive ECC Automatic GEnerator

ARM Advanced RISC Machine

B Bulk

BC BL Coupling

BCH Bose-Chaudhuri-Hocquenhem

BED Bit-line Erase Disturbance

BF Bridging Fault

BL Bit-Line

BED Bit-line Erase Disturbance

BER Bit Error Rate

BPD Bit-line Program Disturbance

157

LIST OF SYMBOLS AND ACRONYMS

CC Capacitive Coupling

CFAC Coupling Fault between Adjacent Cells

CFFS Core Flash File System

CG Control Gate

D Drain

DC Direct Coupling or Direct field effects

DC−E DC-Erase

DC−P DC-Programming

DD Drain Disturbance

DED Double Error Detection

DRAM Dynamic RAM

ECC Error Correcting Code

EEPROM Electrically Erasable-programmable read-only memory

EOL End-Of-Life

exFAT The ExtendedFAT

ext2 Second Extended File System

FARM Fault Activation Readout Measure

FAT File Allocation Table

FFS Flash File System

FG Floating Gate

FIFO First In First Out

FIT Failure In Time

FLARE FLash ARchitecture Evaluator

158

List of symbols and acronyms

FlexFS Flexible FFS

FTL Flash Translation Layer

GF Galois Field

GNU GNU is Not Unix

HD Hard Disk

LSB Least Significant Byte

JTAG Joint Test Action Group

JFFS Journaling Flash File System

KLE Kernel Level Emulation

MLC Multi Level Cell

MMFU Mass Memory Formatting Unit

MP3 Moving Picture Expert Group-1/2 Audio Layer 3

MSB Most Significant Byte

MTBF Mean Time Between Failures

MTD Memory Technology Device

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NOP Number Of PPP

NTFS New Technology File System

NVRAM Non Volatile RAM

OED Over-Erase Disturbance

OEP Over-Erase Program

ONFi Open NAND Flash interface

159

LIST OF SYMBOLS AND ACRONYMS

OPD Over-Program Disturbance

OS Operating System

P/E Program/Erase

PD Program Disturbance

PPP Partial Page Programming

RAM Random Access Memory

RD Read Disturbance

RBER Raw BER

RDA(E) RD Addressed Erase

RDA(P) RD Addressed Program

RDI Remote Debug Interface

RDU(E) RD Unaddressed Erase

RDU(P) RD Unaddressed Program

RISC Reduced Instruction Set Computer

RS Reed-Solomon

S Source

SAF Stuck-At Fault

SDRAM Synchronous DRAM

SEC Single Error Correction

SG Select Gate

SLC Single Level Cell

SRAM Static RAM

SSD Solid State Drive

160

List of symbols and acronyms

TrueFFS True FFS

UBER Uncorrected BER

ULE User Level Emulation

USB Universal Serial Bus

WED Word-line Erase Disturbance

WL Word-Line

WPD Word-line Program Disturbance

YAFFS Yet Another Flash File System

YDI YAFFS Direct Interface

161

BIBLIOGRAPHY

[1] MAGMA computational algebra system. Retrieved February 24, 2013 from the

World Wide Web http://magma.maths.usyd.edu.au/magma/.

[2] Jiri Adamek. Foundations of Coding: Theory and Applications of Error-Correcting

Codes, with an Introduction to Cryptography and Informat. John Wiley & Sons,

Inc., New York, NY, USA, 1st edition, 1991.

[3] Advantest. Advantest announces NAND flash test solutions. Retrieved February

24, 2013 from the World Wide Web http://www.advantest.co.jp/news/

press-2011/20110711/en-index.shtml, July 2011.

[4] Aeroflex. Aeroflex hiRel memories. Retrieved February 24, 2013 from

the World Wide Web http://www.aeroflex.com/ams/pagesproduct/

prods-hirel-mems.cfm.

[5] Aivosto. Visustin. Retrieved February 24, 2013 from the World Wide Web http:

//www.aivosto.com/visustin.html, 2010.

[6] Aleph One Ltd. Yaffs direct interface (YDI). Retrieved February 24, 2013 from

the World Wide Web http://users.actrix.co.nz/manningc/yaffs_

direct2doc.pdf, 2010.

[7] Aleph One Ltd. Yet another flash file system 2 (YAFFS2). Retrieved February 24,

2013 from the World Wide Web http://www.yaffs.net/, 2011.

[8] A. Ban. Flash file system, U.S. patent 5404485, apr. 4. Retrieved February 24,

2013 from the World Wide Web http://www.freepatentsonline.com/

5404485.pdf, 1995.

[9] A. Benso and P. Prinetto. Fault Injection Techniques and Tools for Embedded Sys-

tems Reliability Evaluation, volume 1-4020-7589-8. Kluver Academic, 2003.

[10] E. Berlekamp. Goppa codes. IEEE Transactions on Information Theory, 19(5):590 –

592, sep 1973.

163

http://magma.maths.usyd.edu.au/magma/
http://www.advantest.co.jp/news/press-2011/20110711/en-index.shtml
http://www.advantest.co.jp/news/press-2011/20110711/en-index.shtml
http://www.aeroflex.com/ams/pagesproduct/prods-hirel-mems.cfm
http://www.aeroflex.com/ams/pagesproduct/prods-hirel-mems.cfm
http://www.aivosto.com/visustin.html
http://www.aivosto.com/visustin.html
http://users.actrix.co.nz/manningc/yaffs_direct2doc.pdf
http://users.actrix.co.nz/manningc/yaffs_direct2doc.pdf
http://www.yaffs.net/
http://www.freepatentsonline.com/5404485.pdf
http://www.freepatentsonline.com/5404485.pdf

BIBLIOGRAPHY

[11] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill, 1968.

[12] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary group

codes. Information and Control, 3(1):68–79, 1960.

[13] Joe Brewer and Manzur Gill. Nonvolatile Memory Technologies with Emphasis on

Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices.

Wiley-IEEE Press, January 2008.

[14] M. Brüggemann, H. Schmidt, D. Walter, F. Gliem, R. Harboe-Sørensen, P. Roos, and

M. Stähle. SEE tests of NAND flash-memory devices for use in a safeguard data

recorder. Radiation Effects on Components and Systems (RADECS), A-3, 2006.

[15] M. Brüggemann, H. Schmidt, D. Walter, F. Gliem, and H. Michalik. Further heavy

ion and proton SEE evaluation of high capacity NAND-flash-memory devices

for safeguard data recorder. 8th ESA/ESTEC D/TEC-QCA Final Presentation Day,

February 2007.

[16] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Exploring design dimensions

in flash-based mass-memory devices. Proceedings of IWSSPS 2009 : 4th Interna-

tional Workshop on Software Support for Portable Storage, Grenoble (France), Oct

2009, 15, pages 43–48, 2009.

[17] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. FLARE: A design environment

for flash-based space applications. In Proceedings of IEEE International High Level

Design Validation and Test Workshop, HLDVT ’09, pages 14–19, San Francisco, CA,

USA, 4-6 Nov. 2009.

[18] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Flash-memories in space ap-

plications: Trends and challenges. In Proceedings of the 7th IEEE East-West Design

& Test Symposium, EWDTS ’09, pages 429–432, Moscow, Russian Federation, 18-21

Sept. 2009.

[19] M. Caramia, M. Fabiano, A. Miele, R. Piazza, and P. Prinetto. Automated syn-

thesis of EDACs for FLASH memories with user-selectable correction capability.

Proceedings of IEEE International High Level Design Validation and Test Workshop

(HLDVT), pages 113 –120, june 2010.

164

Bibliography

[20] M. Cassel, D. Walter, H. Schmidt, F. Gliem, H. Michalik, M. Stähle, K. Vögele, and

P. Casel Roos. NAND-flash-memory technology in mass memory systems for space

applications. Proceedings Data Systems In Aerospace (DASIA) 2008, 2008. Palma de

Mallorca, Spain.

[21] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage sys-

tems. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied computing,

pages 1126–1130, New York, NY, USA, 2007. ACM.

[22] Li-Pin Chang and Tei-Wei Kuo. An efficient management scheme for large-scale

flash-memory storage systems. In SAC ’04: Proceedings of the 2004 ACM sympo-

sium on Applied computing, pages 862–868, New York, NY, USA, 2004. ACM.

[23] Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. Endurance enhancement of

flash-memory storage systems: an efficient static wear leveling design. In Proceed-

ings of the 44th annual Design Automation Conference, DAC ’07, pages 212–217,

San Diego, California, 4-8 June 2007. ACM.

[24] E. Chen and T. Yen. Comparing SLC and MLC flash technologies and structure. Re-

trieved February 24, 2013 from the World Wide Webhttp://www.advantech.

com.tw/epc/newsletter/Whitepaper/WhitePaper_Comparing_

SLC_and_MLC_Flash_Technologies_and_Structure_200909.pdf,

Advantech, 2009.

[25] Te-Hsuan Chen, Yu-Ying Hsiao, Yu-Tsao Hsing, and Cheng-Wen Wu. An adaptive-

rate error correction scheme for NAND flash memory. Proceedings of 27th IEEE

VLSI Test Symposium (VTS), pages 53–58, 2009.

[26] Yanni Chen and Keshab K. Parhi. Small area parallel Chien search architectures for

long BCH codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

12:545–549, 2004.

[27] Kuo-Liang Cheng, Jen-Chieh Yeh, Chih-Wea Wang, Chih-Tsun Huang, and Cheng-

Wen Wu. RAMSES-FT: a fault simulator for flash memory testing and diagnostics.

pages 281 – 286, 2002.

[28] Mei-Ling Chiang, Paul C. H. Lee, and Ruei-Chuan Chang. Using data clustering to

improve cleaning performance for flash memory. Software - Practice and Experi-

ence, 29:267–290, 1999.

165

http://www.advantech.com.tw/epc/newsletter/Whitepaper/WhitePaper_Comparing_SLC_and_MLC_Flash_Technologies_and_Structure_200909.pdf
http://www.advantech.com.tw/epc/newsletter/Whitepaper/WhitePaper_Comparing_SLC_and_MLC_Flash_Technologies_and_Structure_200909.pdf
http://www.advantech.com.tw/epc/newsletter/Whitepaper/WhitePaper_Comparing_SLC_and_MLC_Flash_Technologies_and_Structure_200909.pdf

BIBLIOGRAPHY

[29] R. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.

IEEE Transactions on Information Theory, 10(4):357–363, oct 1964.

[30] Sau-Kwo Chiu, Jen-Chieh Yeh, Chih-Tsun Huang, and Cheng-Wen Wu. Diagonal

test and diagnostic schemes for flash memories. In Proc. International Test Con-

ference, pages 37–46, 7–10 Oct. 2002.

[31] Junho Cho and Wonyong Sung. Software implementation of Chien search process

for strong BCH codes. In IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1842–1845, may 2008.

[32] Junho Cho and Wonyong Sung. Efficient software-based encoding and decoding

of BCH codes. IEEE Transactions on Computers, 58(7):878–889, july 2009.

[33] H. Choi, W. Liu, and W. Sung. VLSI implementation of BCH error correction for

multilevel cell NAND flash memory. IEEE Transactions on Very Large Scale Inte-

gration (VLSI) Systems, 18:843–847, 2010.

[34] Jim Cooke. The inconvenient truths of NAND flash memory. http:

//download.micron.com/pdf/presentations/events/flash_

mem_summit_jcooke_inconvenient_truths_nand.pdf, 2007.

[35] SanDisk Corporation. Sandisk flash-memory cards wear leveling. Technical Report

80-36-00278, October 2003.

[36] Corsair. USB flash wear-leveling and life span. Retrieved February 24, 2013

from the World Wide Web http://docs.aboutnetapp.ru/FAQ_flash_

drive_wear_leveling.pdf, June 2007.

[37] CSIE. Csie. Retrieved February 24, 2013 from the World Wide Web http:

//newslab.csie.ntu.edu.tw/~flash/index.php?SelectedItem=

Traces, 2005.

[38] Cypress. Cypress SONOS technology. Retrieved February 24, 2013 from the World

Wide Web http://www.cypress.com/?docID=30113.

[39] R. Dan and R. Singer. Implementing MLC NAND flash for cost-effective,

high-capacity memory. http://support.gateway.com/s/Manuals/

Desktops/5502664/Implementing_MLC_NAND_Flashwhite%

20paper.pdf, 2011.

166

http://download.micron.com/pdf/presentations/events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf
http://download.micron.com/pdf/presentations/events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf
http://download.micron.com/pdf/presentations/events/flash_mem_summit_jcooke_inconvenient_truths_nand.pdf
http://docs.aboutnetapp.ru/FAQ_flash_drive_wear_leveling.pdf
http://docs.aboutnetapp.ru/FAQ_flash_drive_wear_leveling.pdf
http://newslab.csie.ntu.edu.tw/~flash/index.php?SelectedItem=Traces
http://newslab.csie.ntu.edu.tw/~flash/index.php?SelectedItem=Traces
http://newslab.csie.ntu.edu.tw/~flash/index.php?SelectedItem=Traces
http://www.cypress.com/?docID=30113
http://support.gateway.com/s/Manuals/Desktops/5502664/Implementing_MLC_NAND_Flashwhite%20paper.pdf
http://support.gateway.com/s/Manuals/Desktops/5502664/Implementing_MLC_NAND_Flashwhite%20paper.pdf
http://support.gateway.com/s/Manuals/Desktops/5502664/Implementing_MLC_NAND_Flashwhite%20paper.pdf

Bibliography

[40] Datalight. XCfiles file system for next generation removable storage. Retrieved

February 24, 2013 from the World Wide Web http://www.datalight.com/

products/embedded-file-systems/xcfiles, 2010.

[41] B. De Salvo, G. Ghibaudo, G. Pananakakis, B. Guillaumot, P. Candelier, and G. Re-

imbold. A new extrapolation law for data-retention time-to-failure of non-volatile

memories. Electron Device Letters, IEEE, 20(5):197 –199, may 1999.

[42] Eric Deal. Trends in NAND flash memory error correction. http://

cyclicdesign.com/whitepapers/Cyclic_Design_NAND_ECC.pdf,

2011.

[43] Memory Technology Devices. NAND simulator. Retrieved February 24, 2013

from the World Wide Web http://www.linux-mtd.infradead.org/

faq/nand.html, 2011.

[44] S. Di Carlo, M. Fabiano, M. Indaco, and P. Prinetto. ADAGE: An Automated Synthe-

sis tool for Adaptive BCH-based ECC IP-Cores. Proceedings of IEEE International

Test Conference (ITC), page 15, 2012.

[45] S. Di Carlo, M. Fabiano, M. Indaco, and P. Prinetto. Design and Optimization of

Adaptable BCH Codecs for NAND Flash Memories. Elsevier Microprocessors and

Microsystems (MICPRO), revisions being processed, 2013.

[46] S. Di Carlo, M. Fabiano, R. Piazza, and P. Prinetto. Exploring modeling and testing

of NAND flash memories. Design Test Symposium EWDTS 2010 East West, pages

47–50, 2010.

[47] S. Di Carlo, M. Fabiano, P. Prinetto, and M. Caramia. Design Issues and Challenges

of File Systems for Flash Memories, chapter 1, pages 28 (pp.3–30). InTech, 2011,

ISBN 9789533072722.

[48] N. Duann. Error correcting techniques for future NAND flash memory in SSD

applications. Retrieved February 24, 2013 from the World Wide Web http:

//www.bswd.com/FMS09/FMS09-201-Duann.pdf, 2009.

[49] M. Fabiano and G. Furano. Nand flash storage technology for mission-critical

space applications. accepted for publication on IEEE Aerospace and Electronic Sys-

tems Magazine (AESS), -, 2013.

167

http://www.datalight.com/products/embedded-file-systems/xcfiles
http://www.datalight.com/products/embedded-file-systems/xcfiles
http://cyclicdesign.com/whitepapers/Cyclic_Design_NAND_ECC.pdf
http://cyclicdesign.com/whitepapers/Cyclic_Design_NAND_ECC.pdf
http://www.linux-mtd.infradead.org/faq/nand.html
http://www.linux-mtd.infradead.org/faq/nand.html
http://www.bswd.com/FMS09/FMS09-201-Duann.pdf
http://www.bswd.com/FMS09/FMS09-201-Duann.pdf

BIBLIOGRAPHY

[50] M. Fabiano and P. Prinetto. FLARE: Technology roadmap. Retrieved February

24, 2013 from the World Wide Web http://www.testgroup.polito.it/

FLARE/FLARE-Roadmap.pdf, 2010.

[51] Free Software Foundation. GDB: The GNU project debugger. Retrieved February

24, 2013 from the World Wide Web http://www.gnu.org/s/gdb/, 2011.

[52] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.

ACM Comput. Surv., 37:138–163, June 2005.

[53] GNU. GNU octave. Retrieved February 24, 2013 from the World Wide Web www.

gnu.org/software/octave/, 2010.

[54] M. J. E. Golay. Notes on digital coding. Proceedings of The IEEE, 37:657, 1949.

[55] J. Gray and C. van Ingen. Empirical measurements of disk failure rates and error

rates. Retrieved February 24, 2013 from the World Wide Web http://arxiv.

org/ftp/cs/papers/0701/0701166.pdf, 2011.

[56] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error correcting tech-

niques for new-generation flash memories. Proceedings of the IEEE, 91:602–616,

2003.

[57] Rw Hamming. Error Detecting and Error Correcting Codes. Bell System Technical

Journal, 26:147–160, 1950.

[58] Yea-Ling Horng, Jing-Reng Huang, and Tsin-Yuan Chang. A realistic fault model

for flash memories. ATS ’00: Proceedings of the 9th Asian Test Symposium, page

274, 2000.

[59] IEEE Standards Department. IEEE standard definitions and characterization of

floating gate semiconductor arrays. IEEE Std 1005-1998, 1998.

[60] D. Ielmini. Reliability issues and modeling of flash and post-flash memory. Micro-

electronic Engineering, 86:1870–1875, 2009.

[61] Intel. Understanding the Flash Translation Layer (FTL) specification, AP-

684 (order 297816). Retrieved February 24, 2013 from the World Wide Web

http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%

168

http://www.testgroup.polito.it/FLARE/FLARE-Roadmap.pdf
http://www.testgroup.polito.it/FLARE/FLARE-Roadmap.pdf
http://www.gnu.org/s/gdb/
www.gnu.org/software/octave/
www.gnu.org/software/octave/
http://arxiv.org/ftp/cs/papers/0701/0701166.pdf
http://arxiv.org/ftp/cs/papers/0701/0701166.pdf
http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf
http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf

Bibliography

20TR-Understanding%20the%20flash%20translation%20layer%

20(FTL)%20specification.pdf, Dec. 1998.

[62] F. Irom, D. N. Nguyen, M. L. Underwood, and A. Virtanen. Effects of scaling in SEE

and TID response of high density NAND flash memories. 57(6):3329–3335, 2010.

[63] Isilon. OneFS. Retrieved February 24, 2013 from the World Wide Web http://

www.isilon.com/onefs-operating-system, 2011.

[64] Lee Jae-Duk, Hur Sung-Hoi, and Choi Jung-Dal. Effects of floating-gate interfer-

ence on NAND flash memory cell operation. IEEE Electron Device Letters, 23:264–

266, 2002.

[65] Yeh Jen-Chieh, Wu Chi-Feng, Cheng Kuo-Liang, Chou Yung-Fa, Huang Chih-Tsun,

and Wu Cheng-Wen. Flash memory built-in self-test using march-like algorithms.

In Proceedings of the First IEEE International Workshop on Electronic Design, Test

and Applications, pages 137–141, Christchurch , New Zealand, 29-31 Jan. 2002.

[66] Hsieh Jen-Wei, Tsai Yi-Lin, Kuo Tei-Wei, and Lee Tzao-Lin. Configurable flash-

memory management: Performance versus overheads. IEEE Trans. on Computers,

57(11):1571–1583, Nov. 2008.

[67] Cho Junho and Sung Wonyong. Efficient software-based encoding and decoding

of BCH codes. IEEE Transactions on Computers, 58(7):878–889, July 2009.

[68] J. Katcher. Postmark: A new file system benchmark. Re-

trieved February 24, 2013 from the World Wide Web https://

koala.cs.pub.ro/redmine/attachments/download/605/

Katcher97-postmark-netapp-tr3022.pdf, 2011.

[69] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-memory based

file system. In Proceedings of the USENIX Annual Technical Conference, TCON’95,

pages 13–13, New Orleans, Louisiana, 16-20 Jan. 1995. USENIX Association.

[70] A. Keshk. Flash memory testing for realistic fault modeling. In International Con-

ference on Electrical, Electronic and Computer Engineering, 2004. ICEEC ’04, Sept.

2004.

169

http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf
http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf
http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf
http://staff.ustc.edu.cn/~jpq/paper/flash/2006-Intel%20TR-Understanding%20the%20flash%20translation%20layer%20(FTL)%20specification.pdf
http://www.isilon.com/onefs-operating-system
http://www.isilon.com/onefs-operating-system
https://koala.cs.pub.ro/redmine/attachments/download/605/Katcher97-postmark-netapp-tr3022.pdf
https://koala.cs.pub.ro/redmine/attachments/download/605/Katcher97-postmark-netapp-tr3022.pdf
https://koala.cs.pub.ro/redmine/attachments/download/605/Katcher97-postmark-netapp-tr3022.pdf

BIBLIOGRAPHY

[71] Kijun Lee, Sejin Lim, and Jaehong Kim. Low-cost, low-power and high-throughput

BCH decoder for NAND Flash Memory. IEEE International Symposium on Circuits

and Systems (ISCAS), pages 413–415, may 2012.

[72] Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim.

FlexFS: a flexible flash file system for MLC NAND flash memory. In Proceedings of

the USENIX Annual Technical Conference, USENIX’09, pages 9–9, San Diego, Cali-

fornia, 14-19 June 2009. USENIX Association.

[73] S. Lin and D. Costello. Error Control Coding: Fundamentals and Applications. 2004.

[74] Wei Liu, Junrye Rho, and Wonyong Sung. Low-power high-throughput BCH error

correction VLSI design for multi-level cell NAND flash memories. Signal Processing

Systems Design and Implementation, 2006. SIPS ’06. IEEE Workshop on, pages 303

–308, oct. 2006.

[75] M-Systems. Flash-memory Translation Layer for NAND flash (NFTL).

Retrieved February 24, 2013 from the World Wide Web http://www.

freepatentsonline.com/5404485.pdf, 1998.

[76] C. Manning. How YAFFS works. Retrieved February 24, 2013 from the World Wide

Web http://www.dubeiko.com/development/FileSystems/YAFFS/

HowYaffsWorks.pdf, 2010.

[77] C. Manning. How YAFFS handles NAND errors. Retrieved February 24, 2013

from the World Wide Web http://yaffs.net/gitweb?p=yaffs-docs;

a=blob;f=NANDFailureMitigation.odt, 2011.

[78] MathWorks. Simulink HDL coder. Retrieved February 24, 2013 from the World

Wide Web http://www.mathworks.com/products/slhdlcoder/,

2011.

[79] The Mathworks. Communication System Toolbox. http://www.mathworks.

nl/help/comm/ref/primpoly.html, 2012.

[80] MemoryTechnologyDevice. Memory technology device (MTD). Retrieved

February 24, 2013 from the World Wide Web http://www.linux-mtd.

infradead.org/, 2010.

170

http://www.freepatentsonline.com/5404485.pdf
http://www.freepatentsonline.com/5404485.pdf
http://www.dubeiko.com/development/FileSystems/YAFFS/HowYaffsWorks.pdf
http://www.dubeiko.com/development/FileSystems/YAFFS/HowYaffsWorks.pdf
http://yaffs.net/gitweb?p=yaffs-docs;a=blob;f=NANDFailureMitigation.odt
http://yaffs.net/gitweb?p=yaffs-docs;a=blob;f=NANDFailureMitigation.odt
http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.nl/help/comm/ref/primpoly.html
http://www.mathworks.nl/help/comm/ref/primpoly.html
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

Bibliography

[81] R. Micheloni, A. Marelli, and R. Ravasio. Error Correction Codes for Non-Volatile

Memories. Springer Publishing Company, 2008.

[82] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa,

E. Di Martino, L. D’Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim, C. Mis-

siroli, I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro, M. Scotti,

and S. Won. A 4Gb 2b/cell NAND flash memory with embedded 5b BCH ECC for

36MB/s system read throughput. Proceedings of IEEE Solid-State Circuits Confer-

ence (ISSCC), pages 497–506, 2006.

[83] Micron. NAND flash memory (MT29F4G08AAA, MT29F8G08BAA,

MT29F8G08DAA, MT29F16G08FAA). Retrieved February 24, 2013 from the World

Wide Web http://www.datasheets.org.uk/dl/SFDatasheet-4/

sf-00095776.pdf, Feb. 2007.

[84] Micron. Hamming codes for NAND flash-memory devices overview. http://

download.micron.com/pdf/technotes/nand/tn2908.pdf, 2011.

[85] Micron. A trillion bits on a fingertip. Retrieved February 24, 2013 from the World

Wide Web http://www.micron.com/about/blogs/2011/december/

a-trillion-bits-on-a-fingertip, 2011.

[86] Microsoft. Microsoft report. Retrieved February 24, 2013 from the World

Wide Web http://technet.microsoft.com/en-us/sysinternals/

bb896646.aspx, 2006.

[87] Microsoft. Description of the exFAT file system driver update package. Retrieved

February 24, 2013 from the World Wide Web http://support.microsoft.

com/kb/955704/en-us, 2009.

[88] Microsoft. exFAT file system. Retrieved February 24, 2013 from the

World Wide Web http://www.microsoft.com/about/legal/

en/us/IntellectualProperty/IPLicensing/Programs/

exFATFileSystem.aspx, 2011.

[89] Microsoft. File system functionality comparison. Retrieved February 24, 2013 from

the World Wide Web http://msdn.microsoft.com/en-us/library/

ee681827(v=vs.85).aspx, 2011.

171

http://www.datasheets.org.uk/dl/SFDatasheet-4/sf-00095776.pdf
http://www.datasheets.org.uk/dl/SFDatasheet-4/sf-00095776.pdf
http://download.micron.com/pdf/technotes/nand/tn2908.pdf
http://download.micron.com/pdf/technotes/nand/tn2908.pdf
http://www.micron.com/about/blogs/2011/december/a-trillion-bits-on-a-fingertip
http://www.micron.com/about/blogs/2011/december/a-trillion-bits-on-a-fingertip
http://technet.microsoft.com/en-us/sysinternals/bb896646.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896646.aspx
http://support.microsoft.com/kb/955704/en-us
http://support.microsoft.com/kb/955704/en-us
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/IPLicensing/Programs/exFATFileSystem.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/IPLicensing/Programs/exFATFileSystem.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/IPLicensing/Programs/exFATFileSystem.aspx
http://msdn.microsoft.com/en-us/library/ee681827(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ee681827(v=vs.85).aspx

BIBLIOGRAPHY

[90] N. Mielke, T. Marquart, Ning Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,

E. Goodness, and L.R. Nevill. Bit error rate in NAND flash memories. Proceedings

of the IEEE International Reliability Physics Symposium, pages 9–19, 2008.

[91] Park Mincheol, Kim Keonsoo, Park Jong-Ho, and Choi Jeong-Hyuck. Direct field

effect of neighboring cell transistor on cell-to-cell interference of NAND flash cell

arrays. IEEE Electron Device Letters, 30:174–177, 2009.

[92] M.G. Mohammad, K. K. Saluja, and Alex S. Yap. Fault models and test procedures

for flash memory disturbances. J. Electron. Test., 17(6):495–508, 2001.

[93] M.G. Mohammad and K.K. Saluja. Flash memory disturbances: modeling and test.

VLSI Test Symposium, 19th IEEE Proceedings on. VTS 2001, pages 218 –224, 2001.

[94] M.G. Mohammad and K.K. Saluja. Optimizing program disturb fault tests using

defect-based testing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 24(6):905 – 915, june 2005.

[95] M.G. Mohammad and K.K. Saluja. Testing flash memories for tunnel oxide defects.

In Proc. 21st International Conference on VLSI Design VLSID 2008, pages 157–162,

4–8 Jan. 2008.

[96] M.G. Mohammad, K.K. Saluja, and A. Yap. Testing flash memories. In Proceeding of

the Thirteenth International Conference on VLSI Design, pages 406–411, Calcutta,

India, 4-7 Jan. 2000. IEEE Computer Society.

[97] M.G. Mohammad and Laila Terkawi. Fault collapsing for flash memory disturb

faults. In ETS ’05: Proceedings of the 10th IEEE European Symposium on Test, pages

142–147, Washington, DC, USA, 2005. IEEE Computer Society.

[98] Todd K. Moon. Error Correction Coding: Mathematical Methods and Algorithms.

Wiley-Interscience, 2005.

[99] NetApp. Postmark. Retrieved February 24, 2013 from the World Wide Webhttps:

//launchpad.net/ubuntu/+source/postmark, 2010.

[100] D. N. Nguyen, S. M. Guertin, and J. D. Patterson. Radiation tests on 2Gb NAND

flash memories. In Proc. IEEE Radiation Effects Data Workshop, pages 121–125,

2006.

172

https://launchpad.net/ubuntu/+source/postmark
https://launchpad.net/ubuntu/+source/postmark

Bibliography

[101] D. N. Nguyen and L. Z. Scheick. TID, SEE and radiation induced failures in ad-

vanced flash memories. In Proc. IEEE Radiation Effects Data Workshop, pages 18–

23, 2003.

[102] T. R. Oldham, M. Friendlich, J. W. Howard, M. D. Berg, H. S. Kim, T. L. Irwin, and

K. A. LaBel. TID and SEE response of an advanced samsung 4gb NAND flash mem-

ory. In Proc. IEEE Radiation Effects Data Workshop, volume 0, pages 221–225, 2007.

[103] Timothy R. Oldham et al. Correlation of Pulsed Laser and Milli-Beam TM Heavy

Ion Results for NAND Flash Memory. To be presented at the 1st NASA Electronic

Parts and Packaging (NEPP) Program Electronic Technology Workshop June 22-24,

2010, NASA GSFC, Greenbelt, MD., 2012.

[104] ONFI. Open NAND flash interface (ONFi) specification. Retrieved February 24,

2013 from the World Wide Web http://www.onfi.org/~/media/ONFI/

specs/onfi_3_1_spec.pdf, 2010.

[105] Perisoft. Bushound. Retrieved February 24, 2013 from the World Wide Web http:

//www.perisoft.net/bushound/, 1998.

[106] J.A. Perschy. Space systems general-purpose processor. Aerospace and Electronic

Systems Magazine, IEEE, 15(11):15 – 19, nov 2000.

[107] K. Rajesh Shetty, U. Sripati, H. Prashantha Kumar, and B. Shankarananda. Syn-

thesis of BCH codes for enhancing data integrity in flash memories. International

Conference on Industrial and Information Systems (ICIIS), pages 119–124, 29 2010-

aug. 1 2010.

[108] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal

of the Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[109] UMass Trace Repository. Storage traces. Retrieved February 24, 2013

from the World Wide Web http://traces.cs.umass.edu/index.php/

Storage/Storage, 2011.

[110] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a

log-structured file system. ACM Trans. Comput. Syst., 10:26–52, February 1992.

173

http://www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf
http://www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf
http://www.perisoft.net/bushound/
http://www.perisoft.net/bushound/
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

BIBLIOGRAPHY

[111] Samsung. XSR1.5 bad block management. Retrieved February 24, 2013 from

the World Wide Web http://www.findthatpdf.com/download.php?i=

4450573&t=hPDF, May 2007.

[112] Samsung. XSR1.5 wear leveling. Retrieved February 24, 2013 from the World Wide

Web http://en.pudn.com/dl.asp?id=965593, May 2007.

[113] Samsung. K9XXG08UXM NAND flash memory. http://www.arm9board.

net/download/FL6410/datasheet/K9G8G08.pdf, 2011.

[114] Samsung. OneNAND. Retrieved February 24, 2013 from the World

Wide Web https://u-boot-all-in-one.googlecode.com/files/

onenand_brochure_200609.pdf, 2011.

[115] Ltd Samsung Electronics Co. NAND flash ECC algorithm (error checking & cor-

rection). Retrieved February 24, 2013 from the World Wide Web http://www.

elnec.com/sw/samsung_ecc_algorithm_for_256b.pdf, June 2004.

[116] SanDisk. TrueFFS. http://www.texim-europe.com/promotion/119/trueffs

[117] SanDisk. Sandisk’s know-how strengthens the SSD industry. Retrieved

February 24, 2013 from the World Wide Web http://www.sandisk.com/

business-solutions/ssd/technical-expertise-metrics, 2011.

[118] H. Schmidt, D. Walter, M. Brüggemann, F. Gliem, R. Harboe-Sørensen, and A. Vir-

tanen. Heavy ion SEE studies on 4-gbit NAND-flash memories. Radiation Effects

on Components and Systems (RADECS), September 2007.

[119] H. Schmidt, D. Walter, F. Gliem, B. Nickson, R. Harboe-Sorensen, and A. Virtanen.

TID and SEE tests of an advanced 8 Gbit NAND-flash memory. In Proceedings of

IEEE Radiation Effects Data Workshop, 2008, pages 38 –41, July 2008.

[120] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors in the

wild: A large-scale field study. In SIGMETRICS, 2009.

[121] SD Association. SDXC. Retrieved February 24, 2013 from the World Wide Web

https://www.sdcard.org/consumers/sdxc_capabilities/, 2011.

174

http://www.findthatpdf.com/download.php?i=4450573&t=hPDF
http://www.findthatpdf.com/download.php?i=4450573&t=hPDF
http://en.pudn.com/dl.asp?id=965593
http://www.arm9board.net/download/FL6410/datasheet/K9G8G08.pdf
http://www.arm9board.net/download/FL6410/datasheet/K9G8G08.pdf
https://u-boot-all-in-one.googlecode.com/files/onenand_brochure_200609.pdf
https://u-boot-all-in-one.googlecode.com/files/onenand_brochure_200609.pdf
http://www.elnec.com/sw/samsung_ecc_algorithm_for_256b.pdf
http://www.elnec.com/sw/samsung_ecc_algorithm_for_256b.pdf
http://www.sandisk.com/business-solutions/ssd/technical-expertise-metrics
http://www.sandisk.com/business-solutions/ssd/technical-expertise-metrics
https://www.sdcard.org/consumers/sdxc_capabilities/

Bibliography

[122] Segger. J-link flash breakpoints. Retrieved February 24,

2013 from the World Wide Web http://www.segger.com/

jlink-unlimited-flash-breakpoints.html, 2005.

[123] Segger. emfile file system. Retrieved February 24, 2013 from the World Wide Web

http://www.segger.com/cms/emfile.html, 2010.

[124] Lim Seung-Ho and Park Kyu-Ho. An efficient NAND flash file system for flash

memory storage. IEEE Transactions on Computers, 55(7):906–912, July 2006.

[125] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Con-

cepts. Wiley Publishing, 2008.

[126] SourcenavNGDevelopmentGroup. Source navigator. Retrieved February 24,

2013 from the World Wide Web http://sourcenav.sourceforge.net/

online-docs/index.html, 2010.

[127] Spansion. What types of ECC should be used on flash-memory? Retrieved

February 24, 2013 from the World Wide Web http://www.spansion.com/

Support/Application%20Notes/Types_of_ECC_Used_on_Flash_

AN.pdf, 2011.

[128] Scott Speaks. Reliability and MTBF overview. Retrieved February 24, 2013 from the

World Wide Web http://www.vicorpower.com/documents/quality/

Rel_MTBF.pdf, 2009.

[129] M. Staehle et al. Sentinel-2 MMFU: The first European Mass Memory System based

on NAND-Flash Storage Technology. Proceedings of the DASIA (DAta Systems In

Aerospace) 2011 Conference, San Anton, Malta, May 17-20, 2011, ESA SP-694, Au-

gust 2011.

[130] Sheng-Jie Syu and Jing Chen. An active space recycling mechanism for flash stor-

age systems in real-time application environment. In Proc. 11th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and Applica-

tions, pages 53–59, 17–19 Aug. 2005.

[131] Richard Tervo. EE4253 Digital Communications. http://www.ee.unb.ca/

cgi-bin/tervo/bch.pl, 2010.

175

http://www.segger.com/jlink-unlimited-flash-breakpoints.html
http://www.segger.com/jlink-unlimited-flash-breakpoints.html
http://www.segger.com/cms/emfile.html
http://sourcenav.sourceforge.net/online-docs/index.html
http://sourcenav.sourceforge.net/online-docs/index.html
http://www.spansion.com/Support/Application%20Notes/Types_of_ECC_Used_on_Flash_AN.pdf
http://www.spansion.com/Support/Application%20Notes/Types_of_ECC_Used_on_Flash_AN.pdf
http://www.spansion.com/Support/Application%20Notes/Types_of_ECC_Used_on_Flash_AN.pdf
http://www.vicorpower.com/documents/quality/Rel_MTBF.pdf
http://www.vicorpower.com/documents/quality/Rel_MTBF.pdf
http://www.ee.unb.ca/cgi-bin/tervo/bch.pl
http://www.ee.unb.ca/cgi-bin/tervo/bch.pl

BIBLIOGRAPHY

[132] D. Woodhouse. JFFS : The journalling flash file system. In Proceedings of the Ot-

tawa Linux Symposium, Ottawa, Ontario Canada, 26-29 July 2001.

[133] D. Woodhouse. JFFS2: The journalling flash file system, version 2. Retrieved Febru-

ary 24, 2013 from the World Wide Web http://sourceware.org/jffs2/,

2009.

[134] Michael Wu. The architecture of eNVy, a non-volatile, main memory storage sys-

tem. Master’s thesis, Rice University, 1994.

[135] Michael Wu and Willy Zwaenepoel. envy: a non-volatile, main memory storage

system. SIGOPS Oper. Syst. Rev., 28:86–97, Nov. 1994.

[136] www.rfic.co.uk. Component reliability tutorial. Technical report, 2009.

[137] Yu Xin, Rong Chun-ming, and Huang Ben-xiong. A flexible garbage collect al-

gorithm for flash storage management. In Proc. Second International Conference

on Future Generation Communication and Networking FGCN ’08, volume 1, pages

354–357, 13–15 Dec. 2008.

[138] E. Yaakobi, J. Ma, A. Caulfield, L. Grupp, S. Swanson, P.H. Siegel, and Wolf J.K. Error

correction coding for flash memories. http://cmrr.ucsd.edu/research/

documents/Number31Winter2009_000.pdf, 2009.

[139] J. C. Yeh, Kuo-Liang Cheng, Yung-Fa Chou, and Cheng-Wen Wu. Flash memory

testing and built-in self-diagnosis with march-like test algorithms. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 26(6):1101–

1113, June 2007.

[140] Xu Youzhi. Implementation of Berlekamp-Massey algorithm without inversion.

IEEE Proceedings of Communications, Speech and Vision, 138:138–140, 1991.

[141] Chen Yuan. Flash memory reliability NEPP 2008 task final report. Retrieved Febru-

ary 24, 2013 from the World Wide Web http://trs-new.jpl.nasa.gov/

dspace/bitstream/2014/41262/1/09-9.pdf, 2008.

[142] C. Zambelli, M. Indaco, M. Fabiano, S. Di Carlo, P. Prinetto, P. Olivo, and D. Bertozzi.

A cross-layer approach for new reliability-performance trade-offs in MLC NAND

flash memories. Proceedings of Design, Automation & Test in Europe (DATE), pages

881–886, 2012.

176

http://sourceware.org/jffs2/
http://cmrr.ucsd.edu/research/documents/Number31Winter2009_000.pdf
http://cmrr.ucsd.edu/research/documents/Number31Winter2009_000.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41262/1/09-9.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/41262/1/09-9.pdf

Bibliography

[143] W. Zhang and S. H. Tan. Oxide particle induced leakage in flash memory en-

durance test. In Proc. 44th Annual. IEEE International Reliability Physics Sympo-

sium, pages 608–610, 26–30 March 2006.

177

	List of Figures
	List of Tables
	Introduction
	Mission-critical applications
	An example: the space environment

	Thesis organization

	Dependability of NAND Flash Memory: An Overview
	Flash memory issues and challenges
	Technology
	Architecture
	Examples of NAND Flash Architecture

	Address translation and boot time
	Garbage collection
	Memory wearing
	Bad block management
	Error correcting codes
	Testing

	Using flash-memory as Hard Disk (HD)
	Flash-memory Reliability Screening
	Data Retention (detrapping)
	Endurance (trapping)

	Modeling and Testing NAND Flash memory
	NAND Flash Disturbances
	Program Disturbances
	Read Disturbances
	Over-Erase Disturbance (OED)
	Over-Program Disturbance (OPD)

	NAND Flash Circuit Level Modeling
	Intra-cell Faults
	Inter-cells Faults

	A Comprehensive Fault Model for NAND flash
	The BF&D Extended Test Algorithm
	Algorithm Complexity

	To test or not to test: an important remark

	Adaptable Error Correcting Codes Design for NAND Flash memory
	Background and related works
	Optimized Architectures of Programmable Parallel LFSRs
	BCH Code Design Optimization
	The choice of the set of polynomials
	Shared Optimized Programmable Parallel LFSRs

	Adaptable BCH Encoder
	Adaptable BCH Decoder
	Adaptable Syndrome Machine
	Adaptable Berlekamp Massey Machine
	Adaptable Chien Machine

	Experimental Results
	Automatic generation framework
	Experimental setup
	Performance evaluations
	Synthesis Results

	 A Cross-Layer Approach for New Reliability-Performance Trade-Offs in MLC NAND Flash Memories
	Conclusions

	Software Management of NAND Flash memory: Issues and Challenges
	File systems for flash memories
	Flash file systems in the technical and scientific literature
	eNVy
	Core flash file system (CFFS)
	FlexFS

	Open source flash file systems
	Yet Another Flash File System (YAFFS)

	Proprietary FFS
	exFAT (Microsoft)
	XCFiles (Datalight)
	TrueFFS (M-Systems)
	ExtremeFFS (SanDisk)
	OneFS (Isilon)
	emFile (Segger Microcontroller Systems)

	Comparisons of the presented FFS
	FLARE: a Design Environment for Flash-based Critical Applications
	FLARE Architecture
	System Configuration Management
	Flash Memory Simulator
	Dependability Evaluation
	Utilities

	FLARE Technology Roadmap
	OSs
	Flash-memory Emulator
	User Level Emulation
	Kernel Level Emulation

	Workload
	Interface
	Core Functions: YAFFS and Partitioning
	Fault Injector
	Monitor and Control
	Snapshots

	Wear Leveling Strategies: An Example
	Circular Buffer Wear Leveling: Modeling and Lifetime Estimation
	Examples

	A Case Study: the Space Environment
	Background
	NAND Flash Memory Space-oriented Design
	Storage Capacity
	Power Consumption
	Mass and Volume
	Performance
	Lifetime and Reliability
	Radiation and Error Rates
	Wrap-up

	Sentinel 2
	Onboard Data Storage
	Storage capacity
	Mass and volume
	Power consumption
	Performances
	Lifetime and reliability
	Bit Error Rate (BER)

	Reliability Overview
	 Mean Time Between Failures (MTBF) and Mean Time To Failure (MTTF)
	Failure Rate
	 Failure In Time (FIT)
	 Reliability Functions
	An Example

	Flash-memory Dependability: Screening and Qualification
	Screening and qualification parameters
	Reliability Methodologies
	Arrhenius plot (accelerated-temperature data retention)
	An example: flash-memory

	Failure rate assessment

	Principles of Error Correcting Codes
	ECC Principles
	Error Detection
	Error Correction
	Hamming bound

	Bose-Chaudhuri-Hocquenhem Codes Design Flow
	Design Requirements
	Parameters Evaluation
	Code Characterization
	Shortened Codes

	Error Detecting and Correcting Codes: The actual trend
	Examples

	Error correcting techniques for future NAND flash memory

	List of symbols and acronyms
	Bibliography

