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ABSTRACT 18 
 19 

SOC (Soil Organic Carbon) is one of the most important parameters affecting the hydraulic 20 
characteristics of natural soils. Despite being rather easy to measure, SOC is known to be highly 21 
variable in space. In this work we used vegetation, climate, and morphology factors to reproduce the 22 
spatial distribution of soil organic carbon (SOC) in the mineral horizons of forest and grassland areas 23 
(in North-Western Italy) and evaluated the feasibility of the approach. When the overall sample was 24 
analysed (114 samples), annual precipitation and elevation were significant descriptors of the SOC 25 
variability. However, a large part of the variability remains unexplained. Two stratification criteria 26 
were then adopted, based on vegetation and topographic properties. We obtained an improvement of 27 
the quality of the estimates, particularly for grasslands and forests in the absence of local curvatures. 28 
These results indicate that the spatial variability of soil organic matter is scarcely reproducible at the 29 
regional scale, unless an a-priori reduction of the heterogeneity is applied. A discussion on the 30 
feasibility of applying stratification criteria to deal with heterogeneous samples closes the paper. 31 
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INTRODUCTION 1 
 2 

Soils are among the most important global carbon cycle reservoirs. They represent 75% of the total 3 
terrestrial organic carbon pool, and twice the atmospheric carbon content (Prentice, 2001). Most soil 4 
carbon is stored as soil organic matter; inorganic carbonates are largely restricted to dry lands (Lal, 5 
2008). Forest and grassland soils are therefore of utmost importance as their organic matter content is 6 
much higher than that of agricultural soils.  7 

In addition to its well-known effect on soil fertility, soil organic carbon (SOC) is also one of the 8 
most important parameters affecting soil hydraulic properties: by enhancing soil aggregation and 9 
increasing pores continuity and stability (Tisdall and Oades, 1982), it ameliorates the water holding 10 
capacity and the saturated hydraulic conductivity (Nemes et al., 2005). As a consequence, it is used as 11 
an independent variable in several pedotransfer functions to estimate soil hydraulic properties (e.g. 12 
Guber et al., 2006).  13 

Despite being rather easy to measure, SOC is highly variable in space. Evaluating its concentration 14 
in areas greater than an agricultural plot can be therefore rather difficult. A large effort has been made 15 
to predict its areal distribution through Digital Soil Mapping (DSM) approaches (e.g., Arrouays et al., 16 
1995, 1998; Bell et al., 2000; Chaplot et al., 2001; Abnee et al., 2004a,b; Lagacherie and McBratney, 17 
2004; Terra et al., 2004; Thompson and Kolka, 2005). Typically, the approach is implicitly based on 18 
Jenny (1941)’s factors of soil formation: it produces empirical quantitative relations between soil 19 
characteristics and spatially referenced factors, with the aim of using these relations as soil spatial 20 
prediction functions (McBratney et al., 2003). 21 

The most relevant pedogenic factors controlling SOC are climate, vegetation, and topography 22 
(Baldock and Nelson, 2000). Climate impacts directly on SOC contents and rate of mineralization 23 
primarily through the effects of temperature and moisture. Temperature is a key factor controlling the 24 
rate of decomposition of plant residues. For example, reaction rates double for each increase of 8–9 25 
°C in the mean annual air temperature (Bot and Benites, 2005). As a consequence, soils in cooler 26 
climates commonly contain more organic matter because of slower mineralization rates. In addition, 27 
SOC content increases as mean annual precipitation increases (e.g. Meier and Leutschner, 2010).   28 

Changes in SOC concentration also correlate with changes in vegetation. For instance, herbaceous 29 
vegetation produces a big root mass compared with the above-ground component whereas, in forests, 30 
most organic matter is produced above ground  and residues are more resistant to decomposition 31 
(Melillo et al., 1993). 32 

The latter pedogenic factor controlling SOC is topography. Topography affects soil properties 33 
mainly through its effects on water movements. In terrain depressions, in fact, soils are moister 34 
because they receive runoff, sediments (including organic matter), and seepage from the surroundings, 35 
leading to a higher SOC concentration than in drier uphill soils (Yoo et al., 2006). On the contrary, 36 
soils on steep slopes tend to lose organic matter because the topsoil is constantly eroded. Therefore, 37 
the spatial distribution of topographic attributes that characterize the flow paths can help in capturing 38 
the soil variability and in predicting soil properties (Moore et al., 1991 and 1993; Florinsky and 39 
Kuryakova, 1996). 40 

Landscape characteristics can be expressed by means of geomorphic and hydrological indices 41 
generated with digital terrain analysis (Speight, 1968; MacMillan and Pettapiece, 1997; Wilson and 42 
Gallant, 2000). These indices are widely used in hydrologic modelling, e.g. to characterize the spatial 43 
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distribution and the extent of zones of saturation for runoff generation (e.g. Beven and Kirkby, 1979). 1 
Climatic data are often available through gridded datasets, and vegetation characteristics can be 2 
derived qualitatively from land cover maps such as CORINE (European Environment Agency, 2005), 3 
or quantitatively by making use of remote sensing. Quantitative environmental variables can be then 4 
associated to SOC, resulting in long sets of potential descriptors of SOC variability. 5 

In this work we evaluated the spatial variability of SOC and the feasibility of the prediction of 6 
organic carbon concentration by means of quantitative descriptors of vegetation, climate and 7 
topography, in forest and grassland soils of alpine and sub-alpine areas of North-western Italy. No 8 
specific survey was performed for this study and the data were all derived (and homogenised) from 9 
existing databases.  10 
 11 
STUDY AREA 12 
 13 

The Piedmont region is located in North-Western Italy (see Fig. 1). Its area, of about 25 000 km2, is 14 
characterized by marked heterogeneities determined by the presence of the Western Alps chain. 15 

 16 
Fig. 1 17 
Fig. 1  Fig. 1 Shown is a map of the study region with the locations of the sampled sites. The gray tones 18 
represent the elevation variations within the region. 19 

 20 
In few hundreds kilometres the climate changes from a typical Mediterranean regime to an Alpine-21 

continental regime. The average monthly temperatures range between a minimum of -10 °C in the 22 
mountain areas during the cold season and a maximum of +35 °C in the Po Plain during the summer. 23 
The mean annual precipitation ranges between 500 mm and more than 2 000 mm. 24 

Forests cover the mountain areas of the region up to an elevation of about 1800 m. Coniferous and 25 
broadleaved species, either as monocultures or in admixture, are present in the whole area. Grasslands 26 
are found either above the timberline, or scattered at lower elevation and on hilly areas. 27 

The data of soil profiles were taken from a pre-existing database belonging to the DIVAPRA of the 28 
University of Torino (67 samples) and to the Regional Soil Survey Service (IPLA, 55 samples). The 29 
chemical characteristics which we considered were the soil organic carbon (SOC) and the total 30 
nitrogen concentrations in the mineral horizons. The data were available for all genetic horizons (A, 31 
B, or C types) and also aggregated on the 0--30 cm depth (SOC30). The chemical characteristics of the 32 
dataset are reported in Table I. 33 
 34 
TABLE I 35 
 36 
Soil organic carbon (SOC), Nitrogen concentration and C/N ratio in soil horizons according to vegetation types. 37 
Different (small) letters indicate significant differences in the chemical property among vegetation types (P < 38 
0.05) 39 
Horizon    SOC (g kg-1) N (g kg-1) C/N 
or layer   n Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Broadleaves 72 33.5 23.7 2.2 1.5 15.4b 4.8 A 
Mixed Forests 24 34.3 30.2 2.4 1.4 13.4b 4.4 
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Conifers 3 27.3 15.7 1.5 1.0 21.7a 17.1  
Grasslands 21 38.4 24.4 2.9 1.4 12.1b 5.4 
Broadleaves 38 11.9 11.6 0.9 0.7 12.6 3.6 
Mixed Forests 15 11.6 10.4 1.2 0.7 13.9 7.4 
Conifers 0 . . . . . . 

B 

Grasslands 10 11.5 5.7 1.4 0.2 11.3 . 
Broadleaves 39 9.1 11.6 0.8 0.8 13.3 6.3 
Mixed Forests 8 3.6 1.7 0.6 0.3 6.6 3.0 
Conifers 1 14.4 . 1.2 . 12.2 . 

C 

Grasslands 7 14.4 8.2 1.6 0.7 8.8 2.1 
Broadleaves 69 26.4 18.9 2.2 3.3 15.3ab 6.2 
Mixed Forests 22 23.8 12.1 1.8 0.6 13.1ab 3.6 
Conifers 3 25.2 12.8 1.5 0.6 17.7a 9.8 

0--30 cm 

Grasslands 20 32.0 15.8 2.7 1.1 10.1b 2.9 
 1 
 2 

No significant differences were found in SOC and Nitrogen concentrations between forests and 3 
grasslands, while the C to N ratio clearly reflected the differences in organic matter decomposition, 4 
(with the lowest values in grasslands and the highest in conifers, both in the A horizon and in the 0--5 
30 cm layer). The concentrations of SOC and N were generally more variable in the genetic soil 6 
horizons than in the 0--30 cm layer, reflecting the different thicknesses of the SOC enriched A 7 
horizons. The same behaviour was observed for the C to N ratio, with lower standard deviations in the 8 
0--30 cm layer, particularly in grassland samples.  9 

The sample variogram (see e.g., Burgess and Webster, 1980) was fitted by an exponential model 10 
with nugget, where the sample and spatial variance were nearly the same (namely 0.196 and 0.195, 11 
respectively) with a 10 km range (Fig. 2) The relative weights of the two components indicated that 12 
the organic carbon concentration was controlled by two kinds of variables, having very short range 13 
and long range variability, respectively. 14 
 15 
Fig. 2 16 
Fig. 2  Semivariogram of the natural logarithm of the soil organic carbon concentration for the 0--30 cm layer. 17 
 18 

As an attempt to capture the relative roles of the long and short range mechanisms controlling SOC 19 
variability at the regional scale we described each sampled point according to its climatic, vegetation 20 
and topographic characteristics (also called “morphoclimatic” factors in the following of the paper). 21 
The data guaranteed a spatial coverage of the entire region, in view of possible mapping applications. 22 

In details: 23 
- To obtain a characterization of the soil water balance in the profiles locations, the average annual 24 
rainfall (P, mm) produced by Bartolini et al. (2008) for the study region was used. In addition, we 25 
calculated the potential evapotranspiration (PET) with the Thornthwaite relation according to the 26 
monthly temperature estimates proposed by Claps et al. (2008). Precipitation and PET values were 27 
also combined by means of the Thornthwaite (1948) Wetness Index (WI) as WI = (P - PET)/PET. The 28 
WI allows a synthetic characterization of the soil water balance in a certain location and provides a 29 
relative measure of potential biological productivity of the site. 30 
- NDVI maps, derived from SPOT-VEGETATION data (http://free.vgt.vito.be/) for the years 1998-31 
2005, were used to characterize vegetation. For each month the composite NDVI values were 32 
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averaged over 1 km2 cells. For each cell containing at least one soil sampling we considered the 1 
minimum NDVI (identified with the subscript “Min”), the maximum NDVI (identified with the 2 
subscript “Max”), the difference between maximum and minimum NDVI (identified with the 3 
subscript “Diff”)  and the mean NDVI (identified with the subscript “Mean”). The CORINE land 4 
cover map (European Environment Agency, 2005) and the forests map of the Piedmont Regional 5 
Administration were also taken into account for further evaluations of vegetation types in 6 
correspondence of the sampling points. 7 
-  The selection of the terrain descriptors was based on the prior experience by a) Chai et al. (2008), 8 
who considered elevation, slope and CTI (see Table II) as external drift variables for predicting soil 9 
organic matter; b) Mueller and Pierce (2003) and Simbahan et al. (2006), who used terrain attributes 10 
as secondary spatial variables to increase the accuracy of predictions at different scales. To determine 11 
the primary and secondary terrain attributes (Table II), we used a digital elevation model (derived 12 
from contour line interpolation) with a spatial resolution of 50 m. The primary attributes in Table II 13 
include elevation (EL), slope (SL), profile (kv) and plan curvature (kh). In kv and kh, the sign ensures 14 
that positive curvatures refer to convex forms and negative curvatures refer to concave forms. The 15 
expected values for a hilly area (moderate relief) can vary from -0.5 to 0.5, while for steep and rugged 16 
mountains (extreme relief), they can vary between -4 and 4. A value of zero indicates that the surface 17 
is flat. As secondary terrain attributes in Table II, we considered the compound topographic index 18 
(CTI), also known as topographic wetness index (Wilson and Gallant, 2000), and the stream power 19 
index (SPI). The CTI, expressed as reported in Table II, is related to zones of surface saturation 20 
(Moore et al., 1993) and quantifies a point in the landscape in terms of water and sediment 21 
accumulation: the higher the value of this index in a cell, the higher the soil moisture that can be 22 
found in it. SPI instead, expressed as reported in Table II, is related to erosion processes, being an 23 
indicator of the capability of a flow to generate net erosion. 24 
 25 
TABLE II 26 
 27 
Definitions, formulas and physical interpretations for the topographic variables considered in the study 28 
Variable Definitions and formula Interpretation 
Slope gradient (SL), ° 
 

Angle between a tangent plane and a horizontal one at a 
given point of the land surface 

Velocity of substance 
flows 

Profile curvature (kv), 
m-1 

Profile curvature is parallel to the direction of the 
maximum slope. A negative value indicates that the 
surface is upwardly convex at that cell. A positive profile 
curvature indicates that the surface is upwardly concave at 
that cell. A value of zero indicates that the surface is linear. 

Relative 
acceleration/deceleration 
of flows across the 
surface 

Plan curvature (kh),  
m-1 

Planform curvature (commonly called plan curvature) is 
perpendicular to the direction of the maximum slope. A 
positive value indicates the surface is sidewardly convex at 
that cell. A negative value indicates the surface is 
sidewardly concave at that cell. A value of zero indicates 
the surface is linear. 

Convergence/divergence 
of flows across a surface 

Compound 
Topographic Index 
(CTI)  

a) Extent of potential flow 
accumulation 

Stream power Index 
(SPI)  

a) Extent of potential flow 
erosion 

a)CA: specific catchment area, i.e. upslope area per unit width of contour (Wilson and Gallant, 2000), m2 m-1. 29 
 30 
METHODS 31 
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 1 
Linear multiple regression is the most widely used method to capture soil carbon patterns, as 2 

demonstrated by numerous applications (e.g., Walker et al., 1968; Pennock et al., 1987; Moore et al., 3 
1993; Gessler et al., 1995, 2000; Chaplot et al., 2000). This preference stems from its ease of use, 4 
computational efficiency, and straightforward interpretation (Hastie et al., 2001). 5 

In order to select the possible relationships between the soil carbon concentration and the 6 
environmental factors, we implemented simple correlation and multiple regression schemes. The 7 
simple correlations between SOC and environmental variables were evaluated on all genetic horizons 8 
and on the fixed 0--30 depth. The multiple regressions were calculated only on the values related to 9 
30 cm depth, to avoid considering horizons of variable thickness.  10 

The models were tested against the assumptions of the linear regression analysis (see e.g., 11 
Kottegoda and Rosso, 1998), namely lack of multicollinearity, equal error variance 12 
(homoscedasticity), and normal and random residuals. In some cases we used the logarithmic 13 
transformation of the variable for complying to these assumptions, particularly as regards normality. 14 
The goodness of the relationships was verified using the standard error of the estimate (SEE) and the 15 
adjusted determination coefficient (Adj R2). The variogram analysis was also applied to the residuals 16 
of the regressions in order to assess their residual spatial variability.  17 
 18 
APPLICATION AND DISCUSSION 19 
 20 

Simple correlations between morphoclimatic factors and SOC concentration were tested at first. 21 
The results are shown in Table III. 22 

Among the topographic variables (Table III, lines 1 to 6), only the elevation was significantly 23 
correlated to SOC in all horizons, in agreement with the results obtained in other studies. For 24 
example, Powers and Schlesinger (2002) found that elevation explained much of the variability in soil 25 
carbon, likely because of the lower decomposition rate of organic matter at lower temperatures. This 26 
hypothesis was in agreement with the C to N ratio which, in our case, tended to increase with 27 
elevation, particularly in the top horizon (r = 0.24, P < 0.05, not shown). 28 
 29 
TABLE III 30 
 31 
Pearson correlation coefficients (r) between SOC and morphoclimatic variables associated to different horizons 32 
(identified by subscript capital letters)  33 
 ln(SOCA) ln(SOCB) ln(SOCC) ln(SOC30) 
1.  number of samples  120 63 55 114 
2.  EL (elevation) 0.369a) 0.408a) 0.399a) 0.402a) 
3.  SL (slope) 0.148 0.265b) 0.212 0.114 
4.  kh (profile curvature) -0.075 -0.157 0.009 -0.001 
5.  kv (plan curvature) 0.073 0.014 -0.095 0.092 
6.  CTI (Compound Topographic 
Index) 

-0.111 -0.171 0.009 -0.141 

7.  ln SPI (Stream Power Index) 0.012 0.152 0.194 -0.065 
8.  NDVIMax (maximum NDVI) 0.027 0.216 0.017 -0.061 
9.  NDVIMin  (maximum NDVI) -0.292a) -0.278b) -0.340b) -0.355a) 
10. NDVIMean  (maximum NDVI) -0.220b) -0.088 -0.266b) -0.281a) 
11. NDVIDiff  (maximum NDVI) 0.328a) 0.448a) 0.322b) 0.329a) 
12. P (average annual rainfall) 0.477a) 0.547a) -0.015 0.464a) 
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13. WI (Thornthwaite wetness index) 0.556a) 0.599a) 0.197 0.553a) 
a)Correlation is significant at the 0.01 level (2-tailed). 1 
b)Correlation is significant at the 0.05 level (2-tailed). 2 
 3 

All NDVI parameters, except the maximum, were significantly correlated with the soil carbon 4 
variables (Table III, lines 7 to 10). The minimum and the mean NDVI decreased with increasing C 5 
content. A possible explanation for this behaviour is the high ratio between roots and shoots in 6 
grasslands (Jackson et al., 1996), which had a high SOC content compared with forests (Table I). 7 
When grasslands were excluded from the analysis, no more correlation was found between C, 8 
NDVIMean and NDVIMin, while a significant correlation appeared between NDVIDiff and SOC 9 
concentration in all horizons (r up to 0.54, P < 0.05, not shown). 10 

The soil carbon variables were also positively correlated with the precipitation and the wetness 11 
index (Table III, lines 11 and 12) in all but the C horizons. This confirms the fact that the amounts of 12 
SOC increase when precipitation and soil moisture increase (e.g., McKenzie and Ryan, 1999). The C 13 
horizons, instead, presented no correlations with the environmental variables. Probably in these 14 
deeper layers, the soil water balance dynamics cannot be fully represented by climatic variables, as 15 
they do not provide an estimate of percolation.  16 

Several environmental descriptors were therefore related to SOC concentration, even though their 17 
correlation coefficients were always low. In the following, the descriptors were combined using 18 
multiple regressions only on the carbon concentration of the 0--30 cm layer (SOC30).  19 

Four linear regression models were significant, demonstrating to be effective in reproducing SOC 20 
within a stepwise procedure (Table IV). The adjusted determination coefficient (Adj R2), the standard 21 
error of the estimate (SEE), and the standardized coefficients (!) for each model are reported, 22 
allowing for a thorough evaluation of the model efficiency. 23 
 24 
TABLE IV 25 
 26 
Significant multiple regression models for SOC concentration in the 0--30 cm layer based on the whole dataset 27 

Dependent variable Independent variables Adj R2 SSE !a) P 
ln(SOC30) EL, P 0.318 0.530 0.34, 0.41 < 0.001 
 NDVIMin, P 0.310 0.533 -0.33, 0.44 < 0.001 
 NDVIMean, P 0.301 0.536 -0.31, 0.49 < 0.001 
 NDVIDiff, P 0.250 0.555 0.23, 0.41 < 0.01 
a) Standardised coefficients 28 
 29 

The best regression model was based on elevation (EL) and precipitation (P), but the percentage of 30 
SOC variance explained is low (R2 = 0.32). As visible in Fig. 3a, the model lead to rather poor 31 
predictions, with remarkable underestimates when the actual SOC concentration was above 50--60 g 32 
kg-1 and visible overestimates in correspondence of low values of observed SOC. NDVI parameters 33 
contributed to SOC variability in the three other regression models, where the standardized 34 
coefficients for NDVI parameters assumed also negative values. This outcome could be related to the 35 
large heterogeneity of broadleaved forests which, in the study area, included both relatively highly 36 
productive beech stands, with poor understory vegetation, and degraded woodlands, where pioneer 37 
tree species, such as birch, shrubs and grasses, were rather abundant and could influence the NDVI 38 
parameters. Both the amount of carbon which is added annually to the soil and the recalcitrance to 39 
decomposition of organic residues are in fact tree-species dependent (Augusto et al., 2002). 40 

 41 
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Fig. 3 1 
Fig. 3 Comparison between the observed and predicted values of SOC30 for: (a) the whole dataset (first model in 2 
Table IV); (b) the grasslands subset (best model for grasslands in Table V); (c) the LL subset (best model for the 3 
LL class in Table VI); (d) the forest-LL subset (best model for the forest-LL class in Table VII) 4 
 5 

Fig. 4a shows the sample variogram of the residuals of the best regression model of Table IV (i.e., 6 
EL, P). The variance related to the nugget was 0.197, the one for the exponential model was 0.089, 7 
the range was 6 km. The regression model therefore reduced the spatial variability but had no effect 8 
on the very short range variability represented by the nugget. This was confirmed by analysing 9 
separately the variograms of the two environmental factors (data not shown). We found that these 10 
variograms had rather large ranges (i.e., 35 and 88 km, respectively, as calculated by fitting an 11 
exponential model to the observed variograms). This is due to the fact that these variables are strongly 12 
related to large scale phenomena, such as general topography and climate. 13 
 14 
Fig. 4 15 
Fig. 4 Semivariogram of the residuals of the best regression model for (a) the whole dataset (first model in Table 16 
IV); (b) the grasslands subset (best model for grasslands in Table V); (c) the LL subset (best model for the LL 17 
class in Table VI); (d) the forest-LL subset (best model for the forest-LL class in Table VII). 18 
 19 

Although climate and vegetation appeared to be the main drivers of SOC variability, the 20 
relationships were still unsuitable to be used for estimation. This could be explained by the 21 
heterogeneity of vegetation and topographic characteristics of the samples. In fact, four land cover 22 
classes were present, namely broadleaved trees, coniferous, mixed forests, and grasslands, each of 23 
them giving rise to different SOC production, accumulation, and decomposition rates, which were 24 
only partially accounted for by NDVI parameters. Also the terrain morphology was highly variable: 25 
besides the elevation range of the samples, there was a large variety of topographic features, such as 26 
hilltops, slopes and plains. Evidences of the heterogeneity effects were found by Arrouays et al. 27 
(1995), Homan et al. (1995), Arrouays et al. (1998), Powers and Schlesinger (2002) and Perruchoud 28 
et al. (2000). From these studies it emerged that, at the regional and national scales, up to 90% of the 29 
SOC variance could be explained when major vegetation types and environmental gradients were 30 
taken into account. In addition, site-specific topographic information can also yield correlation to C 31 
content within regions of similar climate and land cover.  32 

To reduce sample heterogeneity, especially the short range variability, the dataset was stratified. 33 
Samples were grouped according to vegetation types (see Table V, where conifers are not considered 34 
because of the low number of cases). 35 
 36 
TABLE V 37 
 38 
Significant multiple regression models for SOC concentration in the 0--30 cm layer after stratification based on 39 
vegetation type (the number of elements for each class is reported in parenthesis). 40 
Vegetation type Independent variables Adj R2 SSE !a) p 
Broadleaves (69) a) NDVIMax, EL, P 0.359 0.557 -0.32, 0.32, 0.60 <0.001 
 b) NDVIMean, P 0.345 0.563 -0.26, 0.57 <0.001 
  c) NDVIMax, WI 0.344 0.563 -0.28, 0.71 <0.001 
Mixed Forests (22) d) NDVIMin, EL, kv 0.309 0.446 0.72, 0.92, 0.55 <0.05 
Grasslands (20) e) NDVIMean, EL, CTI, ln(SPI) 0.695 0.293 1.11, 2.07, 0.86, -0.88 <0.001 
 f) SL, CTI, ln(SPI) 0.594 0.338 1.15, 1.71, -1.33, 0.77 <0.001 
 g) EL, CTI, ln(SPI) 0.564 0.350 0.94, 0.66, -0.65 <0.001 
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a) Standardised coefficients 1 
 2 

The proportion of variance explained by the regression models increased up to R2 = 0.70 in the case 3 
of grasslands. This result was obtained by coupling climate and vegetation with topographic variables, 4 
suggesting that in more homogeneous contexts also the topographic variables (CTI and SPI) play a 5 
role in controlling SOC amount (e.g., Homan et al., 1995). The standardized coefficients indicated a 6 
positive relation with NDVIMean, elevation and CTI, and a negative effect of SPI. The presence of the 7 
two topographic indexes suggested that, when vegetation was more homogeneous, the concentration 8 
of carbon in soils was largely determined by erosion and sedimentation. As visible in Fig. 3b, the 9 
model lead to an acceptable estimate of the concentrations of SOC in grasslands. The sample 10 
variogram of Fig. 4b was constructed on the residuals of the best regression model obtained for 11 
grasslands. This variogram  had a nugget variance of 0.005 and the exponential model explained a 12 
variance of 0.074 in a range of 3 km, evidencing the positive effects of stratification on both the long 13 
and short range variability. 14 

Scarce improvements  were instead observed in the prediction of SOC in forest soils. In these cases, 15 
in fact, the SOC variance accounted for by the models remained rather low (around 30%) and far from 16 
the results obtained in the case of grasslands. The NDVI parameters still showed negative 17 
coefficients, as happened when the whole dataset was considered. In addition, no evidence of the role 18 
of topographic descriptors emerged, suggesting that a further classification based on local morphology 19 
could possibly enhance the model performance. 20 

A quantitative subdivision of the territory into classes of curvature according to the combination of 21 
plan and profile curvature was used, based on a curvature classification model (Olaya, 2004). The 22 
original classes were regrouped into four classes according to the profile curvature. We classified as 23 
CV the points having a convex profile curvature (33 samples), as CC the points with concave profile 24 
curvature (40 samples), as LC the points having linear profile curvature (23 samples), and as LL the 25 
elements where both plan and profile curvatures were linear (15 samples). The aim was twofold: on 26 
the one hand to avoid classes with few elements, and on the other hand to introduce a hydrological 27 
criterion in the classification, by considering dispersion and accumulation characteristics. The 28 
approach is akin to the one adopted in Kyungsoo et al. (2006), who found that topographic curvature 29 
and soil thickness played a key role on SOC contents. A similar evidence was also pointed out by 30 
Johnson et al. (2009) who reported the largest amounts of soil organic matter in well drained soils on 31 
gently grading slopes. 32 

The models obtained from the application of the stepwise multiple regression are presented in 33 
Table VI. 34 

 35 
 36 

TABLE VI 37 
 38 
Significant multiple regression models for SOC concentration in the 0--30 cm layer after stratification based on 39 
profile curvature (the number of elements for each class is reported in paranthesis). 40 
Profile Curvature Independent variables  Adj R2 SSE !a) p 
CV (33) a) EL, SL, CTI, ln(SPI), P 0.514 0.439 0.41, -1.07, -0.95, 1.38, 0.47 <0.001 
 b) SL, CTI, ln(SPI), WI 0.482 0.453 -1.02, -1.02, 1.39, 0.61 <0.001 
 c) NDVIMean, P 0.461 0.462 -0.43, 0.60 <0.001 
 d) NDVIMin, P 0.457 0.464 -0.42, 0.56 <0.001 
 e) EL, P 0.429 0.475 0.39, 0.52 <0.001 
CC (40) f) EL, P 0.328 0.555 0.44, 0.35 <0.001 
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 g) NDVIMin, P 0.313 0.561 -0.41, 0.38 <0.001 
LC (23) h) NDVIMax, NDVIDiff, WI 0.418 0.494 0.57, -0.55, 1.16 <0.01 
 i) NDVIMin, WI 0.443 0.483 0.74, 1.14 <0.001 
LL (15) l) NDVIDiff, kh, kv, ln(SPI) 0.659 0.350 0.82, -0.37, -0.80, -0.82 <0.01 
 m) NDVIDiff, kv, ln(SPI) 0.523 0.414 0.74, -0.83, -0.79 <0.05 
 n) NDVIMin, kv, ln(SPI) 0.425 0.454 -0.59, -0.66, -0.72 <0.05 
a) Standardised coefficients 1 
 2 

An improvement of the prediction with respect to the whole dataset was observed, but the accuracy 3 
was comparable with the one obtained by grouping according to vegetation types. The models for 4 
convex (CV) and concave (CC) classes explained 51% and 33% of the within-class variance, 5 
respectively. In the best model for the CV class, the highest standardised coefficients were related to 6 
topographic variables, indicating that carbon accumulation decreased with increasing slope, but the 7 
effect was partially compensated by the extension of the runoff contributing area (CA, see footnote in 8 
Table II). In the CC class, instead, the significant variables were the same as those found in the whole 9 
dataset (elevation, NDVI and precipitation). Climatic and vegetation variables were also significant in 10 
the models of the LC (linear profile curvature) class, with an explained variance up to 42%. A better 11 
regression model was obtained in the purely linear (LL) case (R2 = 0.66). When both the profile and 12 
plan curvature were linear (i.e., less than 0.1 in module) even small variations in concavity/convexity 13 
affected the carbon concentration, with higher amounts of SOC in relative concavities. The quality of 14 
the estimate (Fig. 3c) was comparable with that obtained for the grasslands when the dataset was 15 
stratified by vegetation type, suggesting that a further improvement of the quality of the estimation 16 
might be obtained by combining topography and vegetation classes.  17 

To proceed in this direction and to have enough samples in each class, we merged mixed and 18 
broadleaved forest samples (Table VII). This further classification significantly improved the estimate 19 
and explained up to the 81% of the sample variance in the LL class. In all subsets the models included 20 
topographic attributes, NDVI parameters and climatic variables. In general, SOC increased when 21 
elevation and wetness (P and WI) increased. The heterogeneity of broadleaved forests, enhanced by 22 
the presence of mixed vegetation ones, was probably responsible for the lack of a general trend in the 23 
sign of the NDVI variables in the models. The effect of concavity and convexity on carbon 24 
accumulation was further enhanced by local slope whose steepness increased carbon concentrations 25 
when the curvatures were concave and decreased it in case of convexity. A similar result was found 26 
by Grimm et al. (2008), who concluded that the lowest SOC stocks can be found on mid-slopes while 27 
the highest were located on toe-slope positions. Also with this stratification the plan and profile 28 
curvature contributed to the carbon variance only in the LL class. The lowest determination 29 
coefficient was obtained for the LC class, the most heterogeneous one as the plan curvature could 30 
induce either flow dispersion or accumulation. 31 
 32 
TABLE VII 33 
 34 
Significant multiple regression analyses for the soil carbon concentration at 30 cm depth according to 35 
vegetation-curvature classification (the number of elements for each class is reported in parenthesis). 36 
Veg.-Curv. Independent variables Adj R2 SSE !¥ p 
Forest - CV  (29) a) SL, CTI, ln(SPI), WI 0.501 0.452 -1.28, -1.16, 1.70, 0.59 <0.001 
 b) SL, CTI, ln(SPI), P 0.475 0.464 -1.20, -1.11, 1.69, 0.56 <0.001 
 c) NDVIMean, P 0.481 0.461 -0.37, 0.66 <0.001 
 d) NDVIMean, WI 0.442 0.478 -0.31, 0.62 <0.001 
 e) NDVIMin, P 0.439 0.480 -0.31, 0.61 <0.001 
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Forest - CC (34) f) NDVIMin, SL, CTI, ln(SPI), P 0.337 0.561 -0.46, 1.09, 1.05, -1.31, 0.41 <0.01 
 g) EL, P 0.275 0.586 0.37, 0.38 <0.01 
 h) NDVIMin, P 0.275 0.586 -0.36, 0.41 <0.01 
Forest - LC (16) i) NDVIMin, WI 0.317 0.572 0.60, 0.66 <0.05 
Forest - LL (13) l) NDVIMax, EL, kv, WI 0.807 0.248 -0.70, 0.76, -0.64, 0.60 <0.001 
 m) NDVIMax, EL, kv, P 0.800 0.252 -0.74, 1.02, -0.61, 0.46 <0.001 
 n) NDVIMin, kh, kv, CTI 0.728 0.294 -0.41, -0.56, -0.64, -0.76 <0.01 
 o) kv, P, WI 0.644 0.336 -0.87, -1.26, 1.88 <0.01 
 p) EL, kv 0.606 0.353 0.80, -0.78 <0.01 
 q) kv, WI 0.433 0.424 -0.65, 0.64 <0.05 
 r) kh, CTI 0.387 0.441 -0.68, -0.70 <0.05 
 s) NDVIMax, WI 0.340 0.458 -0.82, 1.02 <0.05 
a) Standardised coefficients 1 
 2 

The variogram presented in Fig. 4c was constructed on the residuals of the best regression 3 
model in Table VI (model l), where data were classified by morphology. It showed that in the LL 4 
class the short-range variability was removed almost completely, while a (spatial) variance of 0.164 5 
remained unexplained. In this model both topographic and climatic-vegetation factors were present as 6 
independent variables, implying that all the ranges of spatial variability were considered. A better 7 
result emerged from the variogram of the residuals of the best regression model in Table VII (model 8 
l), associated to a small residual long-range variance (0.075, Fig. 4d). In Fig. 3d the estimates 9 
obtained with the best model of the forest-LL class were compared to the observed values. The most 10 
evident effect of the combined vegetation-curvature stratification was the improvement in the 11 
estimates of the low/high SOC samples, which were largely over/underestimated in the previous 12 
cases. 13 
 14 
CONCLUSIONS 15 
 16 

In this work we exploited the information derived from  vegetation, climate, and morphology 17 
for studying the spatial distribution of the soil organic carbon concentration in forest and grassland 18 
areas. The case study was formed by 114 samples belonging to a vast heterogeneous region of the 19 
North-West of Italy. The first attempts to statistically reproduce the SOC concentration by means of 20 
vegetation and climatic predictors were unsatisfactory. In fact, these explanatory variables allowed us 21 
to reduce the long-range spatial variability, but had no effect on the short-range dependence and were 22 
therefore unable to take into account all factors influencing organic matter concentration in a highly 23 
heterogeneous region. Better results were obtained after stratification of the samples, and by 24 
introducing in the regression models topographic variables that, by governing water fluxes, had a 25 
large influence on SOC inputs, losses and turnover. When classes of homogeneous vegetation and 26 
topography were considered, the quality of the estimates improved, particularly for grasslands and 27 
forests in the absence of local curvatures.  The results of this work indicate that the spatial variability 28 
of soil organic matter can be overcome only when an a-priori reduction of the heterogeneity is 29 
applied. The only limitation to the feasibility of the approach is in the availability of the predictors, 30 
included the availability of finer scale digital elevation models. Further efforts in this field of 31 
investigation will be devoted to introduce more causative factors in the prediction models, provided 32 
that additional and more focused data will become available. 33 

 34 
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Fig. 1 Shown is a map of the study region with the locations of the sampled sites. The gray tones to the elevation 5 
variations within the region. 6 

 7 

 8 
Fig. 2 Semivariogram of the natural logarithm of the soil organic carbon concentration for the 0--30 cm layer. 9 
 10 
 11 
 12 
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 1 
Fig. 3 Comparison between the observed and predicted values of SOC30 for: (a) the whole dataset (first model in 2 
Table IV); (b) the grasslands subset (best model for grasslands in Table V); (c) the LL subset (best model for the 3 
LL class in Table VI); (d) the forest-LL subset (best model for the forest-LL class in Table VII) 4 

 5 
Fig. 4 Semivariogram of the residuals of the best regression model for (a) the whole dataset (first model in Table 6 
IV); (b) the grasslands subset (best model for grasslands in Table V); (c) the LL subset (best model for the LL 7 
class in Table VI); (d) the forest-LL subset (best model for the forest-LL class in Table VII). 8 


