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ABSTRACT
The origin of the accelerated expansion of the universe is still unclear and new physics is
needed on cosmological scales. We propose and test a novel interpretation of dark energy as
originated by an elastic strain due to a cosmic defect in an otherwise Euclidean space-time.
The strain modifies the expansion history of the universe. This new effective contribution
tracks radiation at early times and mimics a cosmological constant at late times. The theory is
tested against observations, from nucleosynthesis to the cosmic microwave background and
formation and evolution of large scale structure to supernovae. Data are very well reproduced
with Lamé parameters of the order of10

−52
m

−2.
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1 INTRODUCTION

The discovery of the accelerated expansion of the universe (Riess
et al. 1998; Perlmutter et al. 1999) was rather a surprise and gave
way to an intense theoretical quest for an explanation. At the cos-
mological scale, a new ingredient is indeed needed in order to drive
the present acceleration. Referred to as dark energy, the nature and
nurture of this new term is still debated with the cosmological con-
stant being the simplest candidate. Although added ad hoc, it pro-
vides the bases for theΛCDM model that deserves the name of
concordance model since it is able to fit extremely well the full
available data set. Notwithstanding this remarkable success, the
ΛCDM is theoretically unappealing because of several well known
shortcomings. This fact motivates the search for other dark energy
candidates with an appropriate evolution of the equation of state
parameterw: somewhere its value must range from−1/3 to −1,
or even less than−1 in the case of “phantom energy”, in order to
produce an accelerated expansion.

Limiting our attention to the classical approach, we see that
the different theories have different motivations, but generally
speaking, though preserving mathematical consistency, hardly cor-
respond to physical intuition. An attempt to build a theoretical
paradigm based on familiar concepts of classical physics at the
meso-scale is the Strained State Theory (SST) whose cosmologi-
cal version is the Strained State Cosmology (SSC) or Cosmic De-
fect Theory (CDT), described in Tartaglia & Radicella (2010) and
refined and tested in Radicella et al. (2012); Tartaglia (2012). Ba-
sically the idea is that the strain of a curved space-time, defined as
it is in three-dimensional solids and in the elasticity theory, plays a
role being a component of the energy content of the universe. The

⋆ E-mail: mauro.sereno@polito.it (MS)

strain is with respect to a flat reference manifold with all geomet-
rical symmetries, i.e. a Euclidean four-dimensional manifold. The
use of a Euclidean reference is an evolution and improvement with
respect to Tartaglia & Radicella (2010) and Radicella et al. (2011)
where a Minkowski reference manifold was used instead. In fact the
presence of the light cones indicates that a Minkowski manifold is
not the maximally symmetric flat undeformed manifold (Tartaglia
2012).

Once the strain has been introduced in the form of a sym-
metric tensor depending on the Lamé coefficients of space-time,
the remark is that its presence implies a deformation energy den-
sity even in vacuo. The theory introduces this additional contribu-
tion in the Lagrangian density, moulding it on the analogous three-
dimensional case. Matter/energy is then expressed, as usual, in the
form of additional terms where matter fields minimally couple to
the geometry via the metric tensor. In practice it is the additional
“elastic” term which plays the role of a dark fluid permeating the
whole space-time and producing what, in our(3 + 1)-dimensional
view, we read as the accelerated expansion of the universe.

The Lagrangian we have introduced resembles the one of a
massive gravity model (Hinterbichler 2012), with a potential term,
the strain energy density, added to the canonical kinetic one, the
Ricci scalar of the metricgµν . The formal analogy at the level of
the action, however, does not lead to the same phenomenology, the
main difference being the fact that the reference metric used in the
SST in order to construct the strain energy density is Euclidian.

Another peculiarity of the SSC comes again in analogy with
three-dimensional elastic continua. We ascribe to the universe at
large the Robertson-Walker (RW) symmetry, i.e. spacial isotropy
and homogeneity. Though the RW symmetry appears to be quite
natural its origin is not in the matter distribution, which rather is a
consequence of it. In our “elastic” continuum paradigm the global
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2 N. Radicella et al.

symmetry is fixed by a texture defect (the “initial” singularity) just
as it happens in ordinary solids when defects are present.

The purpose of the present paper is to test the theory on the
constraints posed by the existing evidence at cosmic scale and/or
high redshift. The paper is organized as follows. Section 2 resumes
the essential formulae of the SST; Sect. 3 analyzes the consistency
of the interpretation of the strain energy as a dark energy. Section 4
discusses the effect of using a Euclidean reference manifold rather
than a Minkowskian one. Section 5 evaluates in detail, in its eight
subsections, the constraints coming from the available data. Sec-
tion 6 comments on the expected outcomes from next generation
observations. Finally, Sec. 7 contains a discussion of the whole
work together with some conclusions.

2 OUTLINE OF THE STRAINED STATE THEORY

The main ingredient of the theory is the strain tensorǫµν written
in terms of the actual metric tensorgµν and the Euclidean metric
tensorEµν :

ǫµν =
1

2
(gµν − Eµν). (1)

The associated strain energy density is expressed in terms of two
parameters, the Lamé coefficients of space-time,λ andµ:

Ws =
1

2
λǫ2 + µǫαβǫ

αβ. (2)

Hereǫ = ǫαα is the trace of the strain tensor.
According to the SST approach the Lagrangian density of

space-time in vacuo is written:

L = (R +
1

2
λǫ2 + µǫαβǫ

αβ)
√−g, (3)

whereR is the scalar curvature. From Eq. (3) and using Eq. (1) we
can obtain, by functionally varying with respect to the metric tensor
gµν , the energy momentum tensor of the strained space-time. It is:

T(e)µν =
λ

2
(
1

2
gµνǫ

2 + gµνǫ− 2ǫǫµν)
√−g

+ µ(ǫµν +
1

2
gµνǫ

αβǫαβ − 2ǫαµǫαν)
√
−g (4)

It must be kept in mind that the tensorEµν appearing in
Eq. (1) isnot a metric tensor at all in the natural manifold (the only
one which actually exists); it is a non-dynamical symmetric tensor,
even though its interpretation within the paradigm of the SST is that
it wouldbe the metric tensor if the manifold was totally unstrained.

The total degrees of freedom of the theory for the cosmo-
logical problem (before any specific symmetry is introduced)
correspond to the ten independent elements of the metric ten-
sor, as in standard general relativity. The definition of the strain
tensor given in Eq. (1) does not introduce any new physical de-
gree of freedom. The freedom of choice of the coordinates, al-
ways referred to the natural manifold only (the actual space-
time), leads of course to different explicit forms for the Eu-
clidean tensor, but this fact can be seen as a gauge freedom not
producing any consequence on the physical configuration of the
natural manifold.

Looking at Eq. (4) we see that it corresponds, in the usual
interpretation scheme, to a fluid whose energy density and pres-
sure may directly be read out fromT(e)µν . We may indeed exploit
both the idea of strain and of a fluid as far as we assume, at the
cosmological scale, a Robertson-Walker symmetry i.e. global ho-
mogeneity and isotropy of space. Under this symmetry the strain

tensor turns out to be diagonal with equal space-space components
(Radicella et al. 2012). Density and pressure reads, respectively,

ρ(e)c
2 = T 0

(e)0 =
3

4
µ
2λ+ µ

λ+ 2µ

(a2 + 1)2

a4
(5)

p(e) = −T i
(e)i = −µ

4

2λ+ µ

λ+ 2µ

3a4 + 2a2 − 1

a4
(6)

The indexi labels any of the space coordinates of a rectangular
reference frame; no summation is assumed in this case.

In a fully consistent general relativistic description we should
remark that our “fluid” is nothing that allows for differential flow.
It expresses a peculiar symmetry of space-time and, in four dimen-
sions, it corresponds to a global equilibrium configuration of the
Riemannian manifold endowed with the Robertson-Walker sym-
metry.

If we add dust and radiation to the scenario and apply the en-
ergy condition we may work out the general form of the Hubble pa-
rameter,H = ȧ/a, for our Friedmann-Lemaitre-Robertson-Walker
universe:

H2 = B

[

1 +
(1 + z)2

a2
0

]2

+
κ

6
(1 + z)3[ρm0 + ρr0(1 + z)]. (7)

We have used the shorthand notation

B =
µ

4

2λ+ µ

λ+ 2µ
.

a0 is the present value of the scale factor of the universea and
is a parameter of the theory;κ is the usual coupling constant of
Einstein’s theory;ρm0 andρr0 are the present average matter and
radiation energy densities in the universe;z is the redshift.

The use of the Euclidean reference manifold is reflected in the
+ sign appearing in the first square brackets of Eq. (7). The defini-
tion of theB parameter in terms of the Lamé coefficients also dif-
fers from the definition in Tartaglia & Radicella (2010) since there
the lapse function was rigidly fixed to 1 as if the reference and the
natural frames were totally uncorrelated. Here just one coordinate
system is used for both manifolds, so that the gauge freedom holds
only once and the lapse function is obtained from the Lagrangian.
Eq. (7) will be mostly used for the comparison with the observa-
tions.

3 EFFECTIVE EQUATION OF STATE OF THE STRAIN

The SST provides a mechanism to set up an effective tracking dark
energy. Sticking to the description of a strain fluid, we have it uni-
formly permeating the universe (in space) and evolving in cosmic
time. We can deduce from Eqs. (5, 6) the equation of state. It is:

wCD =
p(e)
ρ(e)c2

= −1

3

3a4 + 2a2 − 1

(a2 + 1)2
. (8)

There are two asymptotic behaviors, see Fig. 1. At early times
(a ≪ 1), i. e., just outside the singular horizon from which the
Lorentzian signature stems ata = 0 (Tartaglia 2012), the behav-
ior of the strain “fluid” is similar to radiation,wCD ∼ 1/3. At
late times (a ≫ 1), the SSC mimics a cosmological constant,
wCD ∼ −1. The transition from positive to negative pressure
happens ata = 1/

√
3. The corresponding redshift of the tran-

sition is then connected to the present value of the scale factor,
zwCD

=
√
3a0 − 1. The largera0, the earlier the transition, i.e.,

the larger the redshift. Fora0 ≫ 1, it is zwCD
≃

√
3a0 and the

transition∆zwCD
takes nearly two logarithmic decades in redshift,
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Figure 1. Evolution with redshift of the effective equation of state of the
elasticity strain for different values ofa0. The corresponding value ofa0 is
reported near each curve.
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Figure 2. Characteristic values of the effective equation of state of the elas-
ticity strain for different values ofa0. Each point has the correspondinga0
nearby. For comparison we also include values for alternative models. The
point SUGRA denotes the supergravity model proposed in Brax & Martin
(1999).
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Figure 3.Evolution with redshift of the effective energy density of the elas-
ticity strain, in units of the critical density, for different values ofa0. The
parametersB andρm0 were fixed to the values in Tab. 1.
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Figure 4. Evolution of the effective equation of state of the elasticity strain
for either an Euclidean (thick line) or Minkowskian (thin line) background
as a function of the scale factor.

i.e., starts at∼ 101zwCD
and ends at∼ 10−1zwCD

. In a single
expression,log10 ∆zwCD

/zwCD
≃ 1.

To compare the SSC with other dark energy/modified grav-
ity models, we can parameterize the equation of state asw(z) ≃
w0 + waz/(1 + z), wherew0 is the present value of the equation
of state andwa = 2dw/d ln(1 + z)|z=1 (Linder 2003). A cosmic
defect acts like a dark energy whose equation of state is positively
evolving,wa > 0, see Fig. 2. The late time behavior of the effec-
tive equation of state deviates significantly from the cosmological
constant fora0 <

∼
10, whereas is nearly indistinguishable fromΛ

for a0 >
∼

20, whenw0 ∼ −1 andwa ∼ 0.
Since the contribution to the expansion is initially radiation-

like, the fraction of the total energy contributed by the defect mech-
anism can be significant at early times. The smallera0, the larger
the early energy contribution, see Fig. 3. For10 <

∼
a0 <

∼
100, the

cosmic defect contributes few percents of the total energy. By com-
parison, a cosmological constant has a fractional energy density at
the10−9 level atz ∼ 103.

Even if tracking quintessence was introduced in the context of
slow-rolling scalar fields (Steinhardt et al. 1999), the SSC de facto
shares the same desirable features. First, whatever the scale-length
of the expansion factor, i.e., for every value ofa0, the effective
energy from the defect may be significant today. Conditions in the
early universe are related toa0 but the late time contribution to the
expansion is only sensitive to the Lamé coefficients. There in no
“coincidence problem”. In the present version of the SSC,a0 is not
related toλ andµ. As far asa0 ≫ 1, a variation of the scale-length
only affects the early timeρ(e) whereas the today effective dark
energy is only related to the Lamé coefficients through the factor
B.

Secondly, when the universe is radiation-dominated (a <<
1), thenwCD ∼ 1/3 and the effective energy density of the cos-
mic defect decreases as the radiation density. When the universe is
matter-dominated (a ≫ a0ρr0/ρm0), thenwCD is less than zero.
At that time,ρ(e) is nearly constant and decreases much less rapidly
than the matter density.

4 EUCLIDEAN VS MINKOWSKIAN BACKGROUND

Besides theoretical a priori considerations which make an Eu-
clidean reference system preferable to the Minkwskian alternative
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Figure 5. Evolution of the relative difference of the effective density of the
elasticity strain for a Minkowskian background with respect to an Euclidean
background.

(Tartaglia 2012), the deformation of the Euclidean background also
brings a more regular evolution in. In fact, the Hubble parameter is
a smooth function ofa for all real values of the scale factor ex-
cepting the initial singularity and there are no divergences in the
evolution of the effective density and equation of state, see Figs. 4
and 5.

In the Minkowskian case a divergence appears ata = 1. i.e.,
z = a0 − 1. To distinguish on an observational ground the two
cases, we would then need an accurate sampling of the expansion
history of the universe at redshifts of the order ofzwCD

. On the
other hand, outside a small redshift range arounda ∼ 1, the two
evolutions are very similar.

However, some important differences are in order. The effec-
tive equation of state for the Euclidean case is bounded in the in-
terval−1 < wCD < 1/3, whereas in the Minkowskian casewCD

approaches the asymptotic value of−1 from below after the di-
vergence. The absence of divergences in the cosmological sector
might be a hint in the direction of a good behavior of the theory
when analyzing its propagating modes. In particular, the effect of
an Euclidean reference manifold could cure the ghost problem and
let the scalar sector behave as a healthy propagating mode.

Considering analogies and differences with massive the-
ories of gravity (Hinterbichler 2012), we know that the latter
have six propagating modes: the five propagating degrees of
freedom for the massive spin 2 interaction and the so-called
Boulware-Deser mode, avoided in the linear description of the
theory (Boulware & Deser 1972) but reappearing at the non-
linear level. The Boulware-Deser mode is always a ghost since,
in the ADM formalism, the Hamiltonian of the scalar mode,
when written with a reference metric with Lorentzian signa-
ture, is not positive definite. Recently, Hassan & Rosen (2012);
Hassan et al. (2012) have shown that in massive gravity theo-
ries carried out in the ADM formalism at the full non-linear
level, there always exists a Hamiltonian constraint which elim-
inates the ghost with an associated secondary constraint. The
sixth mode does not contribute to propagation either with a flat
or a general reference metric but the condition for the metric
to have Lorentzian signature explicitly comes into play in the
derivation. In our case no problems arise for the cosmological
solutions and our conjecture is that the Euclidean signature of
the reference metric is what makes the difference, thus curing
the problems also for the propagating perturbations.

5 OBSERVATIONAL CONSTRAINTS

Having worked out the SST with an Euclidean reference both in the
weak field, short range approximation (Radicella et al. 2012) and
in the cosmological context, we are in position to compare the the-
ory prediction with a comprehensive series of cosmological tests
including kinematic expansion, formation and growth of the large
scale structure, cosmic microwave background (CMB) and forma-
tion of nuclei.

The main observational signature of the cosmic defect comes
from its impact on the expansion of the universe. Local corrections
are negligible (Radicella et al. 2012), so that, in the SST, the grav-
itational potential felt by matter/radiation over-densities is de facto
Newtonian. The growth of perturbations is then affected mainly
through the modified expansion rate of the background.

Different cosmological tests can probe the SSC in different
redshift ranges. At low redshift,z <

∼
1, the expansion rate as in-

ferred from supernovae (SNe) measurements forces any dark en-
ergy model to approximate the cosmological constant,w0 ∼ −1.
However, we still have no direct observational constraints on the
expansion rate of the universe atz >

∼
2, so that probes exclu-

sively sensitive to the universal expansion are severely limited in
constraining the early behavior of dark energy. Any early feature
must therefore be constrained by a combination of expansion rate
and matter power spectrum measurements (Joudaki & Kaplinghat
2011). Constraints from primordial nucleosynthesis and from the
CMB limit the early dark energy (EDE) fraction to be small, less
than few percents, but not completely negligible (Wright 2007).

Here, we summarize the observational tests we considered
and discuss the results. Method and statistical approach are simi-
lar to Radicella et al. (2011) with three main differences. Firstly,
we study the SSC as developed on elastically deformed Euclidean
background, differently from Radicella et al. (2011) who consid-
ered a Minkowskian background. Secondly, we consider a more
comprehensive sample of tests and observational data. Thirdly, we
employ different priors for the parameters.

5.1 Cosmic microwave background

The temperature power spectrum of CMB probes the universe at
the decoupling epoch,zLS ∼ 1090, as well as the expansion his-
tory between now and the last scattering surface. One of the main
signatures of the CMB is the acoustic scale of the spectrum,lA
(Hu & Sugiyama 1996; Komatsu et al. 2011). This scale can be
expressed as

lA = (1 + zLS)π
DA(zLS)

rs(zLS)
, (9)

wherers is the sound horizon at recombination andDA is the angu-
lar diameter distance to the last scattering surface. As any early dark
energy shifts the sound horizon (Doran & Robbers 2006; Linder &
Robbers 2008), the presence of a cosmic defect affects the location
of the acoustic peaks, which depends on the expansion factor at
the matter-radiation equality. Komatsu et al. (2011) determined the
acoustic scale from the WMAP (Wilkinson Microwave Anisotropy
Probe)-7 data. We considerlA = 302.69± 0.76± 1.00, where the
first error is the statistical error and the second error gives an es-
timate of the uncertainty connected to the model (Elgarøy & Mul-
tamäki 2007).
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5.2 Low redshift supernovae

Riess et al. (2009) obtained an accurate measurement ofH0 from
the magnitude–redshift relation of 240 low-z Type Ia SNe atz <
0.1. They gotH0 = 74.2 ± 3.6 km s−1Mpc−1.

5.3 High redshift supernovae

SNe of type Ia trace the late time expansion of the universe. We
consider the sample for cosmological studies in Kowalski et al.
(2008), who measured the distance modulusd(z) of 307 SNe,

d(z) = 25 + 5 log10

[

(1 + z)

∫ z

0

(c/Mpc)

H(z′)
dz′

]

. (10)

5.4 Nucleosynthesis

The strain energy affects the expansion rate at the nucleosynthe-
sis whereas the cross-sections of nuclear interactions are not influ-
enced (Radicella et al. 2011). The result in Iocco et al. (2009) based
on the abundance of light elements can be rewritten as a stretch fac-
tor XBoost = (1 + ρDE/ρr) = 1.025 ± 0.015, whereρDE is an
additional non standard contribution to the density/energy budget
andρr is the radiation-like energy density from standard species.

5.5 Large scale structure

Perturbations can not grow in a universe expanding as a radiation-
dominated background. Since its early contribution is in the form
of a radiation-like term, the space-time strain postpones the matter
dominance. The effective additional energy density provided by the
strain affects the scale of the particle horizon at the equality epoch,
which on turn is imprinted in the matter transfer function. From the
final 2dF Galaxy Redshift Survey analysis (Cole et al. 2005), we
can take the result

X
−1/2
Boost (Ωm0h) = 0.168 ± 0.016, (11)

whereh is the Hubble constantH0 in units of100 km s−1Mpc−1

andΩm0 is the matter density in units of the critical densityρcr ≡
3H2

0/(8πG).

5.6 Linear growth

The cosmic defect affects the expansion rate and the growth of per-
turbations is influenced due to friction. The equation for the growth
D is (Linder & Jenkins 2003; Basilakos & Pouri 2012)

D
′′

+
3

2

(

1− w(a)

1 +X(a)

)

D
′

a
− 3

2

X(a)

1 +X(a)

D

a2
= 0, (12)

where

X(a) = Ωm0

(

a

a0

)3 (
H0

H(ρr0 = ρm0 = 0)

)2

. (13)

A prime denotes derivative with respect toa. The rate of structure
growth,f = d lnD(a)/d ln a, was recently measured by Tojeiro
et al. (2012), who considered a passively evolving population of
galaxies. They measured the evolution off betweenz = 0.25 and
z = 0.65 by combining data from the Sloan Digital Sky Survey
(SDSS) I/II and SDSS-III surveys. We consider the measurements
of f as summarized in their table 1.

Fitted parameters
B ρm0 B

−1
a0

[10−52m−2] [10−29g cm−3] [1052m2]
2.24 (2.22)± 0.05 0.252(0.255)± 0.007 0.004(0.009)± 0.005

Derived parameters
Ωm0 a0

0.272± 0.009 70± 60

Table 1. Results of the statistical analysis.B, ρm0 andB−1
a0

are the pa-
rameters of the SSC used to fit the data. The distributions of the derived
parameters have been obtained from those of the fitted parameters. Central
locations and dispersions are computed as mean and variance of the poste-
rior probability functions.The best fit values are reported in brackets.

5.7 Baryon acoustic oscillations

Percival et al. (2010) measured the baryon acoustic oscillations
(BAO) exploiting the spectroscopic SDSS Data Release 7 galaxy
sample. They achieved a distance measure at redshiftz = 0.275,
of rs(zd)/DV(0.275) = 0.1390 ± 0.0037, wherers(zd) is the
comoving sound horizon at the baryon-drag epoch,DV(z) =
[(1 + z)2D2

Acz/H(z)]1/3, whereDA(z) is the angular diame-
ter distance andH(z) is the Hubble parameter. Since the power
spectrum was measured for different slices in redshift, they also
found an almost independent constraint on the ratio of distances
DV(0.35)/DV(0.2) = 1.736 ± 0.065. We use both observational
constraints.

5.8 Data analysis

We performed the statistical analysis with standard Bayesian meth-
ods (Lewis & Bridle 2002; Mackay 2003). The method is similar to
Radicella et al. (2011), with some differences. We considered the
parameter space spanned by the matter densityρm0, the relativistic
energy density, which is frozen atρr0 ≃ 7.8 × 10−34 g/cm3, the
factorB which combines the Lamé parameters and a last parameter
for the size of the scale factor, whose present valuea0 is described
in terms ofB−1

a0
, with

Ba0
≡ 8

9
κρr0a

4
0. (14)

Employed priors differ from Radicella et al. (2011). As a pri-
ori information for the scale factora0, we considered a distribu-
tion uniform in logarithmically spaced decades, as appropriate for
parameters with only lower bounds. For the other parameters, we
considered uniform priors.

The parameter space was explored with standard Monte Carlo
Markov chains methods. Results are summarized in Table 1. To-
gether with the parameters used to describe the model, we list also
results for some other quantities of cosmological interest whose
distribution was derived from those of the fitted parameters.

The SSC provides an excellent fit to the data. We retrieved
a total χ2 ≃ 320.1 for the best fit parameters for 314 degrees
of freedom. The accuracy of the fit is slightly better than that
of the flat ΛCDM model. Assuming a model of universe with
a cosmological constant and zero curvature, we foundχ2 ≃
322.7 for ΩM0 ≃ 0.27 andH0 ≃ 70.3 km s−1Mpc (315 degrees
of freedom).

Given the low number of free parameters and the com-
parable χ2 values, we can not prefer one model to the other
one on a statistical basis. The small difference in theχ2 values
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is mainly due to the nucleosynthesis constraint. At late times
the SSC drives an expansion indistinguishable from theΛCDM
model. Both models give excellent fits to the SNe and other
low-redshift observations. On the other hand, the abundance of
light elements is compatible with some additional radiation-like
contribution to the total energy budget. In the SSC, this is pro-
vided by the defect which can boost the expansion early when
the contribution from the elastic strain to the expansion, i.e, the
early effective densityΩCD, is proportional to B/a4

0. The value
of the present day scale factora0 must then be large enough to
make the additional push to the expansion compatible with the
bound from the nucleosynthesis.

An early boost could be provided in theΛCDM model by
some extra relativistic species. As we will discuss in the next
section, experiments at large redshifts could then separate the
various competing models.

TheB parameter is tightly constrained, which in turn fixes the
Lamé coefficients.µ must be of the order of10−52m−2, either if
µ ∼ λ or not. On a theoretical ground, we expect a priori the two
Lamé coefficients to be of the same order, so the constraint onµ
can be read as a constraint onλ too. The Lamé coefficients are then
of the same order of magnitude as the cosmological constant in
the popularΛCDM model. This can be viewed as a further support
for the elastic origin of the dark energy accelerating the universe
expansion.

The matter density parameter is very well determined too. The
required amount of dark matter is in line with what needed in the
ΛCDM model and with observations on the scale of both galaxies
and galaxy clusters.

The exploited data-sets do not provide tight constraints on the
size of the scale factor. However, we know from observations that
the boost to the expansion at early times due to the cosmic defect
has to be small.a0 has then to be small enough to let nucleosyn-
thesis and large scale formation happen. Even if the scale factor
is poorly determined, we can set a lower bound. We found that
a0 >

∼
20 at the 99.73 per cent confidence level.

The fitted SSC model predicts a transition redshift from decel-
erated to accelerated expansion atzT = 0.75± 0.03, in agreement
with observational constraints from SNe (Cunha 2009, see table 1).
After the transition, the effect of the cosmic defect on the expansion
of the universe is indistinguishable from a cosmological constant.

6 FORECAST

Future and ongoing experiments promise to further improve ob-
servational constraints. The Planck satellite has been providing the
first data on the CMB, whereas the next generation of galaxy sur-
vey will exploit facilities such as the ground-based Large Synoptic
Survey Telescope (LSST). The combination of the two probes will
tighten what we know about the universal expansion rate and the
matter perturbation growth (Joudaki & Kaplinghat 2011).

As we have seen before, in the relevant redshift range cov-
ered by experiments, the SSC acts as an effective dark energy with
a non-negligible fraction at high redshifts. We can then translate
results on EDE (Joudaki & Kaplinghat 2011) to forecast future
bounds on the parameters of the SSC.

Results from Planck combined with a ground-based LSST-like
survey should significantly improve present accuracy. A combina-
tion of weak lensing tomography, galaxy tomography, SNe, and the
CMB should constrain the EDE density to 0.2 per cent of the criti-
cal density of the universe (Joudaki & Kaplinghat 2011).
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Figure 6.Transition redshift as a function of the scale factora0 for different
B’s. B values are in units of10−52m−2. The today matter (radiation)
density is fixed to0.25× 10−29g cm−3 (0.78 × 10−33g cm−3).

Since the parameterB is very well constrained by late expan-
sion as measured with observations of SNe, the constraint on the
early effective density at large redshifts, whenΩCD is proportional
to B/a4

0, can then determine the scale factora0 to an accuracy of
0.05 per cent.

A small fraction of EDE at the<
∼

1 per cent level can affect
the formation of massive structures and may favor the early on-
set of star and galaxy formation. It can also explain the high level
of Sunyaev-Zeldovich effect contribution to the high multipoles of
the CMB temperature power spectrum (Linder & Robbers 2008).
These tests could further probe the SSC.

An alternative way to improve the accuracy on the scale factor
would be a very accurate determination of the transition redshift.
However,zT is very sensitive to the scale factor only fora0 <

∼
3,

see Fig. 6, which is confidently excluded by already available data.
State of the art cosmological tests do not allow to distin-

guish between the Euclidean and the Minkowskian background.
The evolution in the two cases differs in a redshift interval around
z = a0−1. Since we already know thata0 >

∼
20, the redshift range

sampled by SNe (z <
∼

2) can not disfavor any scenario. The same
argument holds for other proposed standard sirens, such as coa-
lescing massive black hole binaries emitting gravitational waves,
which might be detectable out toz <

∼
10-15 by next generation

space-based observatories (Sesana et al. 2007; Sereno et al. 2010),
or standard candles, such as gamma ray bursts detectable out to
z <

∼
5-10 (Ghirlanda et al. 2006)
The best chance to observationally favor one of the two hy-

potheses is fora0 ∼ 103, when differences show up at the forma-
tion of the CMB and would be detectable by future experiments.

The additional degrees of freedom of the SSC or other
EDE models degrade our ability to study neutrinos and other
relativistic species with cosmological tests. The accuracy on the
sum of neutrino masses by the future experiments discussed be-
fore is worsened by a factor two compared to the case without
allowing for early DE (Joudaki & Kaplinghat 2011).

7 CONCLUSIONS

The SSC shares some interesting features with models of early
dark energy and tracking quintessence which deserve interest on
both the theoretical and the observational front. Due to friction in
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the expansion rate connected to the presence of dark energy, more
structure had to form at earlier times than for a universe without
dark energy in order to produce the matter perturbations seen in
the present universe. The effect is even stronger in a universe with
a non-vanishing amount of dark energy at early times, when more
structure is required to have formed at earlier times than for a uni-
verse with only late-time dark energy.

Most popular models behind EDE rely on tracking
quintessence. The SSC shares the main advantages of the tracker
solutions despite a very different context. While the latter alleviate
the coincidence problem by considering a dynamical scalar field
with a potential that brings the field evolution onto an attractor tra-
jectory, in the SSC the modified expansion originates from a defect
and the related elastic strain. The early contribution to the expan-
sion is radiation-like and may be a significant fraction of the matter
density during the matter dominated era, including the recombina-
tion epoch. At late times the strain acts as a cosmological constant.
This behavior is compatible with a very large set of initial condi-
tions.

Theories of gravity that deviate from general relativity at large
distances may require some kind of screening on smaller scales
(Clifton et al. 2012). The deviation has to be sizable on cosmologi-
cal scales but has to be suppressed down to at least five orders with
respect to the usual Newtonian contribution on Solar System scales.
The often invoked Vainshtein mechanism (Clifton et al. 2012) pre-
scribes that higher order interactions suppress the extra modes near
the local source of gravity and fields interact so strongly that they
are frozen together and are unable to propagate freely. Other meth-
ods, such as either the chameleon (Ellis et al. 1989) or the sym-
metron (Hinterbichler & Khoury 2010), may exploit the depen-
dence of the effective potential on the environment.

The SST is intrinsically free from this problem. Cosmological
observations strictly constrain the values of the Lamé coefficients
(λ ∼ µ ∼ 10−52m−2). When considering the local gravitational
field in the SST (Radicella et al. 2012), an elastic strain of this size
brings about a deviation suppressed by 20 orders of magnitude on
the scale of the Solar System. The screening effect is then a straight
consequence of the small values of the Lamé coefficients.

The setback of this might be some sort of fine-tuning prob-
lem similar to that affecting the cosmological constant. However,
we can point out some substantial differences, that strongly mit-
igate the fine-tuning without referring to any debatable anthropic
principle. First, the strain is not connected to any vacuum energy
property, so we have no a priori guess on the values of the Lamé co-
efficients. Second, the discussion of the effective equation of state
showed some sort of tracking mechanism. Whatever the value of
λ or µ, the effective energy density is set to track a radiation-like
energy at early times and to mimic a cosmological constant at late
times.
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