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In this note we discuss the classification of duality orbits of N ¼ 8 gauged supergravity models. Using

tensor classifiers, we show that there is a one-parameter family of inequivalent SO(8) gauged supergravity

theories. We briefly discuss the couplings of such models and show that, although the maximally

symmetric vacuum has the same quadratic spectrum, the supersymmetry transformations, the couplings,

and the scalar potential are parameter dependent. We also comment on the possible M theory uplift and on

the meaning of the parameter for the dual gauge theories.

DOI: 10.1103/PhysRevLett.109.201301 PACS numbers: 04.65.+e, 11.25.Tq

Maximal supergravity.—The maximally supersymmet-
ric supergravity theory in four dimensions has been a
fundamental testing ground for our understanding of super-
symmetric theories over the years. For instance, the
Scherk-Schwarz supersymmetry breaking mechanism had
its first application in the context of the maximal super-
gravity model obtained by reduction of 11-dimensional
supergravity [1,2]. More recently, new methods for com-
puting loop amplitudes have been developed in the analysis
of the quantum perturbative regime of the ungauged theory,
building the case for its possible finiteness [3]. Finally,
using the gauge-gravity correspondence, a SO(8) gauged
model [4,5] with an N ¼ 8 vacuum has been used to
analyze and study possible deformations of the so-called
Aharony, Bergman, Jafferis, and Maldacena (ABJM)
three-dimensional conformal theories [6,7].

Actually, N ¼ 8 supergravity in four dimensions comes
in two main flavors: the ungauged models, realizing the
maximally supersymmetric Poincaré algebra, and the
gauged theories, where spontaneous supersymmetry break-
ing can occur. Here we are mainly concerned with the
latter. Gauged supergravity models are supersymmetric
deformations of the ungauged versions by a procedure
that couples its vector fields to charges assigned to the
other fields according to their transformation properties
under the global symmetries of the starting Lagrangian.
From the ungauged model of Cremmer-Julia [8,9] one can
generate the SO(8) gauged supergravity coming from M
theory compactified on the seven-dimensional sphere [4,5]
or the Scherk-Schwarz gaugings mentioned above [1,2].
However, there are in general very many possible defor-
mations with different gauge groups and also inequivalent
models with the same gauge groups. A first general
analysis culminated in the classification of the gaugings

embedded in SLð8;RÞ [10], but it was soon recognized that
many more models would escape such classification [11].
There are two types of transformations one may use to

generate new N ¼ 8 Lagrangians and hence new massive
deformations. The first one is electric-magnetic duality
[12], mixing the 28 vector fields of the supergravity mul-
tiplet and the 28 magnetic duals, which obviously do not
appear in the Lagrangian. Together they transform in the
representation 56 of the U duality group E7ð7Þ and, although
the Lagrangian cannot be invariant under E7ð7Þ, the com-

bined equations of motion and Bianchi identities of the
vector fields do transform covariantly in the representation
56. Hence (in the ungauged case) the resulting theories are
equivalent. In fact the rigid symmetry group of the
Lagrangian is generically only a subgroup of E7ð7Þ and

this group is not unique. The second set of transformations
is related to a larger group, namely Spð56;RÞ, which
determines which gauge fields belonging to the represen-
tation 56 play the role of electric and which ones the role of
magnetic gauge fields. This selects the so-called symplec-
tic frame, which in turn fixes the rigid symmetry group of
the ungauged Lagrangian. Different choices of symplectic
frame yield in general different Lagrangians which are not
related to each other by local field redefinitions and even-
tually lead to different gaugings.
Embedding tensor and duality orbits.—Amodern frame-

work to treat all these issues is given by the embedding
tensor formalism, introduced in Refs. [10,13] and devel-
oped within the context of the maximal theory in four
dimensions in Refs. [14–16]. Once the symplectic frame
has been chosen and therefore the ordering of the (electric
and magnetic) vector fields AM

� , M ¼ 1; . . . ; 56, has been

fixed, the embedding tensor �M
�, gives their coupling to

the E7ð7Þ generators t�, for instance, via covariant
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derivatives D� ¼ @� � AM
��M

�t�. From the general

analysis of Ref. [15] we now know that the embedding
tensor is fixed by up to 912 parameters, as this is the only
irreducible representation that survives consistency and
supersymmetry constraints. Using such formalism, it is
now possible to proceed to a general analysis by which
to classify and to construct all massive deformations of
N ¼ 8 supergravity and possibly discuss their vacuum
structure [17–20].

In a given symplectic frame, one may expect a one to
one correspondence between allowed embedding tensors
and gauged supergravity models. However, most of the
theories that share the same gauge group are simply going
to be different realizations of the samemodel, which can be
transformed into each other by U duality. For this reason, it
is crucial to find an efficient criterion to decide whether
two theories are related by such transformations, referring
only to the embedding tensor. For this purpose one can use
the techniques that have been developed in the context of
supergravity black holes, where the construction of duality
invariant quantities depending on the charges allowed to
classify inequivalent solutions and to construct the corre-
sponding duality orbits. Since in the case at hand the black
hole charges are replaced by gauging charges, specified by
the embedding tensor, we have to find appropriate contrac-
tions of the embedding tensor that do not transform under
the duality group. Unfortunately, most of the simple com-
binations one could think of vanish due to the quadratic
constraint [15]

�M
��N

��MN ¼ 0; (1)

where � is the Spð56;RÞ invariant tensor, or their compu-
tation is a too demanding task, like for the two-times
quartic E7ð7Þ invariant constructed from both the fundamen-

tal and adjoint representations.
The way out has been suggested again in the black hole

context in Ref. [21]. In fact, in order to classify duality
orbits one may use covariant quantities rather than invari-
ant ones. Using covariant tensors, one may still extract
quantities with constrained transformation properties, dif-
ferentiating inequivalent expressions. In particular, we will
focus on the following quartic tensor classifier [22]:

B��
�� ¼ �M

��N
��P

��Q
�dMNPQ������ ; (2)

where dMNPQ is the E7ð7Þ quartic invariant and � is the

Cartan-Killing metric. The action of the duality group on
(2) is nontrivial and well defined by its adjoint indices:
B ! UBU�1. This implies that its eigenvalues are not
going to change upon the application of a duality trans-
formation and hence they can be used as duality invariant
quantities, to classify different embedding tensors.

SOð8Þc gauging.—The gauging of a group G � E7ð7Þ
requires that the embedding tensor admits at least one
singlet in the decomposition of its 912 under E7ð7Þ ! G.
For the SO(8) gauge group one sees that [23]

912 ! 2� ð1þ 35s þ 35v þ 35c þ 350Þ; (3)

so that actually there are two possible independent tensors
specifying its embedding [24]. In fact, in the SLð8;RÞ
symplectic frame, the electric vector fields transform in
the 28 of SLð8;RÞ while the magnetic ones in the 280:
AM
� ¼ fA½AB�

� ; A�½AB�g, where A, B ¼ 1; . . . ; 8 are indices

labelling the fundamental representation of slð8;RÞ.
The SO(8) gauge group can be obtained by the standard
choice [14]

�M
� ¼ �AB

C
D / �C

½A	B�D; (4)

where 	AB denotes the component of the embedding tensor
in the 360, which couples the electric vectors to the
SLð8;RÞ generators tC

D. When 	 is positive definite, it

defines the SO(8) gauge group and it can be reduced to
	AB ¼ �AB by an SLð8;RÞ transformation. However, we
could also gauge SO(8) by using the magnetic fields and
by introducing a second tensor 
 in the 36 of SLð8;RÞ, so
that [17]

�ABC
D / �½A

D 
B�C; (5)

and 
 ¼ c	�1 in order to satisfy the quadratic constraint
(1). This means that, starting from the same ungauged
theory, we have a one-parameter family of possible
SO(8) gauged supergravity theories, which we will call
SOð8Þc, depending on the ratio of the couplings (4) and (5).
Most of these models are going to be dual to each other and
we can explicitly check their equivalence by using the
tensor classifier (2).
In order to simplify computations and avoid redundan-

cies due to the remaining SLð8;RÞ invariance, we take the
embedding tensor in the form

�AB
C
D ¼ �C

½A�B�D; �ABC
D ¼ c�½A

D �B�C; (6)

with all the other components vanishing. We can then
compute the eigenvalues of the B classifier, which are

eigB ¼ f8806� �1; 35� �2; 35� �3; 35� �4g; (7)

where

�1 ¼ 0; �2 ¼ 18c2; (8)

�3 ¼ 9

2
ðc2 � 1Þ2; �4 ¼ � 9

2
ðc2 þ 1Þ2: (9)

One could still perform and overall rescaling of �, which
amounts to a simple redefinition of the coupling constant,
and tune the values of such eigenvalues to obtain equiva-
lent gaugings, but we can see that this rescaling would not
affect the ratios �i=�4. We can also see that the spectrum of
these ratios is invariant under the maps c ! �c, c ! 1=c,
and c ! c�1

cþ1 , so that we can argue that we have inequiva-

lent gaugings for c 2 ½0; ffiffiffi
2

p � 1�. In fact, at this point it is
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more efficient to parameterize the one-parameter family of
inequivalent gaugings by

�AB
C
D¼ cos!�C

½A�B�D; �ABC
D¼ sin!�½A

D �B�C; (10)

so that �2=�4 ¼ �sin2ð2!Þ and �3=�4 ¼ �cos2ð2!Þ.
Hence, for ! ¼ 0 we recover the original gauging, for
! ¼ �=2 we obtain the dual one, constructed using the
magnetic vectors, and inequivalent ones come in the range
! 2 ½0; �=8�. We remark that having different eigenvalues
of the tensor B is a sufficient condition to claim that the
corresponding theories are inequivalent, because duality
transformations cannot change their value.

These results imply that the SO(8) gauged supergravity
built in Refs. [4,5], also obtained as the compactification of
M theory on S7, is not unique.

Couplings of SOð8Þc.—All the inequivalent models dis-
cussed above have an N ¼ 8 vacuum with a negative
cosmological constant [which is the same in the conven-
tions of (10)] and obviously the quadratic spectra around
such vacua coincide. However, higher order couplings
change, as expected for inequivalent models. We will
now show explicitly some of the SOð8Þc couplings and
compute their dependence on the parameter, with a special
emphasis on the scalar potential, which now shows a
different spectrum of vacua according to the parameter’s
choice.

For the sake of clarity we restrict the analysis of the
potential to the G2-invariant sector of the scalar fields. It is
known that for c ¼ 0 one finds one N ¼ 8 vacuum with
SO(8) symmetry, two parity conjugated vacua with N ¼ 0
and SOð7Þ� residual symmetry, another N ¼ 0 vacuum
with SOð7Þþ symmetry, self-conjugated under parity, and
two parity conjugated N ¼ 1 vacua with G2 symmetry
[25]. The G2-invariant truncation contains two scalar fields
~
 ¼ ð
1; 
2Þ and the potential can be written as the sum
of three pieces

Vð ~
Þ ¼ Að ~
Þ � cosð2!Þfð
1; 
2Þ � sinð2!Þfð
2; 
1Þ;
(11)

where (in the following x � ej ~
j)

Að ~
Þ ¼ ð1þ x4Þ3
64j ~
j4x14 ½4ð1þ x4Þ2ð1� 5x4 þ x8Þð
4

1 þ
4
2Þ

þ
2
1


2
2ð1þ 4x4 � 106x8 þ 4x12 þ x16Þ�; (12)

which is an even function of 
1 and 
2 and symmetric in
their exchange, and

fð
1; 
2Þ ¼ ð�1þ x4Þ5
3
1

64j ~
j7x14 ½4ð1þ 5x4 þ x8Þ
4
1

þ 7ð1þ 6x4 þ x8Þ
2
1


2
2 þ 7ð1þ x4Þ2
4

2�;
(13)

which is odd in the first argument and even in the second.
Three symmetry operations leave the scalar potential
invariant

!$�! 
2 $�
2;

!$!þ�

2
~
$� ~
;

!$!��

4

1 !
2 
2 !�
1:

(14)

The first one results from a parity-related symmetry, while
the last two result from E7ð7Þ-duality transformations.

Altogether this implies that we get inequivalent potentials
only in the expected range ! 2 ½0; �=8�. In fact, depend-
ing on the parameter ! the scalar potential exhibits a
different number of vacua, as shown in Fig. 1. The
! ¼ 0 case corresponds to the usual truncation of the
scalar potential that keeps the SO(8) vacuum (although
seemingly unstable, all the masses satisfy the
Breitenlohner-Freedman bound), the SOð7Þ� vacua, and
the G2 ones. When ! � 0 a new SO(7) and new G2 vacua
appear. In fact, not only the number of vacua changes when
! � 0, but also the value of their cosmological constant, as
can be seen by looking at Fig. 1. In particular, we computed
the ratio of the value of the cosmological constant of the
various vacua in the two potentials with respect to that of

FIG. 1 (color online). Scalar potential of the G2 truncation for ! ¼ 0 (left) and for ! ¼ �=8 (right). The red dot is the SO(8)
vacuum, the blue squares are vacua with SO(7) symmetry and orange triangles represent vacua with G2 residual gauge symmetry. New
SO(7) and G2 vacua appear with respect to the ! ¼ 0 case.

PRL 109, 201301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

16 NOVEMBER 2012

201301-3



the N ¼ 8 vacuum in the center. The result is an
!-dependent function, different for each one of the vacua.

A crucial ingredient in any gauged supergravity theory is
given by the expression of the shifts of the supersymmetry
transformation rules. Among other couplings, they deter-
mine the fermion masses as well as the scalar potential. In
particular, the gravitino shift, determining also the grav-
itino masses, is diagonal in the G2 truncation discussed
above:

A1 ¼ diagf�1; �1; �1; �1; �1; �1; �1; �2g; (15)

where

�1 ¼ � 1

2j ~
j4 ½e
�i!ð
1 � i
2Þ2ch3j ~
jh�1 ð
1; 
2Þ

þ ei!j ~
jð
1 þ i
2Þsh3j ~
jhþ1 ð
1;�
2Þ�; (16)

�2 ¼ � 1

2j ~
j4 ½e
�i!ð
1 þ i
2Þ2ch3j ~
jh�2 ð
1; 
2Þ

þ ei!j ~
j�3ð
1 þ i
2Þ5sh3j ~
jhþ2 ð
1;�
2Þ� (17)

and

h�1 ð
1; 
2Þ ¼ chð2j ~
jÞð6
2
1 þ 8i
1
2 � 6
2

2Þ
� ½3þ chð4j ~
jÞ�ð2
2

1 þ 3i
1
2 � 2
2
2Þ;
(18)

h�2 ð
1; 
2Þ ¼ h�1 ð
1; 
2Þ þ 8i
1
2chð2j ~
jÞ: (19)

In the SLð8;RÞ frame the gauge group defined by the
chosen embedding tensor does not have an electric action
on the vector field strengths and their duals. However, as
proved in Ref. [16], we can always choose an electric
frame for any gauging. Starting from (10), we get to the
electric frame by using the symplectic rotation

E ¼ cos! sin!

� sin! cos!

 !
� 128: (20)

When we perform this transformation, the kinetic terms of
the vector fields and, more in general, the nonminimal
couplings of the scalars to the vector fields get a nontrivial
dependence on the parameter !. E has no effect on the
SO(8) generators but brings back the gauge connection to
be electric. Hence, in the E-symplectic frame �M

� and
XMN

P are identical to the ones of Refs. [4,5]. Still, the
couplings in (11)–(19) retain their ! dependence, because
the embedding of E7ð7Þ in Spð56;RÞ changed and hence the
explicit form of the E7ð7Þ generators that are not in SO(8)

also changed.
Comments.—The techniques we described can be

applied in full generality to any family of gaugings of
maximal supergravity sharing the same gauge group. In

particular most of our discussion carries over to the
SOðp; qÞ gaugings discussed in Refs. [10,17,26].
Having a one-parameter family of inequivalent SO(8)

gauged supergravity theories poses some interesting puz-
zles from both the string theory point of view as well as for
the gauge-gravity correspondence. It is known that the
compactification of M theory on S7 can be consistently
truncated to the usual four-dimensional gauged SO(8)
theory of Refs. [4,5,27,28]. Is there a reduction procedure
leading to the SOð8Þc theories? It is clear that changing
frame is related to a different choice of the fundamental
vector fields remaining in the dimensional reduction pro-
cess. For instance, while the electric gauge fields come
from the reduction of the metric, the SOð8Þc theories
involve magnetic gauge fields whose higher-dimensional
origin is not obvious. Also, the maximal supersymmetric
vacuum of the SO(8) model provides the gravity dual to the
ABJM theory [6], but what could the extra parameter
correspond to? Given that also the SOð8Þc theories have
an N ¼ 8 vacuum with the same spectrum as that of the
SO(8) model, one should expect that the deformed theories
correspond to dual field theories with the same chiral ring,
same 2-point functions, but different higher-point func-
tions. Actually, Ref. [7] proposes a generalization of the
ABJM theories related to M2-branes probing C4=Zk,
whose near-horizon limit is AdS4 � S7=Zk. The orbifold
action is such that for k ¼ 2 the short supergravity
spectrum remains untouched and therefore the four-
dimensional truncations would look the same at the qua-
dratic level. Furthermore, having an orbifold allows for the
introduction of discrete torsion, leading to two different
theories, according to the amount of discrete torsion intro-
duced. Obviously, the discrete torsion is a discrete parame-
ter and cannot capture all the SOð8Þc deformations, but this
may well be an artifact of the classical four-dimensional
supergravity models, where we did not consider any quan-
tization condition. The authors of Ref. [7] propose three
different models that may be related to our supergravity
theories: a model with gauge group UðNÞ1 � UðNÞ�1, one
with gauge group UðNÞ2 � UðNÞ�2, and another one with
gauge group UðN þ 1Þ2 � UðNÞ�2 [and the parity-
reversed UðN þ 1Þ�2 � UðNÞ2]. The Z2 orbifold projec-
tion does not affect the massless spectrum and the first two
models are also parity invariant. The third one is not parity
invariant, but is invariant under the combination of parity
and the duality transformation UðNþ lÞk�UðNÞ�k!
UðNþjkj� lÞ�k�UðNÞk, where k is related to the Zk

orbifold projection and l is the number of fractional branes.
According to our previous discussion, we therefore suggest
the identification

! ¼ �

4

l

k
; k ¼ 1; 2; l � k: (21)

By this relation between the parameters the first two mod-
els are identified, while the third one is invariant under the
exchange of scalar fields in the representations 35v and
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35s. This exchange is actually the result of the combined
application of parity and of the duality transformation
(4.19) in Ref. [17]. We also point out that ! survives the
truncation toN ¼ 6 and therefore it would be interesting to
analyze that case, too.

These are surely very interesting problems, which we
plan to explore in the future.
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