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Abstract—This paper addresses the stochastic simulation of
high-speed optical interconnects. It provides an effective solution
for the inclusion of the effects of process variation or possible
unknown device characteristics on the system response. The
proposed approach is based on the stochastic collocation method
and Lagrange interpolation. The results obtained on the transient
analysis of a realistic on-board optical link with uncertain
parameters conclude the paper.

Index Terms—Circuit modeling, circuit simulation, optical
interconnects, stochastic analysis, stochastic collocation, tolerance
analysis, uncertainty.

I. INTRODUCTION

Recent progress in developing high density and low cost
optical interconnects and devices for board and backplane
applications demands for the availability of fully integrated
simulation environments [1], [2]. Numerical simulation has
been consolidated as a tool for virtual prototyping, thus al-
lowing the assessment of the performance of alternative design
scenarios in the very early design phase. In this framework,
the availability of efficient methods accounting for possible
parameter variabilities due to, e.g., the manufacturing process,
is highly desirable for supporting designers in setting the right
design margins.

The typical resource allowing to collect quantitative infor-
mation on the statistical behavior of system responses is based
on the application of the blind and brute-force Monte Carlo
(MC) method [3]. Such method, however, is computationally
expensive, thus making its application to the analysis of
complex realistic structures prohibitive.

The high computational cost that characterizes MC sim-
ulations is due to the fact that it does not exploit possible
regularities of the random parameters. When the dependence
on the random parameters is smooth and can be expressed
in terms of polynomial functions with reasonable accuracy,
polynomial chaos (PC) framework provides efficient tools to
overcome the previous limitation and handle the stochasticity
directly into the governing equation [4], [5]. These method-
ologies allow to represent the stochastic solution of a dynam-
ical system in terms of orthogonal polynomials of random
variables. Examples in the area of interest are the extensions
of the classical circuit analysis tools – possibly in a SPICE
environment – to the prediction of the stochastic behavior of
lumped circuits with uncertain parameters [6], or distributed
interconnects described by transmission-line equations [7], or
a combination of both [8].

However, when the random variables of interest appear in
a nonlinear form inside the governing equations, the class of

stochastic collocation methods (SCMs) turns out to be a more
effective alternative [4], [9]. Generally speaking, the SCM is
based on a clever sampling of the random space and on a
suitable interpolation of the stochastic response of a dynamical
system. In this paper, the SCM technique, combined with
Lagrange interpolation [4], is used for the transient simulation
of a realistic printed circuit board (PCB) structure with an
embedded optical fiber interconnect with uncertain parameters.
This structure, that is governed by nonlinear dynamical equa-
tions, clearly benefits from the application of the advocated
method.

II. APPLICATION TEST CASE: ON-BOARD OPTICAL LINK

The scheme of Fig. 1 represents a typical opto-electronic
link consisting of the cascade connections of a number of
basic building blocks. The transmitting laser diode L, the
optical junctions J1 and J2, the optical interconnect F and
the receiving photodiode D are highlighted in this structure.

Fig. 1. Block diagram of a PCB opto-electronic link.

The simulation of the link of Fig. 1 is carried out by using
the simplified governing equations of the different blocks.
In particular, the semiconductor laser is modeled using its
physical-based rate-equations in the mean field approxima-
tion [10]
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.

(1)

where, for the sake of simplicity, a single operation mode of
the laser is considered. The state variables N and S are the
semiconductor carrier and photon densities, respectively, while
id is the electrical injected current. It contains the information
that must be sent through the optical link, and is generated by
the electronics controlling the optical module. In other words,
id represents the source term for the above equations.

Also, q is the electron charge, Vl is the active region volume,
G0 is the linear gain coefficient, ε is the gain compression fac-
tor. Moreover, τn and τp are the carrier and photon lifetimes,
respectively, while N0 is the transparency carrier density, Γ is



the transversal mode confinement factor and β is the fraction
of spontaneous emission coupled into the laser mode.

According to [10], the output optical transmitted power p(t),
sent along the fiber, is given by

p(t) =
S(t)Vlη0hν

2Γτp
, (2)

where η0 is the differential quantum efficiency, h is the
Planck’s constant and ν the unmodulated optical frequency.

The junctions and the optical fiber are assumed to be
described by idealized blocks defined by attenuation constants
only. This assumption is justified by the specific application
at hand, that involves relatively short on-board optical inter-
connects.

The last block of the chain, i.e., the photodiode detector,
is described by a simple static model, whose function is
to generate an electrical current proportional to the received
optical power. This current extracts the signal injected in the
optical link by id defined above, and represents the source of
the electronic stage performing the processing of information.
Therefore, the current i(t) through the photodiode is expressed
by

i(t) = α1αfα2αdp(t), (3)

where α1,2, αf and αd are the attenuation factors introduced
by the corresponding blocks J1, J2, F and D in Fig. 1,
respectively.

Clearly, equations (1)–(3) represent a set of nonlinear dy-
namical equations, whose parameters may vary due to different
possible choices of the commercial components considered in
a specific design, or even to the process variability affecting
the behavior of different samples of the same component.

In the example test case considered in this study, the optical
interconnect is 20 cm long and has an attenuation of 0.1 dB/cm
(αf = 2 dB). Also, the laser has a wavelength of 850 nm
and is defined by the set of parameters in [10]. The nominal
attenuation factors of the junctions and of the photodiode are
α1 = α2 = 0.13 and αd = 0.9, respectively. For a given set of
model parameters, the simulation of the opto-electronic link
of Fig. 1 requires a numerical solution of (1)–(3), which is
carried out by means of the integration routines available in
the Matlab R© environment.

It is worth noting that a more accurate description of the
link can be adopted (e.g., when one wishes to account for the
multimode propagation in the optical medium or the effects
of the reflected wave). An extended formulation would not
limit the applicability of the method illustrated in the following
Sections.

III. IMPACT OF PROCESS VARIATION

A detailed discussion of the technological aspects impacting
the electrical performance of an optical interconnect like the
one in Fig. 1 is out of the scope of this paper. Among the
different sources of variations, in this study we select and focus
on three parameters (namely, G0, α1 and α2) that have been
demonstrated to be major sources of uncertainty with a large
impact on the interconnect performance. The gain coefficient

G0 is included in the nonlinear dynamical equation of the
laser and varies within a sufficiently large range for different
alternative laser devices. The remaining two parameters, α1

and α2, account for the possible uncertainty coming from the
misalignment of the coupling between the optical waveguide
and the laser diode/detector. Of course, the values of the latter
parameters depend on the specific implementation design.
Readers are referred to [11] for three possible alternative
designs and information on their respective variability range.
In the above paper, the transition between the laser device
mounted on the board and the optical interconnect emedded
in the PCB is achieved via (i) an optical subssembly placed in
a hole drilled or etched to the PCB, (ii) micro-lens and (iii)
micro-sized-ball lens.

The above parameters, that are assumed to vary within a
bounded interval, can be conveniently rewritten as follows:

α1 = ᾱ1 + (∆α1/2)ξ

α2 = ᾱ2 + (∆α2/2)η

G0 = Ḡ0 + (∆G0/2)γ,

(4)

where ξ, η and γ are independent uniform random variables
with probability density function 0.5 over the domain [-1,1].

It should be noted that the three normalized distributions are
assumed to be statistically independent even if some correla-
tion among the parameters exists (e.g., see [12]). However, this
does not represent a limitation, as correlated random variables
can be represented in terms of independent ones [5].

The variability of the model parameters unavoidably makes
the responses of the opto-electronic link stochastic variables
as well. As an example, the output optical transmitted power
p(t, ξ) will depend on the vector ξ = [ξ, η, γ]T , that collects
the three uniform random variables in (4). The same holds for
the other variables of interest, like the current detected by the
photodiode i(t, ξ).

IV. THE STOCHASTIC COLLOCATION METHOD

This section provides an overview of the proposed SCM
technique with a brief discussion of the three main features of
the Lagrange interpolation, i.e., the interpolating polynomials,
the clever choice of the collocation points and the extension
to account for multiple random variables.

A. Lagrange interpolation
The basic idea of the SCM and Lagrange interpolation is to

sample the stochastic system response at (few) clever points
and to reconstruct the overall response in the whole random
space by interpolation. For a time-domain response y(t, ξ)
depending on a single random variable ξ, the interpolation
is

y(t, ξ) ≈
P∑
i=0

y(t, ξi)Φi(ξ), (5)

where {Φi} are the Lagrange polynomials associated to the
collocation points ξi. They are built as

Φi(ξ) =
∏

0≤j≤P
j 6=i

ξ − ξj
ξi − ξj

, (6)



and the following property holds:

Φi(ξj) = δij (7)

where δij is the Kronecker’s delta.
Clearly, (5) turns out to be an analytical function where a

limited set of responses y(t, ξi), evaluated for specific samples
ξi of the random variable ξ, are used to reconstruct the
continuous behavior by means of Lagrange polynomials. Such
an analytical expression can be used as a computationally-
cheap model for a fast sampling of the random response and
extraction of statistical information. Of course, when y(t, ξ)
can be exactly represented as a P th-order polynomial, (5) turns
out to be exact.

B. Choice of the collocation points

One key issue of the solution consists in finding a good
set of collocation points where to evaluate the random re-
sponse. Although different choices are available, the analogy
with Gaussian quadratures suggests to use the roots of the
polynomials which are orthogonal to the distribution of the
random variable ξ. For standard distributions, such as Gaussian
or uniform, these polynomials are well-known and correspond
to Hermite and Legendre polynomials, respectively. Hence,
in the case of uniform variability, for a given value of P in
(5), the points ξi are given by the roots of the (P + 1)th-
order Legendre polynomial. For instance, if P = 3, we

have four evaluation points at ξ = ±
√

(3 + 2
√

6/5)/7 and

ξ = ±
√

(3− 2
√

6/5)/7.

C. Extension to multiple random variables

A straightforward generalization to the case of multiple
random variables is to use a multivariate interpolation where
the collocation points are represented by a tensor product grid
obtained from the one-dimensional case. In turn, the multivari-
ate Lagrange polynomials are built as products of univariate
polynomials. For example, given two random variables ξ and
η, the two-dimensional collocation grid is represented by all
the possible points ξi = (ξm, ηn) with m ≤ P1 and n ≤ P2.
It should be noted that a square grid (i.e., P1 = P2 = P )
is usually employed, but this is not mandatory. Moreover, the
bivariate Lagrange polynomials are obtained as

Φi(ξ) = Φi(ξ, η) = Φm(ξ)Φn(η),
m ≤ P1

n ≤ P2.
(8)

The total number of response samples to be computed is
thus

Q =

n∏
k=1

(Pk + 1), (9)

where n is the number of random variables. For large values
of Pk and/or n, sparse grids allow to contain the excessive
increment in the number of evaluations [4].

V. NUMERICAL RESULTS

In this section, the stochastic simulation of the optical link
of Fig. 1 is performed by considering the random variations
expressed in (4). The nominal values are Ḡ0 = 1.5 × 10−12

m3/s and ᾱ1 = ᾱ2 = 0.13, while the intervals of variation
are assumed to be ∆G0 = 0.6 · Ḡ0 and ∆α1 = ∆α2 = 0.03
(see [11] for the order of magnitude of the variability of α1

and α2). The laser is driven by a 1 GHz non-return-to-zero
pseudo-random bit stream and the propagation of the signal
through the link is carried out by solving equations (1)–(3).

Fig. 2. Current injected into the laser (top panel) and photodiode output
current (bottom panel). Gray lines: a sample of responses, limited to 100
curves for graph readability; solid black lines: mean value and ±3σ limits
computed with MC; crosses and circles: mean value and ±3σ limits obtained
by means of the SCM.

Fig. 2 shows the input injected current id(t) as well as the
current i(t) detected by the photodiode. Clearly, the latter is
a random variable due to the uncertainties introduced by the
laser and the optical link. As such, it exhibits a spread of
different possible values. The mean value and the ±3σ limits
of this spread are estimated by means of both 10000 MC
simulations and the SCM, showing excellent agreement. In the
latter case, a three-dimensional grid with a total of Q = 16
points has been used.

Nonethless, designers may be interested in more quantita-
tive statistical information, like probability density functions
(PDFs). These can be obtained from the SCM as well. The
problem amounts to computing the PDF of an analytical
function, like (5), that is applied to the original random
variables, and this can be fast and straightforwardly achieved
via numerical techniques. Fig. 3 shows the PDFs of i(t)
computed at two different time points – indicated by the
vertical dashed lines in Fig. 2 – again with both MC and the
SCM. The strength and accuracy of the SCM are confirmed by
its capability of correctly reproducing the distribution shapes
obtained with the standard MC technique.

Finally, Tab. I summarizes the key figures about the effi-
ciency of the advocated method, showing that the SCM is



Fig. 3. Probability density function of the output photodiode current,
computed at two different time points.

TABLE I
CPU TIME REQUIRED BY MC AND SCM SIMULATIONS.

Method Number of samples Total simulation time Speed-up

MC 10 000 3 h 40 min –

SCM 16 21 s ∼ 625×

over 600 times faster than the traditional MC approach in the
simulation of the link of Fig. 1 in presence of three sources
of random variations.

VI. CONCLUSIONS

The simulation of high-speed optical links with the inclusion
of the effects of process variation or possible unknown device
parameters has been addressed in this contribution. The pro-
posed technique belongs to the class of stochastic collocation
methods and Lagrange interpolation and provides an effective
solution to the stochastic simulation of nonlinear dynamical
systems.

It provides a clever exploration and subsequent interpolation
of the random space of the system solutions, yet allowing the
prediction of the model behavior from a limited number of
system simulations.

The advocated method, while providing accurate results,
turns out to be more efficient than the classical Monte Carlo
technique in determining the effects of parameters variability
on the system response. The feasibility and strength of the
proposed approach are demonstrated for a realistic on-board
optical link and time-domain analysis.
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