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The response of an electrolytic cell, in the shape of a slab, is analyzed in the framework of the
Poisson-Nernst-Planck model in the limit of full dissociation. Two different types of boundary con-
ditions on the electrodes are compared. One type describes the exchange of charges between the vol-
ume and the external circuit, in the form originally proposed by Chang and Jaffé and later extended
to include specific adsorption, where the surface current density is proportional to the variation of
the surface bulk density of ions with respect to the value of equilibrium. The other one describes
the surface adsorption, in the limit of Langmuir. We show that in the simple case where the ions
dissolved in the insulating liquid are identical in all the aspects, except for the sign of the charge,
the two models are equivalent only if the phenomenological parameter entering the boundary condi-
tion of the Chang-Jaffé model, κ , is frequency dependent, and related to the adsorption coefficient,
ka, in the form κ = iωτ /(1 + iωτ ) ka, where τ is the desorption time and ω the circular frequency
of the applied voltage, as proposed long ago by Macdonald. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4794689]

I. INTRODUCTION

The selective adsorption of ions occurring at the elec-
trodes has been invoked as one of the relevant processes to de-
scribe the role of the mobile charges on the admittance or im-
mittance response of typical electrolytic cells.1, 2 The small-
signal Poisson-Nernst-Planck (PNP) diffusion model for the
analysis of impedance spectroscopy (IS) data is particularly
important in this context because when one utilizes it to an-
alyze immittance data, preferably using full complex nonlin-
ear least squares (CNLS) fitting, as in the LEVMW computer
program,3–5 it can lead to estimates of many more physically
relevant electrical parameters than can any other available IS
model.

Although the PNP diffusion model is a mean-field,
conductive-system, effective-medium continuum one that
considers point charges inside a non-dispersive dielectric
medium, it may nevertheless well fit some situations involv-
ing charges hopping in a diffusive manner between sites sepa-
rated by random barriers. The PNP model considers a neutral
species that can dissociate into positive and negative charges
of arbitrary mobilities and equal concentrations. Thus, fits of
experimental data with this model can lead to estimates of the
neutral-species concentration, the concentration of the mobile
positive and negative charges, their mobilities and diffusion

a)Author to whom correspondence should be addressed. Electronic mail:
lre@dfi.uem.br. Telephone: +55 44 3011 6039. Fax:+55 44 3263 4623.

constants, their dissociation and recombination parameters,
and reaction and adsorption parameters for each of the two
species of mobile charges, as well as a fractional-exponent pa-
rameter when the model is generalized to include anomalous
diffusion. Here, however, we primarily consider only adsorp-
tion processes, not sequential specific adsorption and Faradaic
reactions at electrodes.

In the framework of the PNP model, the case of pure-
adsorption boundary conditions (i.e., adsorbed species not re-
acting after adsorption at electrodes) has been considered in
detail long ago by Macdonald and co-authors.6–13 The original
1952 reaction-only Chang-Jaffé boundary conditions14 were
extended in these papers to complex form in order to include
adsorption and were shown to be consistent with the basic
Butler-Volmer ones and with the early Langmuir adsorption
isotherm. The final complex form of the extended Chang-Jaffé
parameters (up to three for charges of each sign) that included
both adsorption and sequential reactions appears in Ref. 11.
These boundary conditions are such that the ionic current on
the electrodes is proportional to the variation of the bulk den-
sity of ions in front of the electrodes. In a recent paper by
some of us,15 adsorption boundary conditions have been ana-
lyzed in the same framework, but from a different perspective.

In Ref. 15, the adsorption-desorption phenomenon has
been incorporated in the boundary conditions by means of
a kinetic equation describing a chemical reaction of the
first kind (Langmuir approximation) at the interface liquid
medium—electrodes. Further, the conservation of the number
of particles in the entire bulk plus the electrode system was

0021-9606/2013/138(11)/114702/5/$30.00 © 2013 American Institute of Physics138, 114702-1
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imposed,16, 17 an approximation certainly valid in the limit of
weak adsorption and no evolution processes. Although the
adsorption boundary equations used in Ref. 15 were overtly
different from those of Ref. 11, later CNLS fitting of all the
theoretical responses presented in Ref. 15 with the PNP model
available in the LEVMW computer program that includes the
full extended Chang-Jaffé boundary conditions led to exact
numerical agreement, including identical adsorption results.
Motivated by the exact numeric agreement between the two
approaches, here we consider a typical electrolytic system
(e.g., a liquid medium) in which positive and negative species
of mobile charges are present in order to show analytically
how to connect the predictions of the earlier PNP models with
that of the recent PNP model of Ref. 15. Indeed, by means
of simple arguments, we demonstrate that the two models are
fully equivalent, confirming that the extended Chang-Jaffé ad-
sorption parameter involves a specific frequency dependence
that is a direct consequence of the Langmuir approximation
used for the balance equation in the time-domain.

II. PNP MODEL

A. Fundamental equations

In our analysis we assume that the impurities dissolved
in the liquid are fully dissociated. This permits us to con-
sider here the same set of fundamental equations presented
in Ref. 11, for the case in which the association-dissociation
processes are not taken into account. In this framework, we
consider a typical one-dimensional system of thickness d
whose bulk densities of the mobile charges are represented by
n+(z, t) (positive) and n−(z, t)(negative), with z being the co-
ordinate normal to the flat electrodes placed at the positions
z = ±d/2 of a Cartesian system. The continuity equations may
be written as

∂n+
∂t

= −∂j+
∂t

and
∂n−
∂t

= −∂j−
∂t

, (1)

where

j+ = −D+
∂n+
∂z

− q D+
KBT

∂V

∂z
n+ and

j− = −D−
∂n−
∂z

+ q D−
KBT

∂V

∂z
n− (2)

are the current densities of positive and negative ions. In
these equations, D± are the diffusion coefficients for both
species of ions, q is the ion charge, KB is the Boltzmann con-
stant, and T is the absolute temperature. To save space, in the
above expressions, we have used a simplified notation, i.e.,
n± = n±(z, t) and j± = j±(z, t). We also make the usual as-
sumptions that dielectric constant, ε, diffusion coefficients,
and mobilities, given by Einstein relation, μ± = qD±/KBT,
are all position and field independent.

B. Chang-Jaffé boundary conditions

The original Chang-Jaffé electrode-reaction boundary
conditions were introduced by Friauf18 to investigate partial-
blocking effects. The extended Chang-Jaffé boundary condi-
tions have been considered subsequently19 and generalized

to include specific ion adsorption a few years later11 (for
a detailed discussion on boundary conditions see Ref. 20).
The problem will be solved here by using the following ver-
sion of the Chang-Jaffé boundary conditions, as expressed in
Eqs. (10)–(13) of Ref. 11:

j+|z=±d/2 = κ+(n+ − N+
e )z=±d/2 and

j−|z=±d/2 = κ−(n− − N−
e )z=±d/2,

(3)

but, hereafter, we assume that N+
e = N−

e = Ne and κ+ = κ−
= κ , i.e., there is only a single Chang-Jaffé parameter, repre-
sented by κ . In the linear approximation (small-signal ac re-
sponse), when the applied potential has the form V = V0e

iωt ,
where V0 is the amplitude and ω = 2π f is the radial frequency,
one can write

n+(z, t) = N + η+(z)eiωt and n−(z, t) = N + η−(z)eiωt .

(4)

Since n+ − n− = (η+ − η−)eiωt, if we assume furthermore
that D+ = D− = D, by means of Eqs. (1) and (2), one may
easily find:

∂

∂t
(n+ − n−) = D

∂2

∂z2
(n+ − n−) + 2Nq

KBT

∂2V

∂z2
, (5)

where the profile of the electrical potential, V (z, t), is gov-
erned by the Poisson’s equation in the form:

∂2V

∂z2
= −q

ε
(n+ − n−) . (6)

If we now introduce the quantity 
(z, t) = [η+(z) − η−(z)]eiωt

= ψ(z)eiωt, Eq. (5) becomes

d2ψ

dz2
−

(
1

�2
+ i

ω

D

)
ψ = 0, (7)

where � is the Debye screening length defined by

�2 = εKBT

2Nq2
. (8)

As usual, we define β2 = 1/�2 + iω/D, and search for so-
lutions in the form ψ(z) = Asinh (βz) + Bcosh (βz), and
V (z, t) = φ(z)eiωt . Since the applied potential is such that
V (d/2, t) = −V (−d/2, t), it follows that φ(z) = −φ(−z). By
rewriting Poisson’s equation in the form

d2φ

dz2
= −q

ε
ψ, (9)

we deduce that ψ(z) = −ψ(−z). Thus, B = 0 and we easily
obtain

φ(z) = − qA

εβ2
sinh(βz) + Cz. (10)

Let us now rewrite the boundary conditions (3) in terms
of a subtraction between two equations, in a form that will
reveal to be useful later, namely,

(j+ − j−)z=±d/2 = ±κ (n+ − n−)z=±d/2 . (11)
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Using these boundary conditions with the requirement that
φ(d/2) = V0/2, simple calculations yield the integration
constants A and C, whose explicit forms will be omitted
here to save space, which permits to obtain the exact electric
field profile across the sample. Once this profile is achieved,
the next step needed to obtain analytical expressions for the
admittance Y = I/V is to calculate the current, I, when the

electrodes have the area S and the electric field is given by
E(z, t) = −∂V (z, t)/∂z. One can write

I =
[
qS (j+ − j−) + Sε

d

dt
E

]
z=d/2

,

which, after some calculations, eventually yield for the elec-
trical impedance Z = 1/Y = V0/Ieiωt :

Z = R∞
M�

√
1 + i� − i [1 + MH (1 + i�)] tanh

(
M

√
1 + i�

)
M (1 + i�)

[
�

√
1 + i� − iH (1 + i�) tanh

(
M

√
1 + i�

)] , (12)

where, for comparative purposes, we have used the notation
of Ref. 21, i.e.,

R∞ = �2d

εSD
, H = κ�

D
, M = d

2�
, � = ω

ωD

, and

ωD = D

�2
.

It is noteworthy that Eq. (12) coincides strictly with Eq. (10)
of Ref. 21, obtained in the hypothesis of one mobile charge,
i.e., D+ = D �= 0 and D− = 0. However, we notice that in
Ref. 21 one has

�2 = εKBT

N0q
, (13)

which is different from (8) just by a factor 2, when we iden-
tify N = N0. Thus, the final formulae for Z here and in
Ref. 21 are the same, but the Debye screening lengths differ
by the presence of a factor of 2 in the denominator because of
the difference between one-mobile and two-mobile situations.
The ambiguity between one-mobile response and two-mobile
response with equal mobilities of the positive and negative
charges has been discussed in detail recently in Ref. 22.

C. Adsorption-desorption process: Langmuir’s
approximation

One of the simplest ways to incorporate the adsorption-
desorption process to the description of the immittance re-
sponse of the cell is to express the boundary conditions in
terms of a kinetic equation (Langmuir’s approximation) in the
form:

dσ±(t)

dt
= k±

a n±(d/2, t) − 1

τ
σ±(t), (14)

in which k±
a and τ± are parameters describing the adsorp-

tion phenomenon for each species of ions. See, for exam-
ple, the earlier kinetic-equation approaches implemented in
Ref. 9. Equation (14) simply states that the time variation of
the surface density of adsorbed particles σ±(t) depends on the
bulk density of particles just in front of the adsorbing surface,
located, for instance, at z = d/2, and on the surface density
of particles already adsorbed. The parameter τ± has the di-

mension of time, whereas the k±
a parameters have the dimen-

sion of a length/time. Consequently, when the adsorption phe-
nomenon is present, from the kinetic equation it follows that
there is an intrinsic thickness k±

a τ±. Henceforth, we assume
that k+

a = k−
a = ka and τ± = τ in such a manner that in the ab-

sence of an external electric field the liquid is locally neutral,
and the surface densities of positive and negative adsorbed
ions are the same. In this framework, for V0 = 0 the electric
field across the sample is identically zero. Thus, to connect the
preceding calculations with the adsorption-desorption process
faced by means of the usual kinetic equation, we consider the
following boundary conditions2

j+|z=±d/2 = ±dσ+
dt

|z=±d/2 and

j−|z=±d/2 = ±dσ−
dt

|z=±d/2, (15)

in such a way that by subtracting one from the other we obtain

(j+ − j−)z=±d/2 = ± d

dt
(σ+ − σ−)z=±d/2 . (16)

In the linear approximation,2

σ+ = σ + s+eiωt and σ− = σ + s−eiωt (17)

and Eq. (16) can be rewritten as

(j+ − j−)z=±d/2 = ±iω (s+ − s−) eiωt = ±iω�seiωt , (18)

with �s = s+ − s−. However, since in our framework k+
a

= k−
a = ka and τ± = τ , i.e., the adsorption parameters are

the same for positive and negative charges, we may rewrite
the kinetic equations in the form:

dσ±
dt

+ 1

τ
σ± = kan± (19)

in such a manner that, again by subtraction, one obtains

d

dt
(σ+ − σ−) + 1

τ
(σ+ − σ−) = ka (n+ − n−) .
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Using Eq. (17), one easily obtains

�s = kaτ

1 + iωτ
ψ. (20)

Thus, Eq. (18) finally becomes

(j+ − j−)z=±d/2 = ± iωτ

1 + iωτ
kaψeiωt (21)

and has to be compared with Eq. (11) for the boundary condi-
tions involving the Chang-Jaffé prescription. They are equiv-
alent if

κ = iωτ

1 + iωτ
ka. (22)

Indeed this is exactly the case for the adsorption-only version
of the earlier full extended Chang-Jaffé result of Eq. (B38)
of Ref. 11, thereby proving the consistency of the present ap-
proach with the earlier one.

As is evident from Eq. (22), for real frequency-
independent values of the adsorption coefficient ka and
desorption time τ , a complex, frequency-dependent phe-
nomenological parameter κ is required to extend the origi-
nal Chang-Jaffé boundary conditions to include specific ad-
sorption. This is not surprising because when combining the
Chang-Jaffé and Langmuir models, we equate their expres-
sions for the electrical impedance. From Eq. (22) it follows
that the real and imaginary parts of κ = κr + iκ i are given by

κr = (ωτ )2

1 + (ωτ )2
ka and κi = ωτ

1 + (ωτ )2
ka.

In the limit of ωτ → 0, κr → 0 and κ i → (ωτ )ka. This
indicates that in the dc limit the extended Chang-Jaffé bound-
ary conditions for adsorption-only lead to complete blocking.
For small ωτ , κ is imaginary, showing that the current across
the electrodes is in quadrature with the bulk density variation
of the ions just in front of the electrode itself. In the oppo-
site limit, where ωτ → ∞, we get κr → ka and κ i → 0. In
this limit there exists a one-to-one correspondence between
the two models. However, in this limit the effect of the non-
blocking character of the electrodes is not visible because the
response of the cell is then mainly due to that of the bulk of
the system.

Simple calculations show that κr is a monotonic function
of ωτ increasing from 0 to ka, whereas κ i presents a well de-
fined maximum for ωτ = 1, where its value is ka/2, and it
tends to 0 for ωτ → 0 and ωτ → ∞. These results are the
expected ones in view of the simple Debye behavior of these
two quantities.

III. CONCLUSIONS

We have considered a typical electrolytic system in which
mobile charges of both signs are present in the framework of
the small-signal PNP diffusion model usually employed for
the analysis of impedance spectroscopy data. We have shown
how to analytically connect the predictions of earlier PNP
models, based on Chang-Jaffé boundary conditions in the fre-
quency domain that agree with the basic Butler-Volmer ones,
and, for adsorption, have been shown to encompass Langmuir
behavior as well, with a recently published PNP model, us-
ing a balance equation to describe adsorption-desorption pro-

cesses at the interface. We have demonstrated here that the
two models are fully equivalent only if the phenomenologi-
cal parameter entering the boundary condition of the Chang-
Jaffé model, κ , is frequency dependent, and related to the
adsorption coefficient, ka, according to expression (22). This
happens because the earlier extended Chang-Jaffé adsorption-
reaction parameters properly include exactly the specific fre-
quency dependence that is a direct consequence of the Lang-
muir approximation used for the kinetic equation written in
the time-domain.
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