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Abstract

Orthogonal fractional factorial designs (OFFDs) are frequently used in many fields of
application, including medicine, engineering and agriculture. In this paper we present a
software tool for the generation of minimum size OFFDs. The software, that has been
implemented in SAS/IML, puts neither a restriction on the number of levels of each factor
nor on the orthogonality constraints. The algorithm is based on the joint use of polynomial
counting function and complex coding of levels and follows the approach presented in
Fontana (2013).

Keywords: design of experiments, orthogonal fractional factorial design, orthogonal array,
SAS.

1. Introduction

In this paper we present a software tool for generating minimum size orthogonal fractional
factorial designs (OFFDs). The algorithm is based on the approach described in Fontana
(2013). A preliminary version of it has been developed in the unpublished master’s degree
thesis Sampò (2011).

In this Section we give an overview of the use of OFFDs in practical applications and of
the problems related to their generation. In Section 2 we briefly review the algebraic theory
of OFFDs based on polynomial counting functions and strata. In Section 3 and Section 4
we describe the algorithm. Some applications of the algorithm are presented in Section 5.
Finally, concluding remarks are given in Section 6. Section 1 and Section 2 are closely based
on Section 1 and Section 2 of Fontana (2013). We include them here for completeness.

OFFDs are frequently used in many fields of application, including medicine, engineering and

http://www.jstatsoft.org/
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agriculture. They offer a valuable tool for dealing with problems where there are many factors
involved and each run is expensive. They also keep the statistical analysis of the data quite
simple. The literature on the subject is extremely rich. A non-exhaustive list of references,
mainly related to the theory of the design of experiments, includes the fundamental paper
of Bose (1947) and the following books: Raktoe, Hedayat, and Federer (1981), Collombier
(1996), Dey and Mukerjee (1999), Wu and Hamada (2000), Mukerjee and Wu (2006) and
Bailey (2008).

Orthogonal arrays (OAs) represent an important class of OFFDs, see, for example, Hedayat,
Sloane, and Stufken (1999) and Schoen, Eendebak, and Nguyen (2010). Indeed an OA of
appropriate strength can be used to solve the wide range of problems related to the study of
the size of the main effects and interactions up to a given order of interest.

It is evident that in many real-life experiments, finding an OFFD with the smallest possible
number of runs is of great importance. This is particularly true in the case where the cost
of each experiment is high in terms of resources and/or time, such as in the study of the
relationship between fuel consumption and the design parameters of a new car engine.

A large number of techniques are known to generate OFFDs and, in particular, OAs. For
example:

� The case where all factors have the same number p of levels and p is a prime number or a
power of a prime number, is commonly studied using Galois Fields and finite geometries.

� Hadamard matrices are used for OAs where all factors have 2 levels and where strength
is less than or equal to 3.

� Difference schemes are a tool for constructing mixed OAs of strength 2.

From the above it is clear that there are several different methods covering different situations.
When different methods are applied to certain problems the solutions that are found can
be significantly different. For example minimum size OAs with eleven 2-level factors and
strength 2 obtained using the Galois field GF (2) ≡ Z2 have 16 runs while those obtained
using Hadamard matrices have 12 runs. Thus the problem of finding minimum size OFFDs
can be difficult for the non-expert user due to the difficulty of selecting the most appropriate
method.

The joint use of polynomial indicator functions and complex coding of levels provides a general
theory for mixed level OFFDs (see Pistone and Rogantin 2008). This theory puts neither a
restriction on the number of levels of each factor nor on the orthogonality constraints. It also
makes use of commutative algebra (see Pistone and Wynn 1996), and generalizes the approach
to two-level designs as discussed in Fontana, Pistone, and Rogantin (2000). The definition of
strata provided in Section 2 makes it possible to transform each OFFD into a solution of a
homogeneous system of linear equations where the unknowns are positive integers.

The aim of this work is to develop a general software tool for minimum size OFFDs generation,
where general means that it puts neither a restriction on the number of levels of each factor
nor on the orthogonality constraints.
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2. Algebraic generation of OAs

In this Section, for ease in reference, we report some relevant results of the algebraic theory of
OFFDs from Fontana (2013). The interested reader can find further information, including
the proofs of the propositions in Fontana (2013) itself and in Fontana et al. (2000), Pistone
and Rogantin (2008), Fontana and Pistone (2010a) and Fontana and Pistone (2010b).

2.1. Fractions of a full factorial design

Let us consider an experiment which includes m factors Dj , j = 1, . . . ,m. Let us code the nj
levels of the factor Dj by the nj roots of the unity

Dj =
{
ω
(nj)
0 , . . . , ω

(nj)
nj−1

}
,

where ω
(nj)
k = exp

(√
−1 2π

nj
k
)

, k = 0, . . . , nj − 1, j = 1, . . . ,m.

The full factorial design with complex coding is D = D1 × · · ·Dj · · · × Dm. We denote its
cardinality by #D, with #D =

∏m
j=1 nj .

Definition 2.1. A fraction F is a multiset (F∗, f∗) whose underlying set of elements F∗ is
contained in D and f∗ is the multiplicity function f∗ : F∗ → N that for each element in F∗
gives the number of times it belongs to the multiset F .

We recall that the underlying set of elements F∗ is the subset of D that contains all the
elements of D that appear in F at least once. We denote the number of elements of a fraction
F by #F , with #F =

∑
ζ∈F∗

f∗(ζ).

Example 2.1. Let us consider m = 1, n1 = 3. We get

D =

{
1, exp

(√
−1

2π

3

)
, exp

(√
−1

4π

3

)}
.

The fraction F =
{

1, 1, exp
(√
−1 2π

3

)}
is the multiset (F∗, f∗) where F∗ =

{
1, exp

(√
−1 2π

3

)}
,

f∗(1) = 2, and f∗(exp
(√
−1 2π

3

)
) = 1. We get #F = f∗(1) + f∗(exp

(√
−1 2π

3

)
) = 2 + 1 = 3.

In order to use polynomials to represent all the functions defined over D, including multiplicity
functions, we define

� Xj , the j-th component function, which maps a point ζ = (ζ1, . . . , ζm) of D to its j-th
component,

Xj : D 3 (ζ1, . . . , ζm) 7−→ ζj ∈ Dj .

The function Xj is called simple term or, by abuse of terminology, factor.

� Xα = Xα1
1 · . . . ·Xαm

m , α ∈ L = Zn1 × · · · × Znm , i.e., the monomial function

Xα : D 3 (ζ1, . . . , ζm) 7→ ζα1
1 · . . . · ζ

αm
m .

The function Xα is called interaction term.
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We observe that {Xα : α ∈ L = Zn1 × · · · × Znm} is a basis of all the complex functions de-
fined over D. We use this basis to represent the counting function of a fraction according to
Definition 2.2.

Definition 2.2. The counting function R of a fraction F is a complex polynomial defined
over D so that for each ζ ∈ D, R(ζ) equals the number of appearances of ζ in the fraction. A
0/1 valued counting function is called an indicator function of a single replicate fraction F .
We denote by cα the coefficients of the representation of R on D using the monomial basis
{Xα, α ∈ L}:

R(ζ) =
∑
α∈L

cαX
α(ζ), ζ ∈ D, cα ∈ C .

With Proposition 2.1 from Pistone and Rogantin (2008), we link the orthogonality of two
interaction terms with the coefficients of the polynomial representation of the counting func-
tion.

Proposition 2.1. If F is a fraction of a full factorial design D, R =
∑

α∈L cαX
α is its

counting function and [α − β] is the m-tuple made by the componentwise difference in the

rings Znj ,
(

[α1 − β1]n1
, . . . , [αj − βj ]nj , . . . , [αm − βm]nm

)
, then

1. the coefficients cα are given by cα = 1
#D
∑

ζ∈F X
α(ζ) ;

2. the term Xα is centered on F , i.e., 1
#F
∑

ζ∈F X
α(ζ) = 0, if and only if, cα = c[−α] = 0;

3. the terms Xα and Xβ are orthogonal on F , if and only if, c[α−β] = 0.

We now define projectivity and, in particular, its relation with OAs. Given I = {i1, . . . , ik} ⊂
{1, . . . ,m} , i1 < . . . < ik we define the projection πI as

πI : D 3 ζ = (ζ1, . . . , ζm) 7→ ζI ≡ (ζi1 , . . . , ζik) ∈ Di1 × . . .×Dik .

Definition 2.3. A fraction F factorially projects onto the I-factors, I = {i1, . . . , ik} ⊂
{1, . . . ,m}, i1 < . . . < ik, if the projection πI(F) is a multiple full factorial design, i.e., the
multiset (Di1×. . .×Dik , f∗) where the multiplicity function f∗ is constantly equal to a positive
integer over Di1 × . . .×Dik .

Example 2.2. Let us consider m = 2, n1 = n2 = 2 and the fraction F = {(−1, 1), (−1, 1),
(1,−1), (1, 1)}. We obtain π1(F) = {−1,−1, 1, 1} and π2(F) = {−1, 1, 1, 1}. It follows that
F projects on the first factor and does not project on the second factor.

Definition 2.4. A fraction F is a mixed orthogonal array of strength t if it factorially projects
onto any I-factors with #I = t.

Proposition 2.2. A fraction factorially projects onto the I-factors, I = {i1, . . . , ik} ⊂
{1, . . . ,m}, i1 < . . . < ik, if and only if, all the coefficients of the counting function involving
the I-factors only are 0.

Proposition 2.2 can be immediately stated for mixed OAs.

Proposition 2.3. A fraction is an orthogonal array of strength t, if and only if, all the
coefficients cα of the counting function up to the order t are 0.
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2.2. Counting functions and strata

It follows from Propositions 2.1, 2.2 and 2.3 that the problem of finding OFFDs can be
written as a polynomial system in which the indeterminates are the complex coefficients cα
of the counting polynomial fraction.

Let us now introduce a different way to describe the full factorial design D and all its subsets.
We consider the indicator functions 1ζ of all the single points of D. The counting function R of
a fraction F can be written as

∑
ζ∈D yζ1ζ with yζ ≡ R(ζ) ∈ {0, 1, . . . , n, . . .}. The particular

case in which R is an indicator function corresponds to yζ ∈ {0, 1}. From Proposition 2.1 we
obtain that the values of the counting function over D, yζ , are related to the coefficients cα
by cα = 1

#D
∑

ζ∈D yζX
α(ζ). As described in Section 2.1, we consider m factors, D1, . . . ,Dm

where Dj ≡ Ωnj =
{
ω
(nj)
0 , . . . , ω

(nj)
nj−1

}
, for j = 1, . . . ,m. From Pistone and Rogantin (2008),

we recall two basic properties which hold true for the full design D. Note that the notation
gcd stands for greatest common divisor and lcm stands for least common multiple.

Proposition 2.4. Let Xj be the simple term with level set Dj = Ωnj =
{
ω
(nj)
0 , . . . , ω

(nj)
nj−1

}
,

j = 1, . . . ,m. Let Xα = Xα1
1 · · ·Xαm

m be an interaction.

1. Over D, the term Xr
j takes all the values of Ωsj equally often, where sj = 1 if r = 0 and

sj = nj/ gcd(r, nj) if r > 0.

2. OverD, the termXα takes all the values of Ωsα equally often, where sα = lcm(s1, . . . , sm)
and si, that is determined according to the previous Item 1, corresponds to Xαi

i , i =
1, . . . ,m.

We refer to Ωsα as the level set of Xα. Sometimes we also write s in place of sα to simplify
the notation. Let us now define the strata that are associated with simple and interaction
terms.

Definition 2.5. Given a term Xα, α ∈ L = Zn1 × . . .× Znm , the full design D is partitioned

into the strata Dα
h =

{
ζ ∈ D : Xα(ζ) = ω

(sα)
h

}
, where ω

(sα)
h ∈ Ωsα and sα is determined

according to the previous Proposition 2.4.

We use nα,h to denote the number of points of the fraction F that are in the stratum Dα
h ,

nα,h =
∑

ζ∈Dαh
yζ , h = 0, . . . , s− 1. Proposition 2.5 links the coefficients cα with nα,h.

Proposition 2.5. Let F be a fraction of D with counting function R =
∑

α∈L cαX
α. Each

cα, α ∈ L, depends on nα,h, h = 0, . . . , s−1, as cα = 1
#D
∑s−1

h=0 nα,hω
(s)
h , where s is determined

by Xα according to Proposition 2.4.

We now use a part of Proposition 3 from Pistone and Rogantin (2008) to obtain conditions
on nα,h that make Xα centered on the fraction F .

Proposition 2.6. Let Xα be a term with level set Ωs on full design D and let Ps(ζ) be the
complex polynomial associated with the sequence (nα,h)h=0,...,s−1 so that Ps(ζ) =

∑s−1
h=0 nα,hζ

h

and Φs the cyclotomic polynomial of the s-roots of the unity.

1. Let s be prime. The term Xα is centered on the fraction F , if and only if, its s levels
appear equally often nα,0 = nα,1 = . . . = nα,s−1.
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2. Let s = ph11 . . . phdd , pi prime, i = 1, . . . , d. The term Xα is centered on the fraction F ,
if and only if, the remainder Hs(ζ) = Ps(ζ) mod Φs(ζ), whose coefficients are integer
linear combinations of nα,h, h = 0, . . . , s− 1, is identically zero.

If we recall that nα,h are related to the values of the counting function R of a fraction F by
nα,h =

∑
ζ∈Dαh

yζ , Proposition 2.6 allows us to express the condition Xα is centered on F as

integer linear combinations of the values R(ζ) of the counting function over the full design D.
In Section 2.3, we will show the use of this property to generate fractional factorial designs.

2.3. Generation of fractions

We use strata to generate fractions that satisfy a given set of constraints on the coefficients
of their counting functions. Formally, we give the following definition.

Definition 2.6. Given C ⊆ Zn1 × . . . × Znm , a counting function R =
∑

α cαX
α associated

with a fraction F is a C-compatible counting function if cα = 0, ∀α ∈ C.

The set of all the fractions of D whose counting functions are C-compatible is denoted by
OF (n1 . . . nm, C).
For example let us consider OA(n, sm, t), i.e., OAs with n rows and m columns, where each
column has s symbols, s prime and with strength t. Using Proposition 2.3 the coefficients of
the corresponding counting functions must satisfy the conditions cα = 0 for all α ∈ C where
C = {α ∈ L ≡ (Zs)m : 0 < ‖α‖ ≤ t} and ‖α‖ is the number of non-null elements of α. It
follows that OF (sm, C) =

⋃
nOA(n, sm, t). Now using Proposition 2.6, we can express these

conditions using strata. If we consider α ∈ C, we can write the condition cα = 0 as:
−nα,0 + nα,1 = 0

−nα,0 + nα,2 = 0
...

−nα,0 + nα,s−1 = 0

⇐⇒ BsαNα =


−1 1 0 0 . . . 0
−1 0 1 0 . . . 0

...
...

...
−1 0 0 0 . . . 1




nα,0
nα,1

...
nα,s−1

 =


0
0
...
0

 .
We observe that the ((s− 1)× s) matrix Bsα is the same for all α because sα is constant and
equal to s.

To obtain all the conditions it is enough to vary α ∈ C. We therefore obtain the homogeneous
system of linear equations AY = 0 where A is the (#C·(s−1)×sm) matrix whose rows contain
the values, over D, of the difference between two indicator functions of strata, 1Dαh − 1Dα0 h =
1, . . . , s− 1; Y is the sm column vector whose entries are the values of the counting function
over D; 0 is the (#C · (s− 1)) column vector whose entries are all equal to 0.

Let us now consider the general case in which there are no restrictions on the number of
levels and show our method for OA(n, 42, 1). In this case the number of levels is a power of a
prime, 4 = 22. Using Proposition 2.3 the coefficients of the corresponding counting functions
must satisfy the conditions cα = 0 for all α ∈ C where C = {α ∈ L ≡ Z4 × Z4 : ‖α‖ = 1}.
Let us consider c1,0. From Item (1) of Proposition 2.4, X1 takes the values in Ωs(1,0) where
s(1,0) = 4. From Proposition 2.6, X1 will be centered on F , if and only if, the remainder
H4(ζ) = P4(ζ) mod Φ4(ζ) is identically zero. We have Φ4(ζ) = 1 + ζ2 (see Lang 1965) and so
we can compute the remainder H4(ζ) = n(1,0),0−n(1,0),2 + (n(1,0),1−n(1,0),3)ζ. The condition
that H4(ζ) must be identically zero translates into
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{
n(1,0),0 − n(1,0),2 = 0

n(1,0),1 − n(1,0),3 = 0

⇐⇒ B4N(1,0) =

[
1 0 −1 0
0 1 0 −1

]
n(1,0),0
n(1,0),1
n(1,0),2
n(1,0),3

 =

[
0
0

]
.

Let us now consider c2,0. From Item (1) of Proposition 2.4, X2
1 takes the values in Ωs(2,0)

where s(2,0) = 2. From Proposition 2.6, X2
1 will be centered on F , if and only if

−n(2,0),0 + n(2,0),1 = 0 ⇐⇒ B2N(2,0) =
[
−1 1

] [n(2,0),0
n(2,0),1

]
=
[
0
]
.

If we repeat the same procedure for all α, where ‖α‖ = 1, and if we recall that nα,h =∑
ζ∈Dαh

yζ , and so, for example, n(1,0),0 = y1,1 + y1,i + y1,−1 + y1,−i with i =
√
−1, the OAs

OA(n, 42, 1) become the positive integer solutions of the following integer linear homogeneous
system:

AY = 0

where

A =



1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0
0 −1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1
1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0
0 0 0 0 −1 −1 −1 −1 0 0 0 0 1 1 1 1


,

Y =



y1,1
yi,1
y−1,1

y−i,1

y1,i
yi,i
y−1,i

y−i,i

y1,−1

yi,−1

y−1,−1

y−i,−1

y1.−i

yi,−i

y−1,−i

y−i,−i


and 0 is the 10-rows column vector whose entries are all equal to 0.

It should be noted that the matrix A of the coefficients does not have full rank, e.g., the first
and the fourth rows are equal. This aspect is discussed in Fontana and Pistone (2010b). In
any case the solution method used here does not require a reduction to a full rank matrix.

2.4. The optimization problem

When the tests are very expensive or require a substantial amount of time, experimenters
are interested in finding minimum size orthogonal fractional designs, i.e., fractional factorial
designs that satisfy some orthogonality requirements and consist of the minimum number of
points.
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According to our formalization, the problem is equivalent to extracting one fraction F∗ from
OF (n1 . . . nm, C), such that the size of the fraction #F∗ is minimum.

The problem can be written as

minimize 1>Y

subject to AY = 0,
(1)

where A is the matrix built as explained in Section 2.3, 0 is the column vector that has the
same numer of rows of A and whose entries are all equal to 0, 1 is the #D column vector whose
entries are all equal to 1, 1> is its transpose and Y is a vector of positive integer numbers
that contains the unknown counting function values, Y > 6= [0, . . . , 0].

3. The algorithm and its SAS implementation

We now focus on the details of the algorithm that makes use of the theoretical results described
in Section 2. The implementation used SAS software: in particular SAS/IML (SAS Institute,
Inc. 2008a), for the construction of the constraints AY = 0 and SAS/OR (SAS Institute, Inc.
2008b), to solve the optimization problem as stated in Equation 1 of Section 2.4.

As described in the previous section, we state the problem of finding OFFDs that satisfy
a set of conditions in terms of orthogonality as a homogeneous system of linear equations,
AY = 0, in which the indeterminates are positive integers that contain the unknown counting
values. For the sake of simplicity, we work with mixed level OAs of strength t, that is
OA(n, n1 · . . . · nm, t); the extension to mixed level OFFDs, regardless of the orthogonality
constraints they must satisfy, is straightforward, as we will explain in Section 6.1.

With reference to Figure 1, the algorithm

� takes the levels nj for each factor, j = 1, . . . ,m, and the required strength t as input;

� generates the constraint matrix A;

� performs the optimization phase;

� provides a minimum size OA as output.

Constraints generation is done by the following major steps:

1. We generate the full factorial Zn1 × . . . × Znm . It represents both the set L of multi-
indexes and the full factorial design with integer coding, i.e., the full factorial design
where the levels of the factor Dj are coded with the integer 0, . . . , nj − 1, j = 1, . . . ,m.
We denote by α a generic element of L.

2. Let us denote the subset of L that contains all the α such that the norm of ‖α‖ is less
than or equal to t, α 6= [0, . . . , 0] by C; for all α ∈ C ⊆ L we build the column vector[
Xα(ζ) : ζ ∈ D

]
and, coherently with Proposition 2.4, we also compute sα.

3. According to Proposition 2.6, for all s ∈ {2, . . . , smax}, where smax is the maximum of
all the sα, α ∈ C, we compute the matrix Bs.
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Figure 1: The main modules of the algorithm.

(a) If s is prime, then Bs =


−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
...

...
−1 0 0 0 · · · 1

.

(b) If s is not prime, then Bs is determined taking the remainder Hs of the division
between the polynomial Ps and the cyclotomic polynomial Φs.

4. Using all the
[
Xα(ζ) : ζ ∈ D

]
, α ∈ C and the corresponding Bsα and recalling that

nα,h =
∑

ζ∈Dαh
yζ , we build the constraints matrix A.

Once the constraints AY = 0 are obtained, the optimization phase can be carried out in SAS
or in another software tool like lp solve (Berkelaar, Eikland, and Peter 2004).

In the next section we explain in detail all the steps of the algorithm.

3.1. Full factorial design generation

We must build up the full factorial design L = Zn1 × · · · × Znm , which represents the set of
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multi-indexes α. The total number of points in L is #L = n1 ·. . .·nm. The set of multi-indexes
L can be represented by a matrix L with m columns and #L rows.

To write the rows of L, we generalize the common conversion base algorithm (Cox, Little, and
O’Shea 1997). We make a loop over the #L rows: the row index (from 0 to #L − 1) is the
number k to be converted and r1 . . . rm is the corresponding row of L. This is the algorithm:

Input: k, n1, . . . , nm
Output: r1, . . . , rm

for j = 1 to m do
rm−j+1 = [k]nm−j+1

k = int(k/nm−j+1)
end for

The notation [k]n indicates the residue of k modulo n, and int(k/n) is the integer part of the
division k

n .

3.2. Simple and interaction terms

From now on we use ωk,nj in place of ω
(nj)
k to simplify the notation. We observe that the

mapping τnj

Dj =
{
ω0,nj , . . . , ωnj−1,nj

}
3 ωk,nj

τnj←→ k ∈ Znj = {0, . . . , nj − 1}

is a group isomorphism between Ωnj with the complex product and Znj with the sum modulo
nj . It follows that τn1 × . . .× τnm is a group isomorphism between D and L. Let us consider
the term Xr

j and its values Xr
j (ωk,nj ) = ωrk,nj over Dj , j = 1, . . . ,m, r ∈ Z+. Using the

isomorphism τnj we can represent the vector [Xr
j (ωk,nj ) : ωrk,nj ∈ Dj ] with the vector

[τnj (ω
r
k,nj

) = [kr]nj : k = 0, . . . , nj − 1]

Now we consider the interaction term Xα and its values

Xα(ωk1,n1 , . . . , ωkm,nm) = ωα1
k1,n1

· . . . · ωαmkm,nm

overD, α ∈ L. From Proposition 2.4, Xα takes all the values of Ωsα , where sα = lcm(s1, . . . , sm)
and sj , j = 1, . . . ,m are determined as in Item 1 of the same Proposition. It follows that we
can represent the vector [Xα(ωk1,n1 , . . . , ωkm,nm) : ωk,nj ∈ Dj , j = 1, . . . ,m] with the vector[

τsα

(
ωα1
k1,n1

· . . . · ωαmkm,nm
)

=

[
k1

(
sα
n1

)
+ . . .+ km

(
sα
nm

)]
sα

:

kj ∈ {0, . . . , nj − 1} , j = 1, . . . ,m

]
Finally, by observing that the complex conjugate ωh,s of ωh,s ∈ Ωs is ω[s−h]s,s and that,
using τs, can be represented as [s− h]s, we build a matrix whose columns contain the integer
representation of Xα(ζ) for all α ∈ C and for all ζ ∈ D.

Furthermore we store all the values sα, α ∈ C in a vector and we calculate the maximum value
smax of it, which will be used in the next steps of the algorithm.
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3.3. Remainders

For each s, where s = 2, . . . , smax, there is one or more linear constraint over the coefficients
nα,h. If s is prime we know from Proposition 2.6 that the conditions can be easily determined.
For example for s = 5 the conditions correspond to the matrix B5:

nα,0 nα,1 nα,2 nα,3 nα,4

B5 =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


If s is not prime, then we have to generate the cyclotomic polynomial Φs, the polynomial
Ps(ζ) and then to calculate the remainder Hs of the division Ps/Φs.

From the fact that the roots of a cyclotomic polynomial are the primitive roots of unity (Lang
2002), we can calculate Φs by dividing Xs − 1 by the product of the cyclotomic polynomials
Φdi corresponding to the proper divisors d1, . . . , ds of s :

Φs(X) =
Xs − 1∏

d|s, d<s Φd(X)
.

We create a function that implements the polynomials division (Cox et al. 1997). Let f be
the dividend polynomial and g the divisor, the pseudocode of the algorithm for finding q and
r such that f = qg + r is:

Input: g, f
Output: q, r
q = 0; r = f
while r 6= 0 and LT (g) divides LT (r) do
q = q + LT (r)/LT (g)
r = r − (LT (r)/LT (g))g

end while

LT means leading term, i.e., the term of highest degree. To construct the cyclotomic polyno-
mial Φs we need three steps:

1. Find all proper divisors of s: d1, . . . , dk.

2. Analyze each di: if it is prime then we can calculate the cyclotomic polynomial Φdi

dividing Xdi − 1 by Φ1 = X − 1; if it is not prime then we have to return to step 1
setting s = di.

3. When Φd1 , . . . ,Φdk are built, we obtain Φs by dividingXs−1 by the product Φd1 ·. . .·Φdk .

From Proposition 2.6 we know that we are interested in calculating the remainder of the
division of Ps by the cyclotomic polynomial Φs. In this case the dividend polynomial has
symbolic coefficients nα,h, h = 0, . . . , s− 1:

Ps(ζ) = nα,0ζ
0 + . . .+ nα,s−1ζ

s−1.

The division algorithm remains the same but at each step we have to store also these coeffi-
cients. We create an s×s matrix, where the column index is related to the degree and the row
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index to the polynomial coefficient. We explain this point considering s = 4. By definition
P4(ζ) is

P4(ζ) = nα,0 + nα,1ζ + nα,2ζ
2 + nα,3ζ

3,

and the corresponding matrix becomes

ζ3 ζ2 ζ1 ζ0

nα,3 1 0 0 0
nα,2 0 1 0 0
nα,1 0 0 1 0
nα,0 0 0 0 1

When we divide P4(ζ) by Φ4(ζ) = 1 + ζ2, we obtain the remainder H4(ζ) = nα,0 − nα,2 +
(nα,1 − nα,3)ζ and its related matrix

ζ3 ζ2 ζ1 ζ0

nα,3 0 0 −1 0
nα,2 0 0 0 −1
nα,1 0 0 1 0
nα,0 0 0 0 1

Finally, by simply deleting the zero columns, we obtain the matrix B4:

nα,0 nα,1 nα,2 nα,3

B4 =

[
1 0 −1 0
0 1 0 −1

]
.

3.4. Strata and constraints

The last step is to transform each matrix Bs, s = 2, . . . , smax, that refers to nα,h, h = 0, . . . , s−
1 into a matrix As that refers to yζ , ζ ∈ D and then to stack all the As into the matrix A.
In this way, it is possible to set up the optimization problem as stated in Equation 1 of
Section 2.4.

It is enough to recall that

nα,h =
∑
ζ∈Dαh

yζ , h = 0, . . . , s− 1.

We explain this point by using an example. Let us consider, as in Section 2.3, OA(n, 42, 1).
We obtain that C = {α ∈ Z4 × Z4 : ‖α‖ ≤ 1, α 6= (0, 0)} = {(0, k), (k, 0) : k = 1, 2, 3}. Let

us consider α = (0, 1). We represent X(0,1)(ζ), ζ ∈ D, whose level set is Ω4, using τ4 and
obtaining its integer representation.
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We obtain

D= (ζ1 , ζ2)

1 1
1 i
1 −1
1 −i
i 1
...

...
−i 1
−i i
−i −1
−1 −i

⇒

X(0,1)(ζ1, ζ2)

1
i
−1
−i

1
...
1
i
−1
−i

⇒

X(0,1)(ζ1, ζ2)

1
−i
−1
i
1
...
1
−i
−1
i

⇒

τ4(X(0,1)(ζ1, ζ2))

0
3
2
1
0
...
0
3
2
1

The remainder matrix for s = 4 is

nα,0 nα,1 nα,2 nα,3

B4 =

[
1 0 −1 0
0 1 0 −1

]
,

so that we obtain the following A4 matrix

A4 =

[
1 0 −1 0 1 . . . 1 0 −1 0
0 −1 0 1 0 . . . 0 −1 0 1

]
.

By repeating the same procedure for all α ∈ C and stacking all the As matrices, we obtain
the A matrix, as reported at the end of Section 2.3.

4. The optimization problem

At this point our problem is to find the fraction that satisfies all the constraints while mini-
mizing the number of points. We can use any optimization software that solves mixed-integer
linear problems (MILP). In particular, we have constructed the set of constraints in such a
way that can be directly used in SAS/OR and can also be exported for use with lp solve
(Berkelaar et al. 2004).

SAS/OR procedures are used to optimize a linear function subject to linear and integer con-
straints. Specifically, we use the Optmodel procedure, which solves the general MILP of the
form:

minimize c>x

subject to Ax{≥,=,≤}b
l ≤ x ≤ u
xi ∈ Z, ∀i ∈ S ,

where:

� A is an r × v matrix of technological coefficients;
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� b is an r × 1 matrix of right-hand side constants;

� c is a v × 1 matrix of objective function coefficients;

� x is a v × 1 matrix of structural variables;

� l is a v × 1 matrix of lower bounds on x;

� u is a v × 1 matrix of upper bounds on x;

� S is a subset of the set of indices 1, . . . , v and identifies those variables that must take
only integer values.

In our case:

� A is the r × v constraints matrix, with v = n1 · . . . · nm;

� b is the r × 1 matrix whose entries are all equal to 0;

� c = 1 is the n1 · . . . · nm × 1 matrix whose entries are all equal to 1;

� x is an n1 · . . . · nm × 1 matrix that contains the unknown number of appearances of
each point of D in the fraction F ;

� l is the n1 · . . . · nm × 1 matrix whose entries are all equal to 0; we do not need to set
any value for the upper bounds u;

� S contains all n1 · . . . · nm variables, because all of them must take integer values.

Finally, in order to exclude the empty fraction from the solutions, we add the following
constraint:

1>x ≥ 1

For further details about the Optmodel procedure see SAS Institute, Inc. (2008b).

As mentioned before, the constraints matrix A is stored in a dataset and can be exported
to other optimization programs. Our algorithm exports the matrix A into a file that can be
used by the well-known and widely-used open-source code lp solve (Berkelaar et al. 2004).

5. Results

We tested the algorithm by comparing our results with those reported in Schoen et al. (2010).
We also ran other examples. The results are summarized in Table 1. The first column reports
the factor set, i.e., the number of levels of each factor, #D is the cardinality of the full factorial
design D, t and n are respectively the strength and the cardinality of the OA as generated by
the algorithm.
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Factor set #D t n

2616 1024 2 32
438 512 2 32
3412 972 2 36
4312 768 2 48
3 6 9 162 2 54
4316 1024 2 64
349 729 3 81

Table 1: The results of some examples.

6. Conclusion

6.1. OFFD

Given the levels of each factor, n1, . . . , nm, and the strength t as input, the algorithm provides
one of the minimum size mixed level OAs OA(n, n1 · . . . · nm, t) as output.

To deal with generic OFFD, it is enough, using Proposition 2.1, to modify C, the subset of
the multi-indexes α ∈ L for which the coefficients of the counting function must be equal to
zero and to leave the remaining part of the code unchanged. We illustrate this point with
an example. Let us suppose that we consider 4 factors with 3 levels each and that we search
for a minimum size OFFD such that all the main effects of the factors, D1, . . . ,D4, and the
interaction between factor D2 and D3 are estimable and orthogonal.

From Item 1 of Proposition 2.1,

� the main effects of the factors D1, . . . ,D4 will be centered, if and only if, cα = 0 for
α ∈ {(e, 0, 0, 0), (0, e, 0, 0), (0, 0, e, 0), (0, 0, 0, e)} with e = 1, 2;

� the interaction between factor D2 and D3 will be centered, if and only if, cα = 0 for
α ∈ {(0, e, f, 0)} with e, f = 1, 2.

From Item 2 of Proposition 2.1,

� the main effect of the factor Di will be orthogonal to the main effect of the factor Dj ,
i < j, if and only if, cα = 0 for α ∈

{
e(δi1, δ

i
2, δ

i
3, δ

i
4) + f(δj1, δ

j
2, δ

j
3, δ

j
4)
}

with e, f = 1, 2

and δkh = 0 if h 6= k and δkh = 1 if h = k;

� the main effect of the factor D1 (resp. D4 ) will be orthogonal to the interaction between
factor D2 and D3, if and only if, cα = 0 for α ∈ {(e, f, g, 0)} (resp. α ∈ {(0, e, f, g)} )
with e, f, g = 1, 2;

� the main effect of the factor D2 or of the factor D3 will be orthogonal to the interaction
between factor D2 and D3, if and only if, cα = 0 for α ∈ {(0, e, f, 0)} with e, f = 1, 2.

It follows that C can be written as:

C = C0 ∪ C1 ∪ C2,
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where C0 =
{
α ∈ Z4

2 : 0 < ‖α‖ ≤ 2
}

, C1 = {(k1, k2, k3, 0) : k1, k2, k3 = 1, 2} and C2 =
{(0, k2, k3, k4) : k2, k3, k4 = 1, 2}. We obtain a solution F with #F = 27.

6.2. The FACTEX procedure

The algorithm presented is an improvement which completes existing procedures in the
SAS/QC software (SAS Institute, Inc. 2010). In particular the FACTEX procedure constructs
an orthogonal fractional design for q-level factors by using the Galois field (or finite field) of
size q. For this reason there is a restriction on the number of levels: all the factors must
have the same number q of levels and q must be either a prime number or an integer power
of a prime number. Finally the FACTEX procedure constructs regular fractional factorial
design: these fractions have no replicates and any two factorial effects are either estimated
independently of each other or are fully aliased.

The algorithm puts no restriction on the number of levels of each factor, thereby including
mixed level designs. It also manages non-regular fractions.

6.3. Optimization

Finally, this algorithm has the advantage of keeping the algebraic construction of the con-
straints distinct from the optimization phase. We can use the output of the first part of the
algorithm either with SAS/OR procedures or with other optimization programs.

The range of application is limited only by the amount of computational effort required, which
depends on the size of the full design D.
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