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Abstract

The development in the manufacture of high quality self-assembled quan-
tum dot materials, as well as their superior properties with respect to the
bulk and quantum well counterparts, has inspired in the last 10 years in-
tensive realization and investigation activities carried on the quantum dot-
based devices. In this thesis we focus on the theoretical analysis and design
of two main classes of optical devices based on the InAs/In.15Ga.85As quan-
tum dots active medium: the two-section passively mode-locked quantum
dot lasers and the tapered semiconductor optical amplifiers. These activities
have been performed within the Seventh Framework European Project ”Fast
Dot”, aiming to achieve high-power ultra-fast laser sources. In the project,
fruitful collaborations within different partners have been established.

In the first main subject of this thesis, two numerical models are intro-
duced, which with respect to the models available in the literature, are ca-
pable to simulate particular mode-locked lasers where simultaneous ground
state and exited state pulses with different group velocities exist. These
models therefore show more flexibility when simulating quantum dot mode-
locked lasers.

Passively mode-locked quantum dot lasers generating picosecond or sub-
picosecond optical pulses for applications ranging from telecommunication
to medicine have been comprehensively analyzed via the above-mentioned
models. The complex physical mechanisms that exist in such devices and are
detrimental for the pulse formation were studied. Based on these studies,
efforts were devoted to search for the possibility to optimise the output per-
formances of a mode-locked laser by changing both the device geometry and
the active material. Our simulation results show good qualitative agreement
with the experimental findings and give therefore reliable design guidance of
the passively ML lasers. Finally, we present a systematic investigation of a
particular regime where simultaneous mode-locking pulses from the funda-
mental ground state and the excited state transitions in the quantum dots
are achieved. Pulses with extremely enhanced peak power, pulse width and
stability were observed in this dual-state mode-locking regime.

The second main subject of this thesis is the design and analysis of ta-
pered semiconductor optical amplifiers operating at high power regime. We
developed a numerical model that allows reliable description of the optical
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ABSTRACT ii

field propagation in an axially varying waveguide. Additionally, by com-
bining the beam propagation equation with pre-calculated results obtained
from the multi-population rate-equation system, we could model rigorously
and efficiently the non-linear gain and refractive index variation occurring in
the quantum dot active medium at high power regime. This model is then
extensively applied to the simulation of the gain-guided and weakly index
guided tapered semiconductor optical amplifiers in collaboration with the
project partners that carried out the device fabrication and characterization.
Our simulations contributed to design the high performance semiconductor
optical amplifiers used in the master-oscillator power-amplifier structure for
the amplification of a stream of high power pulses.

Finally, we show two additional usages of above beam propagation method
model in the design of electro-optic devices: the first one is to study the anti-
reflection ability of a tapered waveguide with tilted end facet; the second one
is to simulate the axially varying lasers in continuous wave regime, and from
which parameters describing the field propagation along the non-uniform
waveguide can be extracted and used as an input to the finite-difference
time-domain or multi-section delayed differential equation model for the dy-
namic simulation of lasers with the same geometry but working in the ML
regime.
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Chapter 1

Introduction

Before introducing my work during these three years, in this chapter,
main properties of the semiconductor quantum dot (QD) based devices and
the related underlying physical mechanisms which are essential to under-
stand following content are briefly reviewed. Detailed introduction and ex-
planation of these properties should refer to other literatures or specific
books.

The chapter begins by outlining the motivation for exploiting semicon-
ductor QD material in the design of lasers or optical amplifiers. Desirable
effects and characteristics of this three dimensional (3D) quantum confined
material are described, showing QDs medium as a superior alternative to
the traditional bulk and quantum well (QW) groups. Then in Section 1.2,
fabrication method of QDs are recalled phenomenologically together with
the associated key properties of the QDs resulting from this kind of fabrica-
tion approach, such as the inhomogeneous broadening of the QD ensembles
and consequently the inhomogeneous broadening in the gain spectrum. The
transversal direction epitaxial structure and the lateral direction pattern-
ing of the active region for QD-based device investigated in this thesis are
presented in Section 1.3. Finally, structure of the whole thesis is outlined.

1.1 Motivation: characteristics and advantages of
QD-based devices

Semiconductor laser diode (LD) represents one main class of lasers so
far. Comparing to its competitors, the gas laser and the solid-state laser,
semiconductor LD owns many well known distinguishing advantages, such
as easy manufacturability, compactness, high potential for integration, di-
rect electrical pumping, low power consumption and high reliability (useful
lifetime) etc. As a result, it has been proposed as promising candidate in a
large number of electro-optic applications and has already been widely used.

The first semiconductor laser was demonstrated in 1962 [1], since then,
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CHAPTER 1. INTRODUCTION 2

great efforts have been done to improve the performances of the LDs, in-
cluding developments both in the laser waveguide structures and the semi-
conductor materials, such as the distributed Bragg reflector laser (DBR)
[2], the distributed feedback laser (DFB) [3] and the double heterostruc-
ture (DH) laser [4]. Among the others, Dingle and Henry demonstrated
the QW laser in 1974 [5]. In this device, the carriers are confined within
the quantized energy levels contributing to large reduction of the thresh-
old current density and enabling the control of the lasing wavelength by
simply changing the thickness of the QW layer. This modification in the
electronic band structure using the quantum confinement along one spatial
dimension resulted in various new optical and electronic properties. As a
matter of fact, developments of QW LDs during last 30 years led to revolu-
tionary changes in the characters and performances of these devices. With
these achievements, it is very nature to expect that higher order quantiza-
tion of the band structure should allow even better qualities with respect
to that of the QW medium. Although it is difficult to realize additional
degrees of quantization, continuous improvement in the epitaxial growth
technology has made these theoretical derivations coming true. Quantum
wire representing carrier confinement in two dimensions (2D) and quantum
dot representing the full three-dimensional confinement of the carriers have
been demonstrated one by one.

Since the electrons are confined in a small space with nanometer scale
along all the three spatial dimensions, zero-dimensional electronic potential
well is formed in QD, which indicates that the number of dimensions in which
electron can act as a free carrier is zero in this case. Under this condition,
QD electronic structure is characterized by a set of discrete energy levels very
similar to those obtained in a single atom. Therefore, QDs are also referred
as artificial atoms. This special electronic band structure represents the
fundamental difference between a QD active medium and a QW or a bulk
active medium.

As schematically shown in Fig. 1.1a, the density of state of a bulk
medium has a parabolic shape. In principle, the density of carriers n(E)
in a semiconductor is calculated as the product of the density of states
N(E) and the occupation probability of that state f(E) being E the state
energy (see Fig. 1.1a). Moreover, the emission spectrum of this material
relates directly to its carrier density profile. Unfortunately, in real bulk
semiconductors, both the peak density and the width of the distribution for
n(E) will change if the operation condition is changed, such as temperature
or external excitation. These changes lead to corresponding variations in the
emission spectrum of this material and consequently undesired variations in
the performances. On the contrary, the density of states for one QD has a
Dirac delta function distribution, which is, although broadened somewhat
at practical temperature, much narrower than bulk materials. Additionally,
the energy separation between different discrete states is large enough to
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result in significant changes in the occupation probability and consequently
in the carrier density for different states (see Fig. 1.1b).

(a) (b)

Figure 1.1: (a) Density of states, Fermi function and density of carriers for a bulk
semiconductor. (b) Dirac delta function density of states for QD material (from
reference [6]).

Due to the atom-like energy levels and the delta-function-like density
of states, QD materials were expected to show significant operational ad-
vantages in many aspects. Since the position of the state energy is almost
immune to the operation condition changes, emission wavelength of this
material is stabilized. Furthermore, as the energy separation between dis-
crete states is larger than the thermal energy kBT , variation of Fermi level
around the lowest state results in little to no changes in the carrier density,
consequently a almost temperature independent threshold current can be
achieved. Then as been show in Fig. 1.1b, due to smaller density of states,
QD material requires fewer injected carriers to achieve population inversion,
leading therefore to a reduction in the threshold current density and an in-
crease in the differential gain/absorption. Besides, due to the Dirac delta
shape of emission spectrum, a zero linewidth enhancement factor in QD-
based devices are expected [7]. However, these potential advantages hold
just to a certain extent in the real QD lasers.

The Stranski-Krastanov growth mechanism is commonly used to gener-
ate QD ensembles [8], which are the so-called self-assembled quantum dots.
Due to the inherent property of this growth mechanism, large dispersion
in terms of size and composition usually happens in the generated QD en-



CHAPTER 1. INTRODUCTION 4

sembles. As an evidence, inhomogeneous broadening of the gain spectrum
has been observed in the QD devices and the full-width at half-maximum
(FWHM) of the gain spectrum in the range of 20 - 42 meV has been reported
[9, 10, 11]. Moreover, such statistic dispersion in QD ensembles and the in-
homogeneous broadening of the gain spectrum also cause a reduction in the
maximum achievable material gain and a non-zero linewidth enhancement
factor in QD-based devices.

So far, the best reported characteristics for QD lasers correspond to the
ordinary O-band telecommunication window around 1300 nm. This wave-
length is also the operating wavelength for devices considered in this thesis.
Although above mentioned degradation effects exist, extraordinary perfor-
mances, including low threshold current of 17 A/cm2 [12], high temperature
insensitivity [13], near-zero linewidth enhancement factor [14], large diffe-
rential gain [15] and relatively large small signal bandwidth of 12 GHz [16]
have been reported for QD-based light sources emitting around 1.3 µm.

To conclude, the novel generation of optoelectronic devices based on QD
active media, such as the edge-emitting lasers and the semiconductor opti-
cal amplifiers (SOA), contains a large range of advantages with respect to
the conventional bulk and QW counterparts, and show therefore high po-
tential in various applications, including future all-optical signal processing,
telecommunication, material processing, metrology and medicine.

Since both the optical material and the device structure are becoming
more and more complicated, conventional simple analytic model can not
supply sufficient description of the underlying physical mechanisms in such
kind of devices any more, therefore limiting their usage in the purpose of
device performance prediction and device design guidance. Under this con-
dition, sophisticated numerical models emerge their effectiveness and relia-
bility as a means to get the fundamental understanding of advanced photonic
structures and in turn to develop new photonic devices. For this purpose in
following chapters several numerical models, with different levels of complex-
ity and different functionalities are introduced and employed for analysis of
QD-based devices. In advance, the optical and electronic structures of such
devices, which are essential information to develop the numerical model, will
be shown in Section 1.2 and Section 1.3.

1.2 Introduction of QD: fabrication and related
physical properties

Thanks to the significant progresses in the epitaxial processes such as
Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapour De-
position (MOCVD), atom-like QD optical medium has been realized [17].
Self-assembled QDs grown by MBE exploiting the Stranski-Krastanov (SK)
growth mechanism [8] represent the main class of QD materials so far with
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characteristic emission wavelengths ranging from 1 µm to 1.8 µm. The
attraction of the self-assembly process for laser diodes is that it employs
standard semiconductor growth processes to deposit layers of dots within
the slab waveguide and the p-n junction structure of a standard diode laser.

Traditionally, MBE has been used for decades to grow semiconductor
thin layers for multiple layer heterostructure. This technique is essentially
used for the growth of lattice-matched, or nearly lattice-matched, epitaxial
layers on a suitable single crystal substrate. During the growing process, a
entire atomic layer of material is deposited before the growth of the next
atomic layer and the generation of undesirable dislocations of new arriving
atoms should be kept to a minimum. Generally, this layer-by-layer growth is
characterized by lattice-matched systems or lightly strained systems below
a critical thickness. Therefore, the result of this growth is a conformal single
uniform layer of material as shown in Fig. 1.2a.

(a)

(b)

Figure 1.2: Cross-section view of (a) traditional uniform epitaxial layer growth and
(b) self-assembled QDs growth based on SK process.

On the contrary, if the difference between the lattice constant (a) of the
grown material and the substrate exceeds a certain critical value, for exam-
ple InAs on the GaAs substrate (∆a/a = 7%), big strain energy generates
during the layer growth. In this Stranski-Krastanov growth, initially the
lattice parameter of the InAs layer tends to match that of the GaAs sub-
strate; strain energy generated in this layer is not large enough now, thus
forming a thin strained 2D layer. After some number of atomic layers is de-
posited (typically 1-2 monolayers), sufficient stain energy has accumulated
that conventional 2D epitaxial layer is unfavorable and the growth transits
from layer to island, as shown in Fig. 1.2b. The initially thin 2D layer is
usually called as the wetting-layer (WL).

Above mechanism is the basis for generating the self-assembled quan-
tum dots (see complete review in [18] and [19]). A big advantage of it for
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the optoelectronic applications is that the phase transition from the epitax-
ial layer to the random arrangement of QDs relieves the strain elastically
without introducing defects or recombination centres.

As mentioned in Section 1.1, this natural process of the QD islands for-
mation implies a statistical distribution of all the QD properties, such as size,
shape and material composition (see Fig. 1.3). Typically, QDs produced by
the SK mechanism have pyramidal or lens shapes with characteristic diame-
ter in the range of 25 nm, height of 3-5 nm and a surface density of 1-10·1010
cm−2 [19]. In addition, the thickness of the wetting layer can be 3-4 nm [20]
[21].

Figure 1.3: 500 × 500 nm2 AFM image of self-assembled InAs QDs grown on the
(100) oriented GaAs substrate (from reference [18]).

As a matter of fact, the size, the shape and the material composition of
the QDs determine the electronic potential profile and consequently the en-
ergy level scheme for a particular QD. Changing these properties throughout
the QD ensembles, the energy of the optically active interband transitions
will be significantly modified from dot to dot.

Ideally, identical dots are expected to have the same energy level scheme
and therefore have a sharp spectral gain profile characterized by a Lorentzian
function which is homogeneous broadened and the linewidth of it varies with
the carrier density and the temperature. A schematic of such Lorentzian-
shape gain spectrum is shown in Fig. 1.4a. Since the self-assembled QDs are
unlikely to be identical in size and shape, the electronic states will be differ-
ent in energy due to the strong dependence of the 3D quantum confinement
on the dot size variation. Therefore, the overall gain spectrum from the QD
ensembles is essentially a independent sum of all the individual components.
This leads to a significant inhomogeneous broadening in the spectrum profile
with characteristic FWHM linewidth in the range of 20-42 meV, as shown
in Fig. 1.4b.

A rigorous numerical modeling of above described QD ensemble typically
relies on a complicated method that the whole QD ensemble are subdivided
into N groups according to their characteristic interband transition energy;
QDs belonging to the same group are supposed to be identical as shown in
Fig. 1.4 and the probability of a QD belongs to a certain group follows a
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(a) (b)

Figure 1.4: Schematics of the spectral gain profile for (a) single quantum dot and
(b) an ensemble of self-assembled QDs grown by SK process.

Gaussian distribution. This is the multi-population method. Although this
method could provide a complete description of the statistical distribution
of the QD ensemble and the related spectral-domain properties, the compu-
tational cost of it is huge therefore limiting its efficiency in comprehensive
analysis of QD-based devices. In order to reduce the computation demand
to a reasonable value, in this thesis, the single-population approximation is
utilized; we assume all the dots are identical in size, shape and consequently
the gain spectrum profile, but the gain spectrum linewidth is as wide as the
typical FWHM of an inhomogeneous broadened QD ensemble and the gain
value at the characteristic lasing wavelength is also the same.

Successful generation of the QD layer is just the first step in the fabrica-
tion of a QD-based device. To form a feasible QD-based device where effec-
tive photon-carrier interaction happens, the self-assembled QD layer should
be embedded in an appropriately designed multi-layer heterostructure. In
next section, the epitaxial structure of the QD-based semiconductor devices
will be introduced as well as the lateral patterning of the active region.

1.3 QD edge emitting devices

Practical semiconductor devices come to two basic classes: those with
in-plane cavities and those with vertical cavities. In this thesis, only the first
in-plane (or edge-emitting) type is considered. Figure 1.5 illustrates device
of this type.

To fabricate a QD laser is much more than just simply substituting a
QD active layer for the conventional QW layer. As suggested by Fig. 1.5,
practical lasers must emit light in a narrow beam, which implies that the
current, the carrier and the emitted photon have to be confined all in the
same limited active region to maximize the interaction between the optical
field and the active gain medium and increase the laser’s efficiency. This
condition has been achieved by several attempts in both the transversal
y and the lateral x directions (see Fig. 1.5 for the definition of x and y
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Figure 1.5: Simple schematic of edge-emitting lasers and the selected coordinate
system of this thesis.

directions). The longitudinal optical propagation direction is designated as
the z axis. This Cartesian coordinate system runs throughout this thesis.

To achieve larger gain and efficient carrier/photon collections in the
transversal direction, following mechanism are commonly employed.

• Since the overall gain volume of a single QD layer is obvious signifi-
cantly smaller than that of a single QW, multiple layers of QDs are
stacked together. However, the accumulated strain from multiple QD
layers causes defects in the active region. To overcome this issue,
strain compensation layer (or spacer layer) with thickness of tens of
nanometres (> 30 nm) is introduced between two adjacent QD layers.

• To effectively capture the electrons in the relatively small and spatially
separated QDs, the so-called dots-in-a-well (DWELL) structure shows
its advantage. As suggested by this structure, the dots are inserted
in a quantum well so that the QW captures a high density of carriers
and keeps them localized around the dots. Then, within the sponta-
neous emission lifetime of the captured carriers, they will relax into
the confined states in QDs.

• Above mentioned thin QW carrier-confining active layer is surrounded
by the separate confinement region with higher bandgap energy and
smaller refractive index to confine the photons. This structure has
been called as the separate confinement heterostructure (SCH).

As a distinct property of QD medium, its ground state (GS) emis-
sion wavelength can be easily controlled. By considering different III-V
materials, the energy gap discontinuity between the QDs and the host
material is engineered, tuning the 3D electronic potential well and conse-
quently the GS emission wavelength in a certain range. For example, using
InAs/InxGa1−xAs QD heterostructure, GS emission from 1.1 to 1.3 µm can
be achieved [22, 23].

In this thesis, we consider the devices grown on GaAs subtract and
emitting around 1.3 µm. Consistently with above efficiency enhancement
considerations, Fig. 1.6a shows schematically the epitaxial structure of a
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(a) (b)

Figure 1.6: Schematics diagram of the epitaxial structure for InAs/InGaAs QD-
based device with active region consisting of 10 stacks (a) and 15 stacks (b) of QD
layers respectively.

typical InAs/InGaAs QD waveguide with 10 QD layers (QDLs). The ac-
tive region consists of 10 stacks of self-assembled InAs QDs embedded in
5 nm of In0.15Ga0.85As quantum well layer and individual DWELL layers
are separated by the 35-nm-thick GaAs spacer (or barrier) layers. The p
and n cladding layers are constructed from 1520-nm-thick Al0.35Ga0.65As
layers, forming the above mentioned SCH structure. Finally, as in con-
ventional double heterostructure waveguides, a n-doped 500-nm-thick GaAs
buffer layer on the bottom and a p-doped 200-nm-thick GaAs cap layer on
the top of the heterostructure are considered, forming the p-type-intrinsic-n-
type (p-i-n) junction for carrier injection. Above described heterostructure
is grown on a 3-inch-thick GaAs substrate for mechanical reason.

The epitaxial structure for lasers with 15 QDLs is slightly different with
that for lasers with 10 QDLs. As shown in Fig. 1.6b, the entire active
region in 15 QDLs is sandwiched between two additional 100-nm-thick GaAs
waveguides which then are followed by the cladding layers. Device with 5
QDLs are also studied in this thesis, which has similar epitaxial structure
as that in the 15 QDLs case.

Figures 1.7a and 1.7b give a sketch of the energy gap and the refractive
index variations along the growing direction (y) for the 10 QDLs case. The
thin slab of undoped active region is sandwiched between p- and n-type
cladding layers which have higher conduction-valence band energy gap. As
illustrated in Fig. 1.7a, this simply p-i-n junction ensures that all the in-
jected carriers recombine in the i-region (active region). Within the active
region, thanks to the DWELL structure, a even lower transverse potential
well is formed for electrons and holes injected under forward bias, and they
are captured and confined together in a relatively small space to increase
the probability of recombining with each other. The active region also has a
higher refractive index than the cladding, as outlined in Fig. 1.7b, so that a
transverse optical waveguide is formed, confining appropriately the optical
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(a)

(b)

Figure 1.7: Schematics of the transversal direction variation of the energy gap (a)
and the refractive index (b) for device in Fig. 1.6a.

field. To summarize, the photons are actually confined by the outer step het-
erostructure, whereas the central QW confines the electrons. In this thesis,
the confinement factor Γ is commonly used to indicate the overlapping ratio
between the confined active carriers and the optical field. The transversal
confinement factors Γx for devices with 5, 10, 15 QDLs are 0.063, 0.109 and
0.127 respectively.

(a) (b)

Figure 1.8: Schematic of the energy band structure of a realistic
InAs/In0.15Ga0.85As DWELL layer. The interband (a) and intraband (b) transi-
tion characteristic energies are reported. The wetting layer band edge, representing
the transition from confined QD states to a continuum of 2D delocalized states, is
highlighted (from reference [24]).

As mentioned previously, the profile of the 3D characteristic confinement
potential can affect the wave functions and consequently the energy levels
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and interband transition energies in self-assembled QDs. These fundamen-
tal parameters of a QD device can be obtained through numerical calcu-
lation approaches, such as the software NextNano3D [25]. As an example,
scheme of the energy band structure in above described InAs/In0.15Ga0.85As
DWELL layers is shown in Fig. 1.8, and this energy level diagram is consis-
tent with those reported in [26, 27, 28, 29]. We can see from Fig. 1.8b that
three different confined QD states, the ground state (GS), the first excited
state (ES) and the second excited state (ES2) can be found in the con-
duction and the valence bands. Due to the spin degeneracy, these confined
states are assumed to be two-fold (DGS=2), four-fold (DES=4) and six-fold
(DES2=6) degenerate respectively. For energy higher than ES2, due to the
finite confinement potential for real QDs, the energy levels tend to become
closely spaced and highly degenerated and ultimately a transition to a con-
tinuum of delocalized states belonging to the WL or QW occurs. At even
higher energies, a further transition towards 3D bulk states belonging to
the barrier or SCH is achieved [25] (see Fig. 1.8a). In addition, if compare
the energy band structure in the valence band with that in the conduc-
tion band, we can find that, in the valence band, the spacing between the
confined states as well as the spacing between the confined states and the
WL states are much smaller. These results can be attributed to the weakly
confined hole wave functions and the larger heavy hole (HH) effective mass.

(a) (b)

Figure 1.9: Cross-section view of the lateral confinement structures: (a) the proton-
implant waveguide; (b) the ridge waveguide.

Up to now, we briefly described the transversal epitaxial structure and
the associated energy band for QD-based devices. However, the lateral pat-
terning of the active region is also necessary to increase device efficiency
and reduce the threshold current. For the lateral direction confinement, two
simple mechanisms are usually employed, the proton-bombarded waveguide
(Fig. 1.9a) and the ridge waveguide (Fig. 1.9b). The former one offers some
current confinements by implanting protons outside the waveguide region
and thus creating damage and trapping out the mobile charges. This struc-
ture has been described as the gain-guided (GG) waveguide, and the optical
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field guiding mechanisms in it will be studied in Chapter 4. The latter one,
which has homogeneous core but complicated cross-section waveguide ge-
ometry, combines current confinement with a weak photon confinement by
etching the outside region down to just above the active region. The etching
depth can be adjusted to provide sufficient lateral refractive index change to
form a single lateral mode optical waveguide. Therefore, this is the so-called
index-guided (IG) waveguide and is used in the device discussed in Chapter
3. In both cases, carriers injected into the active region can diffuse laterally,
decreasing partially the laser’s efficiency.

1.4 Thesis outline

In this chapter, the basic properties of the considered QD-based edge-
emitting device are described. To numerically simulate this kind of devices,
the underlying physical mechanism of these properties should be described
properly in the numerical models.

The thesis is organized as follows: in Chapter 2, the travelling wave
equation which describes the field propagation in a optical waveguide, the
rate equation system which describes the carrier dynamics in the QD active
medium and the susceptibility equation which models the interaction be-
tween the electromagnetic field and the QD medium are introduced. They
represent a complete description for a QD laser. Then two different numer-
ical models are reported, allowing to solve above mathematical problems in
different numerical approaches. In both models, we consider also the group
velocity differences between the optical pulses from the GS and the ES tran-
sitions. Therefore, with respect to models available in the literature, these
two models are capable to simulate special mode-locking lasers where GS
and ES are lasing simultaneously.

In Chapter 3, the main results obtained in the simulation and analysis of
the passively mode-locked QD lasers emitting around 1.3 µm are presented.
After studying the general principles and analytical theories of passive mode-
locking in semiconductor QD lasers, the above mentioned numerical models
are extensively applied to analyze the mode-locked lasers and various useful
design guidances of such devices are extracted. Particularly, simultaneous
lasing from the fundamental GS transitions and the ES transitions in the
QDs are investigated systematically.

In Chapter 4, the main works achieved in the modeling, simulation and
design of QD semiconductor optical amplifiers are presented. The imple-
mented numerical model based on the beam propagation method is intro-
duced. This model is developed to model the static 2D variation of the elec-
tromagnetic field in the axially varying waveguide. By combining it with
the results reported in Chapter 2, tapered optical amplifiers working at high
power regime where nonlinear gain and refractive index variations are se-
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vere can be simulated. Then different design methods have been exploited
to obtain an optical amplifier which could supply high optical power ampli-
fication and good beam quality simultaneously. Furthermore, we show also
other usages of this beam propagation method-based model in this chapter.

Finally, some conclusions are drawn and future plans are reported.



Chapter 2

QD-based edge-emitting
dual-state laser modeling:
basic principles and
numerical models

In this thesis, various kinds of edge-emitting QD devices are considered.
The schematic of a typical edge-emitting device and the corresponding gen-
eral description have been depicted in previous Section 1.3. To correctly
simulate such devices, reliable model that could transform the main under-
lying physical mechanisms within the devices to numerically solvable math-
ematical description is therefore needed.

In this chapter, two numerical models will be presented, both consist of
a set of equations to be solved for the dynamic simulation of quantum dot
based dual-state lasers. This equation set can be divided to three groups:
in Section 2.1, the so-called travelling wave equation governing the spatio-
temporal dynamics of the electromagnetic field propagating in the device is
introduced, where terms representing the influence of the QD active medium
on the electromagnetic field is appropriately included; then in Section 2.2,
the carrier dynamics in the active medium is described via the rate equation
system; in the subsequent Section 2.3, the coupling relationships between the
electromagnetic field and the carriers, i.e., the optical field-induced polarisa-
tion and the spontaneous emission noise terms are explained. To numerically
solve above equation set, in Section 2.4, a Finite Difference Travelling Wave
(FDTW) model based on the finite difference scheme is depicted. This rig-
orous model supplies a complete description of the optoelectronic dynamics
in the edge-emitting lasers and is also the most typically used method for
simulations of such devices. However, the computational cost of this model
is usually very high. In order to overcome this problem, a more efficient de-
layed differential equation (DDE) model is introduced in Section 2.5. These

14
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two models are mainly applied to investigate the mode locking (ML) dyna-
mics in the QD-based passively ML lasers studied in Chapter 3. Finally, a
conclusion is drawn in Section 2.6.

2.1 Electromagnetic field dynamics

In this section, the main equations describing the amplitude evolution
of an electromagnetic field propagating in the longitudinal direction of a
optical ridge waveguide are presented. Since the derivation of such equations
has already been shown in detail in many literatures, only the key results
which are essential for understanding of the numerical models in this thesis
are recalled. Readers who are interested to the clear explanation of the
theoretical derivation can refer to the references listed along this review.

Without any doubt, the whole story starts from the Maxwell’s equations
for the electric field E⃗ and magnetic field H⃗, which has the form as follows
in frequency domain (ω) 1:

∇× E⃗ = −jωµH⃗ (2.1a)

∇× H⃗ = jωϵE⃗ (2.1b)

where ϵ and µ denote the permittivity and permeability of the host medium.
Taking into account the fact that we treat dielectric optical waveguide, we
set the permeability as µ = µ0. ϵ is related to its value in vacuum ϵ0
by ϵ = ϵ0ϵr(ω, r⃗) = ϵ0n(ω, r⃗)

2, where ϵr(ω, r⃗) is the spatial- and frequency-
dependent relative dielectric constant of the background medium and n(ω, r⃗)
is the corresponding refractive index.

Equation (2.1) is considered in a lossless dielectric medium, for the ac-
tive optical medium however, two additional terms governing the optical re-
sponse of the medium should be included, and Maxwell’s equations change
to:

∇× E⃗ = −jωµ0H⃗ (2.2a)

∇× H⃗ = jωϵ0ϵr(ω, r⃗)E⃗ + jωP⃗ (ω, r⃗) + J⃗(ω, r⃗) (2.2b)

where P⃗ is the additional polarization induced by the semiconductor active
medium including the changes in the gain and the refractive index of this
medium and J⃗ stands for a stochastic current density modeling the sponta-
neous emission noise from the active medium.

In order to solve Eq. (2.2), some approximations and assumptions are
exploited to simplify it:

• For the particular case of a planar waveguide, two different sets of
orthogonal modes which are usually referred as the transverse elec-
tric (TE) and the transverse magnetic (TM) modes satisfy Eq. (2.2)

1A time propagation term exp(jωt) is exploited
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[30, 31]; while for the ridge waveguide, although TE and TM modes
cannot be strictly defined, one can find that the quasi-TE and quasi-
TM modes are still supported by Eq. (2.2), which have small z-
direction magnetic or electronic components respectively [32].

• Both the analytic derivation and the experiment findings [33, 34] show
that quantum dots mainly interact with the TE-polarised field only
and the quasi-TE emission is predominant in the QD edge-emitting
devices. Therefore, only quasi-TE modes are considered in the follow-
ing description.

• Most of the optical devices are designed to support only the funda-
mental guided mode at the operating frequency and cut off all the
higher-order modes in both the transversal and the lateral direction,
i.e., the so-called single mode waveguide design. Thus, in the follow-
ing, we will focus on the dynamics of the fundamental quasi-TE mode.
The propagation constant of that mode along the longitudinal direc-

tion z is expressed by β(ω) =
ω

c
η(ω), where c is the light velocity in a

vacuum and η(ω) is the effective refractive index.

Considering the above aspects, one can finally obtain a second order diffe-
rential equation for the z-dependent amplitude of the fundamental quasi-TE
mode E(z, ω), where we ignore the details of the transverse field patterns:

∂2E

∂z2
(z, ω) = −ω2

c2
η2E(z, ω)− ω2µ0P (z, ω) + jωµ0J(z, ω) (2.3)

This equation is just a simple transmission line equation with additional
terms for the optical response of the QDs and the spontaneous emission
noise sources. If we assume a linear response of the semiconductor medium,
the polarisation P can be computed through the electronic susceptibility
χ(z, ω):

P (z, ω) = ϵ0Γxyχ(z, ω)E(z, ω) (2.4)

where the field confinement factor Γxy is a parameter used to take into
account the fact that the active region of the waveguide is only partially
overlapped with the optical mode profile in both transversal and lateral
direction; Γxy is defined as the ratio between the integration of the field
overlapped with the active medium and the integration of the total field
in the transversal plane. Additionally, the susceptibility χ is assumed to be
constant within the active QD layers and depends on the z-direction position
only.

Up to now, the variation of the mode amplitude in an optical semicon-
ductor waveguide has been appropriately described. However, the typical
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emitted light has the wavelength around 1 µm, and the corresponding fre-
quency is about hundreds of THz. To numerically solve the temporal dyna-
mics of such rapid system, huge computational cost is expected. Therefore,
the slowly varying envelope approximation is commonly imposed. Since the
mode amplitude E(z, ω) is usually characterized by a finite bandwidth cen-
tred at optical operating frequency ω0, so in the time domain, if we consider
a device with Fabry-Perot cavity, the field amplitude E(z, t) can be repre-
sented by the forward and backward propagating slowly varying components
E+(z, t) and E−(z, t) according to:

E(z, t) =

√
2
ω0µ0

β0

{
E+(z, t)e−jβ0z + E−(z, t)e−jβ0z

}
ejω0t (2.5)

where ω0 is the optical carrier frequency of the electric field (usually referred
to as the reference frequency) and β0 is the corresponding propagation con-
stant β0 = ω0

c η0 with η0 = η(ω0). In frequency domain Eq. (2.5) becomes
to:

E(z, ω0 +Ω) =

√
2
ω0µ0

β0

{
E+(z,Ω)e−jβ0z +E−(z,Ω)e−jβ0z

}
(2.6)

where Ω is defined as Ω = ω − ω0. Use this approximation the rapidly
varying term E(z, ω) is replaced by the term E(z,Ω) with a much smaller
variation rate and can be numerically solved more easily.

Similarly we define the slowly varying forward and backward travelling
terms of the polarisation P±(z, t) and the spontaneous emission noise sources
J±(z, t) respectively as:

P±(z, t) = ϵ0χ(t, z)⊗ E±(t, z) = ϵ0

∫ t

−∞
χ(t− τ, z)E±(z, τ)dτ (2.7a)

χ(t, z) =
1

2π

∫ +∞

−∞
χ(ω0 +Ω, z)ejΩtdΩ = χ(t, z)e−jω0t (2.7b)

where symbol ⊗ represents a convolution product.

J±(z, t) =
1

2

√
µ0ω0

2β0

1

2π

∫ +∞

−∞
J(ω0 +Ω, z)ejΩtdΩ

=
1

2

√
µ0ω0

2β0
J(t, z)e−jω0t

(2.8)

Using Eqs. (2.5), (2.7) and (2.8) and doing the reverse Fourier transform
of Eq. (2.3), one can finally obtain two independent first order differential
equations for the forward and backward propagating field envelopes in time
domain:

±∂E±

∂z
+

1

vg0

∂E±

∂t
= −αi

2
E± − j

ω0

2cη0ϵ0
ΓxyP

±(z, t) + J±(z, t) (2.9)
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where the group velocity is defined as:

1

vg0
=

η0
c

(
1 +

ω0

η0

∂η

∂ω

∣∣∣
ω0

)
(2.10)

In Eq. (2.9), we introduced an additional term accounting for the intrin-
sic waveguied losses αi, which is induced by the doped atoms, contacts or
defects in the waveguide. Equation (2.9) is the so-called travelling wave
equation which is commonly used as a starting point to form the analytic or
numerical model of the edge-emitting devices. For the Fabry-Perot cavity,
the travelling field is reflected at the front and back facets of the cavity,
Eq. (2.9) therefore should be combined with the boundary conditions at
the facets, which show the coupling relationship between the forward and
backward travelling fields. Such boundary conditions have simple forms as:

E+(0, t) =
√

R0E
−(0, t)

E−(L, t) =
√

RLE
+(L, t)

(2.11)

where L is the total cavity length, R0 and RL are the power reflectivities at
the device back and front facets respectively.

We want to stress here that E±(z, t) are properly normalized such that
|E+(z, t)|2 and |E−(z, t)|2 simply give the total power flowing in the forward
(+z) and backward (−z) directions in a certain longitudinal section of the
device cavity.

In this section, fundamental equations determining the field propagation
in a Fabry-Perot cavity waveguide are outlined. The travelling wave equa-
tion Eq. (2.9) and the coupled boundary conditions Eq. (2.11) should be
solved to simulate the dynamics of the temporal-spatio dependent field enve-
lope E±(z, t). To do so, the polarisation and the spontaneous emission noise
induced by the active medium should be explicitly described; these terms
tightly relate with the carrier distributions in the corresponding QD states in
the active medium, and these carrier distributions are also temporal-spatio
dependent due to their interaction with the electric fields. Thus, in next
section, the so-called rate-equation system describing the carrier occupation
probabilities in the QD confined states, the WL and the SCH is introduced.

2.2 Carrier dynamics in the active medium

In this section, carrier generation, recombination and moving mecha-
nisms in the QD active medium will be described numerically in a rigorous
way and summarized in the so-called rate-equation system, which governing
the temporal dynamics of the carrier distributions in different energy levels
of the self-assembled QDs.

In Fig. 2.1, we show schematically the simplified band structure of a
typical InAs/InGaAs QD semiconductor material. Consistently with the
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Figure 2.1: Schematic of the cascade transitions of electrons between different states
in the conduction band of the QD material. Arrows indicate the capture/relaxation
and escape processes of electrons.

description in Section 1.3, 3 discrete energy levels within the QD are con-
sidered (GS, ES, ES2).

As always, following assumptions and approximations are exploited to
limit the computational cost of this model reasonably low.

• We assume the charge neutrality condition in each QD confined state,
in the QW and also in the SCH, which means the electron number in
these states in the conduction band equals exactly to the hole number
in the corresponding states in the valence band. Using this approxi-
mation, the model actually treats with the dynamics of the correlated
electron-hole pairs in the different states, and therefore is usually re-
ferred to as the excitonic model. Thus, in the following, only the elec-
tron dynamics in the conduction band are computed. This approach
is also commonly encountered in literatures [35, 36, 37, 38].

• As pointed out in Section 1.3, the three confined QD energy levels have
degeneracy of 2, 4 and 6 respectively. In our model, we assume that
the degenerate states in each energy level have identical population
dynamics and interact in the same way with the electromagnetic field.

• As shown in Section 1.2, due to the inherent property of the self-
assembled QD medium, the QDs are not identical but have a distri-
bution in terms of the size, the shape and the composition. All these
aspects lead to a dispersion in the optical interband transition ener-
gies of the QDs and therefore the QD ensembles show a significant
inhomogeneous broadened gain spectrum. A full description of such
complex system needs to divide the whole QD ensembles to several
subgroups assuming the QDs are identical in each subgroup. Then, 3
rate equations related the confined QD states should be considered for
each subgroup. However, in this thesis, above approach is significantly
simplified via the single-population approximation. In detail, we as-
sume that only one group of QDs exist, which means the whole QD
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ensembles are identical and the characteristic FWHM of the homoge-
neous broadened gain profile of this single QD group is as large as the
original highly broadened gain entire spectrum (about 34 meV). Thus
only 3 rate equations are used to represent the carrier dynamics in the
GS, the ES and the ES2.

• In many papers [36, 37, 39, 27], carrier capture and relaxation from
the higher energy level towards the lower energy level are assumed to
exist only between adjacent states and there is no scattering from SCH
directly to the QD confined states. We follow also this approach so
that carriers are captured and relaxed from the 3D SCH to the QD
GS as a cascade process, as shown in Fig. 2.1.

• There is a huge set of delocalized states existing in the 2D QW and
3D barrier (SCH), and one equation for modeling the population dyna-
mics of one such state should be considered [40, 41]. In the following,
we assume that the carriers belonging to the QW states are always
under a quasi-equilibrium condition, which is equivalent to say that
the electrons in the QW conduction band states satisfy a Fermi distri-
bution defined by the electron quasi-Fermi level; the same condition
also happens for the electrons in the SCH states. This approximation
is possible because the scattering processes driving such two systems
towards Fermi distribution occur usually in a very short time scale
(30 - 50 fs) [40], which is much shorter than the optical dynamics we
concerned. Therefore, carrier dynamics in the QW and SCH states
are described only by two coupled rate equations for the total electron
densities there. We have to stress that the quasi-equilibrium distri-
bution is assumed only in the WL and the barrier, while in the QD
confined states the carrier populations are far from the equilibrium
condition.

2.2.1 Rate equation system for the current injection section

Follow these approximations, the whole set of rate equations modeling
the carrier dynamics in the entire QD system in forward bias condition
(pumping current injection) can be written as:

∂nSCH

∂t
= ηi

J

e
W − nSCH

τSCH→QW
+

nQW

τQW→SCH

− nSCH

τnr,SCH

(2.12)
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∂nQW

∂t
=

nSCH

τSCH→QW
−

nQW

τQW→SCH
−

nQW

τnr,QW

+
nQW

(
1− f̃ES2

)
τQW→ES2

+
nES2

τES2→QW

(2.13)

∂nES2

∂t
=

nQW

(
1− f̃ES2

)
τQW→ES2

− nES2

τES2→QW

− nES2

τES2→ES

(
1− f̃ES

)
+

nES

τES→ES2

(
1− f̃ES2

)
− nES2

τsp,ES2

− nES2 f̃ES2

τAug,ES2

− nES2

τnr,ES2

−Rst,ES2

(2.14)

∂nES

∂t
=

nES2

τES2→ES

(
1− f̃ES

)
− nES

τES→ES2

(
1− f̃ES2

)
− nES

τES→GS

(
1− f̃GS

)
+

nGS

τGS→ES

(
1− f̃ES

)
− nES

τsp,ES
− nES f̃ES

τAug,ES
− nES

τnr,ES
−Rst,ES

(2.15)

∂nGS

∂t
=

nES

τES→GS

(
1− f̃GS

)
− nGS

τGS→ES

(
1− f̃ES

)
− nGS

τsp,GS
− nGS f̃GS

τAug,GS
− nGS

τnr,GS
−Rst,GS

(2.16)

where Rst,k (k = GS,ES,ES2) in Eqs. (2.14), (2.15) and (2.16) represent
the stimulated emission/absorption rates from each QD state, J in 2.12 is
the applied current density and ηi is the internal quantum efficiency.

In above rate equations, nSCH(z, t), nQW (z, t) and nk(z, t) (k = GS,ES,ES2)
are the total number of electron per unit length in the barrier (SCH), QW
and the confined QD states respectively. Among them, the nk(z, t) can be
simply related to the corresponding occupation probabilities (averaged over
the transversal direction) f̃k(z, t) via the following expression:

nk(z, t) = f̃k(z, t)WNlayNdDk (2.17)

where Nlay is the number of stacked QD DWELL layers, Nd is the QD
surface density, W is the ridge width and Dk is the degeneracy of the kth

state.



CHAPTER 2. QD-BASED DUAL-STATE LASER MODELING 22

Rst,k can be calculated as follows:

Rst,k = − j

~
Nd

Hw

Dk

ϵ0cη0
Im
{
dx,kE

+p+,∗
k + dx,kE

−p−,∗k

}
(2.18)

where Hw is the width of the QW layer, p±k is the slowly varying microscopic
interband polarisation and dx,k is the x-component of the dipole matrix
element. The latter two terms will be explained later in Section 2.3.

The time constant τSCH→QW represents the characteristic capture time
from the barrier states into the QW states. This quantity actually is the sum
of the characteristic time for carrier diffusion across the SCH region and the
capture in the QW states i.e. τSCH→QW = τdiff + τcap. The diffusion time
τdiff , which relates directly to the width of SCH (HSCH), can be calculated
from the electron mobility in the conduction band as reported in [27].

QD relaxation times τQW→ES2 , τES2→ES and τES→GS governing the in-
traband dynamics of electrons are usually in the range of few picoseconds.
Unlike the sophisticated approaches used in [42], in this work, these char-
acteristic times are assumed to be a constant and independent on the QW
carrier densities, allowing therefore to significantly reduce the complexity of
the rate equation system. In addition, due to the highly reduced density of
states, we take into account the Pauli exclusion principle in the expression
for the electron relaxation rate Rk→k′(f̃k, f̃k′) (k and k′ represent the initial
and the final states respectively) in the QD states as:

Rk→k′

(
f̃k, f̃k′

)
=

f̃k(z, t)
(
1− f̃k′(z, t)

)
τk→k′

(2.19)

whereas this Pauli exclusion principle do not need to be considered if the
final state k′ is within the WL or the SCH.

Furthermore a relation between the out scattering rate Rk→k′(f̃k, f̃k′)
and the opposite in scattering rate Rk′→k(f̃k′ , f̃k) should also be considered.
In the condition that no external perturbations exist, electrons population
would tend to be a quasi-equilibrium distribution within the conduction
band states, i.e., a Fermi distribution with a given quasi-Fermi level. To
ensure this kind of quasi-equilibrium distribution, the detailed balance con-
dition between carrier relaxation and excitation processes involving the same
pair of initial and final states must be imposed:

τk→k′

τk′→k
= exp

(
~ωk′ − ~ωk

kBT

)
(2.20)

where ~ωk is the interband transition energy of each state.
Equation (2.20) represents the detailed balance condition. Based on it,

the electron escape characteristic time constants can be related with the
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corresponding capture and relaxation times via the following expressions:

τQW→SCH

τSCH→QW
=

DOSQWNlay

DOSSCHHSCH
exp

(
~ωSCH − ~ωQW

kBT

)
(2.21a)

τES2→QW

τQW→ES2

=
DES2Nd

DOSQW
exp

(
~ωQW − ~ωES2

kBT

)
(2.21b)

τES→ES2

τES2→ES
=

DES

DES2

exp

(
~ωES2 − ~ωES

kBT

)
(2.21c)

τGS→ES

τES→GS
=

DGS

DES
exp

(
~ωES − ~ωGS

kBT

)
(2.21d)

where DOSSCH and DOSQW are the effective density of states in the QW
and SCH that can be calculated as:

DOSSCH = 2

(
2πm∗SCHkBT

~2

)
(2.22a)

DOSQW =
m∗QWkBT

π~2
(2.22b)

being m∗QW and m∗SCH the electron effective masses in the InGaAs QW and
the GaAs barrier. The effective density of states DOSk (k = SCH,QW )
and the QD state degeneracies Dk appear in Eq. 2.21 in order to properly
account for the transitions between all the possible initial and final states of
the system.

Up to now the intraband scattering processes for carriers in the QD sys-
tem have been introduced, represented by the rate Rk→k′(f̃k′ , f̃k) and the
characteristic time τk→k′ of them. These processes guarantee the quasi-
equilibrium electron distribution within the conduction band states repre-
sented by a separate quasi-Fermi level within the conduction band. Besides
them, an additional rate Rrec(f̃k) has also been included to account for the
interband recombination processes which ensure the thermodynamic equi-
librium between the electrons and holes leading to a common Fermi-energy
within the band gap when there is no any external excitations, such as
the current or optical field pumping. The total interband recombination
rate consists of the contributions from the spontaneous emission, the non-
radiative recombination and the Auger recombination. That is:

Rrec
k = Rsp

k +RAu
k +Rnr

k (2.23)

The spontaneous emission involves the recombination of an electron-hole
pair and give rise to the emission of a photon simultaneously. The sponta-
neous emission rate can be written as:

Rsp
k (f̃k) =

1

τsp,k
f̃k (2.24)
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where τsp,k is the characteristic spontaneous emission time constant. This
value can be related to the dipole matrix element of the considered interband
transitions as will be described in Subsection 2.3.2.

The non-radiative recombination actually is a monomolecular recombi-
nation due to deep level traps located within the band gap of the semicon-
ductor material and it can be modelled simply as:

Rnr
k =

f̃k
τnr,k

(2.25)

where τnr,k is the characteristic time constant.
Finally, the Auger recombination involves the recombination of an electron-

hole pair and the excitation of either an electron or a hole towards higher
energy states (usually 2D quantum well states or barrier states). In this
work, Auger recombination has been taken into account as:

RAug
k =

1

τAug,k
(f̃k)

2 (2.26)

where τAug,k is the characteristic time constant.
For the QD confined states, non-radiative recombination and sponta-

neous emission recombination have characteristic rate which are usually
much larger than that for Auger recombinations. Therefore, Auger recom-
bination is usually the dominant interband recombination path [43],[44].

Equations (2.12)-(2.16) represent a complete system of equations de-
scribing the carrier dynamics within the QD system in each section of a
waveguide under current injection. While, in many photonic devices, such
as the passively mode-locked lasers and modulators, a section which is un-
der reverse voltage bias is considered also. Therefore, in next subsection, we
depict the modifications in the rate equation system in order to take into
account the influence of the reverse bias voltage.

2.2.2 Rate equation system for the reverse biased section

In the reverse biased QD waveguide (the so-called saturable absorber,
SA), a static electric field which is perpendicular to the QD layers (y direc-
tion) is applied to the p-i-n junction leading to significant changes in the
optical properties of the QD material. The effect of an applied static field
on the QD material is threefold:

• Leading to a lowering of the barrier height between the SCH and the
QW states and between the QW and the ES2 states. The carrier
escape rates from the lower energy states to the higher energy states
are enhanced.
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Figure 2.2: Schematic of the energy diagram in a reverse bias condition. Symbol 
denotes tunneling processes. Double arrows ↕ indicate possible capture (relaxation)
and escape processes.

• Leading to the formation of a triangular barrier, and the width of this
triangle may be significantly decreased to allow carrier tunneling from
the QW states and the confined QD states to the SCH states at high
applied field. This represents an additional carrier sweep-out path.

• Leading to a small red-shift of the characteristic transition energies for
carriers in the QD medium due to the weak Quantum Confinement
Stark Effect (QCSE).

Therefore, it is essential to modify accordingly the rate equations in
previous subsection (2.12-2.16) to properly describe the carrier dynamics
in a reversely biased active region. A schematic of the possible modified
intraband transitions is shown in Fig. 2.2.

The intraband carrier dynamics within the QD states are significantly
influenced by static electric field. First, this reverse field results in a re-
duction in the original potential barrier, therefore, an enhanced thermionic
escape from the QD states to the WL and SCH states occurs [45]. The
electric field Fy can be simply related to the reverse voltage according to
Fy = V+Vbi

HSCH
, where Vbi > 0 is the built-in potential of the junction, V > 0

is the applied voltage and HSCH is the width of the separate confinement
heterostructure. And the linear reduction in the confinement potential bar-
rier can be estimated simply as 1

2FyHw, where Hw is the width of the QW
layers. Then the electric field dependent escape times can be simply mod-
elled via following modified expressions for the original characteristic escape
times (τQW→SCH(0), τES2→QW (0) when Fy = 0):

τQW→SCH(Fy) = τQW→SCH(0) exp

(
−eFyHw

kBT

)
τES2→QW (Fy) = τES2→QW (0) exp

(
−eFyHw

kBT

) (2.27)
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Furthermore, at sufficiently high reverse voltages, the induced slope in
the band structure allows for efficient tunneling processes of electrons from
the QD and QW states towards the bulk SCH states [46, 45]. These tun-
neling escape rates can be estimated using the Wentzel-Kramer-Brillouin
approximation for a triangular well [45], [47]:

Rtun,k(z, t) = ftun exp

(
−4

3

√
2m∗SCH(~ωSCH − ~ωk)

3
2

e~Fy

)
nk(z, t)

Rtun,QW (z, t) = ftun exp

(
−4

3

√
2m∗SCH(~ωSCH − ~ωQW )

3
2

e~Fy

)
nQW (z, t)

(2.28)

where ftun = ~π
2m∗H2

w
is the characteristic barrier collision frequency for elec-

trons and k = GS,ES,ES2.
Above described enhanced thermionic escape rates and the additional

tunneling processes were found to be the main influences in the intraband
carrier dynamics induced by the an applied electric field. However, the
interband carrier dynamics are also influenced by the reverse voltage. The
QCSE which has been previously observed in QW devices has also been
clearly observed in QD systems [46]. This effect leads to the modifications in
the QD wave functions and therefore the shift in the characteristic interband
transition energies from the QD states [46], [48]. However, the strength of
this effect is significantly smaller than that in quantum wells. In our model,
the QCSE in reverse biased saturable absorber based on QDs is neglected.
To model carrier dynamics in the reversely biased junction we need therefore
to introduce in the rate equation system Eqs. (2.12)-(2.16) the expressions
for the electric field dependent characteristic escape times Eq. (2.27) and
for tunneling rates Eq. (2.28).

Finally, due to the applied electric field, carriers in the intrinsic barrier
region are quickly swept out from the active region. Such additional drift
current should be introduced in the modified rate equation for carriers in
the SCH:

∂nSCH

∂t
= −µdFynSCH

HSCH
− nSCH

τSCH→QW
+

nQW

τQW→SCH

− nSCH

τnr,SCH
+
∑
k

Rtun,k +Rtun,QW

(2.29)

where µd represents the GaAs electron mobility and k = GS,ES,ES2.

In this section, a complete rate equation system have been established for
QD-based waveguide under current injection or reverse voltage bias. These
equations link the carrier dynamics in the QD system with the microscopic
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polarisations p±k (z, t) through the stimulated emission terms (Eq. (2.18)).
While in Section 2.1, the introduced travelling wave equation Eq. (2.9) sup-
ply a link between the electromagnetic field dynamics with the QD optical
response through a macroscopic polarisation term. Therefore, what are still
missing are the expressions for the micro/macro polarisation terms and the
relation between them. Furthermore, the spontaneous emission noise which
is another link path between the travelling wave equation (2.9) and the rate
equation system (Eqs. (2.14) - (2.16)) should also be properly considered.
In next section, these problems will be solved.

2.3 Interaction between the electromagnetic field
and the active medium

In this section, we will introduce the quantum mechanical description of
the optical properties of the semiconductor QDs.

2.3.1 Polarisation induced by an electromagnetic field

The optical response of each QD to an electromagnetic field can be solved
from the density-matrix theory. Follows this approach the coherent and
incoherent dynamics induced by the external optical field in microscopic
interband polarisation can be described as [40], [35]:(

d

dt
− jωk + Γ

)
pk(t) = +

j

~
E⃗ · d⃗k (2fk(t)− 1) (2.30)

In Eq. (2.30), we actually consider the microscopic interband polarisa-
tion as a dephasing process and 1/Γ is the characteristic dephasing time
(also can be understood as the FWHM of the homogeneous broadened gain
spectrum). It is clearly shown that the QD pk depends on the local electric
field E⃗. Therefore, consistently with what we already did for the E⃗ in Sec-
tion 2.1, the elimination of the transverse coordinates (x, y) dependence and
the slowly varying approximation are also introduced to pk and the slowly
varying microscopic interband polarisations p±k are defined as:√

2ω0µ0

β0

(
p+k (z, t)e

−jβ0z + p−k (z, t)e
+jβ0z

)
ejω0t =

=

∫∫
pk(x, y, z, t)e

′∗
x (x, y)dxdy

(2.31)

And the corresponding slowly varying macroscopic polarisation P±(z, t)
in Eq. (2.9) can then be written as:

ΓxyP
±(z, t) =

Nd

hw

∑
k=GS,ES,ES2

2d∗x,kp
±
k (z, t) (2.32)
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Equation (2.7) allows to establish a connection between the classical the-
ory of the electromagnetic wave propagation in a optical waveguide described
in Section 2.1 and the optical properties of the QD ensembles.

Furthermore, the definition equation for the slowly varying polarisations
p±k change to:

∂p±k
∂t

(z, t) = (j(ωk − ω0)− Γ) p±k (z, t)+

+
j

~
Γxydx,k

(
2f̃k(z, t)− 1

)
E±(z, t)

(2.33)

Comparing with respect to Eq. (2.30), we stress that in this equation
ω0 is the selected reference frequency and additionally the field confinement
factor Γxy is introduced to describe the incomplete overlap between the
transverse guided mode and the QD active layers.

By performing Fourier and inverse Fourier transforms of Eq. (2.33), ex-
ploiting the fact that polarisation dephasing time (1/Γ ≃100 fs) is much
faster than the occupation probability dynamics in the QD states (the adi-
abatic approximation) and using Eq. (2.32), we can rewrite the expression
for P±(z, t) as:

ΓxyP
±(z, t) =Γxy

∑
k

DkNd

Hw

j|dy,k|2

~Γ
·(

2f̃k(z, t)− 1
) [

Lk(t)⊗ E±(z, t)
] (2.34)

where Lk is a complex Lorentzian function centred at frequency ωk − ω0,
being ωk the center interband transition frequency of state k. The frequency
domain and time domain forms of this Lorentzian function are:

Lk(Ω) =
1

1 + jΩ−ωk+ω0
Γ

(2.35)

Lk(t) = Γ exp (j(ωk − ω0)t) exp (−Γt) (2.36)

Comparing to previous definition of the susceptibility Eq. (2.7), we can
therefore define the slowly varying QD susceptibility as:

χ(t, z) =
∑
k

DkNd

Hwϵ0

j|dx,k|2

~Γ
·
(
2f̃k(z, t)− 1

)
Lk(t) (2.37)

And the time varying QD gain and refractive index spectra which are
tightly related to the imaginary and real parts of the susceptibility of the
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QD system are defined as follows:

g(z, t,Ω) =
ω0

cη0
Im {χ(z, t,Ω)} =

=
∑
k

g0,k ·
(
2f̃k(z, t)− 1

)
Re {Lk(Ω)}

(2.38)

∆η(z, t,Ω) =
1

2η0
Re {χ(z, t,Ω)}

= −
∑
k

c

ω0
g0,k ·

(
2f̃k(z, t)− 1

)
Im {Lk(Ω)}

(2.39)

where we defined:

g0,k =
ω0DkNd

cη0Hwϵ0

|dx,k|2

~Γ
(2.40)

g0,k is the gain coefficient in each QD state. It is one of the most impor-
tant parameters in the simulation and is usually obtained by fitting the
experimental measured gain or absorption spectrum.

Equations (2.37), (2.38) and (2.39) can be mathematically explained as
that, the optical response of the QD active medium can be described by the
filtering of the electromagnetic field via different Lorentzian filters associ-
ated to each interband transition from QDs. The FWHM of the Lorentzian
function is given by 2Γ. Therefore, it is proportional to the dephasing rate
for the microscopic interband polarisation. Usually, we call this broadening
mechanism the homogeneous broadening. We emphasize again that the in-
homogeneous broadening mechanism is neglected in the simple model (see
Section 1.2).

Through above derivations, one can couple directly the travelling wave
equation Eq. (2.9) with the rate equation system describing carrier dynamics
in the QD layers (Eqs. (2.12)-(2.16)) through the QD susceptibility Eq.
(2.37), therefore eliminating the equations for the microscopic polarisations.
To this end, the stimulated emission/absorption rate appearing in the rate
equation system can be written as follows:

Rst,k =
Γxy

~ω0
g0,k

(
2f̃k(z, t)− 1

)
·

Re
{
E+(z, t)

[
Lk(t)⊗ E+(z, t)

]∗
+ E−(z, t)

[
Lk(t)⊗ E−(z, t)

]∗}
(2.41)

Up to now, the first term (polarisation) in the travelling wave equation
Eq. (2.9) has been successfully solved and coupled to the rate equation
system. We will complete the whole model by introducing proper expression
for the second term in Eq. (2.9) (the spontaneous emission noise source) in
next subsection.
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2.3.2 Spontaneous emission noise

Spontaneous emission is one of the major recombination processes of
electrons and holes injected in the QD layers. We need a proper description
of the spontaneous emission mechanism which links the phenomenological
spontaneous emission rate Eq. (2.24) characterized by the recombination
time τsp,k in the rate equation system and the effective current density
J±(z, t) describing spontaneous emission noise in the travelling wave equa-
tion Eq. (2.9) must be considered.

Unlike the rigorous treatment of the spontaneous emission noise in semi-
conductors in [49] and [50], we obtain the expression for the power spectral
density of the spontaneous emission from the expression of the QD gain spec-
trum Eq. (2.38), following the Einstein theory in Appendix 6 (pp. 459-472)
of Coldren’s book [51]. The spontaneously emitted power per unit length,
per unit bandwidth, generated from the QD ensemble in one longitudinal
section of the device, and coupled with the transverse guided mode can be
written as:

|J±(z,Ω)|2 = βsp
2

NdWNlay

∑
k

Dk
Γ~ωk

π
Rsp,k(z, t)Re {Lk(Ω)}

=
βsp
2

NdWNlay

∑
k

Dk
Γ

π

~ωkRsp,k(z, t)

1 +
(
Ω−ωk+ω0

Γ

)2 (2.42)

where Rsp,k is the spontaneous emission rate as in Eq. (2.24); βsp is the
spontaneous emission coupling factor which takes into account the fact that
only a small fraction of the total spontaneously emitted radiation couples
with the transverse mode of the optical waveguide (typical values for βsp
are around 10−3 − 10−4); the factor 1

2 appearing in Eq. (2.42) is due to the
assumption that half of the spontaneous emission couples with the guided
mode propagating along the forward direction and half couples with that
along the backward direction.

In this subsection, we have provided an expression for the power spectral
density of the spontaneous emission noise source appearing in the travelling
wave equations, and it has been coupled with the spontaneous emission
rate term in the travelling wave equation. So far, complete description of
the electromagnetic field dynamics and the carrier dynamics in a QD-based
device have been presented. In next section, we introduce therefore how to
solve this equation set numerically.

2.4 Single-population dual-state FDTW model

The finite difference travelling wave model actually represents a full de-
scription of the dynamics happening in the self-assembled QD-based lasers.
This model bases on the direct solution of the travelling wave equation Eq.
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(2.9) through the finite difference scheme where the polarisation and the
spontaneous emission terms supply links between the intracavity circulating
electromagnetic fields and the intracavity carriers. In the following, we con-
sider a Fabry-Perot (FP) laser with the active region consisting of multiple
InAs QD layers and emitting around 1.3 µm and use it as a example to
describe the FDTW model.

In the FDTW model, we consider only the optical responses arising from
the QD GS and ES, since we assume that the contributions from higher QD
states are significantly detuned with respect to the main lasing frequencies
and therefore can be neglected. Consequently the optical field E± is split
into two uncoupled parts E±k (k = GSorES), one for the GS and one for
the ES, and each one propagates in the laser cavity with its own group
velocity Vg,k. In order to correctly describe the dynamics of the optical
fields generated from two states with distinct wavelengths, it is essential to
include also the group velocity differences between these two fields in the
numerical model. Therefore two travelling wave equations are solved at the
GS and ES wavelengths respectively (k = GSorES):

±
∂E±k
∂z

+
1

vg0,k

∂E±k
∂t

= −αi

2
E±k − j

ω0

2cη0ϵ0
ΓxyP

±
k (z, t) + J±k (z, t) (2.43)

QD optical susceptibility

The field-induced polarisation actually indicates the variation in the op-
tical field through the susceptibility. The real and imaginary parts of the
optical susceptibility correspond to the refractive index changes and the gain
respectively. The former parameter induces variation in the phase of the op-
tical field, whereas the latter parameter induces variation in the amplitude
of the optical field.

As pointed out just before, there are two separate optical fields, therefore
the optical responses in terms of the gain and the refractive index changes
should be considered also separately. So the total gain/refractive index
spectrum consists of two distinct bands, as shown in Fig. 2.3. This approx-
imation can significantly reduce the simulation time step ∆t, as it should
only ensure the Nyquist frequency 1/∆t is much larger than the FWHM of
each distinct band not the total gain spectrum of a QD medium.

Take GS for example; substitute Eq. (2.35) in Eqs. (2.38) and (2.39), the
frequency domain distribution of the gain and the refractive index changes
can be rewritten as:

gGS(Ω) = gGS(ω − ωGS)

= g0,GS ·
(
2f̃GS(z, t)− 1

) Γ2

Γ2 + (ω − ωGS)2
(2.44)
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(a) (b)

Figure 2.3: Simple schematic of the gain (a) and refractive index change (b) spec-
trum. The blue curves represent the total spectrum profile, while the green curves
represent the profiles of these two parameters when we consider two distinct bands.

∆ηGS(Ω) = ∆ηGS(ω − ωGS)

=
c

ωGS
g0,GS ·

(
2f̃k(z, t)− 1

) Γ(ω − ωGS)

Γ2 + (ω − ωGS)2
(2.45)

As shown in Fig. 2.3, if consider the optical field with ω0 = ωGS , we

obtain that gGS(Ω = 0) = g0,GS ·
(
2f̃GS(z, t)− 1

)
and ∆ηGS(0) = 0. gGS(0)

in time domain has the form as:

gGS(t) = g0,GS ·
(
2f̃GS(z, t)− 1

)
Γ exp (−Γt) (2.46)

Whereas, if consider the influence of the GS field on the gain and refrac-
tive index change in the ES (ω = ωES), we can find that gGS(ωES −ωGS) is
very small (neglected) and ∆ηGS(ωES − ωGS) can be written as:

∆ηGS(ωES − ωGS) = − c

ωGS
g0,GS ·

(
2f̃k(z, t)− 1

)
β (2.47)

where β is defined as:

β =
Γ(ωES − ωGS)

Γ2 + (ωES − ωGS)2
(2.48)

Equation (2.47) represents the instant changes in the real part of ES the
propagation constant, induced by the QD GS. This contribution is the main
reason for the non-zero chirp in the ML pulses due to self-phase modulation
[36]. Similar equations can also be derived for ES, when assuming ω0 = ωES .

Time stepped solution of the travelling wave equation

To derive a proper finite-difference solution of the travelling wave equa-
tion Eq. (2.43), first we define a longitudinal discretization of the laser cavity
with a unit step ∆z, related with the simulation time step as ∆t = ∆z

vg,k
. ∆z
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should be small enough so that the dynamic changes of the field and the
carriers are acceptable small when the pulse crosses each ∆z. Since vg,GS

dose not equal to vg,ES , the corresponding simulation unit steps are also
different, and ∆zGS = vg,GS∆t and ∆zGS = vg,ES∆t respectively.

Following the finite difference scheme in [24], we obtain the equation
describing the cascade relation between the GS optical field at current slice
zj ±∆z and that at previous slice zj :

E±GS(z
GS
j ±∆zGS , t) = J±GS(zj , t)∆zGS + E±GS(z

GS
j , t−∆t)

− αi

2
E±GS(z

GS
j , t−∆t)∆zGS

+ Γxyg0,GS

(
2f̃GS(z

GS
j , t−∆t)− 1

)
I±GS(z

GS
j , t−∆t)∆zGS

+ jβΓxyg0,ES

(
2f̃ES(z

GS
j , t−∆t)− 1

)
E±GS(z

GS
j , t−∆t)∆zGS

(2.49)

E±ES(z
ES
i ±∆zES , t) = J±ES(zi, t)∆zES + E±ES(z

ES
i , t−∆t)

− αi

2
E±ES(z

ES
i , t−∆t)∆zES

+ Γxyg0,ES

(
2f̃ES(z

ES
i , t−∆t)− 1

)
I±ES(z

ES
i , t−∆t)∆zES

− jβΓxyg0,GS

(
2f̃GS(z

ES
i , t−∆t)− 1

)
E±ES(z

ES
i , t−∆t)∆zES

(2.50)

where we defined I±k (zj , t) = Lk ⊗ E±(zj , t), representing the forward and
backward optical field filtered by the complex Lorentzian filters which de-
scribe the homogeneous broadened line-width of each considered interband
transition (GS, ES). In the following, we use the notation for GS as an ex-
ample to introduce the numerical model, but one should note that when
calculating the quantities for the ES k = ES, we need to be use zi.

Similarly, the finite difference solution for the filtered optical field at
current slice can be calculated as (k = GSorES):

I±k (zj , t) = e−Γ∆tI±k (zj , t−∆t) +
1

2
Γ∆te−Γ∆tE±(zj , t−∆t)

+
1

2
Γ∆tE±(zj , t)

(2.51)

Expression (2.46) is used in order to obtain Eq. (2.51). It actually cor-
responds to the implementation of a simple Infinite Impulse Response (IIR)
numerical filter. Based on above considerations, the stimulated emission
rate Eq. (2.41) appearing in the rate equation system Eqs. (2.15)-(2.16)
can be simply written as (k = GSorES):

Rst,k(zj , t) =
Γxy

~ω0
g0,k

(
2f̃k(zj , t)− 1

)
·

Re
{
E+(zj , t)I

+,∗
k (zj , t) + E−(zj , t)I

−,∗
k (zj , t)

} (2.52)
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Numerical modeling of spontaneous emission noise

A similar procedure can be used to numerically calculate the spontaneous
emission noise source J±k (zj , t)∆zk appearing in Eqs. (2.49) and (2.50). The
random spontaneous emission fields generated in different slices are required
to be completely independent and have a power spectral density given by Eq.
(2.42). These requests can be achieved by considering a set of independent
random processes φ±k (zj , t), corresponding to the spontaneous emission in
each longitudinal slice of the cavity. In addition, exp(jφ±k (zj , t)) has zero
mean and unit mean square value.

In order to obtain the correct power spectral density, the random pro-
cesses exp(jφ±k (zj , t)) are also filtered by the complex Lorentzian filter Lk:

J±k (zj , t)∆zk =

√
βsp~ω0vg,knk(zj , t)

2πΓτsp,k
I±sp,k(zj , t) (2.53)

where I±sp,k(zj , t) = Lk ⊗ exp(jφ±k (zj , t)) can be calculated via the approach
analogous to obtain the Eq. (2.51):

I±sp,k(zj , t) = e−Γ∆t

(
I±sp,k(zj , t−∆t) +

1

2
Γ∆tejφ

±
k (zj ,t−∆t)

)
+

1

2
Γ∆tejφ

±
k (zj ,t)

(2.54)

Numerical model implementation

Up to here, we presented a complete set of numerical solutions for the
electromagnetic field, the polarisation and the spontaneous emission noise
terms. To solve them numerically, we have to first discretize properly the
time axis with unit step ∆t and the laser cavity in its longitudinal direction
(z-axis) with unit step ∆z.

However, one may note that we include different group velocities for the
GS and ES fields in the travelling wave equation Eq. (2.43). Therefore,
for a given time step ∆t, the corresponding unit steps for the GS and ES
travelling wave equations are ∆zGS = vg,GS∆t and ∆zES = vg,ES∆t, re-
spectively. Furthermore, the spatial grids for these two states have different
total numbers that NES > NGS since vg,GS > vg,ES1 , which means that Eqs.
(2.49) and (2.50) for GS and ES actually are calculated at different spatial

grids
{
zGS
j

}
and

{
zES
i

}
. On the contrary, these two equations are coupled

with each other through the rate equation system and therefore needed to be
solved at the same longitudinal slice of the device. To overcome this prob-
lem, we consider the more dense grid

{
zES
i

}
to solve the rate equations in

each longitudinal section of the cavity and to calculate the spatio-temporal
distribution of the occupation probabilities in the QD states f̃k(z

ES
i ) and
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f̃k(z
GS
i ), which appear in the ES field equation Eq. (2.50). While the oc-

cupation probability distributions in the GS field equation Eq. (2.49) must

be evaluated on a different spatial grid
{
zGS
j

}
. To compute f̃(zGS

j , t) at the

zGS
j point, we therefore consider an average over the occupation probability
values computed from the rate equations in the 2 nearest neighbouring slices
belonging to the ES grid

{
zES
i

}
.

Figure 2.4: Simple schematic of a typical two-section passively ML FP laser. For-
ward biased gain section (yellow) and the reverse biased saturable absorber (light
blue) are highlighted. R0 and RL stand for the reflectivities at the saturable ab-
sorber and the gain section side facets respectively.

As shown in Fig. 2.4, a typical two-section passively ML Fabry-Perot
laser consists of a forward biased gain section and a reverse biased saturable
absorber section. In our model, each longitudinal slice of the cavity can
be assumed either forward or reverse biased, representing respectively the
electrically isolated gain sections or saturable absorbers. The slice ensembles
together with the reflectivity boundary conditions at two end facets establish
a complete FB cavity.

Once the device structure has been defined, all the model variables are
initialized. Then at each time step, the following procedures are performed,
and iteratively repeated over the whole simulation time span:

• The rate equation system Eqs. (2.12) to (2.16) are solved in every
longitudinal slice

{
zES
i

}
to obtain the occupation probabilities in the

QD states at the current time instant t;

• The filtered optical terms I±k (t) and I±sp,k(t) at the current time instant

t are evaluated for the GS and the ES at different grids
{
zGS
j

}
and{

zES
i

}
respectively from Eqs. (2.51) and (2.54);

• The corresponding spontaneous emission noise generated in each slice
zj or zi are computed according to Eq. (2.53);

• The forward and backward travelling fields shift one step further in the
cavity according to Eqs. (2.49) or (2.50) and the boundary conditions
Eq. (2.11).

Note that in each iteration the variables for GS are calculated according
to our previous description.
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In this section, we explained the numerical scheme to solve the mathe-
matical equations presented in previous three sections, which represents a
complete model for simulation of the dynamics of the optical field and the
carriers in a QD-based laser. Especially, we take into consider the group
velocity differences between GS and ES fields, so that devices involving op-
tical emissions from both these two transitions can be simulated. However,
to do so, the computational cost is relatively high. In principle, if the to-
tal static losses of one laser is not very high and can be satisfied by the
gain from GS at a moderate injection current, there will be no stimulated
emission from the ES transition and only GS emission can be observed. In
this case, we can safely reduce the computational cost of this model by as-
suming vg,ES = vg,GS and E±ES = 0. In this way, only the optical field
from GS transition is fully simulated with a significantly reduced computa-
tional time. But even exploiting this approximation, the total simulation
time using FDTW model still increases with the total length of the device,
since the spatial discretization number NGS is controlled by the simulation
step NGS = L/∆zGS = L/∆tvg,GS which should be small enough to ensure
validity of previous slowly varying approximation and to obey the Nyquist
sample theorem. Thus, the investigation of long cavity devices using this
model is still quite time consuming. In next section, a dual-state DDE model
will be introduced which has a significantly reduced computational cost that
is cavity length independent.

2.5 Multi-section dual-state DDE model

The alternative simplified DDE model started from the generalization
of the analytical models from New and Haus [52], [53]. The standard DDE
model was originally developed by Vladimirov et al. in [54] and [55] for
the analysis of QD ML lasers. By assuming a unidirectional ring cavity,
one can derive from the travelling wave equation an alternative set of equa-
tions to describe the field and carrier dynamics in the lasers. This equation
set based on a novel delayed differential equation and a rate equation sys-
tem. Unlike the FDTW model which can be easily applied to lasers with
both unidirectional ring cavity and FP cavity, this model is originally valid
only for former case. Nevertheless, qualitative agreement between DDE and
FDTW models when performing the simulation of FP QD lasers has also
been demonstrated (see [56], [57]).

Optical field dynamics

To do the simulations of a FP cavity ML laser using the DDE model, a
equivalent unidirectional ring cavity is assumed with the total length being
twice of the length for the FP cavity LRing = 2LFP, as shown in Fig. 2.5a.
Similarly, length of the gain and the SA sections for this ring cavity should
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(a) (b)

Figure 2.5: Simple schematic of the equivalent unidirectional ring laser described
by the standard DDE model (a) and the MS-DDE model (b). Forward biased
gain section (yellow) and the reverse biased saturable absorber (light blue) are
highlighted. The simulated device consists of F isolated sections; red lines/arrows
indicate the non-saturable losses introduced at each interface between adjacent
sections (from reference [58]).

be LRing
gain = 2LFP

gain and LRing
SA = 2LFP

SA. With respect to the TDTW model
[59], the DDE model has several distinguished advantages in terms of com-
putational cost and simplicity allowing therefore large parametric analysis of
ML lasers. However, the fundamental underlying hypotheses, which enable
its high efficiency, also reduce in part its accuracy. In the standard DDE
model [54], a reference framework moving at the same group velocity of the
pulse is assumed, by considering the following coordinate change from (t, z)
to (τ = t − z/vg, z). With this assumption, the complex field dynamics in
the laser cavity can be simply represented just by the field at the reference
section z = 0 and the slowly varying field envelope E(τ) in the reference
section is governed by the following equation:

dE(τ)

dτ
= −ΓE(τ) + ΓR(τ − T )E(τ − T ) (2.55)

where T is the cold cavity round trip time given by T = LRing/vg with vg
the group velocity in the waveguide and LRing the equivalent unidirectional
ring cavity length, Γ is the width of a Lorentzian function representing the
spectral filtering effect in the laser cavity due to the finite gain spectral
bandwidth and R(τ) represents the round trip gain or losses experienced by
the field within the cavity.

Equation (2.55) can be directly derived from the travelling wave equa-
tions Eqs. (2.49) and (2.50) by introducing several suitable approximations.
The detail derivation of it can be found in [54].
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However, using this approach, all the distributed mechanisms such as
the modal gain, the intrinsic losses, and the filtering effect due to finite gain
spectrum bandwidth are modeled as lumped elements, limiting the accuracy
of this model.

In order to improve the agreement between the DDE and the FDTW
model, a multi-section DDE (MS-DDE) model has been proposed in [58],
partially overcomes the problems in the standard DDE model by considering
the laser cavity composed by an arbitrary number F of electrically isolated
sections. A schematic of the proposed structure is shown in Fig. 2.5b. In
this way, the modal gain and the unsaturable losses (the intrinsic losses)
are considered distributed in a certain sense. As being compared in detail
with the results from TDTW in [58], this MS-DDE model allows reliable
and more quantitative description of the QD ML laser with respect to the
standard DDE model and its low computational demand is preserved at
the same time. However, in this model, it is assumed that the GS and ES
field have the same group velocity, so the pulses from these two states are
propagating with the same speed.

In this thesis, in order to take into account the desynchronization of ES
and GS pulses due to their different group velocities, we approximate it as a
lumped effect at the reference section z = 0. Thus, in this improved version
of the MS-DDE, two delayed differential equations with different delay times
are exploited, governing the time-domain evolution of the field envelope of
GS and ES respectively:

dEGS(τ)

dτ
= −ΓEGS(τ) + ΓR(τ − TGS)EGS(τ − TGS) (2.56a)

dEES(τ)

dτ
= −ΓEES(τ) + ΓR(τ − TES)EES(τ − TES) (2.56b)

where parameters have the same meanings as in Eq. (2.55) and the ad-
ditional subscripts are used to distinguish the corresponding confined QD
state.

Above two equations govern the evolution of the optical fields from GS
and ES transitions. The basic property of all the DDE model is that we
consider a reference framework moving with the pulse after doing the co-
ordinate change from (t, z) to (τ = t − z/vg,k, z). Therefore, E(τ) actually
means the field amplitude of each point on the pulse and R(τ) is the round
trip gain for the optical field at that point. To explain the physical meaning
of Eq. (2.56), we rewrite it as:

Ek(τ) = (Γ exp(−Γτ))⊗ (Rk(τ − Tk)Ek(τ − Tk)) (2.57)

From this equation, we can immediately find that the first right-hand-
side term is the time domain form of a Lorentzian function (see Eq. (2.35)).
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So Eq. (2.57) means that the ML pulse crossing the reference section (z = 0)
at a certain time Ek(τ) should equal to the pulse crossing the same section at
one round trip time before Ek(τ−Tk) modified by the gain Rk(τ−Tk) and the
spectral filtering effect Γ exp(−Γτ) it experienced during in this round trip.
After one complete round trip within the cavity, based on Haus’s analytic
derivation [53], the criteria to establish a stable ML in absence of spectral
filtering is that Rk(τ−Tk) = 1 when Ek(τ−Tk) ̸= 0 whereas Rk(τ−Tk) < 1
when Ek(τ − Tk) = 0.

Being F the number of the electrically isolated sections in the laser cav-
ity and Lm the length of the mth section, the total ring cavity length is
LRing =

∑F
m=1 Lm and the cold round trip time for these two optical fields

are calculated as Tk = LRing/vg,k (k = GS,ES).
To calculate the optical field profile at current time instant, the gain

experienced by the pulse at previous round trip in the cavity Rk(τ − Tk) is
therefore needed. This term can be computed as:

Rk(τ − Tk) =

F∏
m=1

Bk,m(τ − Tk)Mm; (2.58)

where Bk,m describe the gain experienced by the field at GS or ES transition
when travelling across the mth section and Mm describes the non saturable
losses introduced at the interface between the mth and (m+1)th section.

The term Bk,m includes both the amplification/attenuation and the
phase changes, which is time dependant. It can be written as:

BGS,m(τ−TGS) = exp(Γxy ḡGS,m(τ−TGS)Lm) exp(jβΓxyḡES,m(τ−TGS)Lm)
(2.59)

BES,m(τ−TES) = exp(Γxy ḡES,m(τ−TES)Lm) exp(−jβΓxy ḡGS,m(τ−TES)Lm)
(2.60)

where β as already defined in 2.4, represents the changes in the real part of
the propagation constant, induced by the ES field at the GS and vice versa.

Since we discretize the whole device to only few sections (F usually is
not very large), ḡk,m(τ) actually is the averaged gain/absorption for the GS
or ES in the mth section. And can be calculated as ḡk,m(τ) = g0,k(2f̄k,m−1)
with f̄k,m is the occupation probability averaged over the mth section.

While the term Mm includes intrinsic waveguide losses experienced by
the field when travelling across the mth section and power extraction losses√
Km localized at two end facets (the reflectivity). This term is a time

independent quantity at each interface between adjacent sections:

Mm =
√

Km exp
(
−αi

2
Lm

)
; (2.61)
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When considering a FP cavity ML laser, the total discretization number
F should be even, and Mm should be chosen as:

Mm =


√
RL exp

(
−αi

2 LF

)
if m = F√

R0 exp
(
−αi

2 LF/2

)
if m = F

2

exp
(
−αi

2 Lm

)
if m ̸= F and m ̸= F

2

(2.62)

To solve the above equations numerically, there should be four vectors in
the program which store GS/ES gain and optical field data within a entire
round trip time, since for example in Eq. (2.56) both the field at current time
instant and the field at one round trip time before are needed. Originally,
the vector for GS gain should have a length of only NGS = TGS/∆t which is
smaller than NES , being ∆t the simulation time step. However, as we have
described in Section 2.4, the refractive index changes in the ES are mainly
induced by the polarisation of GS through the parameter β. Therefore,
consistently with what shown in Eq. (2.60), the GS gain value upto one ES
round trip time TES (TES > TGS) before should be stored. So the GS gain
vector actually have the same length as that for the ES gain vector. Under
this condition, in order to preserve correct round trip period for GS pulse
circulating within the cavity, in the program, we consider two indexes for the
GS gain vector, which rotate in the vector with different speeds vg,GS and
vg,ES , and therefore identify the location of gGS(τ −TGS) and gGS(τ −TES)
respectively.

Since we calculate the optical field at the reference section when z = 0,
therefore τ = t− 0/vg,k = t. Then the numerical solution of Eq. (2.56) can
be written as:

Ek(t) = Ek(t−∆t) + ∆t · dEk(τ)

dt
+ Γ

√
βsp∆t · ejϕk (2.63)

where the last term takes into account the spontaneous emission contribu-
tions.

Carrier dynamics

The temporal dynamics of f̄k,m in each section of the ring cavity is calcu-
lated using the associated rate-equation system, which describes the carrier
distribution dynamics in the QD medium. Due to the inherent hypothesis
behind the DDE approach, f̄GS,m and f̄ES,m are computed assuming that
the two fields are propagating with the same group velocity of the ES vg,ES ,
within the cavity. The relative delay between these two fields, being TGS

different from TES , is introduced only as a lumped element at the reference
section z = 0 to describe the field desynchronization. This approxima-
tion is possible because the difference between TGS and TES is indeed less
than 1 ps, so comparable with the typical QD carrier relaxation time in the
sub-picosecond range [60], [61] and much shorter than the carrier radiative
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or non-radiative recombination time (hundreds ps to several nanoseconds).
The values of these parameters will be shown in following chapter when we
discuss the real device performances.

Above mentioned rate equation system is almost identical to the one used
in the TDTW model and described in Section 2.2 apart from the stimulated
emission term. In this modified MS-DDE model, the stimulated emission
rate at current time instant is instead calculated as:

Rstim
k,m (τ) =

(
|Bk,m(τ)|2 − 1

)(m−1∏
n=1

|Bk,n(τ)|2M2
n

)
|Ek(τ)|2

~ωkLm
; (2.64)

Physical meaning of above equation can be interpreted as that the total
power lost at time τ in the active medium due to the stimulated emission
recombination from state k in the mth section ~ωkR

stim
k,m Lm can be simply

calculated as the difference between the instantaneous power coming out
from the considered mth section

∏m
n=1 |Bk,n(τ)|2M2

n|Ek(τ)|2 and the instan-
taneous power going into the mth section

∏m−1
n=1 |Bk,n(τ)|2M2

n|Ek(τ)|2.

Output power

The output power from the reference section z = 0, is calculated as:

P out
k (τ) =

1−MF

MF
|Ek(τ)|2 (2.65)

Up to now, we present a complete equation set Eqs. (2.56) - (2.65)
describing the temporal evolution of the field Ek(τ) in the reference section
z = 0.

As been demonstrated in [58], quantitative agreement between the sim-
ulation results obtained from the FDTW model and the DDE model can be
achieved starting from rather small spatio discretization number F . In the
following, with this modified MS-DDE model, we chose to use F = 28 for
the whole ring cavity consisting of 20 gain sections and 8 saturable absorber
sections. This number is significantly smaller than the spatio discretization
number for the same device using FDTW model, putting in evident that
the MS-DDE model is much less time consuming for intense parametric
investigation. However, since we consider a unidirectional ring cavity, the
self-colliding effect happing close to two end facets is absent in this model.
This effect indicates that the pulse interacts with itself in the SA and gain
sections due to the coupling between the forward and backward propagating
fields within the FP cavity. Therefore, in the investigation where this effect
is dominant or crucial, we should employ the FDTW model.
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2.6 Conclusion

In this chapter, theoretical equations governing the electromagnetic field
propagation, the carrier population and the coupling between above two
effects for the QD-based semiconductor lasers have been reported. In order
to solve these equations numerically, two models, the FDTW and the revised
MS-DDE, have been introduced. In both model, we paid special attention
to include the group velocity differences between the optical fields at GS
and ES wavelengths, so that the optical fields desynchronization and other
related properties happing in the QD lasers involving emission from both
QD states can be reliably simulated.

Although in this thesis these two models are mainly used to simulate the
QD two-section passively ML lasers in Chapter3, they can be easily general-
ized and applied to lasers where not the mode locked pulse but the continu-
ous wave (CW) emission happens. Furthermore, they can also be modified
to simulate dynamics in the single-passing devices such as the semiconductor
optical amplifier when an optical pulse passing through.

In addition, the steady state simulation results of the rate equation sys-
tem described in Section 2.2 will be used as a input to the beam propagation
method (BPM) model in Chapter 4 to simulate the properties of an optical
beam propagating in a SOA. With the help of the results from the rate
equation system, the gain saturation effect which has been experimentally
observed in high power SOAs can be involved in the standard BPM model
in a rigorous way.



Chapter 3

Passively mode locked QD
lasers

Exploiting the FDTW and the revised MS-DDEmodels, the InAs/InGaAs
QD-based FP passively ML lasers emitting around 1.3 µm are systemati-
cally investigated in this chapter. This particular class of the monolithic QD
lasers allows the generation of short pulses separated with equal temporal
space, i.e., with well defined repetition frequency which in principle equals to
the round trip rate of the pulse within the cavity. The first demonstration of
mode locking pulse generation using InAs/InGaAs QD material was in 2001
by Huang et al. [62]. Since then, intensely experimental investigations have
been performed in this kind of devices in order to achieve better ML prop-
erties. Due to the inherent advantages of the QD semiconductor medium
that has been introduced in Chapter 1, QD passively ML lasers are expected
to achieve better performances in some aspects with respect to the QW or
the bulk ML lasers. Up to now, experimental results have demonstrated
high quality pulses with repetition frequency from few hundreds of MHz to
hundreds of GHz [63], [64], pulse width ranging from tens of picosecond to
hundreds of femtosecond [65], [66], [67], and peak power in the Watt range
[65], [66], [68].

Good performances and together with the compact size and the high
possibility to be integrated promote the potential usage of QD passively ML
lasers in a large range of applications. In terms of telecommunications, they
can be used as a stable optical pulse source generator for optical time division
multiplexing and all optical clock recovery. In terms of analogue microwave
optoelectronics, they are considered as stable microwave carrier generator
or microwave optoelectronic frequency conversion component [69]. They
can also be used in bio-medical applications such as cutting-edge biomedical
imaging (nonlinear microscopy) [70] or in optical sampling and measure-
ment.

To satisfy the high demands coming from these various applications,

43
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further optimization and exploration of this passively ML QD-based lasers
are still essential. As a matter of fact, from the experiment point of view,
generally, only the pulse average power, the pulse width deconvoluted from
autocorrelation pulse envelope, the radio-frequency (RF) spectrum and the
optical spectrum can be easily obtained by measuring the pulse train out-
putting from the ML laser. Many other detail information of the pulse which
are fundamental to study the complex pulse formation mechanisms, such as
the temporal evolution of the output pulse train, the pulse energy distri-
bution inside the laser cavity, the gain or absorption dynamics in the gain
section or the SA, are not easy or even not possible to be directly measured.
On the contrary, the theoretical numerical model considering approximately
all the essential physical mechanisms in the QD ML lasers give us the possi-
bility to gain insight of the ML system and the underlying pulse operation
details.

Our activities were performed within the framework of the EU Seventh
Framework Program ”Fast Dot” Project. In the work presented in this chap-
ter, we focus mainly on the possibility to optimize the GS ML performances
of a passively ML QD laser. To this end, different laser configurations and
even simultaneous GS and ES MLs were studied and the design strategy
for device performance improvement was extracted. During these investiga-
tions, we always concentrated to study of the dynamics of the optical field
inside the laser cavity and the related influences on the gain and the absorp-
tion. We obtained many interesting findings from this kind of simulations,
which not only help us to learn and understand the passive ML processes in
QD-based edge emitting lasers, but also supply very useful input to other
groups within the FAST-DOT project for the device design and the experi-
mental results interpretation.

Before showing the simulation results, a fundamental introduction of the
passively mode-locking technique in the QD-based FP lasers is reported in
Section 3.1. The theory there describes how the stable ML can be established
in a two-section laser and how to make this achievement easier.

Then, in Section 3.2, properties of the QD medium, which are especially
beneficial for the ML establishment, are stated. These properties generally
indicate that the requests for a laser to achieve stable passive ML are well
satisfied by the QD medium, therefore confirming that the QD-based lasers
are very promising candidates for high power short pulse generations.

Various methods are introduced in this chapter for ML performance
improvement. First in section 3.3, investigations of ML lasers exploiting
only the GS emission are presented. It is well know that the S parameter
plays an important role in indicating the ML stability and performances. In
this section, ML improvements by varying structural parameters to achieve
a higher S value are discussed. In addition, we also show that devices with
the same S value still can be optimized to generate pulses with shorter pulse
width and higher peak power.
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In section 3.4, a systematic investigation of the role of several structural
parameters on the obtained pulse properties for straight ML lasers is de-
picted. Device structural parameters, such as the saturable absorber (SA)
length, the total cavity length and the facet reflectivities, have been varied.
The obtained results indicate a strict relation between the ML performances
and the intracavity evolution of the forward/backward travelling ML pulse.
Especially, we pay attention to the determinant influence of the intracavity
pulse energy and the corresponding gain/absorption dynamics on the pulse
width reductions. We demonstrate that shorter pulses can be achieved in
devices with higher intra-SA pulse energy thanks to the stronger absorption
saturation.

Using the modified version of the multi-section delayed differential equa-
tion model, sole GS, sole ES, and dual-state lasing and ML in passively
mode-locked QD lasers have been studied and are reported in Section 3.5.
The results were verified also with TDTW simulations and compared, when
possible, with experimental results. These tests confirmed the reliability of
the model. We found that, in two-section ML lasers, GS lasing and mode
locking are always more easily established. For instance, GS lasing can be
either self-starting or induced by the initial lasing from the higher energy
ES. On the contrary, GS lasing tends to inhibit, to a certain extent, the on-
set of ES lasing, especially at low injection current and low reverse voltage.
Moreover, ES shows less potential to achieve stable ML than GS. Based on
these findings, we propose proper theoretical explanation of the achieved las-
ing and ML regimes in realized devices. Especially, we demonstrate a novel
stable dual-state ML regime with remarkable enhanced pulse peak power
and pulse width.

Finally, a conclusion is drawn in Section 3.6.

3.1 Introduction of passive ML

There are various methods for generating optical pulses, such as gain
switching and mode-locking. Gain switching pulses are obtained by switch-
ing the optical laser diode on and off using an external electrical signal,
therefore the achievable pulse width and pulse repetition time is restricted
by the characteristic of this electrical signal. While in the mode-locking,
pulses generation is achieved through the locking of the longitudinal modes
of a laser diode by controlling an intracavity gain, loss or phase element.
There are generally three different methods to mode lock a laser structure,
the active mode-locking, the passive mode-locking and the hybrid mode-
locking.

Comparing with other methods, passive mode-locking is the only one
that does not require any electrical modulation and therefore is widely used
in many lasers to generate short pulses. The standard configuration of this
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kind of lasers consists of two sections, one is the forward biased gain section
and another one is the reverse biased saturable absorber section. The latter
section is an essential element for a passively ML laser where the longitudinal
cavity modes are locked in phase, so leading to a short and equal spaced
optical pulses train. The fundamental pulse train repetition frequency or
the ML frequency is defined by the round-trip time of a pulse inside the
FP cavity, fML = c/(2η0L), being c the light velocity in the vacuum, η0
the effective refractive index and L the laser cavity total length. In some
cases, harmonic ML may be achieved, i.e., there are more than one pulse
circulating inside the cavity, then fML = Nc/(2η0L) where N is the order
of the harmonic ML.

The general principles of the theory of mode-locking have been estab-
lished by New [52] and Haus [71], [53], and extended to passive ML in
semiconductor laser structures by Koumans [72]. Stable mode-locked pulses
can be designed by studying the properties of each components of the ML
system.

Pulse broadening and amplification in the gain section

In the forward biased gain section, continuous current injection leads
to population inversion in the QD band structures and shifts the electron
quasi-fermi level into the conduction band, which means there are very high
density of excited electrons in the conduction band. These electrons are
ready to combine with the holes in the valence band when stimulated by a
photon and generate an additional identical photon at the same time, we
call this process the simulated emission and use the optical gain to describe
the ability to generate additional photons.

When an optical pulse goes into the gain section, the beginning of the
pulse leading edge experiences an uninfluenced optical gain and the optical
field is amplified. While when the middle part of the pulse enters the gain
section, exited electrons in the conduction band are already partially con-
sumed by previous optical field, therefore the middle part experiences lower
optical gain and is less amplified. Then for the pulse trailing edge, depends
on the gain recovery rate, the optical field may amplified by an already fully
recovered high optical gain or a still saturated low optical gain. Entire ef-
fect of above processes is a broadening of the original pulse width and an
increase in the pulse energy.

The gain section usually is characterized by two parameters: the gain
saturation energy and the gain recovery rate. The former one Ek,sat,gain

indicates the sufficient pulse energy to lead to substantial gain saturation
and can be defined as [72]:

Ek,sat,gain =
~ωkWgainNlayHQD

Γxy,gain(dgk/dn)
(3.1)
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where k = GS,ES, n is the averaged carrier density in the entire DWELL
layers, Wgain is the width of the active region in the gain section, Γxy,gain

is the field confinement factor in the gain section and gk is the material

gain calculated as g0,GS ·
(
2f̃GS − 1

)
. Term dgk/dn is usually called as the

differential gain.
Generally speaking, the rate of change of the material gain with the

total carrier density, i.e., the differential gain dgk/dn, decreases with the
injection current increasing due to the limited density of available states.
Especially for the QD semiconductor medium, the highly reduced density
of state leads to a early onset of gain saturation, the dgk/dn is already very
low at moderate injection current.

The gain recovery rate are decided by two factors. One is the cascading
relaxation rates of the electrons from the SCH states to the GS. Another
one is the current injection level.

To summarize, the injection current level is an important parameter for
the gain section which determines the gain dynamics in this section.

Pulse shortening and attenuation in the SA

In the reverse biased SA, the conduction band is originally not occupied
by the electrons, and therefore the absorber is ready to absorb photons
with proper energy. Similarly, the leading edge field of the optical pulse
experience higher absorption, so the optical power is reduced. In addition,
the optical field-induced carriers occupy the conduction band and the valence
band, reducing the absorption ability of the SA. Therefore, the middle part
of the optical pulse will feel a saturated optical absorption and of course
is less attenuated with respect to the leading part. At the same time, the
field-induced carriers are swept out from the QD confined states via the
enhanced thermionic and tunneling escape mechanisms induced by the bias
electric field. Depending on the speed of these mechanisms, the trailing
edge optical field may encounter different level of saturated absorption. So
finally, the optical pulse is shortened when it propagates in the SA section.

Similarly, the absorption saturation energy can be calculated as:

Ek,sat,SA =
~ωkWSANlayHQD

Γxy,SA(dαk/dn)
(3.2)

where k = GS,ES, WSA is the width of the active region in the SA section,
Γxy,SA is the field confinement factor in the SA section and αk is the material

absorption calculated as g0,GS ·
(
1− 2f̃GS

)
. Term dαk/dn is usually called

as the differential absorption.
From Eqs. (2.28) and (2.27), we can see that the two main carrier sweep-

out paths in the SA, i.e., the enhanced thermionic and tunneling escape
mechanisms, are all related with the reverse bias voltage. Therefore, the
absorption recovery rate is strongly influenced by that parameter.
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Thus, the reverse voltage applied to the saturable absorber is determi-
nant for the field and carrier dynamics happening in the SA. To establish a
stable ML pulse train, this parameter should be properly controlled.

Self-phase modulation (SPM)

As described in Section 2.3, the optical response of a QD medium not
only induces gain/absorption, but also leads to changes in the refractive
index. Being respectively the imaginary and the real parts of the opti-
cal susceptibility, the gain/absorption and the refractive index are strongly
coupled with each other according to the Kramers-Kroenig relation [73]. As
a results, the changes of the carrier density in the gain and SA sections are
accompanied by large changes in the refractive index.

The non-linear changes in the refractive index in the gain and the SA
sections will lead to corresponding variation in the instantaneous carrier fre-
quency along the pulse envelope. This phenomenon is usually referred as
the self-phase modulation, which leads to chirp in the ML pulses and may
shorten or broaden the pulse by interacting with other dispersion mecha-
nisms in the laser system, such as the gain and the group-velocity disper-
sions.

In principle, an ideal unchirped pulse with a Gaussian envelope should
have a time-independent carrier frequency, which means that its optical
spectrum has a constant phase over the whole wavelength band. In this
case, we call this pulse as a transform limited pulse and the product of the
FWHM of the pulse duration ∆τ and the FWHM of the optical spectrum
∆f would be a constant of about 0.44. While, in reality, the Gaussian pulse
with the same pulse duration always has a instantaneous frequency chirp in
the time domain, which is equivalent to a bandwidth broaden of the optical
spectrum of this pulse, therefore the time bandwidth product (FBWP) of
this pulse is increased with respect to an ideal unchirped pulse and ∆τ ·∆f >
0.44. Both the pulse duration and the optical spectrum bandwidth can be
easily measured via standard experimental techniques. Therefore, this time
bandwidth product ∆τ ·∆f is usually considered as a standard and simple
way to experimentally quantify the chirp of a ML pulse.

In Sections 2.3.1, 2.4 and 2.5 we introduced in detail how to include this
mechanism in our numerical model. Indeed, the strong coupling between
the changes in the optical gain/absorption and the refractive index is simply
represented by the parameter β in the single-population FDTW and MS-
DDE models.

In above paragraphs, we recalled the main mechanisms that govern the
formation of a well-shaped pulse circulating in a two-section passively ML
laser cavity consisting of a SA, a gain section.
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The stable ML pulse train is actually a self-consistent solution of the
complex ML system, which balances above described mechanisms in the
gain and the SA sections and also the boundary condition at two end facets
so that the shape and the energy of a pulse are exactly reproduced after one
complete round trip within the laser cavity. Thanks to the efforts of New,
Haus and Koumans, their analytic investigations already indicated few key
conditions that needs to be satisfied by the laser system to achieve a stable
ML regime. These analytic findings are still very useful when applied to the
QD semiconductor lasers.

The stable parameter S

The so-called stability parameter S is defined as the ratio between the
gain saturation energy and the absorption saturation energy. According to
Eqs. (3.1) and (3.2), this parameter in the straight QD-based lasers can be
calculated as:

Sk =
Ek,sat,gain

Ek,sat,SA
=

WgainΓxy,SA(dαk/dn)|nk=0

WSAΓxy,gain(dgk/dn)|nk=np,th

(3.3)

where k = ES or GS, Ek,sat,gain is the saturation energy for the gain section,
Ek,sat,SA is the saturation energy for the SA and np,th is the averaged carrier
density in the entire DWELL layers at the threshold current of a ML laser.

Above equation can be simplified to the ratio of the differential absorp-
tion and the differential gain when applied to the straight QD lasers where
Wgain = WSA and Γxy,gain = Γxy,SA as:

Sk =
(dαk/dn)|nk=0

(dgk/dn)|nk=np,th

(3.4)

One should note that in our numerical model using Eq. (3.3) or (3.4),
the calculated S parameter actually corresponds to the case where the gain
section forward injection current is the threshold current and the SA is
reverse biased at 0 V. If we increase the injection current, differential gain
will be reduced leading to higher gain saturation energy and larger S. On the
contrary, if we increase the reverse voltage, due to enhanced thermionic and
tunneling escape processes, differential absorption will decreases resulting
to higher absorption saturation energy and smaller S.

In principle, the ML system should make sure that S > 1. Physically,
this means the gain section is harder to be saturated than the absorber, so
that initially the pulse narrowing achieved in the SA will not be fully com-
pensated by the broadening processes in the gain section therefore leading
to the formation of a short pulse. As the pulse peak power also increases
associated to the pulse shortening, the final stable ML regime should have
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a proper pulse width that balances the saturation in the gain and the SA
sections.

According to the analytic investigations, another important advantages
of a large value for the S parameter is that the bias condition range where
stable mode-locking can be achieved becomes larger and that bias range
moves toward the threshold condition [72]. These findings have been con-
firmed by our numerical simulations. It is always found that we gain larger
stable ML area by modifying the laser configurations to reach a larger S
value. In addition, although is not directly related with the ML perfor-
mances, we also noticed that optimizing the S parameter would let us obtain
shorter pulses with much higher peak power.

The round trip gain and absorption

In this part, we study the conditions of the gain/absorption dynamics for
stable mode locking. To this end, we define a reference framework moving
together with the pulse in the laser cavity by mapping the variables at (z, t)
to (z, τ = t ∓ z

vg,k
) (the sign indicates whether the pulse is forward +z or

backward −z propagating in the laser cavity), similarly to what we did in
the numerical implement of the DDE model. In this way, τ corresponds to
the location of each point on the ML pulse, and varying τ is equivalent to
moving along the pulse envelope. With this transformation, the net gain
experienced by each point of the pulse in a complete round trip in the laser
cavity Rk(τ) can be simply calculated according to:

Rk(τ) =
√

R0RL exp

[
Γxy

∫ L

0

(
g+k (z, τ) + g−k (z, τ)

)
dz − αiL

]
(3.5)

where k = GSorES, g±k (z, τ) are the material gain from GS and ES wave-
lengths experienced by the pulse when propagating in the direction +z and
-z respectively.

For a passively ML laser with a gain section and a SA section, above net
gain equation can be divided into two terms, one represents the averaged
gain/amplification experienced by the pulse per unit length Gk(τ) and one
represents the averaged losses/attenuation experienced by the pulse per unit
length Gk(τ):

1

L
lnRk(τ) = Gk(τ)−Ak(τ) (3.6)

where the averaged gain and losses (in cm−1) can simply be computed as:
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Gk(τ) =
Γxy

L

∫ L

LSA

(
g+k (z, τ) + g−k (z, τ)

)
dz

Ak(τ) = −Γxy

L

∫ LSA

0

(
g+k (z, τ) + g−k (z, τ)

)
dz + αi + αm

(3.7)

where L is the total cavity length of the laser, LSA is the length of the SA
section, and the last term for Ak(τ) is the mirror losses which takes in to
account the optical power extraction losses from two end facets and can be
defined as:

αm =
1

L
ln

(
1√

R0RL

)
(3.8)

According to the analytically defined conditions [72], [52], [53], in order
to avoid that perturbations preceding and following the pulse can grow, the
net gain preceding and following the pulse must be negative, equivalent to
Gk(τ) < Ak(τ). In Fig. 3.1, we show an example of the net gain profile of a
ML pulse which satisfies the stability criterion and the corresponding pulse
envelope.

(a) (b)

Figure 3.1: (a) Net gain profile of a stable ML pulse and (b) the corresponding
pulse envelope.

We can see that at the time window where exists the pulse, the total
gain equals the total losses, guaranteeing that an identical pulse can be
reproduced after one successive round trip in the laser cavity. On the con-
trary, the averaged gain must be smaller than the averaged total losses at
the swings of the pulse, so that the pulse is stable to noise perturbations
before and after the pulse, since they are attenuated in each round trip. As
a result, the obtained pulses are equally separated and identical in terms of
the pulse energy and the shape.
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(a) (b)

(c) (d)

Figure 3.2: (a) Net gain profile of a ML pulse with tailing edge instability and (b)
the corresponding pulse envelope;(c) Net gain profile of a ML pulse with leading
edge instability and (d) the corresponding pulse envelope.

However, if above conditions can not be satisfied, time domain instability
or even pulse collapse may happen, as shown in Fig. 3.2.

Originally, the pulse energy should be large enough to pull down the
gain to a value below the loss after the passage of the pulse [72]. Otherwise,
a positive net gain region will appears immediately after the pulse (Fig.
3.2a) and the spontaneous emission noise generated in this time interval
may be amplified and leads to instability. This is commonly referred as the
trailing edge instability (TEI). In the case shown in Fig. 3.2a, beside the
insufficient pulse energy, the initial, ultrafast recovery of the averaged gain
also attributes to the present of a positive net gain time interval after the
pulse. This initial fast recovery stage actually relates both with the pulse
energy and with the pulse width [74]. Under the TEI condition, the amplified
spontaneous emission noise will show as small spikes at the trailing edge of
the main pulse, as shown in Fig. 3.2b, leading to also large amplitude jitter
of the pulse train. We found that the TEI always happens in the devices
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with very high S value and generating ultra-short pulses, but fortunately,
this problem can be solved by increasing the reverse bias voltage.

In addition, the pulse energy should not be too high so that there is not
a positive net gain for the perturbations preceding the pulse. In principle, at
the threshold current, the total unsaturated gain and loss are equal, while
as increasing the injection current, the unsaturated gain will exceeds the
total unsaturated losses. Therefore, at current well above the threshold, if
the averaged gain recovers completely between two succeeding pulses, the
net gain would be positive at the leading edge of a pulse (Fig. 3.2c), and
the spontaneous emission noise can be amplified within this net gain window
generating amplitude jitter and pulse shape distortion of the ML pulses (Fig.
3.2d). This is the leading edge instability (LEI). If LEI is even stronger, the
laser will finally work in the continuous wave regime.

In addition to above conditions, to establish a stable ML, the laser sys-
tem should be self-starting. Generally, this condition can be achieved by
adjusting the injection current upto a threshold value.

Through the descriptions in this section, we already revealed the com-
plexity of a passively mode-locking laser and the conditions that need to
be satisfied in order to generate stable short pulse train. As a promising
candidate for future generation optical sources, the QD material exhibits
advantages in many aspects that make above conditions easier to be satis-
fied and therefore especially benefit the generation of short pulses. In next
section, these points are therefore introduced. Understanding them not only
gains more insight of the ML mechanisms but also helps the design of QD-
based ML lasers.

3.2 Special advantages of QD ML lasers

Comparing with the QW and bulk counterparts, QD medium as an ac-
tive region material distinguishes itself mainly due to following potential
advantages:

Large S parameter value

In above section, it has been pointed out that S larger than one should
be guaranteed to format a pulse. And it will be much easier to establish
pulse shaping if the gain is much harder to be saturated than the absorption.

According to Eq. (3.4), for the straight QD two-section ML lasers where
the gain section and the SA section have uniform transversal section, the
stability S parameter can be calculated as the ratio between the differential
absorption and the differential gain. In addition, for semiconductor mate-
rials, the differential gain decreases when injection current and in turn the
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carrier density increases due to the limited density of states. This fact en-
sures that the differential absorption is larger than the differential gain and
the S parameter is larger than one. This effect is more pronounced in QD-
based devices, due to the extremely reduced density of states as introduced
in Section 1.2.

Figure 3.3: Simple schematic of the normalised modal gain as a function of the
carrier density for the bulk, QW and QD materials. Figure from [11].

In Fig. 3.3, it is shown schematically the evolution of the modal gain
for the bulk, QW and QD materials against the carrier density. Using Eq.
(3.4), one can easily find that the S parameter is highest in the QD material,
which indicates that this material system is more easily to establish stable
ML. More precisely, the absorption saturation energy for a QD layer has
been demonstrated to be 2-5 times smaller than a QW layer [46].

Broad gain spectrum

In Section 1.2, we have introduced the commonly used fabrication ap-
proach of QD, i.e., the self-assembled QDs, and the corresponding properties
of QD ensembles obtained from this approach. We shown that due to the
distributions of the QD size, shape and composition, significant inhomoge-
neous broadening of the gain/absorption spectrum exists in the QD medium.
This effect may be detrimental for many applications, but it is really a good
property for an active material that is intended to generate ML pulses. A
broad gain bandwidth allows more longitudinal modes to be phase locked
and therefore leads to ultra-short pulse even in sub-picosecond range.

In addition, the shape and size distributions of the QD ensembles can be
controlled during the QD fabrication proceedings [18], [19] and [75], leading
to associated changes in the laser emission spectrum. Therefore, the gain
spectrum of the QD material can be easily adjusted.
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Especially, using the chirped QD structure, i.e., the QD layers in the ac-
tive region varies in terms of the composition so that each group of QD layers
displays a different central emission wavelength [76], broad gain spectrum
covers continuously from the GS wavelength (1283 nm) to the ES wave-
length (1187 nm) has been demonstrated [77], [78]. This technique enables
ultra-short pulse generation and the implement of large emission wavelength
tunability in a single laser.

Fast gain/absorption recovery rate

Fast gain, especially fast absorption recovery rate are key factors that
facilitate high speed applications of QD-based devices. For passively ML
lasers, the absorption is expected to be fully recovered before the arrival of
the next pulse.

Generally, increasing the reverse voltage leads to faster removal of the
carriers from the absorber, thus increasing the absorption recovery speed.
For the 1.3 µm InAs/InGaAs QD materials, ultra-fast absorption recov-
ery with characteristic times of about 700 fs for a QD absorber under the
reverse voltage of 10 V has been demonstrated from the pump-probe dif-
ferential transmission experiments [46]. This fast recovery can be mainly
attributed to the highly enhanced tunneling escape of the carriers which
happens usually when applying very high reverse voltage to the absorber.

In addition, in the pump and probe experiments, ultra-fast gain recovery
time in sub-picosecond range has been demonstrated in [61], [60] and [79].
Especially, in [79], the initial gain compression of GS (the spectral hole
burning) recovers in only 100 fs, which should be attributed to the ultra-
fast carrier relaxation from the higher ES to the GS.

Low noise

Noise inside the laser cavity causes instabilities in the mode-locking
pulses, as we discussed before in Section 3.1. The amplitude and time jit-
ters introduced by it are undesired properties for a ML laser. As pointed
out in [80], the key method to improve the noise performance of a device
is to reduce the pulse reshaping in the gain and absorber sections. It is
well known that spontaneous emission is the main contribution of the noise
generated in a device and it relates directly to the carrier density. Reducing
the pulse reshaping could help to reduce the dynamic losses and the carrier
density required to reach the threshold, therefore leading to improvement
of the noise performances of a device. As described above, QD lasers have
intrinsically high gain saturation energy, and therefore small pulse reshaping
happening in the gain section, reducing the noise level in the cavity [11].

For the QD devices, due to the reduced density of state, ML operation
relies on a relatively smaller threshold current if comparing to their QW and
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bulk counterparts. As a result, the spontaneous emission arising from the
QD active layers is smaller [81], [82]. Besides, QD ML lasers are attracting
low noise sources also because they have lower intrinsic waveguide losses
[83] and low linewidth enhancement factor [84], which ensure the good noise
performances in this kind of device [85].

Low linewidth enhancement factor

The linewidth enhancement factor (LEF) (sometimes referred as the α-
factor) describes the coupling relation between the optical gain and the
refractive index changes, as the β we defined in Section 2.4. This parameter
determines the bandwidth of the pulse optical spectrum and the instanta-
neous frequency chirp of the pulse and should be as small as possible at
the gain peak. It has been demonstrated that the LEF is much smaller in
the QD materials than that in the QWs [86], [87], implying that reduced
wavelength chirp [84] and transform-limited ML pulses [65] are easier to
be achieved in QD lasers. These experimental findings actually originate
from the fact that the QDs gain spectrum is almost symmetric and thus the
refractive index changes at the gain peak are negligible.

In this section, we reviewed the reasons why QD lasers are particularly
interesting as optical pulse sources. Although the QD materials already
supply a large range of inherent advantages to the engineer, designing a
good QD-based ML laser that exploits properly above illustrated proper-
ties is much more difficult and important than just fabricating a QD-based
waveguide wafer. Due to the discrete energy levels in the QD medium, the
gain and absorption dynamics governing the pulse generation in a QD laser
are more complex than that in the QW or bulk lasers. Full understanding
of them will help us in a large amount to design a laser with appropriate
configuration guaranteeing the stability of the ML system. In the follow-
ing sections, comprehensive investigations of passively ML QD lasers in the
purpose to optimize the ML performances and to get more insight of the
underlying physical mechanisms in QD lasers will be shown.

3.3 GS ML performances improvement

We have discussed previously the role of the S parameter as a stable
criteria for the ML system. However, this parameter can also be considered
as a simple indicator for the ML performances, i.e., varying the laser con-
figuration to increase the value of S in one ML laser could benefit the pulse
width and the peak power of the pulses obtained from that laser.

In this section, we show firstly the various methods that can be used to
push the laser to higher S value and the advantages and drawbacks of these
methods in Subsection 3.3.1. Then, in Subsection 3.3.2, we demonstrate that
for devices with the same S value, ML performances still have potential to



CHAPTER 3. PASSIVELY MODE LOCKED QD LASERS 57

be improved. We focus only on the optical pulses from the GS transition in
this section, therefore the label k = GS is ignored in the following.

3.3.1 Lasers with higher value of the stability parameter S

According to Eq. (3.3), we introduce in the following different methods
to push the S parameter for one device to higher level.

Change the length of the SA

From Eq. (3.4), we can see that for a straight ML laser if the reverse
voltage and in turn the saturation energy are fixed, S value will relates
directly to the differential gain. As described in Section 3.2, the differential
gain decreases with the injection current density. Therefore, it is obvious
that we can assume different straight lasers have the same S value if they
have the same threshold current Ith or the same threshold gain gth (of course,
these lasers should have the same active material).

For the two-section FP cavity laser, gth are estimated using the following
approximate resonance equation [88]:

L− LSA

L
Γxygth =

LSA

L
ΓxyαSA + αi +

1

L
ln

(
1√

R0RL

)
(3.9)

where αSA is the QD unsaturated material absorption at GS transition. The
last term in the right hand side of Eq. (3.9) represents the mirror losses αm

of the laser cavity.
One can easily find that increasing the SA length, which is equivalent

to increase the cavity losses, would push the threshold gain to higher value
and also the S parameter.

In [89], a multi-segmented QD laser with total length of 2 mm, mode-
locking repetition rate of 20.5 GHz has been investigated. This multi-
segmented approach allowed the device to be configured with SA length
ranging from 65 to 650 µm by connecting different electrically isolated sec-
tions together. In this paper, a reduction of the pulse width from 2.3 ps
to 800 fs, associated with five-fold increase in the average power and 14-
fold increase in the peak power have been demonstrated when changing the
gain-to-absorber section length ratio from 14:1 to 3:1.

Similarly, the trends of increases in the peak power and reductions in
the pulse width by increasing LSA have been confirmed theoretically in [74]
via systematic simulations using the DDE model. However, it has also been
shown in this paper that the devices with higher S value may suffer stronger
trailing edge instability due to the enhanced initial ultra-fast gain recovery.
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Use the tapered gain section

In this part, we consider index-guided QD ML lasers with non-uniform
cross section. From Eq. (3.3), it is obvious that if the increase in the con-
finement factor Γxy is not linearly proportional to laser lateral width, then
increase the width of the gain section could be a effective way to get higher
S parameter. In order to avoid abrupt changes in the waveguide cross-
section, the tapered configuration should be considered, where the lateral
width of a section increases gradually. This configuration has already been
widely exploited in the broad area lasers since it guarantees high power and
good beam quality simultaneously [90]. When applying this technique to
the QD ML lasers, significant increase of the peak power and corresponding
significant decrease of the pulse width have been demonstrated both exper-
imentally [65] and theoretically [74]. Our collogues Nikitichev et al. from
University of Dundee (UK) have achieved state of art pulse performances
using this tapered gain section configuration [68]. In this part, we show that
a proper tapered angle should be used to get optimum pulse performances.

Figure 3.4: Schematic of a QD ML laser with tapered gain section (G) and reverse
biased saturable absorber (SA).

To simulate a ML laser with non-uniform cross section, in principle,
distributed time-domain models resolving the field dynamics in both the
longitudinal and lateral directions of the laser cavity should be developed
[91]. However, such model have an extremely high computational cost. In
order to overcome this problem, we use a simplified but computational effi-
cient method for the simulation and design of QD ML lasers with tapered
gain sections. This method involves the use of the MS-DDE model (Section
2.5) where parameters describing the propagation along the non-uniform
waveguide are extracted from preliminary simulations using a static finite-
difference beam propagation method which will be introduced in detail in
Chapter 4.

We consider tapered QD ML lasers with total length of 3 mm, SA length
of 450 µm, facet reflectivities R0 = 0.99 and RL = 0.1, and different full an-
gles θ =0◦, 0.3◦, 0.6◦, 1◦, 1.5◦ characterizing the tapered section, as schemat-
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ically shown in Fig. 3.4.
With respect to the MS-DDE model in Section 2.5, the non-uniform

waveguide cross-section is included in the simulations by introducing sec-
tions k = 1 ∼ F with different values for Wk, Γxy,k and αint,k where the
last two parameters are extracted from BPM simulations. In order to ex-
tract them for each section composing the equivalent ring laser in the DDE
model, a finite-difference BPM is used, where waveguides as those depicted
in Fig. 3.5, consisting of two replica of the tapered laser under study are
investigated.

Figure 3.5: BPM simulation of the field profile evolution during forward and back-
ward propagation across the tapered device with θ =0.3◦ (a) and θ =1.5◦ (b). Black
dashed lines represent a reduction of -3 dB with respect to the maximum field in-
tensity in each longitudinal section of the device. Continuous green lines represent
the waveguide profile, x = ±W (z)/2, being W (z) the ridge width as a function of
the longitudinal coordinate z.

For the entire waveguide, A step index ∆n = 3 · 10−3 is considered to
guarantee that a single transverse mode is guided within the straight SA
section. The BPM procedure is performed iteratively until a self-consistent
field distribution is achieved. Optical intensity distributions |E|2(x, z) for
the devices with θ =0.3◦ and θ =1.5◦ are shown in Fig. 3.5a and Fig.
3.5b, respectively. For θ =0.3◦, the field transforms adiabatically along the
tapered section, remaining well confined within the ridge; on the contrary
for θ =1.5◦, radiation losses are clearly visible, reducing the overlap between
the field profile and the SA transversal section.

From the calculated field distributions, values for Γxy,k and αint,k are
computed. Γxy,k is factorized in terms of the confinement factors along y
and x directions: Γxy,k = Γy ·Γx,k. The confinement factor in the QD layers
along the growth direction, Γy, is constant whereas Γx,k is calculated as:

Γx,k =
1

Lk

∫
z∈Lk

{

∫ +W (z)/2
+W (z)/2 |E|2(x, z)dy∫ +∞
−∞ |E|2(x, z)dy

}dz (3.10)

Instead of the constant intrinsic losses αi, now we model the unsaturable
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Figure 3.6: Ridge width Wk, field confinement factor Γxy,k and internal losses αint,k

for tapered devices with θ =0.3◦, 0.6◦, 1◦, 1.5◦.

losses in the laser cavity using a internal loss term αint,k which can be
expressed as αint,k = αi + Γy(1− Γx,k) · αext, where αext is the absorption
outside the ridge and αi is the additional losses due to doping and defects.
The obtained values for Γxy,k, αint,k are shown together with Wk in Fig. 3.6
for the different tapered lasers.

Based on the parameters obtained from the BPM simulations, the ML
regimes in the devices under study are then simulated using the MS-DDE
model. Fig. 3.7 shows maps of peak power and pulse width as a function
of the applied gain current and SA reverse voltage for all the considered
devices. For small tapered full angles (θ =0◦, 0.3◦), the maximum achievable
average and peak power is limited by the onset of a large leading edge
instability in the ML pulse train with increasing current, furthermore the
pulse duration remains always larger than 1 ps. With increasing θ, the
LEI tends to disappear even for current well above threshold whereas a
TEI is found for moderate SA reverse voltages. Furthermore, at very large
currents (large pulse energy), a pulse breakdown induced by the action of
the large self-phase-modulation and dispersion is observed. With increasing
θ, a significant pulse shortening is found so that for 0.6◦, 1◦, ultra-short
sub-picosecond pulses are achieved. Such a reduction in the pulse width is
attributed to the further increase in the gain saturation energy and in turn
the S parameter as we predicted above. The shortest pulse width and largest
peak power are achieved at 1◦ . On the contrary increasing further the full
angle (1.5◦) no significant improvements in the ML regimes are obtained.

This is clearly due to the fact that for too wide tapered full angles, the
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Figure 3.7: Maps of pulse peak power and pulse width as a function of the current
applied to the gain section and voltage applied to the SA for devices with θ =0◦,
0.3◦, 0.6◦, 1◦ and 1.5◦.

field profile does not transform adiabatically when travelling back across the
tapered section and significant radiation of the field occurs (Fig. 3.5b); this
leads to a large decrease in the overlap between the field profile and the
reverse biased SA (Fig. 3.6), reducing therefore the effectiveness of the SA
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in shaping the ML pulses.
Therefore, when designing the passively ML QD lasers with tapered gain

section, a proper total taper angle should be chosen so that an adiabatic
transformation of the field profile along the tapered section is guaranteed.
In this case, a significant enhancement in the pulse width and the peak
power can be achieved.

Vary the QD layer number

Besides above methods, larger S value can be achieved alternatively
by decrease the QD layer (QDL) number inside the device active region.
Our collogues Mesaritakis et al. from University of Athens (Greece) has
found that although device with less QDLs are expected to show better
ML performances, the early onset of ES lasing in these devices limits the
maximum peak power and minimum pulse width that can be achieved. Our
simulations fully confirmed their experiment findings and supplied proper
theoretical interpretations of these results.

In this part, we consider three straight InAs/InGaAs QD lasers with
total length of 2 mm, gain-to-absorber length ratio of 85:15, ridge width of
6 µm, high reflection coating at the SA side facet with R0 k = 99% (k =
ES, GS), low reflection coating at the output facet with RL k = 10%, and
different QDL numbers of 5, 10 and 15.

Two different theoretical approaches are used aiming to predict the vari-
ations of mode locking performance in these devices. The first approach
is based on the assumption that mode-locking can be represented just by
a simple net-gain modulation phasor with a time constant matching the
characteristic round-trip time of the cavity [88]. Although this approach
has been used successfully in the past in order to optimize the geometry
of multi-section QD lasers, it does not take into consideration the gain dy-
namic imposed by the existence of two discrete energy levels (GS/ES). On
the other hand, the experimental results proved that higher state dynamics
and in particular the onset of ES lasing has a considerable effect on GS
mode locking performances. Consequently, a second theoretical approach
is utilized, i.e., the DDE numerical model which includes GS/ES carriers
and photons dynamics. With this method, a detailed investigation of the 2
mm devices is performed and an explanation for the trends observed exper-
imentally is therefore proposed. Model parameters used in the simulations
are essentially those reported in Table 3.1. They correspond to the case of
InAs/InGaAs Dots-in-a-Well lasers emitting around 1.3 µm and have shown
good agreement between the simulations and the experiments [74].

The material gain at the ground state (g0 GS) and excited state (g0 ES)
wavelength is computed as a function of the applied current density J for
devices of different QDLs (Fig. 3.8). In order to achieve this, the steady
state solutions of the rate equation system (see Section 2.2) for QD-based
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Table 3.1: Passively mode-locked laser: main model parameters used in the rate
equation system

Symbol Description Values

HW QW width 5 nm
η0 Effective refractive index 3.3445
Nlay number of QD layers 5
Nd QD surface density 2.7·1010 cm2

2~Γ gain spectral bandwidth 34 meV
Γxy field confinement factor 5.24%
g0,k material gain coefficient k =

ES, GS
379.4, 227.6 cm−1

τQW→ES2 relaxation time from QW to
ES2

0.3 ps

τES2→ES1 relaxation time from ES2 to
ES

0.2 ps

τES1→GS relaxation time from ES to
GS

0.2 ps

τAug,k Auger recombination times
from k = ES2, ES, GS

110, 275, 660 ps

τsp,k spontaneous emission
recombination times from k
= ES2, ES, GS

2, 2.7, 2.7 ns

τnr,k interband recombination
times from k = SCH, WL

400, 400 ps

~ωk interband transition energies
for k = ES2, ES, GS

1.114, 1.054, 0.9879 eV

Vbi built-in potential of the p-i-n
junction

-0.8 V

αi intrinsic waveguide losses 2.1 cm−1

medium have been computed assuming negligible optical power in the laser
cavity. In Fig. 3.8, markers have been included in the computed gain curves
indicating the GS/ES threshold gain gth,GS/ES for the two-section devices
which are calculated according to the Eq. (3.9). For the investigations in
this part, αi = 2.1 cm−1, αSA GS = 227 cm−1 and αSA ES = 379 cm−1.

As expected, the required GS threshold gain gth GS decreases with in-
creasing the QD layer number, due to higher field confinement factor (Γxy

= 0.0524, 0.083, 0.1056 were calculated for the 5, 10 and 15 QDL devices,
respectively). For the 5 QD layers device, at GS threshold current Jth GS ,
g0 ES is appreciable larger than that of GS. In this case, ES threshold cur-
rent Jth ES is slightly smaller than Jth GS . On the contrary, g0 ES is still
well below gth GS at GS threshold current in the 10 and 15 QDL devices
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(a)

(b) (c)

Figure 3.8: Dependence of GS (black) and ES (orange) material gain on the injec-
tion current density for devices with active region consisting of 5 (a), 10 (b), 15 (c)
QD layers. Corresponding threshold gains (plus marker) and differential gains at
GS/ES transitions are also indicated.

and therefore Jth ES is much larger than Jth GS . Furthermore, a decrease in
the GS threshold gain leads to a significant increase in the differential gain
dg0 GS/dJ at Jth GS when moving from 5 QDL case to 15 QDL one (Fig.
3.8).

Recently, an analytical expression [88] has been derived, aiming to eval-
uate the impact of different laser geometries on the efficiency of passive
mode-locking. It has been obtained from the net-gain modulation phasor
approach and has been successfully applied to predict functional QD laser
geometries [88]. Its expression is:

αSA GS

gth GS

LSA

Lgain
>

(
(dg0 GS/dJ)|g0 GS=gth GS

(dg0 GS/dJ)|g0 GS=0

)2

= (
1

S
)2 (3.11)

where the right hand side term is reversely proportional to the square of the
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well known stability parameter S (with respect to the standard definition of
S parameter Eq. (3.4), linear relationship between dg0 GS/dJ and dg0 GS/dn
is assumed in this approach, being n is the carrier density).

According to this inequality, both increasing αSA GS/gth GS and S will
make Eq. (3.11) more easily to be satisfied and therefore benefit the ML
operation (notice that LSA/Lgain is constant for all devices).

For the devices under test, the parameter S decreases from 150 for the
5 QD layers laser, to 5.7 and 3.6 for the 10 and 15 QDL lasers, respectively.
In addition, the ratio αSA GS/gth GS is 1.05 for 5 QDLs, while for 10 and 15
QDLs the ratio is increased to 1.5 and 1.77 respectively.

According to the above calculation, a significant deterioration of the ML
stability and performances would be expected when increasing the number
of QDL from 5 to 10, whereas similar performances should be achieved in
devices with 10 and 15 QDL. These findings are qualitatively consistent
with the experimental observations from Mesaritakis et al. only for the 10
and 15 QDL cases. The reason that the aforementioned simple analytical
approach does not fully support the experimental findings in the 5 QDL case
is based on the fact that this approach treats the mode locking procedure
as a simple modulation of the GS net gain of the laser, without taking into
consideration more complex dynamic effects present in QD materials. For
example, it does not take into consideration the existence of discrete energy
states (GS-ES), and the strong coupling of the free carriers between these
two states.

Investigation that is more precise has been done using the DDE numeri-
cal model. The results are reported in Fig. 3.9 where ML maps, showing the
pulse peak power and pulse width as a function of the injection current and
the reverse bias voltage are shown. White regions correspond to CW oper-
ation; shaded areas show unstable GS ML due to: onset of ES lasing in the
5 QDL case and large amplitude fluctuations induced by the spontaneous
emission noise in the 10 and 15 QDL cases.

In the 5 QDL devices, Jth ES is slightly smaller than Jth GS (Fig. 3.8a),
ES lasing starts first when injection current increases from the threshold.
However, this sole ES lasing regime is limited only to a very small cur-
rent range just above the threshold (beyond the bias range shown in Fig.
3.9). Then at higher current, due to the competition between the pulse-
induced depletions of the gain and absorption at GS/ES, sole GS lasing is
preserved which inhibits simultaneous lasing from ES. However, consider-
ably increasing the current and reverse voltage, aforesaid restriction in the
ES lasing is appreciably reduced allowing the onset of the ES lasing (detailed
investigation and explanation of this kind of behaviours will be reported in
3.5). Furthermore, we found that the simultaneous existence of ES lasing
destabilizes the ML regime achieved at the GS wavelength and it therefore
represents a limitation in the maximum achievable average and peak powers
for sole GS ML in the 5 QDL devices.
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(c) (d)

(e) (f)

Figure 3.9: Maps of the pulse peak power and the pulse width with the same
variation span of the injection current and the reverse bias voltage for 2 mm device
with 5, 10, 15 QD layers. Shaded regions represent unstable ML performances,
which is mainly induced by ES lasing for 5 QDL device, whereas by unbalanced
gain and absorption dynamics for 10 and 15 QDL devices.

This is consistent with the experimental findings from Mesaritakis et al.,
where the onset of the ES lasing was observed to limit the range of stable
GS ML in the 5 QDL devices. On the contrary, in the 10 QD layers case,
at GS threshold, ES gain remains far below its own threshold and therefore
only mode locking from GS can be found over the whole investigated bias
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range. This allows obtaining stable ML at larger current above threshold
and therefore a significant improvement in the peak power as well as slightly
shorter values of pulse width are achieved. Therefore, although above an-
alytic approach predicts better pulse characteristics in the 5 QDL devices,
this advantage is completely counteracted by the ES lasing, which leads to
a degradation of the GS pulses.

Finally, consistent with the slight reduction in the S parameter, moving
from 10 QDL to 15 QDL, the region of stable ML decreases, whereas similar
values of peak power and pulse width are obtained.

As a conclusion, ML performances in the 5 QDL device are limited by
the early onset of the ES lasing while the 15 QDL device suffers limited
stable ML range due to smaller S parameter, therefore the 10 QDL device
exhibits relative better pulse performances.

3.3.2 Lasers with the same value of the stability parameter
S

We have shown in previous subsection that device with larger S value
generally would obtain pulse with shorter width and higher peak power.
However, even for devise with the same S value, it is still possible to enhance
the ML system by properly changing the laser configuration. We show in
this subsection the investigation of the performance optimization for the
monolithic two-section passively mode-locked quantum dot lasers using the
FDTW model changing simultaneously the length of the saturable absorber
and the cavity reflectivity and keeping the S value. We demonstrate that,
by properly choosing these two parameters, a reduction in the pulse width
from 4.4 ps to 930 fs and a increase in the product of the peak power and
the average power from 0.012 W2 to 0.2 W2 are obtained.

The simulations in this subsection have been performed using the FDTW
model for 3 mm long InAs/InGaAs QD ML laser with 10 QD layers. We
point out that the investigation presented in this subsection is quite general;
therefore the conclusions drawn here can be also exploited in the design of
lasers with different total length or different number of QD layers.

Five straight two-section FP lasers are considered; all have the same
total length L of 3 mm, ridge width W of 6 µm, high-reflection coating at
the SA side facet with reflectivity R0 of 95% and the same 10 QD layers
active region, while the length of the SA LSA and the reflectivity at the
gain section side facet RL are varied to obtain the same threshold material
gain gth for each device. The material-related parameters used in the rate-
equation associated to the FDTW model are reported in Table 3.2.

In Fig. 3.10, the GS and ES material gains, as a function of the current
density, are shown. As we pointed out in previous subsection, for straight
monolithic QD lasers, higher S can be obtained when operating the gain
section in a strong population inversion regime, equivalent to operate with a
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Table 3.2: Straight index-guided mode-locked laser: main model parameters used
in the rate equation system

Symbol Description Values

HW QW width 5 nm
η0 Effective refractive index 3.3445
Nlay number of QD layers 10
Nd QD surface density 2.7·1010 cm2

2~Γ gain spectral bandwidth 34 meV
Γxy field confinement factor 9.07%
g0,k material gain coefficient k =

ES, GS
331.2, 198.6 cm−1

τSCH→QW relaxation time from SCH to
QW

24.6 ps

τQW→ES2 relaxation time from QW to
ES2

0.3 ps

τES2→ES1 relaxation time from ES2 to
ES

0.2 ps

τES1→GS relaxation time from ES to
GS

0.2 ps

τAug,k Auger recombination times
from k = ES2, ES, GS

110, 275, 660 ps

τsp,k spontaneous emission
recombination times from k
= ES2, ES, GS

2, 2.7, 2.7 ns

τnr,k interband recombination
times from k = SCH, WL

300, 300 ps

~ωk interband transition energies
for k = ES2, ES, GS

1.114, 1.054, 0.9879 eV

Vbi built-in potential of the p-i-n
junction

-0.8 V

βsp spontaneous emission
coupling factor

10−4

αi intrinsic waveguide losses 3 cm−1

gth close to saturation. But if gth is too close to the GS and ES gain-crossing
condition, there maybe a risk of ES lasing due to restricted fabrication tol-
erance and a risk of instability induced from the too high carrier population
in the ES. According to these considerations, gth has been chosen in this
case as 175 cm−1 (see the square marker in Fig. 3.10) and kept the same
for all the considered devices.

The corresponding values of LSA and RL for the considered devices have
been estimated using Eq. (3.9). In this case, Γxy = 9 % is the field con-
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Figure 3.10: QD material gain from GS (green) and ES (blue) transitions as a
function of the injection current density. The square marker represents the fixed
threshold gain for the devices considered in the simulations. The corresponding SA
length and the output power reflectivity are also shown.

finement factor within the 10 QD layers, αSA = 198.6 cm−1 is the QD
unsaturated material absorption at GS transition and αi = 3 cm−1 is the
intrinsic waveguide losses. The results of LSA and RL for the five consid-
ered devices (A-E) are reported in Fig. 3.10. Following the above procedure
we ensure that every device operates at almost the same S parameter at
threshold.

In addition to the usual measured pulse parameters, a figure-of-merit
(FOM) [92], i.e., the product of the average power and the peak power
(Pavg ∗Ppeak), has been used as an indicator for device comparison. The ML
laser pulse average power, peak power, deconvoluted autocorrelation pulse
width and FOM for the devices (A-E in Fig. 3.10) are reported in Fig. 3.11,
as a function of the injection current and at constant SA reverse voltage of
-5 V.

All devices have been simulated in a current range of 200 mA starting
from 20 mA above the corresponding threshold current Ith. The results,
only for the bias conditions achieving stable ML, are plotted in Fig. 3.11.
The first conclusion from this figure could be that the configurations with
larger LSA exhibit an increased range of bias conditions achieving stable
ML. Since S has a constant value for all the considered devices, these re-
sults demonstrate that changing LSA allows improving in the stability of
the ML laser. Furthermore these numerical results also confirm a previous
theoretical statement that lasers with smaller cavity loss (αi+αm) are more
likely to show stable ML without self-pulsing envelope [88], [93].

For all devices the increase of the injection current results in an increase
in the pulse width (Fig. 3.11c). Additionally, devices with longer SA and
higher output reflectivity exhibit a monotonic reduction in the shortest pulse
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(a) (b)

(c) (d)

Figure 3.11: Average power (a), peak power (b), deconvoluted autocorrelation (AC)
pulse width (c) and FOM (d) at the fixed reverse-bias voltage V = -5 V and as
a function of the injection current for devices A (square), B (circle), C (upward-
pointing triangle), D (diamond) and E (downward-pointing triangle) in Fig. 3.10.

width from 4.4 ps to 930 fs.
This behaviour has also been observed in [74], [89], where only LSA has

been increased. In [74], it was proposed that the pulse shortening in devices
with longer SA is due to the significant increase in the gain saturation energy
(so larger S) associated to a total-carrier-density depletion mechanism and
consequently to a stronger spectral hole burning (SHB). The pulse width is
therefore reduced due to the ultrafast SHB carrier dynamics. In our case
with fixed S, above mechanisms and the influence induced by them do not
change from device to device. Under this condition, we still observe shorter
pulse in device with longer SA. This result can be explained as follows. The
S parameter and the analytical definition for the gain/absorption saturation
energy are related only with the cross-section geometry of the device and
do not take into account the longitudinal saturation effects in the cavity.
But the formation of a pulse is a cumulative process taking place along the
cavity and therefore the non-uniform longitudinal saturation effects along
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the SA and gain sections are also determining for the reduction of the pulse
width.

Different behaviour can be observed in other figures. In Fig. 3.11a,
the light-current (LI) characteristics show similar slope when moving from
device A to C. While further increasing the reflectivity (device D and E) will
leads to a decrease in the slope of the LI characteristic. In Fig. 3.11b, the
achieved peak power increases continuously from device A to C due to the
reduction in the pulse width. Then, since the reduction in the pulse width
exceeds the decrease in the average power, device D exhibits higher peak
power with respect to device C. Opposite behaviour happens in device E.
By combining the results in Fig. 3.11a and 3.11b, it can be seen from Fig.
3.11d that the optimum configuration which has the highest FOM (0.2 W2

in the considered bias range) should have a LSA between 700 and 800 µm
and a RL between 5% and 10%.

Very similar trends are also observed at other reverse-bias voltages, ex-
cept at lower reverse-bias where configurations with smaller LSA may not
achieve stable ML at all.

We demonstrate in this subsection that instead of the typically used low
value of the output reflectivity (5% to 1%) [74], [94], an appropriate higher
value of it with a proper length of the SA allows to obtain more stable ML,
shorter pulses and higher FOM.

3.4 Relation between the intracavity pulse evolu-
tion and the ML performances

Quantum dot based two-section passively mode locked semiconductor
lasers have been intensely investigated in the last ten years in order to
achieve better ML properties. Various methods, such as increasing the ab-
sorber/gain length ratio [89], introducing a passive section [95], using novel
scheme like tapered gain section [96], have been proposed and the experi-
mental results have demonstrated high quality pulses with pulse width in
the sub-picosecond range and peak power in the Watt range.

Full understanding of the dynamics governing the pulse formation in the
ML lasers is always crucial to promote new design ideas for the device per-
formance improvement. Therefore, theoretical investigations are essential to
support the experimental investigations. To this end, both analytic theories
and the numerical simulations of the QD-based ML lasers have being ex-
ploited. Although simpler, analytic equations are less reliable when applied
to study the detailed dynamics in the QD devices [53], [88]. On the con-
trary, rigorous numerical models with acceptable computational cost have
achieved increasing importance in the last years [54].

In previous section, we presented many methods to achieve better ML
performances. In order to get further insight of the complex ML systems,
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in this section, we study the influence of the intracavity pulse evolution on
the pulse properties. The FDTW model shown in Section 2.4 has been used
in this analysis. Starting from the most commonly used laser configuration,
we investigated systematically the possibility to optimize the performances
of a passively ML QD laser by varying the SA length, the total cavity length
and the facet reflectivities. According to the simulation results, we found
that changes in the laser configuration lead to consequent changes in the
intracavity pulse energy (PE) evolution and the gain/absorption distribution
which then contribute to the device performance variations. Particularly, it
has been always observed that, at the same effective pumping level, the
higher the PE impinging the SA, the smaller the pulse width.

In Subsection 3.4.1, a brief description of the investigation approach and
the considered devices is presented; main discussion of the influence of the
device parameters on the intracavity PE evolution and the pulse properties
is shown in Subsection 3.4.2.

3.4.1 Investigation approach and the considered devices

Using the single-population FDTW model, the evolution of the optical
field when propagating in forward (+z) and backward (-z) longitudinal di-
rections within the device cavity and the carrier dynamics in the QD medium
can be evaluated. The material related model parameters are given in Table
3.2.

Our study starts from a laser (device A) with the most commonly used
configuration in the literature for high power short pulse generation [11], [89].
In this device the total length L is 2 mm, the ridge width W is 6 µm, the SA
length LSA is 287 µm, the SA side facet is high-reflection (HR) coated with
reflectivity R0 of 95%, the low-reflection (LR) coated facet has reflectivity
RL of 4.2% and the active region consists of 10 stacks of InAs/In.15Ga.85As
Dots-in-a-Well layers. Schematic of this laser is given in Fig. 3.12a. In
the following subsection, most of these parameters will be modified and the
corresponding influences on the device performances will be shown.

Figure 3.12: Schematic of the two-section ML laser with output from the gain
section side facet (a) and the configuration with output from the SA side facet (b).
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To compare different devices, the following conditions are obeyed through-
out this work so that each device has almost the same operation condition.

1 All the devices operate at the same S value. As pointed out previously,
for the straight monolithic QD laser, the same gain saturation energy
can be achieved by fixing the threshold gain gth, since in this way
the differential gain which determines the gain saturation energy is
fixed. We have chosen gth = 175 cm−1 for all the considered devices,
since it is neither too low to achieve enough S nor too high to avoid
ES induced instability (competition between the GS and ES emissions
will be shown in Section 3.5).

2 Since the optical power is negligible below the laser threshold, the
effective part of the injected current for pulse energy increasing in
the laser cavity is the part above the threshold current Ith. We call
therefore this part of current as the effective pumping current (Ieff =
I − Ith) and this parameter unless otherwise specified is fixed at 40
mA.

3 To achieve the same absorption saturation energy and absorption re-
covery rate, the reverse bias voltage of the SA is always set to -5V.
Another reason for this high reverse voltage is to avoid the trailing
edge instability in the ML which is always observed in the device with
high S value [74].

In order to satisfy the condition 1, gth is fixed, and the corresponding
structural parameters are estimated using Eq. (3.9). In this case, the field
confinement factor Γxy = 9 %, the QD unsaturated material absorption at
GS transition αSA = 198.6 cm−1 and the intrinsic waveguide losses αi = 3
cm−1.

3.4.2 Investigation and discussion

Let study first the device A. Fig. 3.13(a) shows the spatio-temporal
evolution of the optical power of a GS pulse oscillating inside the laser cavity.
The ordinate axis indicates the location along the total cavity length with
the SA side facet at z = 0 and the gain section side facet at z = L (see also
Fig. 3.12). This map highlights the spatially dependent coupling between
the forward (Ff ) and backward (Fb) travelling optical fields. As shown in
Fig. 3.13b/c, the field absorption/gain dynamics are highly dependent on
the considered section z, since the relative delay between the times when Ff

and Fb crosses that section varies with z. At cut 1 (Fig. 3.13b), this delay
is quite short, therefore the backward field-induced absorption saturation
recovers only slightly when the forward field peak arrives. Whereas at cut
2 (Fig. 3.13c), the delay is longer and allows the gain saturation to recover


