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Upper Bounds to the Performance of Cooperative
Traffic Relaying in Wireless Linear Networks

Alessandro Nordio, Member, IEEE, Vahid Forutan, Carla-Fabiana Chiasserini, Senior Member, IEEE

Abstract—Wireless networks with linear topology, where nodes
generate their own traffic and relay other nodes’ traffic, have
attracted increasing attention. Indeed, they well represent sensor
networks monitoring paths or streets, as well as multihop
networks for videosurveillance of roads or vehicular traffic.
We study the performance limits of such network systems
when (i) the nodes’ transmissions can reach receivers farther
than one-hop distance from the sender, (ii) the transmitters
cooperate in the data delivery, and (iii) interference due to
concurrent transmissions is taken into account. By adopting an
information-theoretic approach, we derive analytical bounds to
the achievable data rate in both the cases where the nodes have
full-duplex and half-duplex radios. The expressions we provide
are mathematically tractable and allow the analysis of multihop
networks with a large number of nodes.

Our analysis highlights that increasing the number of coop-
erating transmitters beyond two leads to a very limited gain in
the achievable data rate. Also, for half-duplex radios, it indicates
the existence of dominant network states, which have a major
influence on the bound. It follows that efficient, yet simple,
communication strategies can be designed by considering at most
two cooperating transmitters and by letting half-duplex nodes
operate according to the aforementioned dominant states.

Index Terms—Wireless networks, traffic relaying, sensor net-
works.

I. INTRODUCTION

Multi-hop communication systems are primarily imple-
mented to extend the overall coverage of wireless networks,
leading to a more efficient use of the available communication
resources and to an increased network throughput.

As indicated by the information theory, the capacity of a
wireless network increases when the nodes participate co-
operatively in relaying the traffic toward their destinations.
Thus, various cooperative schemes have been proposed in the
literature for networks that include only full-duplex nodes (i.e.,
nodes that can simultaneously transmit and receive) [1], [2],
only half-duplex nodes (i.e., nodes that at any time instant
can either transmit or receive) [3], or a mix of full-duplex and
half-duplex nodes [4].

In this paper, we consider a wireless network where n nodes
have to deliver their traffic to a common destination node
(e.g., a gateway node) through multi-hop data transfers. We
focus on a network whose topology can be considered as
linear, as, e.g., in the case of sensor networks for path and
street monitoring, or multihop networks for videosurveillance
of roads and vehicular traffic [5]. The nodes share the same
radio resources and each of them may generate its own data
at a different average rate. We assume that, if needed, the
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nodes cooperate to relay the traffic based on the decode-and-
forward paradigm [6]. The nodes’ transmission rates and pow-
ers correspond to optimal coding over a discrete-time additive
white Gaussian noise (AWGN) channel, although more general
channels and coding schemes could be considered as well.
Furthermore, unlike previous work, we account for the fact
that receivers may exploit signal transmissions from nodes
farther than one-hop distance from the sender, and that nodes
in radio visibility can cooperate to transmit toward one or more
receiver nodes.

Under these conditions, we adopt an information-theoretic
approach and we develop a method to obtain a fairly tight
upper bound to the nodes’ achievable rate, which also accounts
for the interference due to simultaneous transmissions. Specif-
ically, we study the cut-set upper bound [7], [8] of the network
system, and obtain the timing and traffic links schedule of such
a network under which the upper bound is satisfied. We carry
out the analysis in presence of both full-duplex (FD) and half-
duplex (HD) nodes; for the former, we study the general case
where nodes may choose to operate either in FD or HD mode,
as the second operational mode (i.e., HD) can be considered
as a subcase of the first one (i.e., FD).

We stress that, since the nodes’ operational states in FD
mode are a superset of those under the HD mode, an upper
bound for an FD network is an upper bound for the HD
case too. However, such a bound would be loose for an
HD network, where the data transfer towards the destination
is expected to be significantly slower than in the FD case
(recall that HD nodes cannot transmit and receive at the same
time). We therefore carry out a different analysis for FD and
HD networks, so as to obtain tight upper bounds under both
operational modes.

We start our analysis by adopting the cut-set methodology
as introduced in [7], [8]; this, however, would require us
to consider all possible network cuts and operational states,
which is unfeasible in our case due to their exceedingly high
number (see Sec. IV for further details). We therefore limit
the number of cuts to be considered and identify the dominant
states in which the network can operate, and derive the upper
bound to the nodes data rate accounting for such cuts and
network states only. Also, in the case of an HD network,
whose analysis becomes more complex due to the additional
operational constraints, we are able to analyze a large-size
network by resorting to an equivalent one, composed of five
nodes only. To show the validity of our approach, we compute
a lower bound to the traditional cut-set bound. By comparing
our results to the aforementioned lower bound, we demonstrate
that the upper bound we derive is tight. Finally, we use the
bounds obtained for the FD and the HD case to investigate the
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system behavior as several parameters, like the signal-to-noise
ratio (SNR), the dependence of the signal attenuation with the
distance and the number of nodes, vary.

We remark that several works have appeared in the literature
addressing a problem similar to the one we study, but for
networks with only one node generating traffic and the others
acting as relays [9], [10], or with multiple source nodes but
operating in FD mode only [1], [2], or for networks with very
few HD nodes [11]. The benefits of an integrated FD and
HD relaying scheme have been studied in [4], for a network
with a source-destination pair and an intermediate relay-only
node. However, the solution in [4] holds only if the loop-back
interference observed at the relay operating in FD mode is
resolved. This imposes further hardware requirements, which
limit the application of the strategy proposed there. A network
scenario closer to ours has been analyzed in [12], [13], but
with a different objective. There, the authors consider the
problem of computing transmission powers, rates, and link
scheduling for an energy-constrained wireless network and
solve it by maximizing the network lifetime through a cross-
layer design approach. Beside having different scope, our work
differs from [12], [13] in that they consider the data rates
of the source nodes as inputs to the problem of transmission
scheduling, while we aim at deriving an upper bound to the
nodes’ achievable rate. Finally, in [14] Lutz et al. analyze relay
cascades with HD constraints, in which adjacent node pairs
are connected via error-free links. The information transfer is
carried out by applying a coding scheme that allocates the
transmission and reception time slots at the relays depending
on the amount of information to be transferred. Through
numerical results, the authors show that their strategy achieves
the cut-set bound under certain conditions on the nodes’ rates.
Together with its rather complex coding scheme, the strategy
in [14] requires the nodes to be synchronized at the symbol
level. Unlike [14], in our paper we derive an upper bound to
the rates achievable by the nodes, using an AWGN channel
model and accounting for interference due to simultaneous
transmissions.

In summary, to our knowledge, our work is the first one
that provides an upper bound to the achievable data rates in
a network where (i) the nodes may operate all in FD or HD
mode, or some in FD and others in HD mode, (ii) a node’s
transmission can be exploited at a receiver located at more
than one-hop distance from the sender, and (iii) interference
is taken into account.

The rest of the paper is organized as follows. First, we
describe the system model in Section II and provide some
basic concepts on the cut-set bound in Section III. The
upper bound to the nodes’ achievable rate is investigated in
Sections IV and V for, respectively, FD and HD networks.
There, we also present some numerical results showing the
impact of the system parameters on the performance. Finally,
in Section VI we draw our conclusions and highlight directions
for future research.

II. SYSTEM MODEL

We consider a wireless network with linear topology com-
posed of n nodes and a destination node, as depicted in Fig. 1.

1 2 n− 1 n n+ 1

ρ1 ρnρn−1ρ2

`

Fig. 1. Network topology.

Without loss of generality, we let node 1 be the node at the
left end of the topology, while the destination is located at the
right end and is denoted by n+ 1. For simplicity, we assume
that the nodes are equally spaced along the path and denote
by ` the inter-node distance, which we refer to as the one-hop
distance. It follows that the network has length L = n` meters,
or, equivalently, it includes n-hops.

Node i (i = 1, . . . , n) generates messages at rate Ri,
and it can decode and forward other nodes’ messages. We
consider an additive white Gaussian noise (AWGN) channel,
and assume that all nodes transmit with power P while the
noise power spectral density at each receiver is N0. We then
write the SNR measured at distance ` from a transmitting
node as γ = PGtGr

WN0

(
λ

4π`

)a
where Gt, Gr are, respectively, the

transmit and receive antenna gains, λ is the carrier wavelength,
and a is the path loss exponent.

We assume that each node i, i = 1, . . . , n+ 1, is equipped
with directional antennas, so that it can receive signals only
from upstream transmitting nodes and it can use its whole
power to transmit towards downstream nodes. This is a rea-
sonable assumption considering that our objective is to find an
upper bound to the achievable data rates and that we deal with
a linear network in which all nodes aim at delivering their data
to the same destination located at one end of the topology.

Furthermore, since we are interested in finding bounds
to practical cooperative communication strategies, for any
receiver node, we define kC as the maximum distance (with
respect to the receiver itself) at which collaborating transmit-
ters can be located; we refer to kC as cooperation range.
We define kI (kI ≥ kC) as the interference range of a
node, i.e., the maximum distance at which a transmitted signal
can cause interference at a receiver. Both the cooperation
and the interference ranges are expressed in hops. From the
above definitions, it follows that a node can receive useful
signals from transmitters within distance kC hops, while it
receives interfering signals from nodes located at distance
farther than kC hops but within kI hops. All signals arriving
at the receiver from farther than kI hops are assumed to have
negligible power. Signals received from collaborating nodes
are correlated, while interfering signals received from nodes
farther than kC hops are uncorrelated and independent of the
useful signals. This is a fair assumption as, by definition of
cooperation range, the signals from nodes farther than kC hops
are not exploited by a receiver, hence useful and interfering
signals can be assumed to be uncorrelated. Also, under the
system scenario outlined above, neglecting the correlation
among interfering signals represents a best case (i.e., it never
overestimates the effect of the interfering signals), thus it does
not invalidate the derivation of the upper bound to the nodes’
data rate.

Denoting by y the vector of signals received at the network
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nodes, we can write:

y =
√
γHTx +

√
γWTi + z . (1)

In (1), x = [x1, . . . , xn]T is the vector of signals transmitted
by nodes 1, . . . , n; i ∼ N (0, I) is the vector of signals trans-
mitted by interfering nodes (assumed to be uncorrelated and
independent of x); H is the matrix including the coefficients of
the channels between the receiver nodes and the transmitters
in their cooperation range; W is the matrix including the
coefficients of the channels between the receivers and their
corresponding interferers. Finally, z ∼ N (0, I) is the noise
vector, independent of x and i.

We assume that nodes employ Gaussian codebooks and that
x ∼ N (0,Σ), with (Σ)ii = 1, i = 1, . . . , n. The entries hij
of the n× (n+ 1) channel matrix H are defined as

hij =

{
(i− j)−a/2 if i− kC ≤ j < i
0 else,

(2)

while the elements wij of the n× (n+ 1) interference matrix
W are given by

wij =

{
(i− j)−a/2 if i− kI ≤ j < i− kC
0 else.

(3)

Note that the elements hij and wij are assumed to be static in
order to make the following analysis more readable; however,
our derivations can be easily extended to the case of a time-
varying channel model.

At last, we stress that, while most of previous work aims at
maximizing the sum rates of source nodes, we consider that
every node i may have a different amount of data to deliver
to the destination in the unit time. Thus, our goal is to study
the maximum fair rate allocation to all nodes, i.e., the average
data rates that can be achieved by the nodes and that satisfy
the desired proportion among the nodes’ data generation rates.
To do so, we should consider an n-dimensional problem, with
the n variables representing the nodes’ data rates. However,
we can obtain a problem formulation that is mathematically
tractable, by expressing the average1 rate at which node i
transfers its own data towards the destination node n+ 1 as

Ri = ρiR i = 1, . . . , n . (4)

In the above equation, the coefficients ρi’s are (positive) input
parameters representing the relationship among the nodes’
data generation rates, hence the desired relationship among
the nodes’ traffic delivery rates. Such an expression allows
us to consider only one system variable, R, which should be
maximized.

Given the aforementioned scenario, we are interested in
deriving a bound to the maximum achievable rate R, in both
the FD and the HD case. FD nodes have the ability to transmit
and receive simultaneously over the same frequency band; we
denote the corresponding operational state by tr. HD nodes,
instead, cannot do both tasks simultaneously, i.e., at a given
time instant, they can either transmit (t) or receive (r). Under
certain circumstances, an FD node may also operate in HD

1Note that the average is computed over time, as the generic node i may
take different operational states at different time instants (namely, transmit,
reception and idle/sleep).

mode for a fraction of time, hence it may be in any of the states
t, r and tr. However, for FD nodes, state t can be included in
state tr since reception does not increase the interference level
at other nodes and it does not decrease the system capacity
either. Note also that a sleep state could be considered, in
which the nodes neither transmit nor receive but they just save
energy. However, for the purposes of our analysis, a sleep state
is equivalent to the receive state. In conclusion, we can limit
our attention to states r and tr for FD nodes, and to r and t
for HD nodes.

Since any network node can operate in two states, while
the destination node n + 1 always receives, the number of
possible states the network can take is J = 2n. We denote
the j-th network state (j = 1, . . . , J) by σj = [σ1j , . . . , σnj ]
where σij is the state of node i when the network is in state
σj , that is, σij ∈ {r, tr} if k is an FD node, and σij ∈ {r, t} if
k is an HD node. Also, we define the set of network states as
J = {σj , j = 1, . . . , J}, while the time fractions the network
spends in the possible states are represented by the vector
t = [t1, . . . , tJ ]T, with 0 ≤ tj ≤ 1 and such that

∑J
j=1 tj = 1.

III. BACKGROUND ON THE CUT-SET BOUND

The cut-set bound is an upper-bound to the achievable data
rate of a wireless network of generic topology where nodes
exchange messages among each other. As mentioned, in our
case the network is composed of n wireless nodes and a
destination node (see Fig. 1). We define the set of network
nodes as T = {1, . . . , n+ 1} and, as introduced in Section II,
we assume that node i, i = 1, . . . , n, generates a message Wi,
of rate Ri, to be transferred to the destination. The messages
Wi’s are assumed to be mutually independent.

Following the notation introduced in [7, Chapter 10.2], we
denote by xi and yi the random variables representing the
signals, respectively, transmitted (channel inputs) and received
(channel outputs), by node i, i = 1, . . . , n+1. Moreover, since
we assume that the destination node (i.e., node n+1) is always
in receive state r, we set xn+1 = 0. The transmitted signals
xi’s are assumed to have zero mean, unit variance and joint
distribution px1,...,xn

. The destination node, on the base of the
received signal yn+1, derives estimates Ŵi of the messages
Wi, i = 1, . . . , n.

In order to compute the cut-set bound, one should consider
all possible partitions, hereinafter called cuts, of the network
nodes T into two non overlapping sets, S and Sc = T \ S.
The former includes some of the nodes generating messages,
while the latter contains the destinations of those messages
(for which they compute an estimate). Note that, beside the
sources and destinations of a set of tagged messages, S and
Sc can include other nodes as well. In our network scenario,
message estimates are derived only at the destination node,
thus a valid cut is such that Sc contains at least node n + 1.
Let us now consider a generic cut S . We denote by
• M(S) the set of messages transmitted by nodes in the

cut S,
• RM(S) the sum of the rates of the messages in M(S),
• xS = {xk|k ∈ S} the set of channel inputs contained in
S,
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• xSc = {xk|k ∈ Sc} the set of channel inputs contained
in Sc, and by

• ySc = {yk|k ∈ Sc} the set of channel outputs contained
in Sc.

By [7, Chapter 10.2], the rate RM(S) can be written as
RM(S) =

∑
i∈S Ri, where Ri is the rate of message Wi.

Then, the cut-set bound to the network capacity region is given
by:

C ⊆
⋃

px1,...,xn

⋂
S∈Ω

{
R1, . . . , Rn|

∑
i∈S

Ri ≤ I(xS ; ySc |xSc)

}
(5)

where Ω = {S|S ⊆ T ,S 6= ∅} is the set of network cuts,
whose cardinality is |Ω| = 2n − 1. The term I(xS ; ySc |xSc)
denotes the mutual information2 between the random variables
xS and ySc , given xSc and a joint distribution px1,...,xn . We
recall the the mutual information I(X;Y |Z) between two
random variables X and Y , given the random variable Z,
can be written as I(X,Y |Z) = h(Y |Z) − h(Y |X,Z), with
h(Y |Z) being the differential entropy3 of the random variable
Y given Z.

IV. CUT-SET BOUNDS: FULL-DUPLEX RADIOS

We now derive an upper bound to the achievable data rate by
applying the cut-set bound approach. We start by considering
the expression in (5) and make some observations, as detailed
next.

In our scenario, the network can operate in J possible states,
i.e., σj , j = 1, . . . , J , characterized by the time fractions
t = [t1, . . . , tJ ]T. The mutual information I(xS ; ySc |xSc)
in (5) can therefore be expressed as I(xS ; ySc |xSc) =∑J
j=1 tjI(xS ; ySc |xSc ,σj). The rate of the messages gener-

ated by the network nodes are such that Ri = ρiR, therefore
we can write

∑
i∈S Ri = R%S where %S =

∑
i∈S ρi. This

allows us to reduce the n-dimensional problem in (5) to a
formulation with one variable only, i.e., R, where the union
and the intersection operators can be replaced with a max and
a min operators, respectively. Additionally, the maximization
must be performed also over all possible time fractions t.
Hence, using (5), we can write the cut-set upper bound to
the data rate R as

B = max
px1,...,xn ,t

min
S∈Ω

1

%S

J∑
j=1

tjI(xS ; ySc |xSc ,σj). (6)

Then, under the assumption of a AWGN channel, FD nodes,
a Gaussian codebook and the signal model in (1), we obtain
the following expression:

BFD = max
Σ,t

min
S∈Ω

 1

%S

J∑
j=1

tjIS,j

 (7)

where IS,j = I(xS ; ySc |xSc ,σj) and the joint density
px1,...,xn

is represented by the covariance matrix Σ.

2The mutual information of two random variables measures the mutual
dependence of the two variables [6].

3Similar to the information-theory concept of entropy, differential entropy
is a measure of average surprisal but of a continuous random variable [6].

However, the computation of a tight cut-set bound, such
as that in (7) would require us to consider any possible cut
of the network, S ∈ Ω, separating some messages from their
corresponding estimates, and its complement, Sc = T \ S.
Unfortunately, this is impractical for networks with a large
number of nodes, since the number of cuts increases expo-
nentially with n, i.e., as 2n − 1. Thus, in the following we
derive an upper bound for BFD, i.e., a looser upper bound to
the achievable data rate. To demonstrate that our bound is still
tight, we derive a lower bound for BFD and show that our
upper and lower bounds for BFD are very close.

A. Upper bound to BFD

A weaker, but mathematically tractable, upper bound to
the rate R can be obtained by reducing the cuts to be
considered in (7) to one cut only, which coincides with T .
Then, we have BFD ≤ 1

%T
maxΣ,t

∑J
j=1 tjIT ,j where IT ,j =

I(x1, . . . , xn; yn+1|σj) = I(xn−kC+1, . . . , xn; yn+1|σj). It
follows that

BFD ≤ 1

%T
max

Σ

J∑
j=1

tjI(xn−kC+1, . . . , xn; yn+1|σj)

=
1

%T
max

Σ
I(xn−kC+1, . . . , xn; yn+1|σ∗)

=
1

2%T
max

Σ
log2

(
1 + γhn+1

TΣhn+1

)
. (8)

Since we aim at deriving an upper bound, in (8) we limited
the possible network states to those in which nodes n− kC +
1, . . . , n are in state tr, nodes n−kI+1, . . . , n−kC are in state
r (so that they do not interfere with the nodes within distance
kC from the destination n+1), and the remaining ones can be
either in tr or r (σ∗ represents any of these network states).
Note that the vector hn+1 is the (n+ 1)-th column of H and

hn+1
TΣhn+1 ≤

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

(hn+1)i(hn+1)j(Σ)ij

∣∣∣∣∣∣
(a)
≤

(
kC∑
`=1

h`

)2

(9)

where the inequality in (a) is due to the fact that all elements
of hn+1 are positive, |(Σ)ij | ≤ 1, and only the nodes
within distance kC from the destination are transmitting. By
substituting (9) in (8), we can write

BFD≤
1

2
∑n
i=1 ρi

log2

1 + γ

(
kC∑
`=1

h`

)2
 = BU−FD .(10)

B. Lower bound to BFD

In order to assess how tight the bound BU−FB is with
respect to BFB, we derive a lower bound for the latter, which
we denote by BL−FB. The lower bound BL−FB is obtained
by assuming Σ = I in (7), i.e., that the transmitted signals are
uncorrelated. Under this condition, a node can decode some
data by using one signal only out of the received ones, and it
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has to consider the latter as interference. Thus, by recalling (7)
we have

BFD ≥ max
t

min
S∈Ω

 1

%S

J∑
j=1

tj IS,j |Σ=I

 , (11)

where IS,j |Σ=I is the mutual information IS,j conditioned to
Σ = I, i.e.,

IS,j |Σ=I = I(xS ; ySc |xSc ,Σ = I,σj).

Let us define the 1 × n vector δS , whose i-th element is
(δS)i = 1 if i ∈ S and 0 otherwise, and the diagonal matrices
∆S = diag(δS) and ∆̄S = diag([1−δS , 1]). Then, the mutual
information IS,j |Σ=I can be rewritten as

IS,j |Σ=I = I
(
∆Sx;

√
γ∆̄SH

Tx +
√
γ∆̄SW

Ti+

z|(I−∆S)x,Σ = I,σj)

where the matrices ∆S and ∆̄S select the nodes in the cut S
and Sc, respectively. Since x = ∆Sx + (I −∆S)x and we
assume Σ = I, we have

IS,j |Σ=I = I
(
∆Sx;

√
γ∆̄S(HT∆Sx + WTi) + z|Σ = I,σj

)
=h(
√
γ∆̄S(HT∆Sx + WTi) + z|Σ = I,σj)−

h(
√
γ∆̄SW

Ti + z|σj) (12)

where h(·) denotes the differential entropy. Now, let us
define the vector dj = [d1j , . . . , dnj ]

T whose entries, for
i = 1, . . . , n, are such that dij = 1 if σij = tr, and dij = 0
if σij = r. From the above definitions, it follows that the
vectors of signals x conditioned to the network state σj can
be written as x|σj = Djx, where Dj = diag(dj). Similarly,
the interference vector conditioned to the network state σj is
given by i|σj = Dji. Then, from (12) we obtain

IS,j |Σ=I =h(
√
γ∆̄S(HT∆Sx + WTi) + z|Σ = I,σj)−

h(
√
γ∆̄SW

Ti + z|σj)
=h(
√
γ∆̄S(HT∆SDjx + WTDji) + z|Σ = I)−

h(
√
γ∆̄SW

TDji + z)

=
1

2
log2

∣∣I + γ∆̄S(WTDjW + HT∆SDjH)∆̄S
∣∣∣∣I + γ∆̄SWTDjW∆̄S

∣∣
=aS,j (13)

where we used the fact that x, i and z are mutually inde-
pendent, D2

j = Dj , and ∆SD
2
j∆S = ∆SDj . Let a =

[aS,1, . . . , aS,J ]T (with aS,j as in (13)) and t = [t1, . . . , tJ ]T.
It follows that (11) can be rewritten as

BFD ≥ max
t

min
S∈Ω

{
aTt

%S

}
. (14)

The max-min problem in (14) can be turned into the following
linear programming (LP) problem, which can be easily solved:

BL−FD = maxR s.t.
aS

Tt
%S
≥ R, for any S ∈ Ω

1Tt = 1
0 ≤ tj ≤ 1, for any j ∈ J .

As a last remark, note that, for the special case where kC =
kI = 1, the expressions we derived for BL−FD, BFD and
BU−FD coincide and take the value, 1

2%T
log2(1 + γ).
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Fig. 2. Full-duplex radios: bounds for n = 10, a = 2, ρi = 1∀i, kC =
1, 2, 4 hops and kI = 5.

10
-3

10
-2

10
-1

10
0

-20 -10  0  10  20  30  40  50

R

γ [dB]

 BU-FD, kC=1

 BL-FD, kC=1

 BU-FD, kC=2

 BL-FD, kC=2

 BU-FD, kC=4

 BL-FD, kC=4

Fig. 3. Full-duplex radios: bounds for n = 10, a = 4, ρi = 1∀i, kC =
1, 2, 4 hops and kI = 5.

C. Results

Let us consider a network composed of n = 10 nodes
plus the destination. By using the above expressions and
setting ρi = 1, i = 1, . . . , n, we compute the bounds to
the achievable rate R in (4) as the value of SNR, γ, and
the node cooperation and interference range vary. Recall that,
by varying the latter two parameters, the values taken by the
bounds in (10) and (14) vary as well.

Figs. 2 and 3 present the results obtained for a path loss
exponent, a, equal to 2 and 4, respectively. The cooperation
range kC varies between 1 and 4, while the interference range
is set to kI = 5. As it can be seen by looking at the plots, in
the medium-low SNR region the bounds, BU−FD and BL−FD,
are tight for any value of kC , while in the high SNR region
the gap is very limited for any kC ≥ 2. The figures also show
that the distance between the two bounds decreases as the path
loss exponent increases, especially in the high SNR region.
The reason of this behavior is that the larger the kC’s and a’s,
the smaller the impact of the interference, as large kC’s imply
that interferers are very far away from the receiver while large
a’s cause severe signal attenuation. Since the bounds BU−FD

and BL−FD are always close (except for a = 2 and kC = 1),
we conclude that BU−FD is a tight upper-bound of the cut-set
bound BFD.

Furthermore, we observe that, by increasing kC , the bounds
also increase, as it can be exploited the cooperation among a



6

larger number of transmitters. However, such a gain is evident
only when kC grows from 1 to 2, while a further increase of
kC to 4 provides only a limited increase in the data rate. Such
a gain further reduces as the path loss exponent grows.

In conclusion, our results suggest that increasing the number
of cooperating nodes beyond two provides a benefit which is
little for medium-low SNR and negligible in the high SNR
region. Also, such a gain in the achievable rate significantly
decreases for a > 2. It follows that the complexity of
designing and implementing a communication strategy that
exploits cooperative transmissions from nodes, located farther
than two hops away from a receiver, does not pay off in terms
of performance.

V. CUT-SET BOUNDS: HALF-DUPLEX RADIOS

We now consider that the n network nodes operate in HD
mode, i.e., that at any time instant each node can be either in
the transmit (t) or in the receive (r) state. As done in the case
of FD radios, we denote by IS,j = I(xS ; ySc |xSc ,σj) the
mutual information associated to cut S and conditioned to the
network being in state σj = [σ1j , . . . , σnj ], where σij ∈ {r, t}
is the state of node i when the network is in state σj . It follows
that the mutual information associated to the cut S can be
written as IS = I(xS ; ySc |xSc) =

∑J
j=1 tjIS,j .

Following [8], the cut set bound to the rate that can be
achieved in the HD scenario is:

BHD = max
t,Σ

min
S∈Ω

{
IS
%S

}
. (15)

where we recall that %S =
∑
i∈S ρi. The computation of the

bound in (15) is again mathematically intractable for large
networks, since it requires the maximization over the vector
t and the matrix Σ, and the minimization over 2n − 1 cuts.
Thus, similarly to what done for the FD case, below we derive
an upper and a lower-bound to BHD.

A. Upper bound to BHD

We first observe that the bound in (8) can be obtained
again for the HD case by following the same approach as
in Sec. IV-A, i.e., we can bound (15) by reducing the set of
possible cuts, Ω. However, it is clear that a different derivation
is needed in order to obtain a good bound for the HD case.

We now split the set of nodes T in two disjoint subsets: T1

containing the nodes {1, . . . , n− k− 1} and T2 including the
nodes {n − k, . . . , n}, where k ≥ kC . We then upper-bound
BHD by considering only the set of network cuts, Ω̃, such that,
for every S ∈ Ω̃, the nodes in T1 are out of the cooperation
range of all nodes in S. Then, a first upper-bound to BHD can
be written as

BHD ≤ max
t,Σ

min
S∈Ω̃

{
IS
%S

}
. (16)

Next, motivated by the results obtained for the FD radios
(see Figs. 2 and 3 and related comments), let us limit our
attention to the case where the cooperation range is equal to 2
hops, i.e., k = kC = 2. The generalization to the case where
kC > 2, although more complicated, can be easily obtained.

Under such an assumption, the right hand side of (16) can be
rewritten as

min
S∈Ω̃

{
IS
%S

}
= min

1≤h≤5
min
S∈Ω̃h

{
IS
%S

}
where the disjoint subsets of cuts, Ω̃h’s, satisfy the condition
Ω̃ =

⋃5
h=1 Ω̃h and are defined below.

1) Ω̃1 = {S = {n − q, . . . , n − 1}, 2 ≤ q ≤ n − 1}.
In this case, we have Sc = {1, . . . , n − q − 1, n} for
2 ≤ q < n− 1, and Sc = {n, n+ 1} for q = n− 1. The
corresponding mutual information can be written as

IS = I(xS ; ySc |xSc) = I(xS ; yn, yn+1|xSc) (17)

where the last equality holds since the signals ySc ,
except for yn, do not depend on xS . We recall that
the conditioned mutual information I(X;Y |Z) can be
written in terms of differential entropy as I(X;Y |Z) =
h(Y |Z)−h(Y |X,Z). In our case and for 2 ≤ q ≤ n−1,
we have

I(xS ; yn, yn+1|xSc) =h(yn, yn+1|xSc)−
h(yn, yn+1|x1, . . . , xn)

≤h(yn, yn+1|xn)−
h(yn, yn+1|xn−2, xn−1, xn)

= I(xn−2, xn−1; yn, yn+1|xn) (18)

since conditioning reduces the entropy and,
under our assumptions, h(yn, yn+1|x1, . . . , xn) =
h(yn, yn+1|xn−2, xn−1, xn). Recall that in (16) we
need to minimize the ratio IS/ρS over all possible cuts.
Therefore, by using the results in (17) and (18), we can
write:

min
S∈Ω̃1

IS
ρS
≤ min
S∈Ω̃1

I(xn−2, xn−1; yn, yn+1|xn)

(∑
i∈S

ρi

)−1

= I(xn−2, xn−1; yn, yn+1|xn)

min
2≤q≤n−1

 ∑
i∈{n−q,...,n−1}

ρi

−1

= I(xn−2, xn−1; yn, yn+1|xn)

(
n−1∑
i=1

ρi

)−1

= I1 . (19)

2) Ω̃2 = {{n − 1}}. Following the same procedure as
above, we obtain

min
S∈Ω̃2

IS
ρS
≤ 1

ρn−1
I(xn−1; yn, yn+1|xn−2, xn) = I2 .

3) Ω̃3 = {S = {n− q, . . . , n}, 2 ≤ q ≤ n− 1}. Then, we
have Sc = {1, . . . , n − q − 1} for 2 ≤ q ≤ n − 1, and
Sc = ∅ for q = n− 1. Again, we obtain

min
S∈Ω̃3

IS
ρS
≤ 1∑n

i=1 ρi
I(xn−1, xn; yn+1) = I3 .

4) Ω̃4 = {{n − 1, n}}, then minS∈Ω̃4

IS
ρS

≤
1

ρn+ρn−1
I(xn−1, xn; yn+1|xn−2) = I4.
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n− 1 n n+ 1n− 3 n− 2

ρ̂n−2 ρ̂n−1 ρ̂n

Fig. 4. Equivalent network for the computation of the bound in (20).

5) Ω̃5 = {{n}}, then minS∈Ω̃5

IS
ρS

≤
1
ρn
I(xn; yn+1|xn−2, xn−1) = I5.

Given that the interference range is larger than the coop-
eration range, i.e., kI > kC , it is clear that the terms Ih’s
also account for the interference. Since interfering signals
are assumed to be uncorrelated, for simplicity in the bound
computation, the terms of mutual information Ih’s can be
upper-bounded by considering kI = kC + 1. That is, we can
account only for a single interfering node.

In conclusion, let Ĩh be the mutual information Ih condi-
tioned to kI = kC + 1, h = 1, . . . , 5. We can eventually write
the upper-bound to BHD as

BU−HD = max
t,Σ∑J

j=1 tj=1

min
1≤h≤5

Ĩh . (20)

Note that the bound in (20) refers to an equivalent network
composed of 5 nodes (see Fig. 4), namely: (a) an interfering
node n − 3; (b) the node n − 2 whose transmitted signal is
considered as useful for nodes n−1 and n and as interference
for node n+ 1; (c) the nodes n− 1 and n whose transmitted
signals are considered as useful to node n + 1; and (d) the
destination node n + 1. Also, the terms Ĩ1, . . . , Ĩ5 represent
the mutual information associated to the cuts, respectively,
{n − 2, n − 1}, {n − 1}, {n − 2, n − 1, n}, {n − 1, n}, {n}
of the equivalent network, where the equivalent traffic loads
are described by the coefficients

ρ̂n−2 =

n−2∑
i=1

ρi; ρ̂n−1 = ρn−1; ρ̂n = ρn.

Since each node can operate in two states and node n+1 is
always receiving, the above equivalent network has 24 states
to be considered in the computation of (20).

As the last remark, we observe that the mutual information
Ĩh, h = 1, . . . , 5, can be rewritten as Ĩh =

∑
j tj Ĩh,j ,

where the terms Ĩh,j are the mutual information conditioned
to network state σj . Then, the bound in (20) can be written
as

BU−HD = max
t,Σ∑
j tj=1

min
1≤h≤5

∑
j

tj Ĩh,j .

The above max-min problem can be efficiently solved as
follows: for each covariance matrix Σ, solve the LP problem

BU−HD = maxR s.t.∑
j tj Ĩh,j ≥ R, h = 1, . . . , 5∑
j tj = 1∑

j:σj,n−3=t

tj ≥
ρn−3R

1
2 log2(1 + γ)

and choose the maximum over Σ. Note that
∑
j:σj,n−3=t tj

represents the time fraction during which the interfering node

n − 3 is transmitting (i.e., it is in state t). The constraint∑
j:σj,n−3=t tj ≥

ρn−3R
1
2 log2(1+γ)

bounds such a time fraction with
the time required by node n − 3 to transmit at least its own
generated data (ρn−3R) through a single-hop channel with
capacity log2(1 + γ)/2.

B. Lower bound to BHD

As done for the FD case, in order to verify that the upper
bound BU−HD is tight enough, we derive a lower bound to
BHD and compare it to the BU−HD. Again, we lower bound
BHD by assuming Σ = I. By doing so, we obtain:

BHD ≥ max
t

min
S

{∑J
j=1 tjIS,j |Σ=I

%S

}
. (21)

The conditioned mutual information IS,j |Σ=I can be ex-
pressed similarly to (13), as:

1

2
log2

∣∣I + γ∆̄SD̄j(W
TDjW + HT∆SDjH)D̄j∆̄S

∣∣∣∣I + γ∆̄SD̄jWTDjWD̄j∆̄S
∣∣

= bS,j (22)

where the matrix D̄j = diag([1− d, 1]) accounts for the fact
that HD nodes cannot simultaneously transmit and receive,
i.e., D̄j is used to force to 0 the signal received at the nodes
that are transmitting. The right hand side of (21) can then be
further bounded as:

max
t

1Tt=1

min
S

{
bS

Tt

%S

}
≥ max

t̂
1Tt̂=1

min
S

{
b̂S

Tt̂

%S

}
= BL−HD (23)

where the column vectors b̂S and t̂ are defined as b̂S =
{bS,j}, t̂ = {tj}, with j ∈ Ĵ , and where we only considered
a subset Ĵ of the possible network states J . The reduction
of the number of considered states to Ĵ allows a dramatic
reduction of the computational complexity of (23) and is
justified by the fact that, through numerical analysis, we have
observed that most of the network states have little or no
influence on the value of the bound. More specifically, the
number of dominant states, i.e., those that provide signif-
icant contribution, increases just linearly with n. Also, for
kI = kC + 1, the dominant network states are circular shifts
of the vector σ = [. . . ttrttrttr . . .] where the pattern ttr
is repeated. This result was expected since, for the above
value of kI , the pattern ttr both avoids interference and
allows neighboring nodes to cooperate. This finding suggests
that efficient communication strategies can be obtained by
exploiting such network states. The max-min problem in (23)
can then be turned into the following LP problem:

BL−HD = maxR s.t.
b̂S

Tt̂
%S
≥ R, for any S ∈ Ω

1Tt̂ = 1

0 ≤ tj ≤ 1, for any j ∈ Ĵ .
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Fig. 5. Half-duplex radios: bounds for n = 10, a = 2, 4, ρi = 1 ∀i, kC = 2
hops and kI = kC + 1.
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Fig. 6. Comparison between the cases of half-duplex and full-duplex radios.
Bounds for n = 5, a = 2, 4, ρi = 1∀i, kC = 2 hops and kI = kC + 1
hops.

C. Results

We now assume HD radios and compare the bounds in (20)
and (23) to the achievable data rate as the SNR varies. We
focus on the case where ρi = 1, i = 1, . . . , n, path loss
exponent a = 2, 4, cooperation range kC = 2 and interference
range kI = kC + 1. The results are shown in Fig. 5, for
n = 10. The bounds we derived show to be very close for any
value of γ and a, again proving that the upper-bound BU−HD

in (20) is a tight upper bound to the cut-set bound BHD.
Similar results have been obtained also varying the values of
the system parameters over a larger range.

After assessing the tightness of the bounds in (10) and (20),
we now investigate their behavior for different values of n.
In particular, Figs. 6 and 7 compare the bounds BU−FD and
BU−HD for a = 2, 4, kC = 2, kI = kC+1, and for n = 5 and
n = 10, respectively. The bounds for the FD case are clearly
higher than those obtained for HD radios, as the latter case
constrains the nodes to operate in either transmit or receive
mode while in the FD case the best operational mode for each
node is selected.

We then analyze the case where the nodes have different
traffic loads, i.e., they generate data traffic at different rates
ρi. In particular, Figs. 8 and 9 show the case where ρi = i,
i = 1, . . . , n, i.e., the closer a node to the destination, the
higher its load. The first plot presents the curves obtained for
n = 5 and path loss exponent a equal to 2 and 4. In this case,
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 BU-HD, a=2

 BU-FD, a=4
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Fig. 7. Comparison between the cases of half-duplex and full-duplex radios.
Bounds for n = 10, with a = 2, 4, ρi = 1 ∀i, kC = 2 hops and kI = kC+1
hops.
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Fig. 8. Comparison between the cases of half-duplex and full-duplex radios.
Bounds for n = 5, a = 2, 4, kC = 2 hops, kI = kC +1 hops, and different
data generation rates at the nodes, namely, ρi = i, i = 1, . . . , n.

we can observe a behavior very similar to the one exhibited
by the bounds in Fig. 6, i.e., under a constant traffic load
for all nodes. We stress that quantitevely the results shown in
the two figures greatly differ, as they depict the parameter R.
Indeed, when the nodes load increases as their distance from
the destination decreases, the average rate of node i does not
coincide with R but it is equal to ρiR, with ρi = i.

The plot in Fig. 9, instead, refers to the case where a = 2
and n = 5, 10. Comparing these results with those in Fig. 7,
it is evident that the achievable value of R is greatly affected
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Fig. 9. Comparison between the cases of half-duplex and full-duplex radios.
Bounds for n = 5, 10, a = 2, kC = 2 hops, kI = kC+1 hops, and different
data generation rates at the nodes, namely, ρi = i, i = 1, . . . , n.
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by the number of nodes n when ρi = i, i = 1, . . . , n. Again,
it is worthwhile recalling that in this case the average data
rate of node i is Ri = iR, i = 1, . . . , n. Thus, although R
decreases as n grows, the overall amount of traffic delivered
to the destination in a time unit is still high.

VI. CONCLUSIONS

We studied the upper bound to the data rate that wireless
nodes in a linear network can achieve. We carried out the
analysis accounting for the interference due to simultaneous
transmissions, and in presence of full as well as half-duplex
nodes. Also, unlike previous work, we considered that nodes
located at more than one-hop distance can cooperate to deliver
the data traffic to the destination, and that nodes may have
different requirements in terms of achievable data rate. The
expressions we derived are mathematically tractable and allow
the analysis of large-scale, multihop networks. Numerical
results showed the impact on the performance of several
system parameters, such as the SNR, the path loss exponent
and the number of cooperating transmitters.

Our analysis suggests two important facts. First, in order
to design efficient communication strategies, it is sufficient to
use pairs of transmitters that cooperate to forward the data to
the destination. Second, in half-duplex networks, there exist
some dominant network states whose contribution determines
the achievable data rate. Effective communication strategies
can therefore be obtained by considering pairs of cooperating
nodes and by letting the network operate in such states. Future
work will focus on the definition of cooperative traffic relaying
schemes that provide an achievable rate as close as possible
to the upper bound provided in this study.
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