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Stupidity is not when you make a mistake for the first time. 

Stupidity is when you repeat the same error!* 

 

Bjarne W. Olesen  

 

 

 

 

 

 

 

 

 

 

 

*Precious and encouraging words when I broke my first and last (… so far) grey globe sensor. 
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I. SOMMARIO 

  

Lo studio della qualità ambientale ha acquisito negli ultimi anni un’importanza sempre maggiore. Tale 

attenzione è evidenziata dal fatto che ormai non ci si sofferma più soltanto sull’importanza del 

mantenimento del benessere sottoscritto dalle normative in materia di comfort, ma si tende a fare 

sempre più attenzione alla domanda energetica necessaria al fine del soddisfacimento di tale benessere. 

Chiaramente, tale fattore, implica una sempre più accurata attenzione nella progettazione dell’involucro 

edilizio e del sistema impiantistico, nonché nella libertà o meno di azione degli occupanti. Oltre alla fase 

progettuale diventa indispensabile spostare l’attenzione anche alla fase di gestione e manutenzione, 

motivo per cui i monitoraggi energetici ed ambientali entrano a far parte del ciclo di vita di un edificio, 

allo scopo di ottimizzare sempre più il sistema edificio-impianti e ricercando un giusto equilibrio tra 

livelli di comfort e consumi energetici.  

Obiettivo primario della ricerca è un’analisi critica dei metodi di valutazione del comfort ambientale, 

unita alla determinazione dei consumi energetici richiesti per mantenere determinati livelli di benessere 

e alla proposta di metodi di analisi e rappresentazione dei dati derivanti da simulazione e monitoraggio. 

Al fine di garantire un determinato livello di comfort negli ambienti confinati, lo studio si concentra 

anche sull’analisi della performance di sistemi radianti a basso consumo, attraverso sperimentazioni in 

campo o in camera termostatica. L’attività di ricerca si compone dunque di tre fasi di approfondimento. 

La prima fase si basa sulla valutazione della qualità ambientale attraverso l’uso di categorie. 

L’argomento del comfort, focalizzando l’attenzione sul benessere termoigrometrico, è normato a livello 

internazionale dagli standard EN 15251/2007, ISO 7730/2005 e ASHRAE 55/2004. I metodi di 

elaborazione dati e rappresentazione dei risultati proposti dalle normative (EN 15251 in particolare), 

vengono in questo lavoro confrontati tra loro e messi in discussione, indagando, attraverso un caso 

studio, sull’utilità di questi strumenti, sulla loro applicazione e sui loro limiti.  

Il mantenimento di determinate categorie di comfort all’interno di un ambiente comporta chiaramente 

un dispendio energetico. La domanda di energia può essere diversificata a seconda della tipologia di 

involucro o di impianto, ma anche dal tipo di controllo impiantistico e imprescindibilmente dalle 

condizioni climatiche esterne. Allo scopo di dimostrare quanto detto, la seconda fase dell’attività trova 

espressione attraverso uno studio di simulazione energetica di un ambiente per uffici, mirata ad 

analizzare le domande di energia per riscaldamento e raffrescamento al variare dei livelli di qualità 

termica e dell’aria, nonché delle condizioni climatiche esterne. La simulazione energetica degli edifici è 

però solo uno degli strumenti che si possono utilizzare in questo tipo di analisi. La misurazione diretta 

dei consumi energetici è, infatti, un secondo metodo che sempre più sta assumendo importanza sullo 

scenario internazionale. Piani di monitoraggio energetico, affiancati a piani di monitoraggio ambientale, 

consentono di avere un quadro generale e dettagliato sia dei livelli di comfort in ambiente che dei 

relativi costi da sostenere, evidenziando inoltre il corretto funzionamento dei sistemi impiantistici e dei 

relativi controlli. La correlazione tra i due monitoraggi svolti in parallelo permette di poter fornire le 

informazioni necessarie al fine di una corretta valutazione energetico - ambientale di un edificio. Oltre 

all’elaborazione dei dati, lo studio affronta anche il tema concernente la loro rappresentazione, 
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sviluppandolo attraverso l’analisi di dati di monitoraggio energetici ed ambientali relativi ad un anno di 

osservazione di un edificio per uffici. 

Elemento di unione tra le condizioni di comfort in ambiente ed i relativi consumi energetici, oltre 

chiaramente alla tecnologia costruttiva dell’edificio, è il sistema impiantistico. Nello specifico, negli 

ultimi anni, molti studi relativi al tema del comfort termo igrometrico hanno trattato l’impiego di sistemi 

radianti a basso consumo energetico per il controllo della qualità ambientale.  Tra le molteplici tipologie 

di sistemi radianti su cui si continua a fare ricerca, in questo lavoro ne vengono analizzate due tra loro 

molto diverse, entrambe oggetto di analisi e sperimentazione: il primo caso è relativo all’uso di piastre 

radianti elettriche a parete, per il solo riscaldamento, mentre il secondo caso è invece uno studio 

relativo all’utilizzo di un sistema di attivazione termica della massa (TABS) durante il periodo di 

raffrescamento. In entrambi i casi sono state effettuate misurazioni dirette dei parametri ambientali e 

dei flussi scambiati, nel primo caso in camera termostatica, nel secondo caso direttamente sul campo 

(locale adibito ad ufficio).  

I risultati ottenuti da tutte le analisi effettuate sono illustrati all’interno di articoli scientifici rivolti a 

riviste internazionali o pubblicati in proceedings di conferenze internazionali. 
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II. ABSTRACT 
 

Interest on Indoor Environmental Quality (IEQ) increased more and more in the last years. This attention 

is evidenced by the fact that nowadays maintaining a certain level of comfort in the building, as it is 

prescribed by the standards, means to deal with a rising energy demand. For this reason increasing 

attention needs to be spent in the envelope and systems building design, as well in the building 

robustness at the occupants actions. Further than the design phase it becomes necessary to shift the 

focus on to the building management and maintenance too. To this aim energy and environmental long 

term monitoring are introduced in the building life cycle, with the objective to optimize the building-

plant system and to look for a good balance between different levels of comfort and energy 

consumption. 

Main objective of the research is the critical analysis of the indoor environment quality assessment 

existing methods, within the evaluation of the energy consumptions required to maintain specific 

comfort levels, and suggesting new methods of analysis and representation of data from monitorings or 

simulations. In order to reach high level of IEQ, the study also focuses on the performance evaluation of 

energy saving by radiant systems, through tests in thermostatic room or in situ. Research is therefore 

conceived in three deepening phases. 

The first phase is based on the indoor environment quality assessment through the use of categories. 

Comfort, and particularly thermal comfort, is regulated by the standards ISO 7730/2005, EN 

15251/2007, and ASHRAE 55/2004. Methods for data elaboration and representation suggested by the 

standards (specifically by EN 15251) are in this work compared and discussed, investigating, also 

through the use of a case study, the effective utility of these instruments, of their applications and 

limitations.  

Maintaining specific comfort categories in a building often comport to spend energy. Energy demand 

can be varied depending on the envelope characteristics and quality, and from the systems controls and 

the outdoor climate conditions. With the aim to demonstrate what enounced, the second phase of the 

study is explained through an office room energy simulation, conducted with the aim to assess the 

heating and cooling energy demand variation with the thermal and air quality variation, as well as for 

different climate zones. Buildings energy simulation is however only one of the tools that can be used 

for this kind of analysis. Direct monitoring of the energy consumptions is in fact another method that is 

becoming more and more important. Energy monitoring plans, with IEQ monitoring plans, give a 

detailed overview about levels of comfort and related costs in a building, moreover investigating  on the 

correct or wrong systems operation and controls. The correlation between the two measurements 

conducted simultaneously allows to give, as output of the analysis, a complete building energy and 

environment evaluation. In addition to the data processing, the study also addresses the results 

representation, through the analysis of energy and environmental data from one year of monitoring in 

an office building. 

As mentioned above, the connecting element between ICQ in a room and the related energy 

consumptions, beyond the building thermo physical properties, is the installed plants system. In recent 

years many studies in literature about comfort in buildings treated the topic of low energy radiant 
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systems to reach the indoor environmental quality objective. Among the many typologies of radiant 

systems, this work faces with two kinds of them, very different one from each other, and both object of 

analysis and experimentation: the first is represented by vertical electric radiant plates for heating, and 

the second is about TABS (Thermal Active Building System) for cooling. In both cases energy and 

environmental measurements were carried out. In the first case the experiments took place in test 

rooms, in the second case they were performed in situ (office room). Differences between the two 

analysis and strategies adopted for the measurements during the operational time of the building using 

TABS are shown. 

 

Results of the work are shown and widely explained in internationals journals and international 

conference papers. 
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1. Introduction 
 

Energy uses and indoor climate quality (ICQ) in buildings are strictly connected. Due to the 

increasing high quality of life in the last years, the need to maintain high levels of indoor comfort 

conditions and to improve, at the same time, the energy efficiency is a very relevant subject [1]: typically 

at growing levels of comfort indoor correspond in fact growing energy consumptions. To this aim, design 

of the building architecture and envelope and systems operation control should be increasingly optimized.  

The EPBD (Energy Performance of Buildings Directive) 2002/91/CE [2], which introduces the topic 

of the European approach to the energy certification of buildings, highlights how important it is to 

evaluate the ICQ level, with the objective to attribute to the building a given energy performance. In 

particular, it gives indications about the definition of the minimum energy performance requirements for 

new and existing buildings and about the building energy consumptions [3]. Due to the fact that energy 

demand may vary depending on the occupants comfort expectations, on the occupants adopted systems 

control strategies, and on the availability of natural resources (like natural light or fresh air), an indoor 

environment “declaration” becomes a needful tool to be enclosed to the energy statement. There is 

therefore a need to specify criteria for the indoor environment for design, energy calculations, 

performance and operation of buildings [1]. To this aim, in 2007, under a mandate of the European 

Commission, and strictly related to the EPBD, the Standard EN15251 “Indoor environmental parameters 

for assessment of energy performance of buildings, addressing indoor air quality, thermal environment, 

lighting and acoustics” [4] has been developed. According to this regulation, the IEQ evaluation can be 

performed both in the design and in the operational phase: in the first case through the use of energy 

simulation tools, or using the design values of the environmental parameters, in the second case 

monitoring the indoor environmental parameters. Same approach can be used for the energy 

demand/consumption interpretation. 

Besides the EN 15251 [4], also the ASHRAE Guideline 10 [5] treats the overall indoor comfort. 

Differently by the first, related to the EPBD and dealing with energy consumption problems, the ASHRAE 

Guideline 10 has a descriptive, multi-disciplinary nature and an ergonomic approach, concerning the 

human response to the indoor environment [6].  

In order to consider different aspects of ICQ and energy assessment in buildings, in this thesis both 

the topics are treated under different points of view. In accordance with what evidenced by the “road 

map” of figure 0, in which the objectives of the work are expressed under interrogative form, this research 

deals to: 

- Improve the existing methods, proposed by the standards about comfort, for the long term 

climate quality assessment and data representation.  

- Put in relation the indoor climate quality with the energy required to maintain certain levels of 

wellness in buildings, in order quantify how much thermal comfort and air quality levels affect 
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the building energy demand. 

- Define a method for the ICQ and energy assessment in buildings, from the monitoring plan to 

the data elaboration and representation.  

- Propose a tool able to represent in a synthetic way both the energy performance and the 

indoor climate quality of a building. 

- Evaluate the energy performance and the thermal comfort potentiality of two different  kind 

of radiant systems, with the aim to demonstrate their applicability in low energy buildings.   

 

 
Figure 0: Thesis “Road map” 

 

 

 

 

 

 

 

Note: The thesis treats the questions underlined by figure 0 through the use of case studies, of which 

punctual results of each analysis are widely described in the papers of chapter 8.  
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2. Indoor climate quality (ICQ) evaluation through the use of comfort 

categories 
 

Criteria for acceptable thermal conditions are specified as requirements for thermal comfort (PMV, 

PPD, or operative temperature, air velocity and relative humidity) and local thermal discomfort (draught, 

vertical air temperature differences, radiant temperature asymmetry, surface temperature of the floor).  

Indoor environmental quality, according to the standard EN 15251, can be evaluated through different 

criteria based on the comfort indexes analysis. In existing buildings it can be performed through long term 

monitoring, which allows to collect data that can be elaborated in accordance with the standard 

prescriptions giving as output a classification of the climate quality. Also spot measures contribute to assess 

the indoor environment. The use of short term measurements, in fact, is useful for give a detailed picture 

of the IEQ in given examined configurations, in specific critical locations and times [12].  

In this chapter both the indoor environment evaluations, long term and spot, are treated and 

discussed according with the comfort categories and the elaboration methods suggested by the standard 

EN 15251. Critical approach at the methodologies is here highlighted and suggestions for future 

improvements in the data elaboration are proposed. 

In order to have knowledge of standard EN 15251 and thermal comfort evaluation, a short 

background about the topics is explained in the next paragraph. 

 

2.1 Background on Standard EN 15251 and thermal comfort 

 

2.1.1 Standard EN 15251 

Standard EN 15251:2007 specifies the indoor environmental parameters that have an impact on 

the energy performance of buildings, and defines how to establish these input parameters for the building 

systems design and energy performance calculations. It defines the global comfort, as the sum of different 

aspects, i.e. thermal comfort, indoor air quality, visual comfort and acoustic comfort, and it recommends 

parameters of indoor temperatures, ventilation rates, illumination levels and acoustical criteria for the 

design of buildings, heating, cooling, ventilation and lighting systems at which to refer. It is mainly 

applicable to moderate thermal environments, where the objective to reach is the satisfaction of the 

occupants. These environments are single family houses, apartment buildings, offices, educational 

buildings, hospitals, hotels and restaurants, sports facilities, wholesale and retail trade service buildings 

[7]. 
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EN 15251, in particular, utilizes an approach based on categories: four different categories may be 

used, depending on type of building, type of occupants, type of climate and national differences. These 

categories correspond to a different acceptability of the indoor environment (predicted percentage of 

satisfied occupants) (Tab. 1). The standard suggest to refer to categories in the building design phase, but 

they may also be used to give an overall, yearly evaluation of the indoor environment, according with the 

evaluation methods suggested by the standard for the long term assessment. In this case needs to be 

highlighted that this long term evaluation can be performed in the design phase through energy 

simulations, and in existing buildings through monitoring. In both cases results of the evaluations have to 

respect the ranges indicated by the standard. Examples of criteria suggested by the EN 15251 for a typical 

space with sedentary activity are shown in table 2.  

 

Table 1- Definition of IEQ categories, according with EN15251. 

Category Explanation 

I High level of expectation. 

It is recommended for spaces occupied by very sensitive and fragile persons, with special 

requirements like handicapped, sick, very young children and elderly persons. 

II Normal level of expectation.  

 It should be used for new buildings and renovations. 

III An acceptable, moderate level of expectation.  

It may be used for existing buildings. 

IV Values outside the criteria for above categories.  

This category should only be accepted for a limited part of the year. 

NOTE:  In other standards, like EN 13779 and ISO 7730, categories are also used, but named differently 

(like A,B,C or 1,2,3 etc.) 

 

 

Table 2. Example criteria for PMV-PPD, operative temperature, relative humidity and ventilation (CO2 

concentration and ventilation flow rate for a low polluted office) for typical spaces with sedentary activity. 

[3] 

C
a

te
g

o
ry

 

Thermal Comfort 

indexes 

Operative Temperature 

ranges Relative 

Humidity 

Ventilation 

PPD PMV 

Winter 

1.0clo/1.2m

et 

Summer 

0.5clo/1.2 

met 

CO2 

Above 

outdoor 

Flow rate 

qp+qb 

 

[%] [/] [°C] [°C] [%] [ppm] l/sm
2
 

I < 6 >-0.2, <+0.2 21.0-23.0 23.5-25.5 30-50 > 350 2.0 

II < 10 >-0.5, <+0.5 20.0-24.0 23.0-26.0 25-60 350 - 500 1.4 

III < 15 >-0.7, <+0.7 19.0-25.0 22.0-27.0 20-70 500 - 800 0.8 

IV > 15 >+0.7 < 19.0-25.0< <22.0-27.0< <20-70< > 800 - 
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The standard specifies that the indoor climate assessment of a building can be performed by evaluating the 

indoor environment of typical rooms representing different climate zones in the building. For these spaces 

the indoor climate can be evaluated for different phases: 

1) Design: the standard specifies design values of indoor temperature during summer and during 

winter, of ventilation rates for residential and not residential buildings, of humidity, lighting 

and noise (some examples in Tab.2).  

 

2) Calculation/Elaboration: the standard defines the building simulation as a cost effective way to 

analyze the performance of buildings, through which indicators of indoor environment can be 

calculated for different purposes. With this aim the standard, in annex F (“Long term 

evaluation of the general thermal comfort conditions”), suggests three different methods 

(A,B,C) to evaluate and represent the thermal comfort conditions over time (season, year), 

based on data from measurements in real buildings or obtained by dynamic computer 

simulations. These three methods are the followings: 

- Method A, “Percentage outside the range”, is based on the calculated number (or %) of 

hours in occupied period when the PMV or the Operative Temperature are outside a 

specified range.  

- Method B, “Degree hours criteria”, represents the time during which the actual operative 

temperature exceeds the specified range, during the occupied hours, weighted by a factor 

depending on how many degrees the range has been exceeded. 

- Method C, “PPD weighted criteria”, represents the time during which the actual PMV 

exceeds the comfort boundaries, weighted by a factor which is a function of the PPD.  This 

weighting factor, wf, is equal to 0 if the calculated PMV falls within a comfort ranges 

described in Table 1. If the value is over the upper/lower limit of the range, the wf is the 

ratio between the PPD calculated on the actual PMV and the PPD calculated on the PMV 

limit. 

 

3) Measurements: the standard allows deviations from the selected criteria. Some national 

criteria express ‘acceptable deviations’ as an acceptable number of hours outside the criteria 

based on a yearly evaluation (like 100 to 150 h). This may also be given as weighted hours, 

where the level of deviation also is taken into account.  With this aim the standard gives 

indications about where and how to measure for the evaluation of thermal quality, indoor air 

quality and ventilation, lighting and noise. 

 

4) Subjective questionnaires: the standard suggests to consider the direct subjective reaction of 

the occupants as an instrument for the overall evaluation of the indoor environment. Daily, 

weekly, monthly evaluations using questionnaires for general acceptance of the indoor 

environment, thermal sensation, perceived air quality shall be used. Examples of 

questionnaires are included in the standard at the Annex H. 
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2.1.2 Thermal comfort 

Thermal comfort has been defined as ‘‘a state in which there are no driving impulses to correct 

the environment by the behaviour’’ [11]. The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) defined it as ‘‘the condition of the mind in which satisfaction is 

expressed with the thermal environment’’ [12]. As such, it will be influenced by personal differences in 

mood, culture and other individual, organizational and social factors [13].  

Satisfaction with the thermal environment is a complex subjective response to several interacting 

and less tangible variables [14]. In general, comfort occurs when body temperatures are held within 

narrow ranges, skin moisture is low, and the physiological effort of regulation is minimized. Comfort also 

depends on behavioural actions such as altering clothing, altering activity, changing posture or location, 

changing the thermostat setting, opening a window, complaining, or leaving a space. In 1962, Macpherson 

defined six factors as those affecting thermal sensation: four physical variables (air temperature, air 

velocity, relative humidity, mean radiant temperature), and two personal variables (clothing insulation 

and activity level, i.e. metabolic rate) [15].  

In order to reduce the economic and environmental cost of energy consumption, investigations 

covering many aspects related to thermal comfort in indoor environments have been conducted, like 

studies for identify models [16,17] and indices [18], or like experiments carried out in climate chambers 

[16,19] and field surveys [15,20]. Studies that allowed to define thermal comfort standards and evaluation 

methods [21,22], etc [13]. The most important findings are now the basis of national and international 

standards, e.g. [23,24]. The international comfort standards such as ASHRAE standards and the 

International Standards Organization (ISO) are almost exclusively based on theoretical analyses of human 

heat exchange performed in mid-latitude climatic regions in North America and northern Europe [14,23]. 

They were based primarily on mathematical models developed by Fanger on the basis of studies from 

special climate-controlled chamber experiments. Moreover, these standards are suitable for static, 

uniformly thermal conditions and are based on the hypothesis that regardless of race, age and sex.  

Two different approaches exist to define the thermal comfort: the rational or heat-balance 

approach and the adaptive approach [25]. The rational approach uses data from climate chamber studies 

to support its theory, best characterized by the works of Fanger while the adaptive approach uses data 

from field studies of people in building [26]. Fanger’s [16] comfort model incorporates the six factors 

mentioned by Macpherson, and the two-node model of Gagge et al. [18]. In an evaluation by Doherty and 

Arens [25], it was shown that these models are accurate for humans involved in near-sedentary activity 

and steady-state conditions. This approach is based on in controlled climate chamber on 1296 young 

Danish students, using a steady-state heat transfer model. In these studies, participants were dressed in 

standardized clothing and completed standardized activities, while exposed to different thermal 

environments. Participants were asking about their thermal sensation, using the seven-point ASHRAE scale 

(Fig. 1). The expanded equation related thermal conditions to the seven-point ASHRAE thermal sensation 

scale, became known as the ‘‘Predicted Mean Vote’’ (PMV) index. The PMV was then incorporated into 

the ‘‘Predicted Percentage of Dissatisfied’’ (PPD) index. Fanger’s PMV-PPD model on thermal comfort is 

widely used and accepted for design and field assessment of thermal comfort [15]. 
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Figure 1- ASHRAE Thermal Sensation scale. 

 

Adaptive approach derives from field studies, having the purpose of analyzing the real 

acceptability of thermal environment, which strongly depends on the context, the behaviour of occupants 

and their expectations. The adjustments have been summarized by De Dear [27-28] in three categories: 

behaviour adaptation, physiological adaptation and psychological adaptation. In recent years, different 

authors have encouraged field studies in addition to laboratory experiments, in order to get more reliable 

information about the actual workplace comfort and the relevant (interacting) parameters. Several studies 

about the topic are summarized in [13]. Standard EN 15251/2007 and ASHRAE Standard 55 deal with the 

theme suggesting similar approach at the issue. EN 15251 introduces a method in order to design or 

assess environments without mechanical cooling systems. This optional method is valid only in periods 

when the heating system is not operating, and in specific conditions: space must be equipped with 

operable windows and there shall be no mechanical cooling in operation. Mechanical ventilation with 

unconditioned air (in summer) may be utilized, but windows opening and closing shall be the primary 

mean of regulation of the thermal conditions in the space. Furthermore, the method can be applied only if 

occupants are engaged in near sedentary physical activities, with metabolic rates ranging from 1,0 to 1,3 

met. It is also important that strict clothing policies inside the building are avoided, in order to allow 

occupants to freely adapt their clothing insulation. ASHRAE Standard 55 also introduces a similar diagram, 

deriving from the studies of Brager and deDear study, to be applied to free-running buildings too, 

based on the same assumptions enounced before. In Figure 2 the two diagrams proposed from the 

Standards are shown. 

  
 

Figure 2 - Design values for the indoor operative temperature using the adaptive approach according 

with [4] and [12]. 
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2.2 Long term monitoring 

During the design stage, categories can be used to evaluate different design options and can be 

applied on data from computer energy simulations. In these calculations, the categories may be clearly 

adopted and performance indicators can be expressed as percentage of time where the indoor 

environment falls into different ranges. Similar approach can be used in the indoor climate measurements 

in existing buildings. In that case collect the data necessary for the evaluation is more difficult, but possible.  

 

Examining separately the three evaluation methods suggested by the standard 15251 (annex F), 

and illustrated in 2.1.1, a critical analysis about the given and missed information from the three different 

processes has been performed. In order to carry out this analysis, data from a case study have been used 

an elaborated. The case study is an office building located in Denmark of which architectural 

characteristics, envelope thermophysical properties and installed plant systems are widely illustrated in 

Paper I. The office was normally occupied during daily time from 8:00 to 18:00, from Monday to Friday. In 

the building measurements about air and operative temperature, relative humidity and CO2 concentration 

were collected each 10 minutes for one year. Simultaneously, an external weather station collected data 

about air temperature and relative humidity, wind direction and velocity, and solar radiation. 

 

Complete elaborations and comments about results are shown in Paper I. Here just some results 

about thermal comfort evaluation, referred to the summer season, are illustrated with the aim to compare 

the three methods. Results are related to two rooms of the building, characterized by different heating and 

cooling systems, one mechanically ventilated (A) and the other one naturally ventilated (B) [PaperI]. 

 

In order to process the data as indicated by Method A, the thermal performance was evaluated in 

terms of percentage of time outside the range, according with the four categories of operative temperature 

and PMV suggested by the standard (Tab. 2). Outcomes of the elaboration are shown in figure 3. 

 

Operative Temperature      PMV 

 

 
Figure 3. Indoor Operative temperature and PMV evaluation, expressed in percentage of time in four 

categories, in summer period. 

Through this kind of representation the percentage of time when the monitored  (operative 

temperature), or the calculated (PMV) parameters fall in a specific range of category is represented. This 

method allow to make an overall overview of the analyzed environment during a certain period of time, but 

without giving information about the variables trend in the time , for example is not possible to know if, in 

the case study, the temperature in category III was lower  than 23 °C or higher than 26°C. 

From figure 3 it can be seen that the operative temperature and PMV evaluations, even if both 

representing the application of Method A, showed some differences in the results: the operative 

temperature evaluation gave slightly better results compared to the PMV evaluation. While the first 
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considers just the measured operative temperature, the PMV calculation depends by physical parameters 

(air temperature, relative humidity, air velocity, mean radiant temperature) and subjective parameters 

(thermal resistance of the clothes and metabolic rate). This fact can highlight significant problems in the 

accuracy of the prediction (for example, the accuracy by evaluation of the clothing and activity is not good 

enough to estimate the difference between classes of PMV). In this case study the physical parameters, 

except the air velocity, were monitored in continuous. Trough spot measurements performed in different 

periods of the year, it was however possible to establish that the air velocity was averagely around 0.10 

[m/s]. For the PMV calculation the air velocity value was then kept constant as 0.10 [m/s]. Regarding the 

subjective parameters, the metabolic rate used in the analysis was the one indicated by standard ASHRAE 

55 for “Office activity-Filing, seated”, 1.2 [met]. Also the clothing insulation value was kept constant: 0.5 

[clo] in summer period and 1 [clo] in winter period. Due to these assumptions, the PMV calculation does 

not represent the real PMV of a specific occupant in the room during the monitored time, justifying what 

previously mentioned. Different is for the same evaluation referring to the operative temperature. This 

time the problem that could be encountered depend by the accuracy of the measurement of mean radiant 

temperature, which often is higher than 0.5 -1.0 K. For many buildings the difference between air and 

mean radiant temperature is however less than 2 K, and then this accuracy will not be so important. 

Method B allows to quantify the amount of degree hours of overheating or overcooling respect to 

the selected category. In case of monitoring in existing building this method, giving these indications, can 

be useful for regulate the systems settings in order to don’t waste energy. Figure 4 shows the amount of 

degree hours over category I, II and III. From this representation emerge how, in Room A in particular, the 

temperatures in the room were lowers than the limits prescripts by the standard. Thanks to this 

representation, over understanding that the percentages outside the ranges of Method A, shown in figure 

3, were representing low temperatures, consideration about the temperature setting in the room and 

about the control system regulation can be done. (In this specific case the air temperature in the room was 

set too low, at 23°C, while the range of category I, as it is written in tab.2, goes from 23.5 to 25.5°C) 

 

Figure 4. Degree hours criteria applied to Rooms A and B for the summer period. 

From Method C the data indicate the sum of the weighted factors, function of the PPD, multiplied 

for the number of hours when the PMV exceeds the category range. While method B was based on the 

evaluation of operative temperature, here the results represent the dissatisfaction of the people. In this 

case the too low temperatures of the mechanically ventilated room (A) are also evident, because negative 

values in the graph indicate that thermal discomfort was perceived for low temperatures. Like it was for 

method B, also this method can help in the system setting for the indoor climate control. 
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Figure 5. PPD weighted criteria applied to Rooms A and B for the summer period. 

 

From the comparison of the three criteria emerge that Method A, even though is a good 

instrument to show results, besides being the most applied in the representation of the comfort evaluation 

(in fact it is also suggested by the standard in the Annex H), it does not allow to clarify the reasons, and the 

problems, that determine a good or a bad thermal quality in the rooms, because it does not show any 

distribution of measured temperature. Different is, for example, for Method B and C. Here it is easy 

understandable that if ICQ in Room A was not evaluated so good, the cause can be identified in the low 

temperatures. These results highlight a problem in the systems control: the cooling system combined with 

the mechanical ventilation was cooling too much the environment, with consequent wasting of energy. 

With an optimized control indoor temperatures can be improved, leading to energy saving too. 

For better understand the outcomes of criteria A and B, the operative temperature profiles are 

shown in figure 6. Looking at the graph, the percentage of time when the temperature in room B exceed 

the upper limit of the range (Category IV
(+)

, To>27°C) is negligible, while it cannot be ignored when the 

temperatures are below than the lower limit (Category IV
(-)

, To<22°C). Following the same principle, in 

Room A the operative temperatures fluctuate between Category I and Category IV
(-)

. 

 

Figure 6. Operative temperature profiles during the occupied hours for Rooms A and B in summer period. 

 

Looking at the ranges of values indicated in Table 1, and splitting these ranges in two parts as 

described in the previous example, Table 2 can be translated in Table 3.  
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Table 3. PMV, PPD, operative temperature and relative humidity comfort ranges for typical spaces with 

sedentary activity, dividing the categories indicated by [3] in lowers and uppers categories respect to 

Category I. 

 

Wanting to implement the missing information in the elaboration of Method A, the same approach 

described by the standard can be referred to the splitted categories indicated in Table 3. Doing this 

operation, operative temperature and PMV evaluation could be represented as in Figure 7. 

 

Operative Temperature      PMV 

   

 

Figure 7. Indoor Operative temperature and PMV evaluation, expressed in percentage of time in categories, 

in summer periods, according with the values ranges of Table3. 

 

From this proposed implementation at the criteria “outside the range”, it is possible to get the 

information highlighted before. It is in fact clearly visible that the operative temperature in summer for 

Room A was always lower than the limit of Category I. Room B presents, on the other hand, values falling in 

categories both lowers and higher than Category I, describing the fluctuation of the profile shown in Figure 

6. Same considerations can be done for the PMV evaluation.  In Paper I similar analysis is shown for other 

environmental parameters, with as many interesting results.  

 

2.3 Short term evaluation 

Spot measurements are useful for give a detailed picture of the ICQ in particular configurations, like 

in specific critical locations and times [12]. To this aim, in parallel to the long term monitoring, also spot 

Category 

Thermal Comfort indexes Operative Temperature range 

Relative Humidity 
PPD PMV 

Winter 
1.0clo/1.2met 

Summer 
0.5clo/1.2 met 

[%] [/] [°C] [°C] [%] 

IV 
-
 > 15 PMV < - 0.7 < 19.0 < 22.0 < 20 

III 
-
 < 15 - 0.7 <PMV< - 0.5 19.0-20.0 22.0-23.0 20-25 

II 
-
 < 10 - 0.5 < PMV< - 0.2 20.0-21.0 23.0-23.5.0 25-30 

I < 6 - 0.2 < PMV< +0.2 21.0-23.0 23.5-25.5 30-50 

II 
+
 < 10 + 0.2 < PMV<+0.5 23.0-24.0 25.5-26.0 50-60 

III 
+
 < 15 + 0.5 <PMV< +0.7 24.0-25.0 26.0-27.0 60-70 

IV 
+
 > 15 PMV > + 0.7 > 25.0 > 27.0 > 70 

I I 
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measurements should be carried out. Spot measurements can be useful in the determination of 

homogeneous climatic zones too, that are important to be defined in the planning of the long term 

monitoring. Moreover they can be used for to examine critical points, where local discomfort due to 

drought risk or elevate difference of temperature, for example, between feet and head, is present.  

In order to evaluate the actual thermal comfort of the occupants, the six parameters (see 2.1.2), four 

physicals and two personals, need to be collected. The physical variables can be measured and logged 

through dedicated instruments, while the personal variables can be collected through printed or online 

questionnaires. Having all these information is then possible to calculate the PMV and the PPD indexes. 

From the questionnaires the Thermal Sensation Vote (TSV) can be evaluated too, using the ASHRAE thermal 

sensation scale. PMV and TSV can subsequently be compared. 

In the case study spot measurements were performed two times: one time in winter and the other 

time in summer. In both cases the aim of the measurement was the evaluation of local discomfort at the 

occupants work stations and the homogeneous distribution of the air temperature, relative humidity and 

lighting level in the rooms. As before, only elaboration about the summer spots are shown. More detailed 

information and complete analysis are respectively illustrated in Paper I and in Annexes 9.1.1-9.1.2.  

During these measurements physical parameters were monitored. These parameters were: air 

temperature, operative temperature, air velocity, relative humidity and lighting level. Sensors were fixed on 

a portable stand at different heights, corresponding to the height of the head, of the body and of the ankle 

of a stand or seated person. In each room at least 5 points were tested for 15 minutes each. Results about 

the monitored environmental parameters are shoved in figure 8.  From this first analysis can be evaluated 

the absence of local discomfort due to the temperature difference at different heights, as well as the 

presence of draught. In this case the three methods listed in the long term evaluation paragraph cannot be 

applied, because the time of monitoring is too short. The collected parameters can however be referred to 

the comfort categories described by the Standards.  

 

Figure 8. Summer spot measurements. Average value of air temperature, operative temperature and air 

velocity at different heights for Room A and B. 
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During the physical measurements people were asked to fill subjective questionnaire about the 

comfort sensation, in terms of thermal quality, air quality, light, noise and about the symptoms perceived in 

the room. People were furthermore asked to give information about the clothes that they were wearing, 

the position of their desk in the room, sex, age, height and weight. With the collected data and with the 

physical measurements, it was possible to calculate the PMV and the PPD indexes in the rooms. Results 

from calculations and from questionnaires can be summarized in the synthetic graph of figure 9. 

 

 

Figure 9.  Predicted Mean Vote (PMV) vs Thermal Sensation Vote (TSV). 

 

From the graph emerge that the calculated PMV is close to the value 0 (Neutrality) in both cases (A 

and B), but while in the naturally ventilated room (B) the TSV almost coincide with the PMV, in the 

mechanically ventilated room (A) people were averagely perceived the environment slightly cool. From the 

entire analysis (Annexes 9.1-9.1.1-9.1.2) has emerged how occupants that work in mechanically ventilated 

offices have bigger expectations in terms of thermal environment than people that work in naturally 

ventilated offices. However the TSV depends by a combination of factors, including the expectations of the 

indoor environment deriving by previous experiences. For this reason eventual differences between TSV 

and PMV values can be furthermore justify by the difference of outdoor temperature during the spot 

monitoring days compared to the outside average temperatures of the previous days.  
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3. Comfort categories and Energy consumptions 

 

In the previous chapter classification of the indoor environment has been described, and comfort 

categories indicated by the comfort Standards has been explained too. The missing information of the 

previous analysis is that maintaining suitable indoor climate conditions is a real need for the occupants’ 

well-being, and require strictly thermal comfort conditions and high levels of indoor air quality in buildings 

represents an high expense of energy, with consequences in terms of environmental impact and costs. 

Indoor Climate Quality, considering both thermal and indoor air quality, has in fact a primary impact not 

only on the perceived human comfort, but also on the building energy consumption. Due to its direct 

correlation with operating energy consumptions, in the recent years, the topic of the level of IEQ in 

buildings has become more and more important [30]. 

This issue is clearly expressed by the European Energy Performance of Buildings Directive 

2002/92/EC [2], together with the most recent 2010/31/EU [31], which underlines that the level of indoor 

environmental quality required by occupants should be always clearly defined before expressing judgments 

about the building energy consumption, and both ratings should be shown together.  

As already introduced, the comfort standard EN 15251 proposes different types of classification of 

the indoor environment. These types of classification are based on criteria used for energy calculations, 

whole year computer simulations of the indoor environment and energy performance, long-term 

measurement and subjective responses from occupants. In particular among these points, some refer to 

possible actions to do in case of new building, while others refer to existing buildings.  

Thank to the analysis of two different case studies, the first conducted by using a simulation model 

(with Energy Plus simulation tool), while the second monitoring environment and energy parameters in an 

existing building, it is possible to answer at some questions about the existing correlation among Comfort 

and Energy consumption, like: 

- What is the effect in terms of energy consumption of a variation of recommended indoor 

temperature ranges and air change rates as it is expressed in EN 15251 Standard?  

- How to assess, in practice, thermal comfort and total energy consumptions in existing building? 

- Which level of detail needs to be achieved in the analysis? 

- How to elaborate and represent the results? 

- Is it possible to use a single tool for describing the total (energy and environment) performance of a 

building? 

 

3.1 . Comfort categories variation and effect on the energy demand 

In mechanically controlled buildings, the desired level of indoor climate comfort, from which derive 

the control strategies adopted for the HVAC systems, is the main responsible of indoor environmental 
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quality, energy consumptions and environmental costs. [30,32]. Relaxing the IEQ requirements, widen for 

example the variation of temperature ranges and ventilation air flow rates (moving from Category I to 

Category III, but maintaining acceptable thermal comfort the IAQ level), both the environmental impact and 

the energy cost can potentially be reduced. To ascertain the consistency of what has just been claimed, a 

case study consisting in a typical mechanically controlled office room (reference room for validation tests of 

EN 15265 [10]) has been used (Fig.10). Characteristics about envelope and adopted systems are explained 

in Paper II. The room has been analyzed for different external surfaces solar and external exposure (Case A, 

Case B). 

 

Figure 10. Analysed rooms in the case study building. 

 

In the study heating and cooling energy consumptions related to the different thermal and indoor 

air quality categories were calculated by means of energy dynamic simulations and compared in terms of 

both heating/cooling (delivered) energy and primary energy requirements. To select the indoor 

environment requirements, thermal comfort and ventilation categories from I to III suggested by the 

standard EN 15251 were adopted. Besides evaluating the change in energy demand due to variation of the 

systems control, the same ratings have been carried out also varying the outdoor climate conditions, in 

order to determine which factors are more influencing in the energy demand determination. Results about 

the simulations performed for the city of Turin are shown in Table 4. 

 

Table 4: Primary Energy for space heating and space cooling for different comfort categories (operative 

temperatures and ventilation rates) – Case A, Turin. 

 

During the heating season the primary energy increased more at the ventilation rate increasing 

than at the temperature category variation. In both cases the energy demand raised passing from category 

III to category I. Different it was for the cooling, where the energy costs rose for an increase of the 
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operative temperature, but fall for an increase of the ventilation rates. This is because, for the Turin 

climate, where the outside air temperature is often below the internal air temperature, an increase in the 

natural ventilation flow rates in summer allows a free cooling of the indoor environment. During the 

heating season, however, the outside temperature was always lower than the preferred temperature; here 

the increasing in the ventilation rates lowered the indoor temperature, thus required the mechanical 

heating. 

Simulations were performed in three different European cities, characterised by significantly 

different wheatear condition along the year: Moscow, Turin and Athens. Envelope thermophyisical 

properties changed according with the climatic zone (see Paper II). Due to cold winter weather conditions, 

the simulations for Moscow were performed both without and with a ventilation air heat recovery, which 

was characterized by a mean seasonal efficiency of 75%. In figure 11 main results obtained for the three 

cities are compared. Primary energy for heating is put in relation with primary energy for cooling: in the 

first case ventilation rate was set to category II and operative temperature was varying, while in the second 

case was the operative temperature was fixed to category II and the ventilation rate changed of category.  

 

 

Figure 11. Primary energy for heating vs. primary energy for cooling at the variation of the operative 

temperature category (ventilation rate category set to Ⅱ) (left), and at the variation of the ventilation rate 

category (operative temperature category set to Ⅱ) (right). Cases A and B, for Athens, Turin and Moscow. 

 

From the elaborations it resulted that primary energy demand for cooling in Athens was much 

higher than the primary energy demand for heating, and independent by the operating temperature 

categories. Contrarily was for the city of Moscow without heat recovery. In the case of Turin, both primary 

energy demand for heating and cooling had a significant contribution. The variation of the ventilation rate 

category had a considerable effect on the energy demand increasing, especially in the city of Moscow. Data 

show therefore that in cold climates, a change in the ventilation rate category affects the heating energy 

demand much more than a change in the operative temperature category. 

Primary energy was also plotted as a function of the cooling and heating degree days (determined 

from the IEWC weather file statistics). From figure 12, where results are illustrated, emerge than the slope 

of an hypothetical tendency curve was higher in the cooling mode than the one of the heating mode. This 

also points out the fact that for an increase of degree-days, more primary energy must be consumed for 
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cooling than for heating purposes. In order to compare homogeneous results, the case of Moscow with 

heat recovery is not considered in this graph.   

 

Figure 12. Primary energy for heating/cooling as a function of the heating/cooling degree days for operative 

temperature category II and ventilation rate category II. 

 

 It can be said, in general, that in cold climate, the energy requirements for heating are prevalent and 

the influence of expected indoor air quality level prevails on primary energy demand: due to this reason, it 

is always desirable the thermal recovery from ventilation air. With reference to this aspect, in the analyzed 

locations, the range of variation of the primary energy demand for heating can go up to 70 kWh/m
2
 for a 

variation in the ventilation rates in the coldest climate without heat recovery, while the same quantity 

varies only of about 17 kWh/m
2
 for a variation in the operative temperatures; in the warmest climate, both 

the variation are negligible and equal to 2-3 kWh/m
2
. On the other hands, in hot climate the energy 

requirements for cooling are prevalent and the influence of expected indoor thermal quality level prevails 

on primary energy demand. With reference to the this aspect, in all the analyzed locations, the range of 

variation of the primary energy demand for cooling due to a change in the ventilation rates is similar to the 

one due to a change in the operative temperatures and is equal to 19-24 kWh/m
2
 for the warmest location, 

while it decreases to around 5 kWh/m
2
 for the coldest location. More detailed and extensive calculations 

that confirm these claims are available on Paper II. 

 These aspects should be taken carefully into account when designing and operating an HVAC 

system in each one of those climates: in fact, the developed study highlights significant influences of the 

ICQ selected categories on the building energy demand. In cold climates, for example, the energy 

requirements for heating are prevalent and the influence of expected indoor air quality level prevails on 

primary energy demand. Due to this reason, in cold climate it is always desirable to use a  thermal recovery 

in order to save energy. In these cases the increasing of ventilation rates determine a important increasing 

also in terms of energy demand. On the other hands in hot climates are prevalent the energy requirements 

for cooling, and the ventilation rates does not affect so much the energy demand as in the cold climates 

case. 
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3.2 Assessment of climate quality and total energy consumption in existing buildings.  

 

In existing building thermal comfort and energy demand can be assess through energy simulations or 

field measurements. This second option includes several activities that need to be developed in order to 

collect enough data for to make an exhaustive and correct evaluation. Useful data for elaborations need to 

be collected through dedicated instruments. The quality of the monitoring also depends by the precision 

and by the accuracy of the sensors, further the proper installation of them. Measured data can be collected 

by simple data-loggers, and then sporadically downloaded, or can be transmitted by a wireless system to a 

gateway. In this case information are sent to a server platform, that can provide automatically at the data 

elaboration. Right collocation of the sensors has a key role in the building thermal and energy evaluation. 

Two different monitoring plans need to be developed: one for the environmental variables collection, and 

another one for the energy consumptions accounting. In order to define the building monitoring plans, 

architectural spaces, intended uses, plant systems characteristics, terminal devices, control strategies, 

number of occupants in the rooms, etc. need to be known. Site surveys, technical drawings and historical 

data about environmental quality and energy consumptions, from previous measurements or from billets, 

should be known too [33]. 

Energy and environment monitoring can be planned for collecting data in continuous for longer or 

shorter periods of time, but it is convenient to plan measurements for at least one year. Just in this way a 

complete building and system behaviors during summer and winter seasons, and during the free running 

time can be performed. 

Climate quality and energy monitoring plans can be developed starting from schematic diagrams. For 

describing the energy use of a building, for example, the diagram can be developed according to the 

approach proposed by the standard EN 15603:2008 [34], and subsequently revised and integrated in the 

system boundary for net delivered energy scheme introduced by [35,36] and adopted by REHVA task force 

“Nearly Zero Energy Buildings” (nZEB) [37,38]. That diagram is a schematic drawing in which energy carriers 

are illustrated and where all energy uses of a building, or part of its, can be taken into account. General 

representation of these diagrams, related to the comfort and energy carriers, are respectively showed in 

figures 13 and 14. 

In this thesis, starting from simple diagrams, several steps have been done:  

- Different levels of detail have been insert in the climate quality and energy analyses 

- For each level of detail, and for different periods of time, different kind of data elaborations and 

result representation are proposed, both for climate quality and for energy analyses 

- A new representation method, which include climate quality and energy analyses results, is 

proposed too. 

 

3.2.1 Levels of detail in the analysis 

 

Both total energy use and comfort quality can be expressed with different levels of detail, in terms of 

kind and grade of information, deepening the analysis from the entire building to the single rooms. Energy 

evaluation, for example, can be addressed for four different levels of detail, while only three levels can be 

enough for the comfort analysis. 
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The four proposed levels of detail for the total energy assessment, as indicated in figure 13, are: 

- Level 1: Delivered primary energy – It indicates the total primary energy delivered to the building, at 

the net of the exported energy (if presents), obtained by multiplying the delivered energy (Level 2) by 

a primary energy factor that takes into account the extraction of the energy carrier, its transport to the 

utilization site, as well as for processing, storage, generation, transmission, distribution and delivery 

[39].  

- Level 2: Delivered energy – It is the energy needed from a building for heating, cooling, ventilation, 

domestic hot water, lighting and appliances. Represents the energy delivered to the building 

(electricity, fuel, district heating, etc.), but also the renewable energy produced on site (solar energy, 

geothermal energy, etc.). 

- Level 3: Net energy needed by the technical systems – It represents the thermal or electrical energy 

required by the building technical systems (heating system, cooling system, ventilation system, etc.). 

This energy is from the delivered energy to the building or from on site renewable energy (Level 2). 

- Level 4: Space net energy needed – It is the net energy required for a single room or zone of the 

building. It is the energy supplied by the technical systems (Level 3) to the rooms’ terminal devices 

(radiant systems, radiators, convectors, diffusers of the ventilation systems, lighting equipments, 

appliances, etc.).  

 

 

Figure 13. Energy flow scheme and levels of detail in the analysis of building total energy use. 
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The three proposed levels of detail for the climate quality assessment, as indicated in figure 14, are: 

- Level 1: Whole building indoor climate analysis – It describes the indoor climate quality of an entire 

building considering, in a single evaluation, the performance of different thermal zones and of all 

the single rooms of which the building is composed.  

- Level 2: Single indoor climate zone evaluation – It is the ICQ evaluation related to a group of rooms 

characterized by similar kind of installed systems, exposure and intended use. In these rooms the 

environmental parameters are almost the same, and in the comfort analysis a single room can be 

representative of the entire thermal zone.  

- Level 3: Indoor climate quality evaluation in specific rooms – Represents the ICQ assessment in a 

specific room, in which particular environmental conditions need to be respected. 

 

 

Figure 14. Levels of detail in the analysis of indoor climate quality. 

  

Aimed to demonstrate the applicability of the proposed schemes, the same building already used in the 

case study of Chapter 3 is object of this analysis too. Information about the building can be found in Paper I 

and Paper III. 

 

Energy carriers of the building are shown in diagram of figure 15. Based on the general representation 

aforementioned, the four levels of detail have been identified: 

- Level 1: delivered primary energy to the building 

- Level 2: delivered energy to the building (electricity and district heating) 

- Level 3: energy needed by the main technical systems; 3a) energy needed by the single divisions of 

the technical systems. 

- Level 4: energy needed by a single zone (a 268 m
2
 office room, in this specific case study). 
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In the example of figure 15, further information are given: also the measurement points, defined during 

the design phase of the monitoring plan, are indicated by red dots. These points are distributed for the 

different levels of detail and they indicate where the energy carrier is monitored and consequently 

assumed for the building energy evaluation. 

 

 

Figure 15. Building systems energy flow scheme, with evidence of the monitoring points, and of the levels of 

detail in the analysis. In the diagram different kind of energy flows are indicated with different colors: black 

- primary energy, red - thermal energy for heating, blue - thermal energy for cooling, green - electricity. 

Indoor climate quality in the building can be represented according to the proposed method too, by 

dividing the building in different thermal zones and drawing a diagram on the basis of the one described in 
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figure 14. The indoor climate zones are characterized by the kind of installed systems, the exposure and the 

intended use. In the case study, in each selected and representative room, indoor climate parameters were 

collected. Air temperature, operative temperature, CO2 concentration and air relative humidity were 

monitored. Through these parameters indoor climate quality analysis could be performed for each single 

room, for each single thermal zone or for the entire building. Figure 16 shows the diagram for the indoor 

climate quality evaluation in which monitored rooms are grouped in indoor climate zones. Also in this case, 

points of evaluation are highlighted and distributed among the three levels of detail.  

 

 

Figure 16.  Diagram for the ICQ evaluation, with evidence of the evaluated spaces and of the levels of detail. 

3.2.2 Data elaboration and representation 

 

Energy consumptions and indoor climate quality can both be assessed for long or short time. Collected 

data from on site monitoring can be processed for different periods of time, like years or seasons, 

otherwise it can be useful to focus on specific range of time, like months, weeks or days. Independently by 

the length of these intervals, analysis can be performed for all the levels of detail listed in the previous 

paragraph, allowing to evaluate the performance of the entire building, of an indoor climate zone, or of a 

single space. 

Energy and comfort data elaboration and representation, though following a similar approach, present 

differences according with the output and the information to achieving from the monitoring. In order to 

better explain the approaches, it is appropriate to face separately energy and ICQ evaluations. 
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Figure 17. Building energy evaluation for different levels of detail and for different periods of time. 
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Figure 18. Building climate quality evaluation for different levels of detail and for different periods of time. 
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Representing elaborations through histograms allow to illustrate the energy consumption distribution, 

during the monitored time, expressed in terms of absolute consumption (MWh) and specific consumption 

(kWh/m
2
), referring at the floor surfaces area. While the yearly evaluation indicates the total amount of 

energy required by the entire building, or part of it according with the detail of the analysis, the seasonal 

distribution splits the same value between winter, summer, and mid-season. From the example of figure 

17, in which data from the previously case study are presented, it is interesting to note that during the mid-

season the energy consumptions were higher than during the cooling season. For this reason is preferable 

to don’t limit the seasonal energy evaluation at the heating and cooling time. 

At Level 1 the energy performance of a building can be expressed through a single value, i.e. the 

Primary Energy (PE). PE is calculated by multiplying the delivered energy by the primary energy conversion 

factors. Standard EN 15603:2008 [34] indicates, in the Annex E, the European primary energy factors for 

renewable or not renewable delivered energy. Primary energy factors, to use in case of lack of more 

accurate values, are however always determined at national level by national standards. The second level 

of detail allows to separate the delivered energies carriers that provide heating, cooling, ventilation, 

lighting and domestic hot water in the building. In the case study, for example, the two delivered energies 

were district heating and electricity. In level 3, first of all, the delivered energies are separated 

distinguishing thermal energy from electricity. Then, energy required by the single system, or part of its, is 

spelled out. In figure 17 shows, the graphs related to the thermal energy show the amount of it used for 

heat and cool the building, respectively through floor heating, convectors and ventilation systems in the 

first case, and through floor cooling and TABS, and ventilation system in the second case; moreover it 

shows the domestic hot water energy consumption. In the graph related to the electricity, consumptions 

about different section of the system are shown. Finally, the last level of detail, Level 4, investigates on the 

energy consumption of a single room. In this analysis, since can happen that not all the energy flows are 

monitored, in some cases the energy consumptions should be estimated according with the floor surface, 

or the volume, served by the specific system.  

A more detailed analysis of the results obtained in the energy evaluation of the case study building is 

reported in Paper III. 

Differently from the energy evaluation, in which has been chosen to express results through 

histograms, in the indoor climate quality assessment, for diverse periods of analysis (year, months, etc.), 

the suggestion is to represent elaborated data with different meanings.  

In the yearly evaluation, monitored operative temperature can be put in relation with the outdoor 

running mean temperature. Thermal comfort ranges for an entire year can be defined crossing the 

categories suggested by the standard EN 15251 [4] for the adaptive model (annex A.2 – “Acceptable indoor 

temperatures for design of buildings without mechanical cooling systems”), at which to refer for the mid-

season period, with the categories suggested by the same standard for the mechanically controlled 

buildings (annex A.3 – “Recommended indoor temperatures for energy calculations”). Through this analysis 

it is possible to evaluate if the monitored operative temperature respects the limits prescript by the 

standard, giving an overall evaluation of the thermal comfort in the building in relation to the boundary 

conditions. Seasonal evaluation can be performed according with standard EN 15251 too, referring to the 

annex A.3 for the comfort ranges, but assessing the environment as complying with annex F (“Long term 

evaluation of the general thermal comfort conditions”), method A, “Percentage outside the range”.  The 

last evaluation, indicated as monthly/daily evaluation, is a focus referring to a specific period of time. 

Purpose of this deepening, performed developing operative temperature profiles during the 24 hours, is 
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the building thermal behaviour gauging in extreme boundary conditions. An additional focus, on particular 

days or weeks, it helps in the building-plant system proper operation auditing, underlining, if there are any, 

problems to be solved. In figure 9, for example, referring again to the same case study building, profiles of 

operative temperature about two months, one representative of the winter time and the other one of the 

summer period, are shown. For each month, then, daily profiles are analysed too. With the same criteria, 

different intervals of time could be examined (for instance weeks). 

Levels of detail in the indoor climate quality evaluation are those indicated from figure 16. Analyses can 

therefore be performed for the entire building, for the selected indoor climate zones, and for the single 

rooms. In Figure 18, for example, the evaluation is shown for the four identified climate zones at Level 2 

and for the same room already regarded in the energy evaluation (room 2.2.00) at Level 3. Assessment of 

indoor climate in the entire building (Level 1) gives an average evaluation of several rooms, that can be 

characterized by different heating/cooling and ventilation systems, different intended use and solar 

exposure. For that reason specific thermal dynamics of the building are difficult to understand at this level. 

At Level 2 important remarks can be done. Different microclimate conditions among the zones can emerge. 

In the example comparison between Climate zone 1 and 2, allows understanding how much the natural 

ventilation influence the indoor operative temperature profiles. On the other hand comparing Climate zone 

4 and 1, though mechanical systems is the same for both the zones, temperature distribution is very 

different due to the different intended use: in the commercial activities, because of the frequent opening of 

the doors for the customers access, the number of air changes pour hour is really high. For this reason, in 

the yearly evaluation, climate zone 4 looks more dependent by the outdoor climate influence. 

It is important to highlight that the yearly evaluation is based in part on the adaptive approach: for that 

reason results of the seasonal evaluation, based on the Fangers’ method, could do not match with those 

represented in the graphs of the yearly evaluation. 

 

3.2.3 Indoor climate quality VS Energy Consumption assessment 

 

In the previous paragraphs energy and indoor climate quality in the building have been evaluated and 

represented separately one from each other. Rare are in literature the studies in which energy and indoor 

air quality of a building are compared, and correlation between them is parsed [40, 41], and only a few 

times both the evaluations are taken into account in the same building analysis [42-46]. Often procedures 

for comfort and energy performance of a building with different intended uses are dealt separately [47]. 

Aimed to put in relation indoor climate quality with the related energy consumptions, graphical 

representations of monitored parameters are investigated. 

First issue to be solved is the research of a unit at which both energy and indoor air quality can be 

referred to. While different energy carriers (electricity, fuel, etc.) can be converted in primary energy or CO2 

emissions, for the individual indoor environmental factors is even not available any standardized method 

for estimation of a yearly performance value [48]. As early described in the previous paragraphs, also if 

does not exist a unique value for to describe indoor climate quality, for all the environmental parameters 

standards suggest specific ranges for the comfort classification. In order to use categories as yardstick for 

both energy and comfort evaluation, four intervals of energy consumption can be introduced. These 

intervals are: 
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- Category I - < 20 kWh/m
2
y 

- Category II   - > 20, <40  kWh/m
2
y 

- Category III   -  > 40, <60  kWh/m
2
y 

- Category IV -  > 60 kWh/m
2
y 

By means of a radar chart indoor climate and energy data can be represented separately or together on 

the same graph. Moreover, the same graphical support can be used for showing a seasonal and yearly 

performance of the building. In order to define a single indicator for to describe the belonging category of 

the environment object of the study, it has been determined that a building belongs to a certain category if 

for the 95% of the occupancy time the analysed parameters respect the limits indicated for a certain range.  

The radar chart can moreover be used for representing the real values of the monitored data. While 

using categories it is possible to put in evidence a representative area of the best obtainable situation, i.e. 

when all the parameters respect category I, the same thing cannot be done when on the axis are indicated 

values (for example average values for the environmental parameters and total amount for the energy 

consumptions). In this case important information about the building behaviour can be expressed, but it is 

not immediately understandable which is the global performance of the building and which are the causes 

that led to certain conclusions. 

In figure 19 examples of data from the case study building are illustrated in accordance with the 

explained approaches. The figure is divided in two parts: the upper part allows to describe the performance 

of a building through the use of categories, while the lower part shows the real measured values. The 

energy data are representative of the third level of analysis (indicated in figure 15), while the comfort 

parameters are related to the entire building (Level 1 of figure 16). Similar evaluations could be done for 

different climate zones and for single rooms. 

 From the example some considerations, extensively investigated in Paper III, can be mentioned. First of 

all differences in results among seasonal and yearly evaluation using categories depend by the fact that 

that the seasonal evaluation includes in the analysis only some months of the year. Then, the average 

values referred to the environmental parameters sometimes can seem good, if only dwelling on the single 

values, but comparing the results with the one ones obtained with the categories evaluation, outcomes 

could be no more acceptable. This can be explained by the fact that the average values do not point out 

that the variables fluctuate, being often greater or lower than the acceptable values. For these reasons a 

good description about the performance of a building could include these synthetic representation of the 

results, but just a more detailed analysis permit to better know the dynamics of the building at the 

boundary condition variation, allowing to make a diagnosis of the building too. 
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Figure 19. Seasonal/yearly ICQ and energy evaluation.  
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4. Performance of radiant systems, energy consumptions and thermal 

comfort evaluations 

 

As it has been earlier pointed out, the simultaneous assessment of energy performances and indoor 

environmental quality in buildings is a topic of huge interest. Aimed to this attention, research on 

heating/cooling system that can provide high levels of thermal comfort in buildings, demanding a restricted 

quantity of energy, is increasing. In this context, radiant panels deserve particular attention because they 

exchange heat with the surroundings, both by radiation and by convection. In particular they exchange 

heat directly with occupants by radiation, and humans are mostly sensible to this kind of heat transfer: 

almost 60% of human body sensible heat transfer is through radiant heat exchange [49]. Furthermore 

radiant panels don’t affect the acoustic quality of the environment and of the indoor air quality, because 

they generate low air and dust movement in the rooms. They can nevertheless be combined with 

ventilation systems to guarantee a complete control of latent load and IAQ in the indoor environment.  

Several kinds of radiant system can be adopted in buildings. In the specific, according with the used 

energy carrier, they can be divided in hydronic, electrical or gas systems. They can then be arranged on 

ceilings, floors or walls. 

In order to demonstrate properties and applicability of radiant systems, two different strategies are 

presented below. These mentioned systems are radiant electrical plates and thermal active building 

systems (TABS). Characteristics of the experiments are listed in table 5 and analyses are widely developed 

in Papers VI and V. 

Table 5. Characteristics of the experiments of the two kinds of radiant systems. 

 
Radiant Electrical Plates 

TABS 

(Thermal Active Building System) 

Thermal control High temperature heating High temperature cooling 

Inertia of the system Low inertia High inertia 

Intended use Residential Office building 

Tested environment Test room In field (existing building) 

Measured parameters Energy and comfort parameters Energy and comfort parameters 

Number of tested systems 3 1 

Number of tests for each system 3 3 

Test boundary conditions Steady state condition Not steady state conditions 

 

 Both the strategies have been tested through in field measurements and with the support of 

simulation tools, but the methodologies approached during the tests have been very different. In both 
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cases the introduction of innovative instruments or methods of analysis in the experiments allowed to 

obtain original results. 

First of all the two radiant systems were tested with different boundary conditions: while radiant 

plates experiments took place in a test room, with outside fixed and controlled air temperature, the TABS 

have been evaluated in a building during the system operating time. In this last case the boundary 

condition were not controlled, and in literature in field tests for evaluating the performance of TABS are 

not available: studies on this kind of hydronic system are usually carried out only through the use of 

dynamic simulations. 

Then while radiant plates are thought to be used for heat single family houses in winter, TABS found 

applications in multi-storey buildings for removing  cooling loads during the summer period. 

Innovative contributions and results of the performed experiments are shown in the next paragraphs.  

 

4.1 Radiant Electrical Plates 

Electrical systems application in dwellings is not as common as it is for the hydronic systems, 

because the use of electricity for the heating purpose could cause energy wasting and, in many countries, 

it could also be the cause of extremely high heating costs for the users. Nevertheless in new low-energy 

houses heating is required few days or hours per year, and when it is required the system must react 

quickly to the thermal demand, to reinstate the proper thermal conditions [50-53]. Due to the very little 

amount of heating energy required by these low-energy houses, the use of cheap electrical systems could 

be suitable, and to balance the energy required by the system photovoltaic panels may be integrated. 

Radiant plates can be easily mounted on a wall when the building is already finished and can be shaped 

following many different styles. They have a reduced exchanged area and thus they must reach higher 

temperature if compared with electrical floor or ceiling panels [54], the maximum radiant asymmetries 

due to warm surfaces have to respect the prescriptions fixed by thermal comfort standards. 

 

4.1.1 Test facilities and experimental apparatus 

The test facility arranged to experimentally characterize the radiant electrical plates, of which 

characteristics are listed in Paper IV, was made up of an insulated chamber (3.57 m x 3.49 m x 2.55 m). The 

air temperature of the environment around the test chamber could be controlled by means of an air-

conditioning system, in order to simulate different heat loss conditions.   

The characterization of the radiant plates under test required several quantities to be measured, which 

are summarized below and explained in Paper IV: 

- air and wall temperatures inside the chamber; 

- plate surface temperature and corresponding heat flux; 

- temperature and relative humidity outside the chamber; 

- electric energy consumption (of the plates). 

 

Microclimatic station was also used in the test room during experiments to measure air velocity and 

difference of radiant temperature between the walls. The aim of these measurements was to verify the 

absence of local discomfort. 
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The innovation in these tests is in particular represented by the technologies developed for to assess the 

experiments. In particular, the sensors used from measure the surfaces temperatures and the air 

temperature in the center of the test room, presents an innovative technology. Measuring nodes, each one 

embedding three thermocouples T-type, were in fact studied and here applied. Each node could 

communicate through a wireless system to a base station, sending measured data that could in this way be 

logged. Moreover, the realization cost of each node was really little (about 10 Euros). Further information 

are given in Paper IV. 

 

During the study three different electrical plates with different dimensions and controls have been 

analyzed:  

1 - white metal surface (1.55 m x 0.44 m) 

2 - white metal surface whit forced ventilation (1.50 m x 0.53 m) 

3 - white perforated surface (0.82 m x 0.54 m) 

 

In figure 20 architecture of the test room, position of the probes for air and surface temperature 

measurements and position of the radiant plates on a wall are illustrated. 

 

 

Figure 20. Test room architecture and air and surface temperature sensors position. 
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4.1.2 Methods  

 The objective of the measurements was to evaluate the thermal power output of the radiant plates 

as function of the temperature difference between the plates surface and the room reference 

temperature. In fact a good performance of the heating equipment can be assumed only when the 

temperature of the plate surface is not too high, in order to do not create local thermal discomfort to the 

occupants. Three different test conditions were carried out for each plates: high heat loss, moderate heat 

loss, low heat loss. All the test were preformed under steady state conditions. The thermal power output 

was derived from the plate electrical energy consumptions during the test time and it was checked with 

values obtained by means of heat flux meters. The power output of the electrical plate was finally 

evaluated by mean of a characteristic equation, as in the case of common radiators, based on the 

experimental data: 

n
M ∆TKΦ ⋅=   [W]                                                                                                        

where KM  and n are constant for the plate. 

 

Comfort simulations were conducted with the software Hypercomfort®, an hypertextual tool for 

the evaluation of the thermal, visual, acoustic and olfactory comfort, developed by the Energey 

Department of Politecnico di Torino. Top, PMV and PPD were the output of the analysis. In accordance with 

previous researches [49, 55, 56] the operative temperature in the centre of the chamber at 110 cm above 

the floor level was considered as the reference temperature. The thermal comfort evaluations have been 

performed according to the ranges of categories indicated for the standard EN 15251 for residential intend 

use. The final objective was to assess how the three different plates could alter the thermal environment in 

which they appear, having analogous average thermal power end energy consumptions and time intervals 

of monitoring. More information about environmental condition and variables used for the PMV and PPD 

evaluation are expressed in Paper IV.  

 

4.1.3 Results 

Results of the activity demonstrate that all the plates could keep a good level of thermal comfort in 

the environment, in particular at distances higher than 1,5 m from the radiant surface. Moreover already at 

the distance of  0,50 m the temperature could be considered acceptable.  

The monitored heat flux and the absorbed electricity demonstrate that the use of radiant plates is 

suitable in dwellings in which the heat losses are very low, as well as the energy demand for heating. With 

this aim further evaluation about the applicability of these systems in low-energy houses has been 

performed. 

Part of results is presented below, through figure 21 and tables 6 and 7. More accurate outputs of 

the analysis are shown in Paper IV. 
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Figure 21. Top, PMV and PPD indexes at 0.5 m and at 1.5 m far from the plates.  

 
Table 6. Thermal conditions during the tests and power output of the electrical plates. 

 

As previously enounced, the use of electrical radiant plates can be considered suitable only in houses with 

low-energy demand for heating. In order to demonstrate this fact, a case study of a single family house 

(122m
2
) was introduced for to evaluate the possible use of the tested plates in low-energy houses at 

different latitudes and with suitable photovoltaic system to provide electrical energy. 

Thermo-physic characteristic of the envelope have been changed in order to satisfy the building energy 

performance requirements of the Italian legislation for heating and domestic hot water, at different 

climatic areas in the North of Italy (Bolzano, Torino, Firenze). The climatic data used in the simulations 

 

  

  time Eel Tout Tp Ta,110 Tmr Top ΔTp-op Φ Φ1 

  [h] [kWh] [°C] [°C] [°C] [°C] [°C] [°C] [W] [W/m
2

pan] 

P
la

te
 1

 Test  1 8 2.13 16 55.0 20.6 21.1 20.9 34.1 266 403 

Test  2 24 3.95 18 41.8 20.9 21.2 21.0 20.8 165 250 

Test  3 20.3 1.34 20 31.1 21.2 21.4 21.3 9.8 66 100 

P
la

te
 2

 Test  1 69 20.05 18.3 57.5 21.2 21.9 21.5 36.0 291 366 

Test  2 19.97 4.37 16.6 49.0 21.9 22.2 22.0 27.0 219 275 

Test  3 14.77 0.27 16 69.7 22.0 23.2 22.6 47.1 18 23 

P
la

te
 3

 Test  1 6.87 1.26 13.9 60.8 18.7 19.5 19.1 41.7 183 413 

Test  2 5.18 0.75 16.9 51.0 20.1 20.8 20.4 30.6 146 329 

Test  3 8.75 0.40 19.5 32.4 21.0 21.3 10.5 21.9 46 103 
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derived from the weather data archive of the Italian Energy Agency (ENEA). An assumption of an efficiency 

of 13.7% of the photovoltaic modules have been made, which corresponds to polycrystalline silicon 

commercial modules.  Results of the calculations are shown in table 7. 

 

Table 7. Number of radiant plates (type: P1, P2, P3) required to heat the house, heating demand calculated 

for the standard house in order to fit the different energy levels and photovoltaic area required to balance 

the heating energy consumptions for the three Italian cities considered. 

Heating demand 

Required number of 

radiant plates (type: P1, 

P2, P3) 

Required delivered 

energy for heating 

Required photovoltaic area to 

balance heating requirements 

P1 P2 P3 kWh/m
2
y m

2
 kWp 

B
o

lz
a

n
o

 Very low 8 4 4 10 9.3 1.3 

Low 12 6 6 24 23.1 3.3 

Standard 17 9 8 49 46.8 6.7 

Slightly high 26 14 13 82 78.1 11.2 

T
o

ri
n

o
 Very low 7 4 3 12 10.7 1.7 

Low 9 5 4 24 21.5 3.1 

Standard 14 8 7 59 52.3 7.5 

Slightly high 19 11 9 77 68.9 9.8 

F
ir

e
n

ze
 Very low 5 3 3 8 6.5 0.9 

Low 7 4 3 17 14.9 2.1 

Standard 11 6 6 48 41.3 5.9 

Slightly high 15 8 7 62 53.1 7.6 

 

As confirmed by the results, the use of the tested electrical radiant plates can be considered suitable only in 

houses with low heating demand, where the number of elements is low and the area required for 

photovoltaic modules too. 

 

 

4.2 TABS – Thermal Active Building System 

Low temperature heating, called TABS (Thermo-Active Building System) [57], are characterized by 

embedded pipes in the structural concrete slabs of multi storey buildings [58], in order to get more mass 

and thermal capacity [59]. Slabs are thermally activated by water or air [60, 61], which operate with small 

difference between room air and HVAC system temperature allowing the use of low temperature heat 

sources [62]. In general TABS design is based on the same parameters characterizing other radiant systems 

(spacing and diameter of the pipes, thickness of concrete layer, water temperature, water mass flow rate) 

[63, 64]. The high water temperature for cooling shows an overall energy consumption lower than 

conventional air conditioning systems and it offers the possibility of using renewable or recovery sources of 

energy, or technologies not usable in traditional systems [65]. Moreover this kind of system allows to 

remove the daytime peaks loads during the night time, when the prices of electricity are lower [66], and to 

use water temperature in the pipes close to desired room temperature. It is important to highlight that 

operative temperature drifts in the room can be expected, because it cannot be controlled as a fixed level 

[62].  
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4.2.1 Test facilities and experimental apparatus 

As early introduced, this thesis proposes a methodology for to evaluate the performance of a TABS 

system through in field measurement in an office room. In literature TABS are usually studied through 

dynamic simulation tools, and just a few examples show measurements in situ. Also in these last cases, 

however, just a few environment and energy parameters are monitored and systems are not evaluated 

under particular condition.  

 

The investigation has been performed in the room 2.2.00 of the office building already introduced 

in chapters 3 and 4. This room had a South-East exposure, and a floor surface of 268 m
2
. In winter time it 

was heated by convectors balanced with mechanical ventilation. In summer TABS integrated in the ceiling, 

combined with mechanical ventilation, provided to cool the environment. On the concrete slabs a raised 

floor with acoustic insulation was located, while the pipes were embedded in the lower part of the 

concrete slab. The lighting level in the room was controlled by sensors of presence and the intensity of the 

artificial lights was balanced with the natural light. There were automatic and manually curtains for the 

solar radiation control and the employees had the possibility to open/close the windows. 

During the tests, physical parameters were collected through the use of a stand positioned in the 

center of the room, on which probes were located at different heights. Operative temperature and surfaces 

temperature were collected through a thermo camera. At the same time a weather station was measuring 

data about the outdoor environment, and other sensors were measuring temperature of the fluids in the 

systems. All the monitored parameters, the typology of sensor used, their position, and the frequency of 

acquisition are listed in Paper V. 

 

4.2.2 Methods 

In order to evaluate the TABS performance in summer through field test in an existing office 

building, the assessment of the hydronic system has been tested at different levels of internal loads. With 

this aim heated dummies were positioned at the same workstations used by employees during the 

workdays, and located homogeneously in other empty areas of the room, simulating internal heat gains 

from people, computers and other sources. During the experiments, dynamic simulations performed 

through energy simulation tools were conducted simultaneously with physical measurements. The entire 

investigation process can be divided in four different phases: 

- Phase 1: Determination by dynamic simulations of the room internal loads to be used in the field 

measurements. In order to determine the level of internal loads to install in the examined room, 

dynamics simulations were performed with the support of the energy simulation tool TRNSYS 

(16.1.0003). The use of simulations in the first phase of the process allowed to solve the energy 

balance of the room in cooling mode, giving as outputs the total heat loads and the operative 

temperature in the room. The TABS system was originally designed to maintain thermal comfort 

conditions at the work places until 40 W/m
2 

of cooling loads. Through the simulation model, it was 

possible to test different levels of internal gains in the room to reach 40 W/m
2
 by adding people and 

computers in the office. The objective was to estimate how many dummies (1 dummy = 1 person + 1 

computer = 170 W) had to be placed in the room to reach the designed value. 
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Stage 
IDA IES Energy+ TRNSYS 

[degree hours in thousand] (cooling) 

1 Basic building     14.2 20.3 36.1 34.9 

2a S1    +   Internal Shading  5.7 8.5 26.0 31.0 

2b S1   +   External Shading 0.0 0.0 0.0 0.2 

3a S2a  +   Ventilation (3,5 l/s*person) 0.0 0.0 0.0 0.2 

3b S2a  +   Ventilation (10 l/s*person) 0.2 0.2 3.3 5.6 

4 S3b  +   Internal Loads 1.4 1.4 3.1 4.7 

5 S4    +   TABS 0.1 0.1 1.7 1.2 

 

- Phase2: In field measurements. Measurements were carried out in summer 2011. During experiments 

different levels of internal loads were inserted in the office, according with outside weather condition 

and based on the results from the simulations. In this way, inserting heated dummies in the room, 

three different scenarios (S1,S2,S3) were created (Fig. 22). Indoor and outdoor environmental 

parameters, and supply and return temperature of the air in the ventilation system and of the water in 

the hydronic system were monitored.  

- Phase 3: Calibrated dynamic simulations and cooling loads calculation: Through calibrated dynamic 

simulations, performed with the support of Energy Plus 6.0, internal gains and cooling loads were 

calculated for the duration of all the experiment.  
 

- Phase 4: Critical analysis of the results: see next paragraph. 

In this experiment two different simulation tools have been used. Trnsys was used during the first phase, 

while Energy Plus was employed in the third phase. The decision to change the tool has been dictated by 

the potentiality of the two instruments in the different steps of analysis. As demonstrated in Paper VI, 

Trnsys and Energy plus, at the same input data, can give similar results. In the paper four simulation tools 

were compared (IDA ICE, IES, TRNSYS and Energy Plus). Three rooms of a case study building were 

simulated for different scenarios, with all the four tools and for one year. Output of the analysis was the 

operative temperature. From the results emerged how, especially in summer period, from Energy Plus and 

Trnsys the outputs were comparable (Table 8). In the paper also a TABS system was simulated, and also in 

that case the difference of temperature obtained in summer from the simulation between the two tools 

was very little.  

 

Table 8: Calculated degree hours of cooling to  24,5 °C from April through September. 

 

 

 

 

 

 

 

 

 

 

 

 

 

During the work also emerged that in the input data inserting phase, the tools presents little 

differences. In the creation of stage 5 for example, when also TABS system was included in the model, all 

the tools, but Energy Plus, could fix the supply temperature in the hydronic circuit as a control strategy. 

Also in Energy Plus the supply water temperature can be set, but a range in which the temperature can 

fluctuate is required too, and then the final system control is based on the environment set point 

temperature. For these reasons, in the start up phase was preferred to use Trnsys, which allowed to 

evaluate, keeping the supply temperature in the tubes constant at 18 °C, the amount of cooling loads in 
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the room at the level of internal gains variation. Thank to this evaluation was possible to define the three 

scenarios before mentioned. On the other hands Energy Plus was used making a calibrated simulation. 

First of all with energy Plus was possible to build an accurate model. Then, since the final control depends 

by the room temperature set point, a similar state, like it was in reality, was created. The weather file was 

calibrated with the data monitored from the external weather station, and internal loads from dummies 

were inserted according with the three scenarios.  Tank to this simulation, cooling loads during the 

experiments were calculated and results are shown in the next paragraph. 

 

 

4.2.3 Results 

During the experiments the systems control was set to keep the air temperature in the room equal 

to 23°C. In the beginning of S1 both ventilation and TABS systems were not working, so the air temperature 

increased. During the day just the ventilation system was cooling, and then in the night the ventilation 

stopped and the TABS started to run. In S2 the cooling was provided only by TABS. In S3 both TABS and 

ventilation systems were working together. Temperatures profiles are shown in figure 22.   

From the graph some consideration about the operating principle of this system can be done. In the 

beginning of the experiments, when both ventilation and hydronic systems were not working, the slab 

accumulated a lot of heat, which began to be removed by the TABS when they started to work. Due to the 

high cooling loads to remove, the supply temperature in the circuit fluctuated between 16°C and 18°C, 

while during normal working days, over the experiments, supply water temperature in the TABS was 

around 20°C. During the experiments the heat loads in the room were reduced, the loads removed by the 

water in the TABS decreased, as well as operative temperature in the room and the difference of 

temperature between the return and the supply water in the pipes.  

 

Figure 22- Temperature profiles of average operative temperature in the room, supply and exhaust air 

temperature in the ventilation system and supply and return water temperature in the pipes. 
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Surface temperatures (floor, ceiling at 270 cm [suspended ceiling] and ceiling at 330 cm [concrete 

slab]) were monitored too, and from the graph of figure 23 it can be seen that while floor and suspended 

ceiling temperatures were in general really close to the air temperature in the room (almost constant at 

different heights in all the scenarios), ceiling temperature differed at least of 2°C from the air temperature, 

when the system was operating.  

 

Figure 23 - Average air, operative, and surfaces temperature in the room, for the three scenarios. 

For each scenario intervals of 6 hours, in which air temperature in the room and water temperature 

in the hydronic system were almost constant, were selected. The cooling loads evaluated during these 

intervals are indicated in table 9. In the table is also possible to read for each scenario heat gains and heat 

losses. 

Table 9- Heat balance of the room in the different scenarios. 
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2
] 

  
Int. Scenario 1 Int. Scenario 2 Int. Scenario 3 

Heat gains 

Dummies 22.2 22.2 22.2 

People - - 4.8 

Heaters 13.0 - - 

Equipements - - 3.4 

Lights 3.9 3.9 3.9 

Solar gains - 8.2 13.5 

Heat losses 

Infiltrations -1.3 -0.8 -0.6 

Ventilation - - -6.6 

Walls -2.5 -1.6 -1.1 

Windows -3.4 -2.2 -1.5 

Cooling loads 
 

31.8 29.6 37.9 
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In the TABS performance assessment it is important to distinguish between the cooling loads 

removed from the room by the cool surface, and the loads accumulated in the concrete slab and removed 

by the cool water in the pipes of the hydronic circuit. In the first case the loads removed from the room can 

be calculated through the equation: 

 

 Q/A= (hc+hr)*DT         (1) 

 

 were: 

- (hc+hr)floor = 6 W/m
2
K, 

- (hc+hr)ceiling = 11 W/m
2
K and 

- DT is the difference among the average air temperature in the room and the surface temperature. 

In the second case, knowing supply and return water temperature in the TABS, and flow rate in the 

pipes, loads removed by the water can be calculated by using the basic equation: 

 

 Q/A= m*cp*DT         (2) 

 

where:  

- m is the flow rate in the pipes,  

- cp is the specific heat of the water and  

- DT is the difference between return and supply water temperature in the pipes.  

 

In table 10 al the monitored data useful for to apply the equations (1) and (2) are shown. Results are then 

illustrated in the schemes of figure 24. 

 

Table 10- Measured temperature in the tabs system, in the ventilation system, in the room and outside. 
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 Average 
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 Supply 

[°C] 
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[°C] 

DT 
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Flow rate 

(kg/s) 

 Supply 

[°C] 

Return 

[°C] 

DT 

[°C] 

Flow rate 

(kg/s) 

 To  

[°C] 

Ta 

[°C] 

Tout 

[°C] 

1  18.1 24.7 6.6 0.42  27.4 27.1 -0.3 -  27.0 27.1 16.1 

2  18.1 23.4 5.3 0.42  26.5 25.7 -0.8 -  26.1 26.1 18.8 

3  17.9 22.1 4.2 0.42  20.5 24.1 3.6 1.40  24.3 24.2 19.6 
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Figure 24 – Total Energy balance -  intervals of scenario1, 2 and 3. 
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From the schemes emerge that: 

- During the first day of monitoring the slab accumulated a lot of radiant heat, which was then 

removed during the following days. The temperature in the room was high, but this is explained by 

the fact that no systems were working.  

- During S2 TABS was still removing part of the loads accumulated in the previous days.  

- In S2 cooling loads removed by the room from the cool surface were almost the same than the 

cooling loads calculated with the heat balance. This means that in that interval of time, the TABS 

were balancing the cooling needs of the room.  

- During the S3 the ventilation was contributing to remove loads from the room. The calculations 

denote that the system was not removing enough heat as required by the energy balance.  

In order to analyze the performance of the system, the loads removed by the TABS for the three scenarios 

were calculated in relation to the difference between the average water temperature in the pipes and 

room operative temperature. This is equivalent to the total heat exchange coefficient between water and 

room: 

htotal = L / [To – (Tsupp + Tret) / 2]       (3) 

 

where: 

- htotal = Total heat exchange coefficient i.e. loads removed by the TABS for degree temperature 

difference between average water temperature in the circuit, pour square meter [W/m
2
°C] 

- L = loads removed by the TABS, calculated with (1) [W/m
2
] 

- To = operative temperature [°C] 

- Tsupp = Supply water temperature in the TABS [°C] 

- Tret = Return water temperature in the TABS [°C] 

Figure 25 - Loads removed by the system per degree temperature difference between average water 

temperatures in the pipes. 
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Figure 25 shows that the system removed averagely about 8 W/m
2
 per degree temperature 

difference between average water temperature (cooling capacity = 8 W/m
2
°C), during all the scenarios. This 

means that also in case of different heat loads in the room, the system control allowed to maintain a good 

performance. From the graph the average water temperature in the pipes was always around 20°C, while 

the operative temperature decreased from S1 to S3. When for example the operative temperature was 

26°C (S2), and consequently the temperature difference was 8°C, the system could remove about 48 W/m
2
. 

Wanting to evaluate how much loads could be removed by the system at lower water temperature, if the 

average water temperature in the pipes in that case was 18°C, it could be said that the system could then 

remove about 64 W/m
2
, but in that case the supply temperature would be too low (< 18°C), which could 

increase the risk for condensation on the supply pipes and it would be more difficult to control. So a cooling 

capacity of 40-50 W/m
2
 can be documented by the present test.  
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5. Discussions and Conclusions 

This thesis deals with indoor environmental quality evaluation and energy assessment in buildings, 

with a focus on radiant systems performance. 

Indoor environmental quality data elaboration and representation have been investigated for both 

long and short periods of analysis. International standard EN 15251 defines three different methods (A,B,C) 

at which to refer in the thermal quality assessment, and that evaluate the thermal environment on the 

basis of the “thermal comfort indexes”, i.e. operative temperature, PMV and PPD. These three methods 

have been critically analyzed in this work through a case study. Collected data from a monitoring campaign 

in an office building were used to compare these three methods, highlighting their potentiality and limits. 

From the study emerged how the three approaches give different information in terms of thermal comfort, 

in particular method A (“Percentage outside the ranges”) respect to methods B and C. In order to gather in 

a single output several information a variation of method A is proposed in this work. Thank to this new 

approach a more detailed analysis of the thermal behavior of the building can be done. The study also 

highlighted the differences in the evaluations considering as thermal comfort index operative temperature 

or PMV. PMV calculation depends by four physical parameters and two subjective parameters: this fact can 

highlights significant problems in the accuracy of the prediction. Different is for the operative temperature, 

because in this case the parameter is only one, and the errors that could be encountered just depend by 

the accuracy of the measurement of mean radiant temperature. The work also dealt with the spot 

measurements, describing them as useful for giving a detailed picture of the IEQ in particular 

configurations, like in specific critical locations and periods of time. Spot measurements can be useful also 

in the startup phase of a long term monitoring, giving a rapid overview of the homogeneity of the indoor 

environment and helping in the long term monitoring design. Moreover can be used in the local discomfort 

assessment. Through a case study in which physical parameters and subjective evaluation were performed 

and elaborated, spot measurements and indications referred to data elaboration and representation are 

illustrated. From the study it resulted that occupants thermal sensation and PMV calculation do not always 

match. 

In addition to deal with the indoor climate evaluation, part of the work focuses on the energy demand 

required by the systems for to maintain a good thermal quality in the building. Due to the fact energy 

demand can vary depending not only from the envelope characteristics and quality, but also and from the 

system control and the outdoor climate conditions, a study about the heating and cooling energy demand 

variation at the thermal and air quality changes (comfort categories variation from I to III), for different 

climate zones (Moscow, Turin and Athens), has been performed. Result of that analysis, conducted through 

energy simulations, underlined how, in cold climate, the energy requirements for heating are prevalent and 

the influence of expected indoor air quality level prevails on primary energy demand. Due to this reason, in 

cold climate it is always desirable use a the thermal recovery in order to save energy. The study showed 

how: 
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- in the coldest climate and without heat recovery the range of primary energy demand for heating 

could go up to 70 kWh/m
2
 for a variation in the ventilation rate rage, while it varied only of about 

17 kWh/m
2
 for a variation in the operative temperatures; in the warmest climate, both the 

variations (ventilation and operative temperature) are negligible and equal to 2-3 kWh/m
2
; 

- in hot climate the energy requirements for cooling were prevalent and the influence of expected 

indoor thermal quality level prevailed on primary energy demand. With reference to the this 

aspect, in all the analyzed locations, the range of variation of the primary energy demand for 

cooling due to a change in the ventilation rates is similar to the one due to a change in the 

operative temperatures and is equal to 19-24 kWh/m
2
 for the warmest location, while it decreases 

to around 5 kWh/m
2
 for the coldest location.  

The same study also demonstrated than for an increase of heating/cooling degree-days, more primary 

energy must be consumed for cooling than for heating purposes. 

In order to assess climate quality and energy consumptions in buildings, this thesis is presented a 

procedure at which referring in long term monitoring analysis. The correlation between energy and indoor 

environment measurements carried out simultaneously allows to give, as output of the analysis, a complete 

building energy and environment evaluation. The approach here proposed permits to go to the monitoring 

plans design till the data elaboration and results representation. Through the application on a case study 

the following considerations, representing the mains aspects of the study, have been made: 

- Comfort and energy monitoring plans can be developed starting from diagrams representing, in a 

schematically way, architecture and integrated systems. 

- Both total energy use and indoor environment can be expressed with different levels of detail, in 

terms of kind and grade of information, deepening the analysis from the entire building to the 

single rooms. Levels of detail in energy evaluation are: Delivered primary energy, Delivered energy, 

Net energy needed by the technical systems and Space net energy needed. In IEQ evaluation levels 

are: Whole building indoor climate analysis, Single Indoor climate zone evaluation and Indoor 

climate quality evaluation in specific rooms. 

- Analysis of energy and climate quality can be performed for different intervals of time, like year, 

seasons, months, days, etc., giving different kind of information for each interval. The length of the 

interval of analysis to choose depends by the objective of the monitoring. 

- Representing the comfort performance of a building with a single value is still an issue to be solved, 

but comfort parameters can be put in relation to each other through the use of categories 

suggested by the standard EN 15251. Introducing also categories for the energy consumption 

classification, energy performance of a building can be put in relation to the correspondent comfort 

assessment. In this way a good description about the performance of a building could include a 

synthetic representation of the results, but more detailed analysis consent to better know the 

dynamics of the building at boundary condition variation, allowing to make a diagnosis of the 

building. 

The connecting element between IEQ and the related energy consumptions, beyond boundary 

conditions and envelope thermo physical properties, is the installed plant system. In literature many 

studies about thermal comfort treated the topic of low energy radiant systems for to reach the indoor 

environmental quality objective. For this reason, and in accordance with the topic of this thesis, two kinds 

of radiant systems have been object of analysis and experimentation: the first is represented by vertical 

electric radiant plates for heating, and the second by TABS (Thermal Active Building System) for cooling. In 
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both cases energy and environmental parameters were measured. In the first case the experiments took 

place in a test rooms, in the second experiments were performed in situ (office room). 

The analysis conducted showed that electrical radiant plates may be a good heating system, but due to 

their high electricity demand, the results show that their use can be considered suitable only in houses with 

low-energy demand, where the yearly heating consumption can be balanced by the production of 

photovoltaic energy on site. Low cost equipments can, under these conditions, be competitive with other 

systems: in fact, for economical sustainability, low energy requirements have to be faced by low cost 

technologies in order to give suitable payback time. In terms of indoor environment results of the activity 

demonstrated that the plates can keep a good level of thermal comfort in the environment at distances 

higher than 1,5 m from the radiant surface, but already at the distance of  0,50 m the temperature can be 

considered acceptable.  

Field tests conducted in an office building, in order to evaluate the performance of a TABS system 

(embedded in the ceiling slab), given different kind of results, demonstrating the ability of the relatively 

high temperature water to remove heat accumulated in the slab.  During the tests, at high levels of cooling 

loads in the room, the hydronic system could keep the total heat exchange coefficient between the average 

water temperature in the pipes and the operative temperature in the room almost constant about 8 W/m
2
 

per degree temperature.  The analyzed system could remove from the room a cooling load of 30 W/m
2
 

using an average supply water temperature in the pipes of 18 °C. Higher cooling loads could be removed 

with lower supply temperature. 

From the experiments emerged the possibility to install a suspended ceiling also in case of TABS 

integrated in the ceiling slab. The important thing is to use a suspended ceiling well designed for to be 

combined with this kind of radiant system. In the case study the false ceiling was made by steel bars that 

allowed the indoor air to circulate, without  interfere with the ability of the system to keep comfort in the 

room. 

 

Answering at the objectives of the thesis it can be said that: 

- In the long term climate quality assessment a new evaluation method, that summarize the 

information given by the three methods presented in the standard EN 15251, has been proposed. 

This new approach allows to give more accurate information about the indoor climate. 

- Building energy demand depends by the level of indoor climate quality in a different way as a 

function of the outside climate. In cold climate, in fact, the energy demand is more affected by the 

indoor air quality level (expressed in terms of air change rates) than in warm climate. Moreover, 

air quality is more influencing than thermal quality, independently by the climate zone. 

- A method for the ICQ and energy assessment in buildings, from the monitoring plan to the data 

elaboration and representation is introduced. Both ICQ and energy consumptions can be 

elaborated for different levels of detail, proposed in the thesis. As a function of the length of the 

period of analysis different representations are proposed too, with the aim to give an overall 

evaluation of the energy and indoor climate performance of the building. 

- A representation method that put in relation energy consumption and indoor air quality, for 

seasonal and yearly evaluation is presented. This method can give different kind of information if 
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indicating comfort and energy categories, or comfort and energy values. Using categories a 

reference “area” delimiting the best obtainable performance of the building is indicated. Since a 

European labeling for energy certification has not yet been defined, the energy categories 

proposed in the thesis only indicate ranges of energy values; for this reason the method could be 

adapted in different countries according with different national energy certifications. 

- In relation at the two radiant system tested and described in the thesis it emerged that: 

o Electrical radiant panels could be a suitable system just if installed in low energy buildings, 

in which electricity is integrated by photovoltaic system. They are able to produce a good 

thermal comfort, but their high electricity demand represents a limit. 

o The experimental apparatus adopted for the measurements during the experiments, due 

to the new technology and the limited production cost, could find a wide application in 

many different experimental studies. 

o Tabs system can remove radiant loads accumulated in the slabs using high temperature 

water. In the thesis have been demonstrated the total heat exchange coefficient between 

the average water temperature in the pipes and the operative temperature in the 

analyzed  room was  almost constant at different levels of cooling loads in the room, 

highlighting the good performance of the system. However, higher cooling loads could be 

removed with lower supply temperature. Further test like the one here illustrated could 

be repeated in different building and for longer periods of time, with the aim to improve 

the test methodology and the results. 

o Performance of TABS systems can be evaluated in situ and during the operating systems. 

This means that steady state conditions cannot be created, but is possible to find intervals 

of time in which environmental parameters are almost constant. 
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SUMMARY  
In existing and future buildings there will be an increasing focus on energy uses and indoor environmental 
quality. Even if buildings are using several different kinds of energy sources, the yearly energy performance 
is expressed in one format either as primary energy or CO2 emission. As a consequence, in order to compare 
energy performance with the corresponding indoor environmental performance, there is a need to express 
also the indoor environmental performance on a yearly basis, referring both to each separate environmental 
factor (thermal comfort, air quality, light and noise) and to a combination of these factors. If the indoor 
environmental criteria in existing standards have to be met 100% of the occupancy time, the amount of 
heating, cooling and/or ventilation capacity of any HVAC installation would be prohibitive in terms of 
energy consumptions. Economic and/or environmental considerations lead to a more pragmatic position of 
allowing the indoor environmental conditions to exceed the recommended ranges for a limited period of 
time: this can be verified both by computer simulations (design stage) and by the field monitoring (post-
occupancy phase).  

The present paper will present some concepts to carry out a whole year performance evaluation of the indoor 
environment, inspired by ISO EN 7730 (thermal environment) or EN15251 (thermal, indoor air quality, light 
and noise). Besides, some new suggested concepts about indoor environmental quality are tested.  Based on 
data from indoor environmental measurements in an existing building, methods for long term evaluations 
will be presented and discussed. The results show that the different concepts to a great extend will bring the 
same relative results. The results also show that today we still do not have enough knowledge to be able to 
combine the indoor environmental parameters into one synthetic indicator. 

 

KEYWORDS  

Indoor environment, criteria, measurements, thermal comfort, air quality. 

 

INTRODUCTION 
 

The environmental factors that define the indoor environmental quality (IEQ) are: thermal comfort, indoor 
air quality, acoustic comfort and visual comfort. This makes it almost impossible to describe the indoor 
environment in a building on a yearly basis with only one indicator. This is much easier with energy, where 
the different energy carriers (electricity, fuel, etc.) can be converted to primary energy or CO2 emission. For 
the individual indoor environmental factors, there is even not any standardized method for the estimation of a 
yearly performance descriptor.  



 

 

 

72 

 

Criteria for acceptable thermal conditions are specified as requirements for global thermal comfort (PMV- 
Predicted Mean Vote, PPD- Predicted Percentage of Dissatisfied, or operative temperature, air velocity and 
relative humidity) and local thermal discomfort (draught, vertical air temperature differences, radiant 
temperature asymmetry, surface temperature of the floor). Such requirements can be found in existing 
standards and guidelines like EN ISO 7730 (2007) [1], CR 1752 (1998) [2], EN15251 (2007) [3] and 
ASHRAE 55 (2007) [4]. Moreover for free running or natural ventilated office buildings, the criteria for an 
acceptable operative temperature are given as a function of the mean outdoor temperature [3] [4]. 

Different categories of criteria, according to [1] and [3], may be used for IEQ assessment depending on type 
of building, type of occupants, type of climate and national differences (Table 1). Some of the standards 
specify different categories of indoor environment which could be selected as a reference for the space to be 
conditioned. These different categories may also be used to give an overall, yearly evaluation of the indoor 
environment by estimating (through measurements or dynamic building  simulations) the percentage of time 
in each category of the analyzed room or building [5].EN 15251, for example, specifies how criteria 
about IEQ can be established and used at the design stage; moreover it defines the main parameters 
to be used as input for building energy calculation and long-term evaluation of the indoor 
environment [6]. 
But, if thermal comfort criteria have to be met 100% of the time of occupancy, including extreme weather 
conditions, the heating and/or cooling capacity of any HVAC installation would be prohibitive [7]. 
Economic and/or environmental considerations lead to a more pragmatic position of allowing the thermal 
conditions to exceed the recommended ranges for a limited period time. There is a need to quantify through 
some suitable index long term comfort conditions to compare alternative design solutions and long term 
measurements during the post-occupancy phase in existing buildings. 

 
Table 1. Example criteria for PMV-PPD, operative temperature, relative humidity and ventilation (CO2 
concentration) for typical spaces with sedentary activity. [3] 

 

Note: In standards like EN ISO 7730, EN15251 and EN 13779 (2007) [8] categories or classes are also used; 
but they may be named differently (A, B, C or 1, 2, 3 etc.). 

 

The use of categories during the design stage to evaluate different design options can be done by yearly 
building energy simulations. In these calculations, the categories may be clearly adopted and performance 
indicators can be expressed as percentage of time where the indoor environment falls into the different 
categories. The use of categories to express the quality of the  indoor environment during building operation 

Category 

Thermal Comfort indexes Operative Temperature range 
Relative 
Humidity 

Ventilation 

PPD PMV Winter 
1.0clo/1.2met 

Summer 
0.5clo/1.2 met 

CO2 
Above outdoor 

[%] [/]  [°C] [°C] [%] [ppm] 

I < 6 -0.2< PMV<+0.2 21.0-23.0 23.5-25.5 30-50 > 350 

II  < 10 -0.5< PMV<+0.5 20.0-24.0 23.0-26.0 25-60 350 - 500 

III  < 15 -0.7<PMV<+0.7 19.0-25.0 22.0-27.0 20-70 500 - 800 

IV > 15 PMV >+0.7 < 19.0-25.0< <22.0-27.0< <20-70< > 800 
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can be based on measurements of the physical parameters. . Focusing on the thermal environment assessed 
by in-field measurements, the use of PMV can highlight significant problems in the accuracy of the 
prediction (for example, the accuracy by evaluation of the clothing and activity is not good enough to 
estimate the difference between classes of PMV). If it is decided that the evaluation is simplified by 
assuming a given value for clothing and activity the criteria can be expressed as  operative temperature. The 
major problem is the accuracy of the measurement of mean radiant temperature, which often is higher than 
0.5 -1.0 K. For many buildings the difference between air and mean radiant temperature is however less than 
2 K, and then this accuracy will not be so important. Also as shown in the present paper it is possible to 
measure the operative temperature directly 

The present paper deals with thermal environment and indoor air quality assessment. Based on data from 
measurements in an existing office building, different methods for long and short term indoor climate 
investigations are presented and discussed. 

 

METHOD 

The building 
In order to carry out a critical analysis of the use of the comfort categories as introduced in EN 15251[4], a 
case study is presented  and discussed. 
The case study is an office building located in Denmark (Lat: 55.5°, Lon: 9.75°). The building has a complex 
shape (see Figure 1.). From the architectural point of view a key elements is the roof shape, accommodating 
multiple functions. 83 prism-like skylights compose the roof surface defining the geometry of the building. 
The total volume is mainly occupied by bank offices, but also a bookshop, a café and a real estate agent 
office is located at the ground floor level, around a central plaza. The working areas (basically open space 
offices) are mainly located on three open terraces, called “plateaus”, internally connected by broad staircases. 
On each floor also single offices, meeting rooms and other rooms for dedicated services are placed. The 
building envelope is made mainly by structural glass (U=1.1 W/m2K), with the transmission coefficient 
(visible light/solar energy) equal to [0.64/0.35]. The office is normally occupied from 8:00 to 18:00, from 
Monday to Friday. 

 

The indoor environmental control of the building is divided into two main strategies: 
- Type 1: Convectors and balanced mechanical ventilation for heating and ventilation control during the 

winter period, TABS (Thermo active building system) and HVAC system for cooling and ventilation 
control during summer. This kind of system is mainly applied in single offices and meeting rooms. 

- Type 2: Embedded water based radiant system, and convectors for thermal control. Natural ventilation 
by controlled window openings to provide acceptable indoor air quality. This kind of strategy is applied 
in all the large spaces, like in the offices situated on the terraces (plateaus), in the canteen and in the 
central square at the ground floor. 

 

The monitoring campaign started in July 2010.. In this paper, the data collected during winter 2010/2011 and 
summer 2011 are presented. During that period, measurements of air temperature, operative temperature, 
relative humidity and CO2 concentration were collected every 10 minutes in 12 different rooms. Meanwhile, 
an external weather station collected data of the outdoor air temperature, relative humidity, wind 
velocity/directions and solar irradiance. The average monthly outdoor climatic data during the occupancy 
hours are shown in Table 1. 
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Table 1. Average monthly outdoor climatic data monitored during the occupancy hours. 
 

Month 

Solar 
radiation  

[W/m²] 

Outside 
Temperature 

[°C] 

Relative 
Humidity 

[%] 

Wind 
Velocity 

[m/s] 

Mean direction 

[deg] 

December 216 -3.8 84.1 1.72 45.2 

January 226 1.7 83.1 1.79 52.8 

February 154 1.4 76.6 2.87 75.5 

March 205 4.1 74.0 2.53 161.3 

May 203 16.2 62.1 2.69 415.2 

June 208 19.3 62.5 2.22 424.0 

July 216 19.4 69.8 2.32 328.7 

August 170 19.3 71.7 2.68 295.2 

 
Energy consumptions for heating, cooling, ventilation, lighting and appliances were also collected from 
November 2010, but results will not be showed in this paper which focus is the indoor environment.. 

 
In this paper the investigation of IEQ focuses on two spaces. The first (ROOM A) is an open space office 
located at the first floor and characterized by control strategy Type 1. The second space (ROOM B) is 
another open space also located on the first floor, but characterized by control strategy Type 2 (Figure1). 

 

Figure 1. Case study building (vertical and horizontal sections).In evidence the two analyzed rooms located 
at the first floor (ROOM A and ROOM B). 
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Measurements 

In the present study a grey globe sensor with a diameter of 4 cm was used to measure the combined influence 
of air and mean radiant temperature. This sensor represent in 0,6 m height the operative temperature for a 
sedentary person and in 1,1 m for a standing person. In the spot measurements the globe sensor was also 
used at 0,1m and 1,7m.  

 

RESULTS  

Long term evaluation methods 

Standard EN 15251 [3], in  annex F (“Long term evaluation of the general thermal comfort conditions”), 
suggests three different methods (A,B,C) to evaluate and represent the comfort conditions over time (season, 
year), based on data from measurements in real buildings or obtained by dynamic computer simulations.  

Method A, “Percentage outside the range”, is based on the calculated number (or %) of hours in occupied 
period when the PMV or the Operative Temperature are outside a specified range.  

Method B, “Degree hours criteria”, represents the time during which the actual operative temperature 
exceeds the specified range, during the occupied hours, weighted by a factor depending on how many 
degrees the range has been exceeded.  

Method C, “PPD weighted criteria”, represents the time during which the actual PMV exceeds the comfort 
boundaries, weighted by a factor which is a function of the PPD.  This weighting factor, wf, is equal to 0 if 
the calculated PMV falls within a comfort ranges described in Table 1. If the value is over the upper/lower 
limit of the range, the wf is the ratio between the PPD calculated on the actual PMV and the PPD calculated 
on the PMV limit.  

 

Method A: “Percentage outside the range” 

Application of this method is shown in Figure 2. Here the thermal performance of the two analyzed rooms, 
in terms of percentage of time according to the four categories of operative temperature and PMV suggested 
by the standard (Table 1), was evaluated both for winter (a) and summer (b) periods. 

The aim of this investigation is to show and compare different method for describing thermal comfort and 
indoor air quality. In this paper long and short term evaluation applied to the two analyzed office rooms are 
addressed and discussed. 

Also if Method A describes just an evaluation based on operative temperature or PMV, other physical 
parameters, monitored or deriving by dynamical simulations, can be represented with the same approach. 
Figure 2 also shows the percentage of time when the CO2 concentration and the Relative Humidity exceed 
the respective ranges indicated in Table 1.  
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Figure 2. Indoor Operative temperature, PMV, Air quality (CO2 concentration) and Relative humidity 
measurements, expressed as percentage of time in four categories, for winter and summer periods. 

 

Operative temperature and PMV evaluations, even if both represent the application of Method A, show some 
differences in the results: the operative temperature evaluation gives slightly better results compare to the 
PMV evaluation. While the first considers just the operative temperature, the PMV calculation depends by 
physical parameters (air temperature, relative humidity, air velocity, mean radiant temperature) and 
subjective parameters (thermal resistance of the clothes and metabolic rate). In this case study the physical 
parameters, except to air velocity, were monitored in continuous. Trough spot measurements performed in 
different periods of the year, it was however possible to establish that the air velocity was averagely around 
0.10 [m/s]. For the PMV calculation the air velocity value was then kept constant as 0.10 [m/s]. Regarding 
the subjective parameters, the metabolic rate used in the analysis was the one indicated by standard 
ASHRAE 55/2004 for “Office activity-Filing, seated”, 1.2 [met]. Also the clothing insulation value was kept 
constant: 0.5 [clo] in summer period and 1 [clo] in winter period. Due to these assumptions, the PMV 
calculation does not represent the real PMV of a specific occupant in the room during the monitored time, 
but it represents the average evaluation of the thermal environment according to the comfort standards for 
office buildings. 

From Figure 2 it is possible to note that, during the heating period, both the two control strategies, Type 1 
and 2 (Room A and B) were able to provide a very good thermal quality in the analyzed rooms. Only a little 
percentage of time (less than 2%) was in Category III, while for the 88% of time operative temperature felled 
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in Category I. The situation was different in summer period. As shown in the figure during the warm season 
the thermal quality in both the rooms presents a large percentage of time when the temperature felled in 
Category III and also a little in Category IV.  

This method is a fine way to present the yearly results, but it is not possible to see if the problem is a too 
warm or too cold environment.. If we analyze Category IV, splitting it in two parts, Category IV(-) when 
T<22°C and Category VI(+) when T>27°C in summer, it is possible to see that the percentage of time when 
the temperatures in room B exceed the upper range is negligible. This fact is better shown in the operative 
temperature profiles of Figure 3. According to this analysis the performance in summer is not acceptable 
because temperatures are too low for a big percentage of time for both cases, A and B. With an optimized 
control setting under cooling can be avoided and energy saved 

 

 

Figure 3. Operative temperature profiles during the occupied hours for Rooms A and B in summer period. 

 

Figure 3 also shows the bigger fluctuation of operative temperature of Room B respect to Room A during the 
working day. The mechanical ventilation in room A contributes to reach the temperature of 23°C with very 
small fluctuations ( < 2-3 K). .While in the natural ventilated Room B, the variations of the operative 
temperature is larger ( > 9K). The control of the natural ventilation was based on controlled window 
openings according to indoor temperature and CO2 concentration.. Looking at this graph, and at the values 
of Table 1, it can be observed that most of the time the outside temperature was lower than the indoor 
temperature, so natural ventilation could be a useful and economic way to remove and control the heating 
loads during summer; but to avoid undercooling and the large variations in operative temperature the control 
of the window openings must be improved.  

Similar considerations can be done also for the winter period (Figure 4). In this case the little percentage of 
data out of Category I is due to temperatures below the lower limit of the range. 
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Figure 4. Operative temperature profiles during the occupied hours for Rooms A and B in winter period. 

From Figure 2 it is also possible to see that for both the rooms, and for both seasons, the CO2 concentration 
was very good: the percentage of time when the air quality was in Category I was always greater than 91% in 
winter period and equal to 100% in summer. The same figure also shows the relative humidity evaluation: in 
that case emerges that for both seasons, the best results are in Room B but, as already highlighted before, 
from this representation is not possible to see that the values falling from Category II to Category IV are 
lower/higher (winter/summer) than the lower/upper limit of Category I.  

Looking at the ranges of values indicated in Table 1, and splitting these ranges in two parts, e lower or higher 
than the values indicated for Category I, it is possible to translate Table 1 in Table 3.  

Table 3. PMV, PPD, operative temperature, relative humidity and ventilation (CO2 concentration) comfort 
ranges for typical spaces with sedentary activity, dividing the categories indicated by [3] in lowers and 
uppers categories respect to Category I. 

 

 

 

 

 

 

 

 

 

 

 

Elaborating the monitored data once again with Method A, but referring this time at the ranges of categories 
described in Table 3 instead of Table 1, the results obtained are shown in figure 5. 
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Category 

Thermal Comfort indexes Operative Temperature range 
Relative 
Humidity 

Ventilation 

PPD PMV Winter 
1.0clo/1.2met 

Summer 
0.5clo/1.2 met 

CO2 
Above outdoor 

[%] [/]  [°C] [°C] [%] [ppm] 

IV - > 15 PMV < - 0.7 < 19.0 < 22.0 < 20 > 800 

III - < 15 - 0.7 <PMV< - 0.5 19.0-20.0 22.0-23.0 20-25 500-800 

II - < 10 - 0.5 < PMV< - 0.2 20.0-21.0 23.0-23.5.0 25-30 350-500 

I < 6 - 0.2 < PMV< +0.2 21.0-23.0 23.5-25.5 30-50 > 350 

II + < 10 + 0.2 < PMV<+0.5 23.0-24.0 25.5-26.0 50-60 350-500 

III + < 15 + 0.5 <PMV< +0.7 24.0-25.0 26.0-27.0 60-70 500-800 

IV + > 15 PMV > + 0.7 > 25.0 > 27.0 > 70 > 800 
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Figure 5. Indoor Operative temperature, PMV, and Relative humidity evaluation, in percentage of time in 
categories, for winter and summer periods, according with the values ranges of Table3. 

From this kind of representation it is possible to get a more informative presentation of the yearly evaluation.  
For example figure 5 now show, what could be seen from figure 3 and 4, that   that the operative temperature 
in summer for Room A was always lower than the limit of Category I. Room B presents, on the other hand, 
values falling in categories both lowers and higher than Category I. . Same considerations can be done for 
the PMV evaluation. More interested is the relative humidity analysis. Here is clear that the values, for both 
rooms, were low in winter season and at the contrary they were high in summer season. Focusing on Room 
A during the heating season, the results can be justified by the fact that until the beginning of February, just a 
few employees were occupying the office. 

 

Method B: “Degree hours criteria” 

This method allows to quantify the amount of degree hours of overheating or overcooling respect to the 
selected category. Figure 6 and Figure 7 show, respectively for winter and summer period, this amount of 
degree hours over category I, II and III for both rooms A and B. As already highlighted before, also from this 
kind of representation it emerges the good thermal environment in winter period. Respect to Method A, here 
it is evident the very little deviation from category I in both rooms 
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Figure 6. Degree hours criteria applied to Rooms A and B for the winter period. 

The situation is different is in summer period.  In Figure 7 it is visible that the problem of room A was the 
overcooling, while in room B there was both overcooling and overheating, but less significant. In Figure 2, 
where the same operative temperatures were represented in a different way, this kind of information was not 
shown, but it was evident in Figure 5.  

 

Figure 7. Degree hours criteria applied to Rooms A and B for the summer period. 

As already shown for the Method A (Fig. 2), Method B could also be applied for the evaluations of other 
parameters. 

 

Method C: “PPD weighted criteria” 

The sum of the weighted factors function of the PPD, multiplied for the number of hours when the PMV 
exceeds the category range is shown in Figure 8 and Figure 9. As it was for method B, the graphs represent 
for winter and summer period the amount of wf *hours over Category I, II and III for both room A and B. 
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Figure 8. PMV- hours criteria applied to Rooms A and B for the winter period. 

 

Figure 9. PMV- hours criteria applied to Rooms A and B for the summer period. 

Method B and Method C, even though based on different parameters evaluation, describe the weighted 
deviation between the monitored parameter and the limit range of the comfort category. What emerge by the 
comparison of the two methods is that the trend of the data is really similar in both cases, but the values of 
wf*hours of Method C are greater than Method B. 

 

Short term evaluation 

 
The use of spot/short term measurements is useful for give a detailed picture of the IEQ (Indoor 
Environmental Quality) in given examined configurations, in specific critical locations and times [8]. In the 
present case study in parallel to the long term monitoring, also spot measurements were carried out.  

Measurements were performed during the working hours on March, 22-2011 (winter period) and August, 10-
2011 (summer period) through physical measurements and subjective evaluation. The monitored physical 
parameters were air temperature, operative temperature, air velocity, relative humidity and lighting level. 
Sensors and loggers for the data collection were fixed on a portable stand. The luminance was measured only 
with one sensor at the height of 0.6 [m] (work plane position), while all the other parameters were monitored 
at four different heights: 0.10 [m] (height of the ankles), 0.60 [m] (height of the body for a seated person), 
1.10 [m] (height of the body of a stand person) and 1.70 [m] (height of the head of a stand person). The 
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interval of monitoring was 1[s] for the air velocity and 10 [s] for the other parameters. In each room at least 5 
points were tested for 15 minutes each. 

During the physical measurements people were asked to fill subjective questionnaire about the comfort 
sensation, in terms of thermal quality, air quality, light, noise and about the symptoms perceived in the room. 
People were furthermore asked to give information about the clothes that they were wearing, the position of 
their desk in the room, sex, age, height and weight. With the collected data and with the physical 
measurements, it was possible to calculate the PMV and the PPD indexes in the rooms. 

Results from the physical measurements are shown in Figure 10 (winter) and Figure 11 (summer).  

 

Figure 10.Winter spot measurements. Average value of air temperature, operative temperature and air 
velocity at different heights for Room A and B. 

 

Figure 11. Summer spot measurements. Average value of air temperature, operative temperature and air 
velocity at different heights for Room A and B. 
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It is important to highlight that the spot measurements represent just a particular situation in a precise 
moment, and they are not representative of the seasonal indoor environmental quality. For example, in both 
the cases here illustrated, the outside weather conditions were different by the average values described in 
Table 2. On March, 22 the outside temperature was 9.4 [°C] greater than the average value of the month. The 
same was for the summer: on the 10 of August the outside temperature was 4.3 [°C] lower than the Augusts’ 
average (Table 2).   

Table 4. Average outdoor climatic data, monitored during the occupancy hours, for the two days in which 
spot measurements were performed. 
 

Month 
Solar radiation 
[W/m²] 

Outside 
Temperature 

[°C] 

Relative 
Humidity 

[%] 

Wind Velocity 

[m/s] 

Mean degree 

direction 

March, 22 246 13.5 70.2 2.72 303 

August, 10 241 15.0 71.8 2.54 248 

 

 

Through these reasons, it is possible to explain why during the winter spot monitoring the operative 
temperature in both the rooms was slightly greater than 23 [°C] (upper limit of Category I). In contrast to the 
long term evaluations showing that the temperatures in winter were on averagely lower than 23 [°C] (easy to 
see from Figure 4). 

In the spot monitoring also air velocity was evaluated.  By air temperature and relative humidity it was 
possible to verify that in the two analyzed rooms the percentage of dissatisfied for draught was always below  
the limit suggested by standard ISO 7730 [1] for Category I. 

The subjective evaluation of the thermal environment was obtained with questionnaires. This evaluation has 
been performed  using the ASHRAE thermal sensation scale, where: +3 corresponds hot  , +2 warm, +1 
slightly warm, 0 neutral, -1 slightly cool, -2 cool, -3 cold. Figure 11 shows the average evaluation given by 
the occupants of the thermal sensation perceived in the two rooms . 

 

        

Figure 11. Subjective evaluation of the thermal environment on winter (a), and on summer (b). 

 
The graphs show that the occupants perceived the environment from neutral to slightly warm during the 
winter spots. This sensation can be explained by the higher operative temperature in the rooms (23-23.5 C) 
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with respect to the average for winter period. Regarding the summer thermal sensation emerge that in Room 
A, mechanically ventilated, the people perceived the environment slightly cool. In both cases, winter and 
summer in the mechanically ventilated room (A), the occupants felt more warmer (+1) in winter and colder 
(-1) in summer than in the naturally ventilated room (B), where the occupants in both seasons felt close to 
neutral. Looking at the calculated PMV indexes reported in Table 5, the difference between the PMV and 
PPD values obtained for Room A and Room B, in summer or winter period, is really small,.  The difference 
between the average thermal sensation value(TSV) and the PMV-index  larger in the mechanical ventilated 
Room A than in the natural ventilated room B.  

Table 5. Average outdoor climatic data, monitored during the occupancy hours, for the two days in which 
spot measurements were performed. 
 

 
  

The differences between subjective responses and calculated PMV values can be furthermore justify by the 
difference of outdoor temperature during the spot monitoring days compared to the outside temperatures in 
the previous days. The subjective response depends by a combination of factors, including the expectations 
of the indoor environment deriving by previous experiences. 

 
DISCUSSIONS AND CONCLUSIONS 

 
The main idea behind the categories for IEQ assessment is to use them from the design up to the post-
occupancy phase for buildings and HVAC systems analysis, in order to provide evaluations about the indoor 
environment over a longer period like a year. The intention is not to force the operation of a building within 
one class the whole year, but to critically analyse the possible change of classes over the year. In fact, even if 
a building is designed for a lower category, it will still be possible to operate the building the majority of the 
year in a higher category. For building with HVAC systems the categories are based on different levels of the 
PMV-PPD index and/or operative temperature. If the long term evaluation also will be used to analyse a 
problem and find solutions it is important to evaluate the deviations outside the categories on the warm and 
cold side separately. In practice, very often, operative temperature is the reference parameter used in field 
investigations. It is, however, questionable if fixed temperature ranges should be used for a long term 
evaluation. In fact, people often adapt their clothing according to the outside climate: this is true for both 
mechanical and naturally ventilated buildings. This aspect needs to be deeper studied in future researches, in 
order to take this into account for category range definition.  

 

Floor Room 
Number 
of 
People 

Icl 
[clo] 

Average 
Subjective 
response 

Calculated PMV 

 (0.6 m) 

Calculated PPD  

(0.6 m) 

Winter 
Room A 7 0.79 1.09 0.11 5.25 

Room B 9 0.83 0.26 0.18 5.65 

Summer 
Room A 3 0.77 - 0.98 -0.10 5.19 

Room B 5 0.71 0.26 -0.24 6.22 
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In this paper the use of categories for the thermal environment and indoor air quality assessment in an office 
building is performed. Two different environment (naturally ventilated and mechanically ventilated), part of 
the same office building, are compared. Results and elaboration about long term monitoring and spot 
monitoring in the selected rooms are shown. 

Different methods of classification for the long term evaluation suggested by the standards are analysed, and 
critical aspects are highlighted. A variation of application of one of the method suggested by the standard EN 
ISO 15251 is presented. Representation and elaboration of data from spot measurements, and importance of 
this analysis, are also shown in this paper. 
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2
 TEBE Research Group, Department of Energy, Politecnico di Torino, Italy 

 

ABSTRACT  

The study on the buildings energy performance has been increasingly addressed in recent 

years on real energy consumptions evaluation. What it is essential to clarify is that building energy 

consumptions are strictly correlated with the indoor climate quality required by the occupants. In 

this regard when real consumptions are examined is essential to consider the contextual analysis 

of the indoor climate quality levels maintained in the spaces. 

Both total energy use and climate quality can be expressed with different levels of detail, in 

terms of kind and grade of information, deepening the analysis from the entire building to the 

single rooms. For example consumptions can be assessed starting from the primary energy, till the 

energy consumptions of the end-uses.  

In order to make an evaluation of the total performance of a building in this paper different 

levels of information for the energy analysis are introduced, and methods for presenting the 

results, including both energy performance and indoor climate quality are presented too. 

Moreover, this paper proposes a methodological approach for the analysis of energy and indoor 

climate quality in buildings, conducted through long-term in field monitoring.  

  

Keywords: Energy consumptions, Indoor Climate quality, Energy evaluation, Indoor climate 

evaluation, Data representation 

1. Introduction 

In recent years, attention toward to the buildings energy performance study has been 

increasingly addressed on real energy consumptions. When real consumptions are examined is 

essential to consider the contextual analysis of the indoor climate quality levels maintained in the 

spaces, at which consumptions are connected. 

Furthermore, it is essential to clearly define which is the control surface to investigate for the 

consumption evaluation: starting from the consumed energy sources up to energy the end-uses. 

It is obvious that to fully explore this issue is necessary to have a measurement system, which 

is appropriately positioned by mean a dedicated monitoring plan. Moreover this system have to 

be able  to provide all the useful information about the real behaviour of the building, from the 

consumptions, till the values of the thermo-hygrometric parameters. 

Once measured, the variables need to be elaborated and analyzed to provide an overview of the 

building-plant system energy metabolism: the process can be presented at gradually increasing 
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levels of detail. Investigations may relate the energy consumption and the associated end-uses 

subdivision, or the relationship between energy consumption and obtained environmental quality. 

The next step concerns the results representation ability. This aspect is essential because 

requires to identify synthetic indicators, capable to clearly express the energetic quality of the 

building, moreover the building energy systems quality. Synthetic indicators both respect to the 

space and to the time variables. 

This article proposes a methodological approach for the analysis of energy and indoor climate 

quality in buildings, conducted through long-term in field monitoring. The approach is then tested 

and shown through a case study, consisting of an office building with the bank intended use. 

In particular are introduced different levels of information for the energy analysis, and 

methods for presenting the results, taking into account both the energy performance and indoor 

climate quality. 

 

2. Levels of detail in energy and indoor climate quality detection 

 

Both total energy use and comfort quality can be expressed with different levels of detail, in terms 

of kind and grade of information, deepening the analysis from the entire building to the single 

rooms. In the next paragraphs these levels of detail are investigated. 

2.1 Total energy use 

 

Total energy use of a building can be described according to the approach proposed by the 

standard EN 15603:2008 [4], and subsequently revised and integrated in the system boundary for 

net delivered energy scheme introduced by [1,13] and adopted by REHVA task force  “Nearly Zero 

Energy Buildings” (nZEB) [3,15]. That diagram is a schematic drawing in which energy carriers are 

illustrated and where all energy uses of a building, or part of its, can be taken into account. Similar 

schemes to the one here proposed, in which energy carriers in buildings and system networks are 

part of the dealt study, are available in literature [16-18, 21] In this paper, the description of the 

energy uses is proposed to be performed with different levels of detail and, a way to represent 

these, is also suggested in order to provide a clear picture of the building as an organism fed by 

energy. As figure 1 shows, this action helps in clarifying the energy required by the entire building, 

by its systems or by single zones or rooms. The proposed levels of detail are four: 

- Level 1: Delivered primary energy – It indicates the total primary energy delivered to the 

building, at the net of the exported energy (if presents), obtained by multiplying the delivered 

energy (Level 2) by a primary energy factor that takes into account the extraction of the 

energy carrier, its transport to the utilization site, as well as for processing, storage, 

generation, transmission, distribution and delivery [2]. Standard EN 15603:2008 [4] indicates, 

in the Annex E, the European primary energy factors for renewable or not renewable 

delivered energy. Primary energy factors, to use in case of lack of more accurate values, are 

however always determined at national level by national standards. 
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- Level 2: Delivered energy – It is the energy needed from a building for heating, cooling, 

ventilation, domestic hot water, lighting and appliances. Represents the energy delivered to 

the building (electricity, fuel, district heating, etc.), but also the renewable energy produced 

on site (solar energy, geothermal energy, etc.). 

- Level 3: Net energy needed by the technical systems – It represents the thermal or electrical 

energy required by the building technical systems (heating system, cooling system, ventilation 

system, etc.). This energy is from the delivered energy to the building or from on site 

renewable energy (Level 2). 

- Level 4: Space net energy needed – It is the net energy required for a single room or zone of 

the building. It is the energy supplied by the technical systems (Level 3) to the rooms’ terminal 

devices (radiant systems, radiators, convectors, diffusers of the ventilation systems, lighting 

equipments, appliances, etc.). 

 

Figure 1. Energy flow scheme and levels of detail in the analysis of building total energy use. 

2.2 Indoor Climate Quality (ICQ) 

Similar approach to the one used for the total energy use analysis can be adopted for the 

climate quality assessment. Also in this case different levels of detail can be introduced in the 

indoor comfort evaluation. This time, the three levels are proposed as it follows, and illustrated in 

figure 2: 
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- Level 1: Whole building indoor climate analysis – It describes the indoor climate quality of 

an entire building considering, in a single evaluation, the performance of different thermal 

zones and of all the single rooms of which the building is composed.  

- Level 2: Single Indoor climate zone evaluation –It is the ICQ evaluation related to a group of 

rooms characterized by similar kind of installed systems, exposure and intended use. In 

these rooms the environmental parameters are almost the same, and in the comfort 

analysis a single room can be representative of the entire thermal zone.  

- Level 3: Indoor climate quality evaluation in specific rooms – Represents the ICQ 

assessment in a specific room, in which particular environmental conditions need to be 

respected. 

 

 
Figure 2. Levels of detail in the analysis of indoor climate quality. 

 

Indoor climate quality in the building, thermal zones and single rooms can be assessed with 

long term or spot evaluations (through calculations or measurements) of the environment. In both 

cases the respect of the indoor environment conditions is due according with the suggestions 

given by the European standards 15251:2007 [6] (Indoor environmental input parameters for 

design and assessment of energy performance of buildings addressing indoor air quality, thermal 

environment, lighting and acoustics), 7730:2005 [7] (Ergonomics of the thermal environment - 

Analytical determination and interpretation of thermal comfort using calculation of the PMV and 

PPD indices and local thermal comfort criteria), and ASHRAE Standard 55:2007 [8] (Thermal 

environment conditions for human occupancy). 
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3. Long term evaluation: yearly, seasonal, monthly, weekly or daily. 

Both energy and indoor climate quality can be assessed for long or short periods of time. 

Energy and comfort data, from on site monitoring or from calculations (obtained through the use 

of suitable energy simulation tools) can be elaborated for different periods of time, like years or 

seasons, otherwise it can be useful to focus on specific periods of time, like months, weeks or 

days. Independently by the length of these intervals, the analysis can be due for all the levels of 

detail listed before, allowing to evaluate in this way the performance of the entire building, of an 

indoor climate zone, or of a single space. 

Examples of energy and comfort analyses, treated for different levels of detail and for different 

periods of time, are shown and examined in the next paragraphs through an office case study 

building. 

 

4. Case study 

4.1 Building architecture and envelope thermophysical properties.  

The case study is a 5380 m
2
 building located in the city of Middelfart, Denmark (Lat: 55.5°, Lon: 

9.75°).  The 80% of the floor surface is occupied by bank offices, while the other 20% hosts 

external activities: a bookshop, a cafè, a dress shop and a real estate agent. The building has a 

complex shape, characterized by the particular geometry of the roof (see figure 3). Commercial 

activities are situated at the ground floor, while bank offices are placed on three different floors, 

and changing and technical rooms are located on the basement. The main open plain offices are 

placed on four open terraces, called plateaus, situated at different levels and connected to each 

other by broad staircases. On each floor also single offices, meeting rooms and other rooms for 

dedicated services are placed. The building envelope is mainly made by structural glass, with 

thermal transmittance U=1.1 [W/m
2
K], and with transmission coefficient (visible light/solar 

energy) equal to [0.64/0.35]. Bank offices are normally occupied during daily time from 8:00 to 

18:00, from Monday to Friday.  

 

Figure 3. Case study building (vertical and horizontal sections). 
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4.2 Building systems and controls.  

Thermal and air quality are guaranteed in the building by different combinations of systems. 

Heating loads in winter are provided in part by convectors, located on the floor along the 

perimeter of the building, and in part by hydronic systems (floor heating). Cooling loads in 

summer are removed in part by the hydronic system (floor cooling) and in part by TABS (Thermal 

Active Building System). Also the ventilation systems, in addition to air quality control, contribute 

to add or extract loads respectively in winter and summer period, in some part of the building. 

The building is partially mechanically and partially naturally ventilated. The mechanical ventilation 

is divided in five different systems. The natural ventilation is made by vents whose opening is 

controlled on the basis of indoor and outdoor temperature, indoor CO2 concentration and 

outdoor wind velocity. The natural ventilation is also used in summer period for the night 

ventilation of the building. 

The indoor climate control of the building is divided in two main strategies: 

1- Embedded, water based radiant system (floor heating), and convectors for thermal control. 

Natural ventilation by controlled vents openings to provide acceptable indoor air quality. 

This kind of strategy is applied in all the large spaces, like in the offices situated on the 

terraces (plateaus), in the canteen and in the central plaza at the ground floor. 

2- Convectors and balanced mechanical ventilation for heating and air quality control during 

the winter period, TABS and ventilation system for cooling and air quality control during 

summer. This kind of system is for example applied in the single offices and meeting rooms 

at the first floor and in the shops situated at the ground floor. 

The systems control is based on the rooms’ thermal and air quality: air temperature and CO2 

sensors are installed in all the building in strategically positions and collect data every 10 minutes. 

Also a weather station collects data about air temperature, relative humidity and velocity, wind 

direction, and solar radiation each 10 minutes. In the ventilation systems, flow rate and supply 

and return air temperature in the ducts are monitored, as well as the supply and return water 

temperature in the pipes of the hydronic systems. Operative temperature sensors have been 

inserted in 10 rooms too (at the height of 110 cm), aiming at evaluating the thermal quality in the 

building. 

Artificial light system is controlled on the basis of the light intensity in the rooms, measured by 

dedicated sensors, and its operation is controlled by an occupancy sensor. An automated system 

regulates the opening/closing of internal curtains for the solar radiation control.  
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4.3 Levels of detail in energy and indoor climate quality detection 

4.3.1 Energy 

Building systems scheme and energy carriers are shown in the single line diagram of figure 4. 

On the diagram, designed according with the general representation described in 2.1 and showed 

in figure 1, the use of energy is represented in four levels of detail: 

- Level 1: delivered primary energy to the building 

- Level 2: delivered energy to the building (electricity and district heating) 

- Level 3: energy needed by the main technical systems; 3a) energy needed by the single 

divisions of the technical systems. 

- Level 4: energy needed by a single zone (a 268 m
2
 office room, in this specific case study). 

The red dots drawn on the scheme of figure 4, distributed for the different levels of detail, 

indicate the points where the energy is monitored and consequently assumed for the building 

energy evaluation. 

As it can be seen from the diagram, the two delivered energies of the building are district heating 

and electricity. The first one allows the building heating, through floor heating and convectors 

systems, it is used to heat the supply air of the ventilation systems in winter, and provides the 

domestic hot water. On the other hands the electricity allows to power the cooling system 

(chillers, dry coolers, pumps etc.) for the building cooling, through floor cooling and TABS systems, 

and for the supply air cooling of the ventilation systems in summer. Moreover electricity is used 

for lighting, for other building installations, for the kitchen including cold store, for computers and 

server room, and for all kind of purposes/appliances in the building.  
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Figure 4. Building systems energy flow scheme, with evidence of the monitoring points and of the detail 

levels of the analysis. In the diagram different kind of energy flows are indicated with different colors: black 

- primary energy, red - thermal energy for heating, blue - thermal energy for cooling, green - electricity. 

4.3.2 Indoor Climate Quality 

The same approach has been used for the ICQ evaluation, by dividing the building in different 

thermal zones and drawing a diagram on the basis of the one described in figure 2. The indoor 

climate zones are characterized through the kind of installed systems, the exposure and the 

intended use. In each selected and representative room, indoor climate parameters were 

collected. In this case study air temperature, operative temperature, CO2 concentration and air 
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relative humidity were monitored. Through these parameters indoor climate quality analysis could 

be performed for each single room, for each single thermal zone or for the entire building. Figure 5 

shows the diagram for the indoor climate quality evaluation in which monitored rooms are 

grouped in indoor climate zones.  

 
Figure 5. Diagram for the ICQ evaluation, with evidence of the evaluated spaces and of the levels of detail. 

4.4 Data representation 

As introduced in paragraph 3, data from monitoring or simulations can be elaborated and 

represented in different ways according with the level of detail, both in terms of building zone or 

volume analysis, and of length of time in which performing the analyses. Usually the evaluations 

referred to a year of analysis. In fact, during that period of time it is possible to monitor the energy 

behavior of a building, focusing, through the energy and indoor climate quality analysis, on the 

performance of the systems, and allowing to make a diagnosis of the entire building or of a part of 

it. During a year it is then possible to divide heating and cooling seasons, evaluating the behavior 

of the building in different periods of time, with different outdoor weather conditions. Having data 

collected about indoor and outdoor environment, considerations about the systems operating can 

be done, and elaborations about these data, in the specific of the case study, are showed in figure 

6a-b. 
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Figure 6 a-b) Representation of outdoor air temperature and indoor operative temperature during the 

occupancy hours to determine heating and cooling seasons. 

 

In figure 6, two different ways of representing the data are shown. In the left chart outdoor air 

temperature (Taout) profile from October 2010 to September 2011 is represented. On the same 

graph heating and cooling periods are pointed out. Furthermore outdoor air temperature 

minimum and maximum values for the heating and cooling systems ignition time are evidenced by 

a dotted line. On the other hand the right chart correlates outdoor air temperature and average 

indoor operative temperature (Toin) monitored in the naturally ventilated plateaus. Also in this 

case heating and cooling periods are highlighted. Summing up, figure 6 allows to describe the 

building thermal behavior according with the outdoor climate changes, evidencing the periods in 

which heating and cooling system were operating, and enabling to determine summer and winter 

season through few considerations. In figure 6b Toin rose with Taout increasing, but it was mostly 

higher than 21°C for outdoor temperatures lower than 15°C, and always lower than 25,5°C for 

outdoor temperatures higher than 20°C. In the picture these limits are indicated by dotted lines. 

Considering therefore 15° and 20°C respectively the higher and lower outdoor air temperatures 

for establish the heating and the cooling periods, and crossing these values with the Taout profile of 

figure 6a, it was possible to determine winter and summer seasons. The first went from the second 

week of October until the second week of April, i.e. when Taout was lower than 15°C, while the 

second went from the beginning of June until the end of August, i.e. when the average Taout was 

higher than 20°C. To confirm the analysis, these intervals have been compared with the monitored 

heating and cooling systems operating periods, finding correspondence. However, during the mid-

seasons the heating system, in case of low outdoor temperatures, was running sporadically, and 

for this reason energy consumptions were registered out of the highlighted heating period and 

they will be showed in the following paragraph. 

 

4.5 Energy  

Energy consumptions in the building during the monitoring time are shown in figure 7. In 

accordance with what specified in paragraphs 3, elaborations were performed for different 
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periods of time: a) one year, b) heating and cooling seasons, and c) months. In figure 7, results 

represented through histograms allow to highlight the energy consumption distribution during the 

long term monitoring, expressed in absolute consumption (MWh) and in specific consumption 

(kWh/m
2
), referred to the floor surfaces 4596 m

2
, i.e. the total building area at the net of 

the basement. While the yearly evaluation indicates the total amount of energy required by the 

entire building, or part of it according with the detail of the analysis, the seasonal distribution 

splits the same value between winter and summer time, and mid-season. It is interesting to note 

that that during the mid-season the energy consumptions were higher than during the cooling 

season. Only analyzing the data at different levels of detail it is possible to understand why this 

happens: looking at the Level 3, in fact, energy for heating and for cooling, besides electricity, 

were required also during this period. If then further focus wants to be carried out, monthly 

distribution can be a useful tool.  

Primary energy represented at Level 1 has been calculated by multiplying the delivered energy 

by the primary energy conversion factors established in Denmark, i.e. 1 for the district heating, 

and 2,5 for the electricity. At this level, the performance of a building can be expressed through a 

single value, equal to 321 kWh/m
2
y. As above mentioned, looking at the seasonal analysis, the 

primary energy in the mid-season was higher than in the cooling season: it was in fact 87 kWh/m
2
, 

while it was 173 kWh/m
2
 in winter and 61 kWh/m

2
y in summer. 

The second level of detail allows to separate the two delivered carriers energies that provide 

heating, cooling, ventilation, lighting and domestic hot water in the building. From the seasonal 

and monthly analysis emerges that the biggest amount of district heating was required during the 

cold months when the heating demand was higher (62 kWh/m
2 

of the totals 77 kWh/m
2
y), while 

the electricity consumptions were homogeneously distributed during the year (around 8 kWh/m
2
 

each month). That electricity was then divided in different components in the third level of 

analysis.  

Level 3 highlights, the total energy required by the building (94 kWh/m
2
y) splitted between 

energy consumption of the bank offices (65 kWh/m
2
y), also including the energy required by the 

building cooling system (chillers, fans, pumps) (12 kWh/m
2
y), and the energy consumptions for 

lighting and appliances of the other rooms with different intended uses (cafè, dress shop, etc) (16 

kWh/m
2
y). At the same level also the electricity for the sprinklers and the fire ventilation system is 

explicate (less than 0,5 kWh/m
2
y). Level 3 also shows the thermal energy used for heat and cool 

the building, respectively through floor heating (37 kWh/m
2
y), convectors (26 kWh/m

2
y) and 

ventilation systems (6 kWh/m
2
y) in the first case, and through floor cooling and TABS (10 

kWh/m
2
y), and ventilation system (1 kWh/m

2
y) in the second case; moreover it shows the 

domestic hot water energy consumption (4 kWh/m
2
y). As the graphs illustrate, the biggest amount 

of energy was employed to heat the building. The energy for cooling represented just the 13% of 

the total thermal energy. The percentages of thermal energy required by the system in the 

building during the yearly evaluation are better explained by figure 8. 
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Figure 7. Building energy evaluation for different levels of detail and for different periods of time. 
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Figure 8 – Percentage of thermal energy required by the systems in the building. 

Figure 4 indicates Level 3a too, but for reason of brevity, and because of results from that 

monitoring do not add important information at the topic, analysis of the different section of the 

system are not here presented. 

Last level of detail investigates the energy consumption of a single room, in this case indicated 

in the project with the code “2.2.00”. This room, mechanically ventilated, heated by convectors 

and cooled by TABS system, is situated at the first floor and it is west exposed. It is an open plane 

office born to be rented and then occupied by the bank employees. In this room the electricity 

consumptions, like in the rest of the building, were almost constant during all the years (46 

kWh/m
2
y). At the same, thermal energy consumptions, for cooling (9 kWh/m

2
y) and for heating 

(33 kWh/m
2
y), had a similar trend for the entire building. In this analysis, since not all the energy 

flows were monitored, in some cases the energy consumptions were estimated according with the 

floor surface served by a specific system. In particular total electricity and thermal energy for 

cooling were monitored, but the energy consumption of the convectors and of the ventilation 

system have been calculated proportionally to the floor surface of the room.  

4.6 Indoor climate quality 

Global comfort in a building is determined by air quality, thermal, visual and acoustic comfort. 

In this paragraph, for brevity, only thermal comfort, and air quality in the seasonal evaluation, are 

analysed and results are represented in figure 9.  

Differently from the energy evaluation described before, in the indoor climate quality 

assessment, for diverse periods of analysis (year, months, etc.), different kind of data elaboration 

and representation are here proposed.  

In the yearly evaluation, the monitored operative temperature is put in relation with the 

outdoor running mean temperature. Thermal comfort ranges are here indicated for an entire year, 

crossing the categories suggested by the standard EN 15251:2007 [6] for the adaptive model 

(annex A.2 – “Acceptable indoor temperatures for design of buildings without mechanical cooling 

systems”), at which to refer for the mid-season period, with the categories suggested by the 

standard for the mechanically controlled buildings (annex A.3 – “Recommended indoor 
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temperatures for energy calculations”). In (table 1), in addition to other information, thermal 

comfort categories for a mechanically controlled building, for an office with sedentary activity (~ 

1,2 met), are expressed in terms of operative temperature. Through this analysis it is possible to 

evaluate if the monitored operative temperature respects the limits prescript by the standard, 

giving an overall evaluation of the thermal comfort in the building in relation to the boundary 

conditions. 

Seasonal evaluation has been performed according with standard EN 15251 too, referring to 

the annex A.3 for the comfort ranges, but assessing the environment as complying with annex F 

(“Long term evaluation of the general thermal comfort conditions”). Here the standard suggests 

three different methods (A,B,C) to evaluate and represent the comfort conditions over time 

(season, year), based on data from measurements in real buildings or obtained by dynamic 

computer simulations. These three methods prescribe the assessment of the thermal environment 

through the analysis of operative temperature or PMV (Predicted Mean Vote) evaluation [7730]. 

The adopted one, applied in this evaluation, is method A, “Percentage outside the range”, which is 

based on the calculated number (or %) of hours, in occupied period, when the PMV or the 

operative temperature are outside a specified range.  

The last evaluation, indicated as monthly/daily evaluation, is a focus referring to a specific 

period of time. Purpose of this analysis deepening, represented through operative temperature 

profiles during the 24 hours, is the building thermal behaviour in extreme boundary conditions. At 

this aim the additional focus on particular days helps in the building-plant system comprehension, 

underlining, if there are, problems to be solved. In figure 9, for example, profiles of operative 

temperature about two months, one representative of the winter time and the other 

representative of the summer period, are represented. For each month, then, daily profiles were 

analysed too. At the same way, different intervals of time could be examined (weeks for example). 

Levels of detail in the indoor climate quality evaluation are those indicated from figure 5. 

Analyses were therefore performed for the entire building, for the four selected thermal zones, 

and for the same room where also energy evaluation was performed (room 2.2.00). 

Level 1 describes the thermal performance of the entire building. The represented data show 

the average values of operative temperature measured in the 12 monitored rooms over one year 

of analysis. From the yearly assessment emerge that in summer the temperatures were averagely 

lower than the ones prescribed from the comfort standards. This fact can be attributed at the low 

air temperature set point fixed for the cooling season, equal to 23°C. The optimal temperature in 

the rooms, according with the standard categories, should be 24,5°C, i.e. the average value for all 

the ranges of categories. This low temperature environment in summer is then better illustrated in 

the seasonal evaluation. Here it is evident that the thermal environment cannot be considered 

acceptable for the 18% of the occupancy time. From the monthly evaluation is then possible to see 

as in a summer month (July in this case) the operative temperature thermal excursion between 

day and night was averagely higher than in winter (~3°C in July, and ~1°C in January).This summer 

temperature fluctuations can be attributed in a large percentage at the rooms-intended uses, 

together with the employed ventilation system: as described before, Level 1 gives an average 

evaluation of several rooms, characterized by different heating/cooling and ventilation systems. 
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For that reason at this level is difficult to understand determinate thermal dynamics of the 

building. 

Analyzing Level 2, important considerations can be achieved. Here differences in results 

between indoor climate zones are put in evidence. Comparison between Climate zone 1 and 

Climate zone 2, for example, allows understanding how much the natural ventilation influence the 

indoor operative temperature profiles. From the yearly evaluation, in fact, it can be seen the effect 

of the summer night ventilation cooling strategy used in the naturally ventilated Climate zone 2, 

where the monitored data distribution varied more than in the case of Climate zone 1 in 

accordance with the outdoor temperature. Looking at the summer evaluation, the operative 

temperature of Climate zone 1 was lower than the range of category IV for the 31% of the time 

(due to the low temperature set point and to the mechanical ventilation), while in Climate zone 2 

it was lower of category IV just for the 11% of the time (because of the low temperature set 

point). Regarding the intended use it is a different matter. According with what above stated, 

looking Climate zone 4, what would be expected to see, for all the different periods, is a similar 

evaluation to the one obtained for the Climate zone 1, since the installed systems in both the 

zones are the same. However, the book shop and the dress shop (part of Climate zone 4), even 

though mechanically ventilated, presented an higher number of air changes pour hour respect to 

the offices of Climate zone 1, due to the frequent opening of the doors for the customers access. 

In Climate zone 4, the operative temperature distribution in the yearly evaluation looks in fact 

more dependent by the outdoor climate influence. 

The comfort assessment at Level 3, where only room 2.2.00 was analyzed, shows the case of a 

mechanically ventilated office, in which the temperature was kept almost constant during the 

entire year (~22,5°C). Here also the temperature fluctuation between day and night was 

negligible, both is summer and in winter period. Moreover, as the seasonal evaluation highlights, 

temperatures in winter were really good in room 2.2.00, but being theme almost the same in 

summer too, the thermal environment during the cooling period was here evaluated too cool. 

It is important to highlight that the yearly evaluation is based in part on the adaptive approach: 

for that reason results of the seasonal evaluation, based on the Fangers’ method, could do not 

match with those represented in the graphs of the yearly evaluation. 
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Figure 9. Building thermal comfort evaluation for different levels of detail and for different periods of time. 
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4.7 Energy VS indoor climate quality 

In the previous paragraphs energy and indoor climate quality in the building have been 

evaluated and represented separately one from each other. Rare are in literature the studies in 

which energy and indoor air quality of a building are compared and correlation between them is 

parsed [11, 28], and  only a few times both the evaluations are taken into account in the same 

building analysis [9,20,22,23,27]. Often procedures for comfort [10, 14, 25, 26] and energy 

performance of a building with different intended uses are dealt separately [19]. 

Aim of this part of the study is to put in relation indoor climate quality with the energy 

consumptions required for to keep a certain level of comfort in the buildings. Through graphical 

representations of monitored parameters, interesting considerations about the buildings energy 

and comfort behaviour can be expressed. 

First issue to be solved is the research of a unit at which both energy and indoor air quality can 

be referred to. While different energy carriers (electricity, fuel, etc.) can be converted in primary 

energy or CO2 emissions, for the individual indoor environmental factors is even not available any 

standardized method for estimation of a yearly performance value [5]. Also if does not exist a 

unique value for to describe indoor climate quality, for all the environmental parameters 

standards suggest, as early describe in the previous paragraphs, categories for the comfort 

classification. In table 1 operative temperature, relative humidity and CO2 ranges, indicated from 

the EN 15251 for the comfort and air quality evaluation, are shown. The same table shows 

categories for energy classification too. These energy categories, representing ranges of energy 

consumption, have been included in the study in order to use four categories as the same 

yardstick for both energy and comfort evaluation.  

Table 1. Ranges of categories for operative temperature, relative humidity and ventilation (CO2 

concentration) for typical spaces with sedentary activity, indicated by the standard EN 15251:2007. 

Ranges of “energy consumption” suggested for the analysis. 

 

Using a radar chart in the categories representation, indoor climate quality and energy 

indicators can be depicted with the same tool. As it is shown in figure 10, indoor climate and 

energy can be represented before separately and then together on the same graph. Moreover, the 

same graphical support can be used for to describe, seasonal and yearly performance of the 

Category 

Operative Temperature ranges 
Relative 

Humidity 

Ventilation Energy 

consumption 

(thermal/electricity) 

Winter 

1.0clo/1.2met 

Summer 

0.5clo/1.2 met 

CO2 

above outdoor 

[°C] [°C] [%] [ppm] [kWh/m
2
y] 

I 21.0-23.0 23.5-25.5 30-50 > 350 0-20 

II 20.0-24.0 23.0-26.0 25-60 350 – 500 20-40 

III 19.0-25.0 22.0-27.0 20-70 500 – 800 40-60 

IV < 19.0-25.0< <22.0-27.0< <20-70< > 800 >60 
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building. In both the periods it has been fixed that a building belongs to a certain category if for 

the 95% of the occupancy time the analysed parameters respect the limits indicated for a certain 

range.  

   

Figure 10 is divided in two parts. The upper part of the picture allows to describe the 

performance of a building through the use of categories, while the lower part shows the real 

measured values (average values for the environmental parameters and total amount for the 

energy consumptions).The energy data are representative of the third level of analysis showed in 

figures 4 and 7, while the comfort parameters are related the entire building (Level 1 of figure 5 

and 8). Similar evaluations can be done for different climate zones or single rooms. 

As the upper part of figure 10 shows, with the radar chart it is possible to put in evidence a 

representative area of the best situation, i.e. when all the parameters respect category I. That area 

is in the graphs indicated with a gray coloured shape.  

The same thing cannot be done for the evaluation illustrated in the lower part of the figure. 

Here the graphs gives important information about the building behaviour, but does not allow to 

understand immediately if that performance is good or not and, in this last case, which are the 

causes that led to certain conclusions. For example, analyzing the yearly or the seasonal average 

operative temperature, the values indicated by the graphs in the lower part of the figure denote a 

good operative temperature in the building. But looking at the charts in the upper part of the 

figure, the thermal quality in the building seems to be very bad (Category IV). This can be 

explained by two facts: first of all the indicated value does not point out that in the reality the 

temperature was always lower or higher than the average. Second, the categories are not 

representative of an average situation, but as above expressed indicate that for the 95% of the 

time the temperatures respect the limits of a certain range. For example from figure 7 is visible 

that during the summer period the operative temperature in the building was only for the 82% of 

the time in the range of category III (between 22°C and 27°C). For that reason in this kind of 

representation the building in summer is considered of category IV. 

Another thing to highlight is that the yearly evaluation through the use of categories could 

appear different by the seasonal building assessment. For example, the electricity consumptions 

that in summer were in category I and in winter in category II, in the yearly evaluation were in 

category IV. The reason is that electricity consumptions, as illustrated in figure 7, were distributed 

almost homogeneously during all the months, included during the mid-season. For better 

understand is necessary to see the monitored values: in summer the energy consumption was 20 

kWh/m
2
, in winter it was 34 kWh/m

2
, while the total electricity during the whole year was about 

83 kWh/m
2
. This means that during the mid-season about 29 kWh/m

2 
of electricity was consumed.  
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Figure 10. Seasonal/yearly comfort and energy evaluation. Energy data are representative of the third level 

of analysis described in figures 4 and 7, while comfort parameters are average monitored data for the entire 

building (Level 1 of figure 5 and 8). 

 

5. Conclusions 

Energy performance and indoor climate quality of a building are proposed and discussed in this 

paper. From the study the following results were obtained: 

- Different levels of details in both energy and comfort analysis can give interesting results 

about the performance of a building. 

- Analysis of energy and climate quality can be performed for different intervals of time, like 

year, seasons, months, days, etc., giving different kind of information. 

- Representing the comfort performance of a building with a single value is still an issue to 
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be solved, but comfort parameters can be put in relation to each other through the use of 

categories suggested by the standard EN 15251.  

- Introducing also categories for the energy consumption classification, energy performance 

of a building can be related to its comfort assessment.  

- A good description about the performance of a building could include a synthetic 

representation of the results, but more detailed analysis permit to better know the 

dynamics of the building at boundary condition variation, allowing to make a diagnosis of 

the building too. 
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ABSTRACT  

 

The use of electrical terminal devices for space heating is increasing in Europe, especially in low-energy or 

passive houses where the heating energy requirement reaches very low value. Some aspects are 

fundamental: 

• low load in design condition 

• low energy requirements during the winter season 

• low inertial terminal devices  

• due to the low operation time, the installation of low cost terminal devices is required. 

According to these reasons, the use of radiant electrical plates may be successful, particularly when low 

energy requirements can be provided by site-production through photovoltaic modules. In this study, 

different types of radiant electrical plates are studied in a test chamber. After a description of the test room 

facilities and of the delivered experiments, the performances of the radiant plates are investigated from 

both energy and thermal comfort aspects. Moreover, the analysed equipments are applied to a low energy 

house in different sites in Italy to evaluate suitable combinations with photovoltaic modules.      

 

KEYWORDS  

Electrical radiant plates, heating, thermal comfort, low energy houses  

 

INTRODUCTION 

 

Radiant heating systems are widely diffused in Europe, mainly hydronic radiant systems because of the 

energy saving opportunities they may engender by using low temperature heat transfer carriers (Olesen, 

2002; Babiak et al. 2007). Electrical systems are not as much common as hydronic systems, because, in 

typical dwellings, the use of electricity for heating purpose would cause an energy waste and, in many 

countries, it would also cause extremely high heating costs for the user. Nevertheless in new low-energy 

houses, heating is required few days or hours per year, and when it is required the system must react 

quickly to the thermal demand, to reinstate the proper thermal conditions (Feist et al. 2005 Isaksson et al. 

2006, Thyholt et al. 2008, Nieminen 1994). Hydronic radiant systems have slightly low reactions to thermal 

demand: radiant ceiling are generally faster, because they have little inertia, but they are more expensive; 

radiant floor are generally cheaper, and more used in the houses, but slower. Due to the very little amount 
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of heating energy required by low-energy houses, the use of cheap electrical systems could be suitable; 

furthermore the energy required by the heating system may be balanced, along the year, by the energy 

produced by a photovoltaic system, increasing the sustainability of the system. Electrical systems may be 

used for underheating floor or ceiling, and their comfort performance are the same of typical hydronic 

systems: they depends on the temperature level and on the surfaces area, related to the finishing material 

and to the control system as well (Watson et al. 2002). Nevertheless, radiant plates are much more typical, 

because they can be easily mounted on a wall when the building is already finished and can be shaped 

following many different styles. Radiant plates have nonetheless a reduced exchanged area and thus they 

must reach higher temperature compared with a floor or ceiling (Watson et al. 2002). Maximum radiant 

asymmetries due to warm walls are indeed fixed by thermal comfort standards; the thermal output of 

electrical radiant plates is therefore strictly limited by comfort reasons (Fanger et al. 1985). 

Economical aspects, thermal comfort and thermal response of all the heating systems will not be faced in 

this paper because of the shortness of it, but it is important to not underestimate the importance of these 

three factors. In this paper, an experimental study about three different electrical radiant plates is 

reported. By means of dedicated facilities, their thermal output have been evaluated and compared to the 

thermal comfort conditions produced in the test chamber. Moreover, the possible use of the tested plates 

applied to low-energy houses at different latitudes in Italy was investigated and the combination with 

suitable photovoltaic system to provide electrical energy was discussed. 

 

METHODS 

The test facility  

The test facility arranged to experimentally characterize the radiant electrical plates is made up of an 

insulated chamber (3.57 m x 3.49 m x 2.55 m) and a data-acquisition system, placed in the basement of the 

 

Figure 1. Position of the probes on the floor, on the ceiling and on the walls of the 

chamber. 
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“Politecnico di Torino” head office. The temperature of the environment around the test chamber can be 

controlled by means of an air-conditioning system, in order to simulate different heat loss conditions.  

The walls and the ceiling of the chamber are built with a dry structure, made by a rook wool insulating layer 

(80 mm) placed between two plasterboard layers (12.5 mm). The floor, raised and separated from the floor 

of the basement by some wooden boards, is constructed with four layers: a plywood panel (35 mm), an 

insulating extruded polyethylene layer (25 mm), an electric radiant carpet and a MDF (Medium Density 

Fibreboard) floor tile layer (5 mm). Two sealed windows and a door were respectively placed on the walls A 

and D, for visual control and inspection during the tests, while the electrical plate was placed on the wall C 

(Fig.1).  

Three different kinds of electrical plates  have been analyzed: 

1- dimensions: 1.55 m x 0.44 m, surface colour: white 

2- dimensions: 1.50 m x 0.53 m, surface colour: white, presence of a fan 

3- dimensions: 0.82 m x 0.54 m, surface colour: white 

 

Experimental apparatus  

The characterization of the radiant plates under test require several quantities to be measured, which are 

summarized below: 

• air and wall temperatures inside the chamber; 

• plate surface temperature and corresponding heat flux; 

• temperature and relative humidity outside the chamber; 

• electric energy consumption (of the plates). 

 

For this purpose, a data-acquisition system has been arranged that embeds a set of sensors and a Personal 

Computer (PC) that collects the measured quantities. With the aim to minimize the cables, a wireless 

system has been employed for temperature measurements. Such a system includes a base station, which is 

connected to the PC through an USB interface, and 14 measuring nodes. Each node, is powered by means 

of a CR2477 button lithium battery and is equipped with a chip CC2510F32RSPR by Texas Instruments, 

which embeds both a microcontroller unit and a 2.4 GHz radio transmitter CC2510. A circular-shape 

antenna is directly printed on the circuit, thus allowing a wireless communication with the base station, 

which is equipped with the same radio device. The base station mainly acts as a data collector, but it has 

also the capability to configure the measuring nodes by setting different parameters, such as the 

measurement interval and the transmission trials for each measurement session. The measuring nodes 

embeds three T-type thermocouples, whose cold junctions are thermally coupled to a digital thermometer 

that acts as a reference junction. The thermocouple voltage-outputs are acquired by means of a 24 bit 

three-channel Analog-to-Digital Converter (AD7799 by Analog Devices), whose internal programmable-gain 

instrumentation amplifier has been configured in order to have an input range of 78 mV and a resolution of 

about 0.02 °C (17 bit). Thanks to the use of cheap temperature sensors and wide-spread electronic 

components, the cost of each measuring node could be about 10 Euros for a medium-scale production. 

Further details about the circuitry and the micro-controller firmware can be found in (Carullo et al. 2009). 

The thermocouple warm-junctions of 12 measuring nodes are employed to monitor the temperature of the 

chamber walls, while the other 2 nodes measure the air temperature inside the chamber at different 

heights (10 cm, 110 cm, 170 cm). The position of each thermocouple is shown in Fig. 1, where the 
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thermocouple that records the temperature of the radiant plate under test is also shown.  One should note 

that the solution adopted for temperature measurement offers several advantages besides those ones that 

are inherent to a wireless system. Above all, the number of measuring nodes can be dynamically managed 

by the system, thus offering the possibility to map the chamber temperature in the most suitable way. 

Furthermore, the nodes can be easily removed from the test chamber for maintenance or calibration 

purposes. Thanks to this feature, the calibration of the wireless system has been performed by inserting the 

measuring nodes inside a climatic chamber. Initially, the errors of the reference-junction thermometers 

have been estimated, then the thermocouples have been verified against a traceable standard 

thermometer. Once the errors of the reference-junction thermometers have been compensated, the nodes 

have shown measurement errors lower than 0.5 °C. Four heat-flux sensors (Hukseflux model HPF 01) were 

fixed to the surface of the radiant plate under test (two on the front and two on the back of the plate) for 

measuring the plate heat-flux output. The voltage signals of the four heat-flux sensors were acquired by 

means of a data-logger (DataTaker DT600), which was connected to the PC through an RS-232C interface. 

The relative uncertainty of the measured heat flux was about 5%, which takes into account the contribution 

of both the sensors and the data-logger, while the temperature of the external walls of the chamber were 

measured by wired thermocouple sensors with an uncertainty of 0.5 °C. 

 

A digital wattmeter (LEM Norma model D6000) was employed to measure the energy consumption of the 

plate under test, which was obtained with a relative uncertainty of 0.2%. Temperature and relative 

humidity of the air outside the test chamber were measured by means of a thermo-hygrometer probe 

(Rotronic HP101A-L5W1F), whose output signals were sent to a conditioning unit (Rotronic A2); the 

conditioned signals were measured by means of a digital multimeter (Agilent 34401A). Both the wattmeter 

and the multimeter were connected to the PC through an IEEE-488 standard interface, thus fully 

automating the measuring process.   

 

RESULTS 

Thermal power assessment 

The object of the measurements was to evaluate the thermal power output of the radiant plates as 

function of the temperature difference between the plates surface and the room reference temperature. In 

fact a good performance of the heating equipment can be assumed only when the temperature of the plate 

surface is not too high, in order not to create local thermal discomfort to the occupants. In order to 

properly evaluate the performance of the plates, three different test conditions were carried out for each 

plates: high heat loss, moderate heat loss, low heat loss. All the test were preformed under steady state 

conditions, only the plate temperature was sometime fluctuating (depending on the control system 

installed). Only when stable periodic fluctuations were recognized the measurement was considered 

completed. The thermal power output was derived from  the plate electrical energy consumptions during 

the test time and it was checked with values obtained by means of heat flux meters. The power output of 

the electrical plate was finally evaluated by mean of a characteristic equation, as in the case of common 

radiators, based on the experimental data: 

 

n
M ∆TKΦ ⋅=   [W]                                                                                                       (1) 
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where: 

KM = constant for the plate, n = constant for the plate [-] 

 

In accordance with previous researches (Olesen et al. 2000; Causone et al. 2009; Causone 2009) the 

operative temperature in the centre of the chamber at 110 cm above the floor level was considered as the 

reference temperature. 

In table 1, it is shown the average air temperature in the basement (Tout), the plate average surface 

temperature (Tp) , the air temperature in the test chamber (Ta), the radiant mean temperature (Tmr), the 

operative temperature (Top) and the delta between the plate surface and operative temperature (ΔTp-op). 

Tmr and Top, which characterize the room thermal conditions, have been calculated using the experimental 

data as input of the following algorithms: 
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where:  

S = area of the j
th

 surface,       T = mean temperature of the j
th

 surface,      n = number of surfaces. 

 

Thermal Comfort Evaluation/Assessment  

Comfort simulations were conducted with the software Hypercomfort®, an hypertextual tool for the 

evaluation of the thermal, visual, acoustic and olfactory comfort, developed at the Department of 

Energetics of Politecnico di Torino.  The quantities Top, PMV (Predicted Mean Vote) and PPD (Predicted 

Percentage of Dissatisfied), calculated on the basis of measurements during three tests, are compared in 

Table 2. The aim is to assess how the three different plates can alter the thermal environment in which they 

appear, having analogous average thermal power end energy consumptions and time intervals of 

Table 1. Thermal conditions during the tests and power output of the electrical plates. 

  h  Eel Tout   Tp  Ta,110 Tmr    Top    ΔTp-op Φ Φ1 

   [h]  [kWh] [°C]  [°C]  [°C]  [°C]  [°C]  [°C]  [W] [W/m
2

pan]  

Plate 

1 

Test  1  8 2.13 16 55.0 20.6 21.1 20.9 34.1 266 403 

Test  2 24 3.95 18 41.8 20.9 21.2 21.0 20.8 165 250 

Test  3 20.3 1.34 20 31.1 21.2 21.4 21.3 9.8 66 100 

Plate 

2 

Test  1 69 20.05 18.3 57.5 21.2 21.9 21.5 36.0 291 366 

Test  2 19.97 4.37 16.6 49.0 21.9 22.2 22.0 27.0 219 275 

Test  3 14.77 0.27 16 69.7 22.0 23.2 22.6 47.1 18 23 

Plate 

3 

Test  1 6.87 1.26 13.9 60.8 18.7 19.5 19.1 41.7 183 413 

Test  2 5.18 0.75 16.9 51.0 20.1 20.8 20.4 30.6 146 329 

Test  3 8.75 0.40 19.5 32.4 21.0 21.3 10.5 21.9 46 103 
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monitoring. The air velocity was measured in the chamber, but it was always very low (<0,1 m/s), the 

relative humidity, not controlled by the heating plate, was always assumed to be 60% RH, while the 

metabolic rate of occupants was supposed to be 1.2 met (sedentary activity according to EN ISO 

7730/2005) and the clothing insulation 1 clo (typical value of the winter insulation according to EN ISO 

7730/2005). 

 

Analyses were performed evaluating Top at the distances of 0.5 m and 1.5 m from the plate and at  

height of 0.6 m above the floor. 

Results are shown in the charts of fig. 2 and 3 according to the comfort categories expressed in terms of 

operative temperature as described in the UNI EN 15251 Standard:    

- Category I - High level of expectation 

- Category II - Normal level of expectation 

- Category III - An acceptable, moderate level of expectation 

- Category IV - Values outside the criteria for the above categories 

The chart in fig. 2 shows  the relation between monitored power consumptions and Top. Plate 1 is able to 

hold the Top value inside the Category I both for the distance of 0.5 m and for the 1.5 m. Plate 2, instead, 

gives good results at the distance of 1.5 m, but at the distance of 0.5 m the Top value exceed the category I 

 

Figure 2. Operative Temperature calculated at 0.5 m and at 1.5 m far from the plates. 

 

Table 2. Air temperature inside and outside the chamber and thermal comfort indexes evaluated 
during the tests. 

   Tair [°C] ΔT [°C] ΔT [°C] Tout [°C] 

ΔTprh [°C] PMV [-] PPD [%] 

   h.110cm ΔT10-110 ΔT10-170 Outdoor 

Plate 

1 

Test  1  20.6 0.3 0.9 16 47.3 (-0.1)-(+1.5) 4.2-50.6 

Test  2 20.9 0.3 0.7 18 36 (+0.0)-(+1.2) 4.6-37.0 

Test  3 21.2 0.2 0.6 20 24.9 (+0.2)-(+1.1) 6.1-32.2 

Plate 

2 

Test  1  21.2 0.8 1 18.3 53.6 (+0.0)-(+1.9) 4.1-70.0 

Test  2 21.9 0.6 0.8 16.6 28.2 (+0.1)-(+1.0) 4.9-25.2 

Test  3 22 1.2 1.4 16 58.9 (-0.1)-(+1.9) 3.9-72.9 

Plate 

3 

Test  1  18.7 0.2 0.8 13.9 25.2 (-0.4)-(+0.4) 5.2-8.4 

Test  2 20.1 0.2 0.6 16.9 18 (-0.2)-(+0.3) 5.0-7.2 

Test  3 21 0.1 0.3 19.5 6.7 (-0.1)-(+0.1) 5.0-5.5 
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limit of 25 °C. This is because the surface temperature is slightly higher for the second plate than for the first. 

Plate 3 gives a satisfactory Top at the distance of 0.5 m, while shows a limit value (Category II) at 1.5 m of 

distance. Nevertheless, the emitted power of the third plate is slightly smaller than the previously tested 

plates 1 and 2, it is possible to assume that raising the power output of Plate 3, both the Top values (at 0.5 m 

and 1.5 m) would fall inside the Category I. 

In figures 3a and 3b, PMV and PPD values are shown. According with the previous analyses, Plate 1 is able to 

maintain an environment in category I at the distance of 1.5 m, also using the PMV as indicator, while it is 

able only to reach Category II at the distance of 0.5 m. The PMV value calculated for Plate 2 is close to the 

acceptable limit of the category I at the distance of 1.5 m, while it is close to the acceptable limit of the 

Category II at the distance of 0.5 m.  

The higher temperature of Plate 2, compared with Plate 1, is probably the cause of the difference reported 

above. Plate 3 shows a PMV in Category I at the distance of 0.5 m and in category II at the distance of 1.5 

m. As previously highlighted this is due to the power output emitted by the plate 3, which is slightly lower 

than the power emitted by Plates 1 and 2.  The PPD, being directly  related to the PMV, shows relatively low 

values. Plates 1 and 3 show values in Category I and II, while only Plate 2, at the distance of 1.5 m, shows a 

percentage of dissatisfied next to the upper limit of Category II.  Also the vertical air temperature difference 

between head and ankles was calculated but no values out of the limits suggested by the local discomfort 

due to EN ISO 7730:2005 Standard were reported. Some improper values were instead noted for the radiant 

asymmetry between vertical surfaces (ΔTprh - Plane Radiant Asymmetry), which the standard EN ISO 

7730:2005 suggests should not be higher than 35 °C in order not to generated a percentage of dissatisfied 

higher than 10%. Plate 1 shows a value over the limits suggested by the standard, while Plates 2 shows two 

values over the limits. In general it can be observed that, under the conditions simulated in the chamber, 

when the radiant plate assume temperature higher than 55 °C it can cause local thermal discomfort to the 

user. 

 

Radiant plates in low-energy houses 

As clearly stated in the introduction of the paper, the use of electrical radiant plates can be considered 

suitable only in houses with low-energy demand (low energy demand for heating).  

In order to evaluate the number of radiant plates required by such a residential building (and consequently 

the initial costs), a case study was developed: a typical single family house with a floor area of 122 m
2
 and a 

net internal height of 3 m (single floor). The ratio between transparent and opaque envelope was 
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considered to be constant (Tab. 3), while the thermo-physic characteristic of the envelope have been 

changed in order to satisfy the building energy performance requirements of the Italian legislation for 

heating and domestic hot water, at different climatic areas in the North of Italy (Bolzano, Torino, Firenze). 

The hot water production has been considered constant and calculated on the basis of the Italian Standard 

UNI-TS 11300-2 (15 kWh/m
2
y). Simulations have been developed with a semi-stationary method, according 

to Standard UNI EN 11300-2, considering an air change per hour of 0.5 vol/h. It was furthermore calculated 

the amount of square meters needed to balance the heating requirement, by producing photovoltaic 

electricity on site. The heating requirements to fit a level vary from city to city, depending on the climatic 

area thus mainly on the HDD (Heating Degree Days) and on the solar radiation at the ground in the city 

analyzed. The climatic data used in the simulations derived from the weather data archive of the Italian 

Energy Agency (ENEA). An assumption of an efficiency of 13.7% of the photovoltaic modules have been 

made, which corresponds to polycrystalline silicon commercial modules.   

 

As confirmed by the results, the use of the tested electrical radiant plates can be considered suitable only in 

houses with low heating demand, where the number of elements is low and the area required for 

photovoltaic modules too. 

CONCLUSIONS 

The measurements and calculations reported in the paper showed that electrical radiant plates may be a 

Table 3. Ratio between the transparent and the opaque envelope at different orientations. 

 Nord Sud Est Ovest 

St/So 0.1 0.2 0.15 0.15 

 

Table 4. Number of radiant plates (type: P1, P2, P3) required to heat the house, heating demand 
calculated for the standard house in order to fit the different energy levels and photovoltaic area 
required to balance the heating energy consumptions for the three Italian cities considered. 

 

 Heating    

demand 

 Required number of 

radiant plates (type: P1, P2, 

 Required delivered 

energy for heating 

 Required photovoltaic area 

to balance heating 

  P1 P2 P3  kWh/m
2
y  m

2
 kWp 

B
o

lz
a

n
o

 Very low  8 4 4  10  9.3 1.3 

Low  12 6 6  24  23.1 3.3 

Standard  17 9 8  49  46.8 6.7 

Slightly high  26 14 13  82  78.1 11.2 

T
o

ri
n

o
 Very low  7 4 3  12  10.7 1.7 

Low  9 5 4  24  21.5 3.1 

Standard  14 8 7  59  52.3 7.5 

Slightly high  19 11 9  77  68.9 9.8 

F
ir

e
n

ze
 Very low  5 3 3  8  6.5 0.9 

Low  7 4 3  17  14.9 2.1 

Standard  11 6 6  48  41.3 5.9 

Slightly high  15 8 7  62  53.1 7.6 
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suitable heating system, equipped by control system. The main problem of a radiant plate can be a too high 

surface temperature, able to engender radiant asymmetries in the room. 

Due to these reasons electrical radiant plates are particularly proper in houses with low thermal loss. This 

kind of buildings are highly insulated and fit properly a heating system with a quick reaction to eventual 

thermal stresses. 

Due to the high quality and value of electrical energy, the use of it for heating is furthermore acceptable 

only in low-energy building, where the yearly heating consumption can be balanced by the production of 

photovoltaic energy on site. Low cost equipments can, under these conditions, be competitive with other 

systems: in fact, for economical sustainability, low energy requirements have to be faced by low cost 

technologies in order to give suitable payback time. 
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ABSTRACT  

An increasing attention has been addressed in the last years to the simultaneous assessment of energy performances 
and indoor environmental quality in buildings. At the same time, also use of low temperature heating and high 
temperature cooling systems in non-residential buildings has increased, due to the increased cooling and heating 
energy efficiency and the economical performance. 

This paper presents an experimental study in an office building in Denmark where cooling in summer is provided 
by thermally activated building systems (TABS). Indoor environmental quality, cooling performance and energy 
consumption for a specific room were analyzed with different levels of internal gains. The experiments were 
carried out monitoring air, surface and operative temperatures, relative humidity and CO2 levels in the room where 
internal heat gains from people were simulated and controlled by heated dummies positioned at the same 
workstations used by employees during the workdays. Supply and return water temperature in the pipes of the 
hydronic system, supply and exhaust air temperature in the ducts of the ventilation system, and thermal energy 
consumption were monitored. The performance of the system was also analyzed by using dynamic building 
simulation programs. 

 Introduction 

Interest in low temperature heating and high temperature cooling systems in non-residential buildings has 
increased in the last years. The reason of this attention is due to the high energy efficiency and the cost reductions 
achievable with this kind of systems. These systems are characterized by the pipes, embedded in the structural 
concrete slabs of multi storey buildings [19], in order to get more mass and thermal capacity [9]. According to [1] 
different system configurations based on the building thermal storage activation are called TABS (Thermo-Active 
Building System). Slabs are thermally activated by water or air [2-4] that operate with small difference between 
room air and HVAC system temperature allowing the use of low temperature heat sources [5]. Except for this 
thermal storage effect, , the TABS design is based on the same parameters characterizing  other radiant systems 
(spacing and diameter of the pipes, thickness of concrete layer, water temperature, water mass flow rate) [6,7]. The 
high water temperature for cooling shows an overall energy consumption lower than conventional air conditioning 
systems and offers the possibility of using renewable or recovery sources of energy, or technologies not usable in 
traditional systems [13]. Ventilation combined with TABS appears to be very promising alternative to conventional 
all-air system even for continental climates, offering both significant primary energy savings as well as thermal 
comfort advantages [5]. In fact the ventilation systems are here designed to provide only standard-requested 
amount of fresh air, to remove latent loads and to supplement in peak hours, while thermal loads can be balanced 
using TABS. For this reason, the ducts size of the ventilation system can be smaller and suspended ceilings are not 
needed. [14] Talking about passively cooled low-energy office buildings, in moderate European summer climate a 
good thermal comfort can be provided removing heat loads only by TABS using ground cooling and/or  night 
ventilation. Moreover this kind of system allows to remove the daytime peaks loads during the night time, when the 
prices of electricity are lower [17], and to use water temperature in the pipes close to desired room temperature. It 
is important to highlight that operative temperature drifts in the room can be expected because it cannot be 
controlled as a fixed level [6]. Significant energy saving can be achieved using adapted system topologies and 
applying appropriate control solutions for TABS [20] [21].  
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Examples of TABS application in architectures are described in [5,10]. In literature studies about performance 
of the systems, controls and thermal comfort are mainly conducted through simulations tools, like TRNSYS and 
Energy Plus [6, 13, 19, 20, 21]. In particular in [5] primary energy and comfort performance of ventilation assisted 
thermo-active building systems, relative to a conventional all-air system in a compact office building, are 
compared. In [11] simulation with TRNSYS and CARM  are conducted for a building located in two different 
countries, with two different strategies of ventilation and two possibility of systems, with good results for comfort 
conditions in both heating and cooling season. In [22] a method for dimensioning and for automated controls of 
TABS is proposed with the support of dynamic simulations. 

In some cases long term measurements are performed to calibrate and validate the simulation model [12,16]. In 
other cases, the model supports the measurements in the evaluation of thermal comfort and energy performance of 
HVAC [9]. Only in very few studies is the performance of a TABS system evaluated mainly by measurements [8].  

Aim of the work is to evaluate the TABS performance through field test in a real office building, using 
simulations tools in the start-up and in the final phase of the process to support the investigations. The study 
consists in the assessment of the TABS hydronic system with the variation of internal loads in summer. 

7. Methods 
The field tests took place during summer 2011, in an open plan office that was part of a bigger office building 

situated in Denmark. Heated dummies were positioned at the same workstations used by employees during the 
workdays, and located homogeneously in other empty areas of the room, with the aim to simulate internal heat 
gains from people, computers and other sources. During the experiments, dynamic simulations performed through 
energy simulation tools were conducted simultaneously with physical measurements.The entire investigation 
process can be divided in four different phases, as shown in Figure 1.  

 

 
Figure 1. Operative approach used during the experiments. 

Field measurements

First step of Simulations (figure out the correct name!!)

Inputs

Architectural and Systems 
information. Historical or simulation 
tools weather data. Schedules of 
occupancy and energy use according 
with the goal of the project.

Outputs
Heat balance of the analyzed 
space and thermal quality 
evaluation

Objectives
Support  the in fields measurements 
planning determining different levels 
of internal loads to insert in the 
analyzed room.

1

2

3

Inputs

Introduction of load simulators 
(dummies) in the room according 
with the simulations results and 
monitoring instruments installation.

Outputs
Temperatures (indoor/outdoor air, 
supply and return water/air in the 
systems, surfaces), relative 
humidity (indoor/outdoor), wind 
velocity and solar radiation

Objectives
Measure physical environmental and 
systems fluids parameters during the 
experiments at the aim to collect data 
to use and elaborate in the next phase

Second step of simulations/Calculations

Objectives
Correct heat balance of the analyzed 
environment, at the aim to calculate 
the heat gains removed from the 
system.

Inputs

Architectural and Systems 
information. Real weather data. 
Real systems operating and internal 
heat gains.

Outputs
Heat gain and heat losses in the 
room, and heat removed from the 
system, according with the real 
monitored environmental and 
systems temperatures

4 Critical analysis of the results

Performance of the system and energy required during the analysis

First step of Simulations
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8. Case study 
The office is a 5380 m2 building situated in Denmark (Lat: 55.5°, Lon: 9.75°). The building has a complex shape, 
and the roof represents the most relevant architectural element. Most of the building areas are occupied by the 
owner, while some rooms have been designed in order to be rent to external activities (bookshop, cafè, real estate 
agent, etc.). The building is structured in three different levels. The working areas (basically open space offices) 
are mainly located on three open terraces, internally connected by broad staircases. On each floor also single 
offices, meeting rooms and other rooms for dedicated services are placed. The building envelope is made mainly 
by structural glass, with thermal transmittance U=1.1 [W/m2K], and with the transmission coefficient (visible 
light/solar energy) equal to [0.64/0.35]. The offices are normally occupied during daily time from 8:00 to 18:00, 
from Monday to Friday. Thermal and air quality in the building are guaranteed by a different combination of 
systems. Heating in winter is provided in part by convectors, and in part by an hydronic systems (floor heating). 
While cooling in summer is given in part by a hydronic system (floor cooling) and in part by TABS (for South-
West exposed offices). Also the ventilation system, in addition to air quality control, contributes to add or remove 
loads respectively in peak winter and summer period, in some part of the building. The ventilation is in the large 
open space hybrid ventilation, partially mechanical and partially controlled natural, while meeting rooms and 
single offices have mechanical ventilation.  

The specific investigation has been performed in one selected room of the building, situated at the first floor. This 
room has a South-East exposition, and the floor surface is equal to 268 m2. In winter time heating is guaranteed by 
convectors, located on the floor along the façade, and balanced mechanical ventilation. In summer a thermal 
active building system integrated in the ceiling (Figure 2-3), combined with mechanical ventilation, provides to 
cool the environment. Both the floor and the ceiling slabs of the room have a raised floor with acoustic insulation, 
and pipes embedded in the lower part of the concrete slab. A floor heating/cooling is situated in the upper layer of 
the ceiling slab, with the aim to heat/cool the room above. The lighting level in the room is controlled by sensors 
of presence and the intensity of the artificial lights is balanced with the natural light. There are automatic and 
manually curtains for solar radiation control, and the employees have the possibility to open/close the windows. 

Even if one of the characteristics of the TABS is that it allows to avoid the suspended ceiling [7], in this case a 
suspended ceiling made in steel bars, distant 60 cm from the slab, integrates the light and hides the ducts of the 
ventilation system . 

      

                      

 

Figure 2. (left) Prefabbricated module of slab with pipes embedded in the concrete, installed in the building. 

Figure 3. (right) Design of  the termal active building system in the case study room. 
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9. Experimental activities 
 

Phase 1: Determination by dynamic simulations the room internal loads to be used in field measurements  

In order to determine the level of internal loads to install in the examined room, dynamics simulations were 
performed with the support of the energy simulation tool TRNSYS (16.1.0003). The use of simulations in the first 
phase of the process allowed to solve the energy balance of the room in cooling mode, giving as outputs the total 
heat loads and the operative temperature in the room. The TABS was originally designed to maintain thermal 
comfort conditions at the work places until 40 W/m2 of cooling loads. Through the simulation model, it was 
possible to test different levels of internal gains in the room to reach 40W/m2 by adding people and computers in 
the office. The objective was to estimate how many dummies (1 dummy = 1 person + 1 computer = 170 W) had to 
be placed in the room to reach the designed value of ~40 W/m2. 
The simulations were performed considering: 

- Artificial lights: regulated according with the solar radiation 
- Ventilation system (total flow rate: 3.6 ach, estimated from design documentation, air supply temperature: 

20 °C - average value estimated from the data collected through measurements performed in May) 
- U value for windows:  1.1 W/m2 
- U value for walls: 0.2 W/m2 
- TRNSYS weather file for the city of Copenhagen. 

Simulations have been performed considering the ventilation system always on and people in the room for 24 h a 
day, because it was decided to carry out experiments also during night time, and with the ventilation system always 
on.  

 

             

 

Figure 4- Simulation results: total internal loads evaluated in a sunny day and in a cloudy day. 

Figure 4 shows the profiles of internal loads obtained by the simulations in a sunny day and in a cloudy day of 
August. Results show that in a sunny day, 30 dummies in the room allow to reach a cooling load of 40 W/m2 for 
about one hour. In order to analyze the system for a longer time with peak cooling load, increasing of internal loads 
is necessary. Increase the internal loads as if there were 20 more people means insert other 3.4 kW in the room. 
Totally different is the situation in case of cloudy/rainy day. To reach the cooling load of 40 W/m2, the internal 
loads need to be increased at least of 12 kW (like there were 70 more people). 

This kind of analysis is really useful because it highlights how the peak cooling load is influenced by the solar 
gains. In case of field measurements, where the boundary conditions cannot be controlled, a preventive evaluation 
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is necessary in case changing of the experiments setting are needed, according with the weather condition, when 
measurements are already running. 

Phase 2: In field measurements 

Measurements were carried out in the selected room from August 13 to August 16, 2011.  During these 
experiments different levels of internal loads were inserted in the office, according with outside weather condition 
and based on the results from the simulations. Indoor and outdoor environmental parameters, and supply and return 
temperature of the air in the ventilation system and of the water in the hydronic system were monitored.  

Different Scenarios of analysis  
As explained before, different scenarios of analysis were considered during the tests. These three settings were 

characterized by the introduction of internal loads as it follows: 
- First Scenario (S1) - 30 dummies and 3 heaters  
- Second Scenario (S2) - 30 dummies  
- Third Scenario (S3) - in addition to the 30 dummies, in the room there were 11 people with 11 computers. 

Because of the limited number of available dummies, and because of the absence of solar radiation, in S1 the 
internal heat loads were increased by inserting electric heaters. The distribution of dummies, heaters and people in 
the three scenarios is shown in figure 5. In the same pictures, the position of the stand with air and the operative 
temperature sensors (explained in the next paragraph) are shown too. Note that S1 and S2 differs just for the 
presence of the heaters in the first case. 

         

 

Figure 5 - Scenario 1-2 (without heaters)  Scenario  3 

 
Monitored parameters during the experiments 

During the tests, physical parameters (Table 1) were collected in the room through the use of a stand positioned in 
the center of the room (Figure 5), on which sensors were located at different heights. Then, operative temperature 
and surfaces temperatures were also collected in different points of the room. At the same time a weather station 
was logging data about the outside environment, and sensors of temperature were measuring temperature of the 
fluids in the systems. All the monitored parameters, the typology of sensor used, their position, and the frequency 
of acquisition are listed in Table 1. 

Table 1. Monitored parameters during experiments. 
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Parameter 
Number 

of 
sensors 

Position of the sensors Instrument 
Frequency 

of 
acquisition 

E
N

V
IR

O
N

M
E

N
T

 I
N

 T
H

E
 R

O
O

M
 

Operative 
temperature [°C] 

4 
Homogeneously distributed in the room, at the 

high of 110 cm 

Operative 
temperature 

sensor 
10 minutes 

4 
Positioned on one stand in the center of the room, 

at 4 heights: 10cm, 60 cm, 110 cm, 170 cm 

Operative 
temperature 

sensor 
1 minute 

Air Temperature [°C] 

1 
Installed attached to a wall, in a central position 

of the room, at the height of 170 cm 
Thermo resistence 

(permanent) 
10 minutes 

4 
Positioned on one stand in the center of the room, 

at 4 heights: 10cm, 60 cm, 110 cm, 170 cm 
Thermo resistence 1 minute 

Air Velocity [m/s] 4 
Positioned on one stand in the center of the room, 

at 4 heights: 5 cm, 10 cm, 20 cm, 60 cm 
Anemometer 1 second 

Surface Temperature 
[°C] 

1 
Different points of the room: windows, walls, 

floor, ceiling and suspended ceiling 
Thermocamera 

3 hours                        
(if possible) 

Relative Humidity 
[%] 

4 
Positioned on one stand in the center of the room, 

at 4 heights: 10cm, 60 cm, 110 cm, 170 cm 
Anemometer 1 minute 

CO2 concentration 
[ppm] 

1 
Installed attached to a wall, in a central position 

of the room, at the height of 170 cm 
CO2 sensor 10 minutes 

O
U

T
D

O
O

R
  

   
E

N
V

IR
O

M
E

N
T

 

Air Temperature [°C] 1 

 Installed on a Weather Station  positioned 
outside the building 

Thermoresistence 10 minutes 

Relative Humidity 
[%] 

1 Psycrometer 10 minutes 

Wind Speed [m/s] 1 Anemometer 10 minutes 

Wind direction [deg] 1 
Wind direction 

sensor 
10 minutes 

Solar radiation 
[W/m2] 

1 Solarimeter 10 minutes 

S
Y

S
T

E
M

S
 

Supply Air 
temperature in the 
ventilation system 

1 
Positioned in a diffuser of supply air in the centre 

of the room 
Thermoresistence 10 minutes 

Return Air 
temperature in the 
ventilation system 

3 
Positioned in ducts of exhaust air in different 

points of the room 
Thermoresistence 10 minutes 

Opening of the 
dampers 

8 
Situated in proximity of the dampers in the 
supply and exhaust ducts of the ventilation 

system 

Damper 
percentage of  
opening meter 

10 minutes 

Supply Water 
temperature in the 

TABS 
1 

Positioned in the pipe of supply water in the 
beginning of the circuit (of the room) 

Thermoresistence 10 minutes 

Return Water 
temperature in the 

TABS 
1 

Positioned in the pipe of return water in the end 
of the circuit (of the room) 

Thermoresistence 10 minutes 
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 Results of the monitoring  

Outside weather conditions, in temperature profiles and operating of the cooling and ventilation systems during the 
experiments are shown in this paragraph. Figure 6 shows the solar radiation and the outside air temperature 
collected by the weather station. The graph also illustrates the three scenarios. During S1 and S2 the solar radiation 
was really low. In the third scenario the solar radiation was higher, but discontinuous. The average outdoor 
temperature raised of about 2°C each day during the day time. 

 

Figure 6 –Outdoor temperature and solar radiation during the experiments. 

Profiles of average operative temperature at 110 cm in the room, of supply and exhaust air temperature in the 
ventilation system and of supply and return water temperature in the pipes are shown in figure 7. The graph 
illustrates that the ventilation system started to run in the middle of S1 (at 18:00), and from that moment the supply 
water temperature in the pipes fluctuated between 15 and 19 °C. The temperature in the room was set as 23°C. The 
ventilation system was working in S1during the day time, with little flow rate, and supply air temperature 23°C. It 
was switched off during S2, and switched on again from during S3. In the beginning of S1 both ventilation and tabs 
systems were not working. During the day just the ventilation system was cooling, and then in the night just the 
tabs system was operating. In S2 the cooling was provided by TABS. In S3 both tabs and ventilation systems were 
working together. 
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Figure 7- Temperature profiles of average operative temperature in the room, supply and exhaust air temperature 
in the ventilation system and supply and return water temperature in the pipes. 

 

 

Figure 8- Average air, operative, and surfaces temperature in the room, for the three scenarios. 

 Figure 8 show, together with the average air and operative temperature, the average surfaces temperature measured 
with the an infrared camera. The surface temperatures of: floor, ceiling at 270 cm (suspended ceiling) and ceiling at 
330 cm (concrete surface). While floor and suspended ceiling temperatures were in general really close to the air 
temperature in the room (almost constant at different heights in all the scenarios), ceiling temperature differed at 
least 2°C from the air temperature, when the system was operating. The surface temperatures of the floor denote 
that the tabs integrated on the ceiling of the room below (ground floor) were not removing any significant heat load 
from the room. The average values showed by the graph represent a time interval where temperatures were almost 
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constant, and the systems were working,.S1 the interval represent a period of night time in which surfaces 
temperatures could not be collected. 

 

Phase 3: Second step of dynamic simulations and loads calculation with integration of real monitored data 

Through dynamic simulations, performed this time with the support of Energy Plus, internal gains were calculated 
for the duration of all the experiment. Energy Plus allowed to make a more realistic simulation models, using the 
room temperature as set-point temperature, and setting the range of water temperature in the hydronic circuit. In the 
simulations real monitored data where insert as input, like outside air temperature and relative humidity, and solar 
radiation. The model, simplified as shown in figure 9, has been useful in particular for  the internal gains. Since 
results of simulations, in terms of internal temperature, differed a little from the real monitored data, heat losses 
through envelope, infiltrations, and heat loads removed by the systems were calculated later using as reference the 
real temperatures. 

 

Figure 9- Model of the room simulated with Energy plus for the internal loads calculations. 

Knowing supply and return water temperature in the tabs system, and flow rate in the pipes,  loads removed by the 
TABS were calculate by using the basic equation: 

Q/A= m*cp*DT                     (1) 

 

Where: 

m = flow rate in the pipes 

Cp = specific heat of the water 

DT = return and supply water temperature difference in the pipes 

 

In the calculations, the flow rate in the pipes was set at its nominal value, equal to 0.42 l/s. 

Figure 10 shows both the profiles of the heat removed from the room  and the heat removed by the water in the slab 
pipes. As we do not have complete steady state these two values may not be equal. 

During S1 the TABS were not working, the cooling loads in the room exceeded 40 W/m2 and the temperatures in 
the room increased (except when the ventilation system was operating). During this time, the slab accumulated a lot 
of heat that began to be removed by the TABS when they started to work. Supply temperature in the circuit was in 
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the beginning about 18°C, and then started to fluctuate between 16 °C and 18°C. During the normal working days, 
over the experiments, the temperature in the room is usually between 22 °C and 23 °C, and the supply water 
temperature in the TABS is around 20°C. At the end of S1 the difference of water temperature between supply and 
return reached 8°C, and the loads removed by the system on the water side reached 60 W/m2. This was due to the 
heat stored in the concrete slabs. 

During S2 the heat loads in the room were reduced, and also the loads removed by TABS reduced. The room 
operative temperature, between the beginning and the end of the scenario, decreased of about 2°C. Same trend for 
the return water temperature in the pipes, while the supply water temperature kept constant as it was in S1. During 
normal working days return water temperature is almost equal to operative temperature, while during the 
experiments the ∆T was always about 2K. 

 

 

Figure 10- Profiles of Operative temperature, supply and return water temperature, loads removed by the tabs and 
cooling loads in the room  

 

During S3 also people were in the room together with the dummies. Both TABS and ventilation system were 
working together: ventilation system contributed to remove heat gains from the room. The “cooling loads in the 
room” represented in the graph are at the net of the loads removed by ventilation. The temperature in the room 
decreased at 24 °C and the supply water temperature in the pipes was almost constant around 18°C. Considering 
that the air temperature set point was 23°C, for to reach lower temperatures in the room, in case of high heat loads 
in the room, the supply water temperature in the tabs needed to be reduced. 
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Phase 4: Critical analysis of the results 

In order to evaluate the performance of the cooling system, three different intervals of time (6 hours), one for each 
scenario, were analyzed during the system operating time: 

Interval of Scenario 1:  From 13/08/2011, 20:00  to 14/08/2011, 02:00 

Interval of Scenario 2:  From 14/08/2011, 12:00  to 14/08/2011, 18:00 

Interval of Scenario 3:  From 15/08/2011, 09:00  to 15/08/2011, 15:00  

During these intervals of time, air temperature in the room and water temperature in the hydronic system were 
almost constant. For these intervals a steady state heat balance was evaluate in the room, and results are illustrated 
in figure 11. 

Average values of measured parameters during the three time intervals are listed in table 2. From the data it is seen 
that outside temperature increased from scenario 1 to 3, while indoor air temperature decreased. This explains the 
higher losses for transmissions through walls and windows, and infiltrations, of S1 respect to S2 and S3 indicated 
in figure 11. 

 

Table 2- Measured temperature in the tabs system, in the ventilation system, in the room and outside. 

Scenario 

TABS Ventilation Average temperatures 

Supply 
[°C] 

Return 
[°C] 

DT 
Flow rate 

(kg/s) 
Supply 
[°C] 

Return 
[°C] 

DT 
Flow rate 

(kg/s) 
To [°C] 

Ta  

[°C] 
Tout [°C] 

1 18.1 24.7 6.6 0.42 27.4 27.1 -0.3 no 27.0 27.1 16.1 

2 18.1 23.4 5.3 0.42 26.5 25.7 -0.8 no 26.1 26.1 18.8 

3 17.9 22.1 4.2 0.42 20.5 24.1 3.6 1.40 24.3 24.2 19.6 

 

For radiant systems a large part of the heat transfer between heated/cooled surface and room is by radiation, which 
can be highlighted by comparing the radiant and convective transfer coefficients [23][25]. From [15] the approach 
to calculate a combined heat transfers can be expressed as: 

Q/A= (hc+hr)*DT                    (2) 

 

Where: 

(hc+hr)floor = 6 W/m2K 

(hc+hr)ceiling = 11 W/m2K 

DT= difference of temperature between the average air temperature in the room and the surface temperature. 

With this method, in addition to the already calculated loads removed from the slab by the TABS, also the loads 
removed instantaneously from the room were determined. 
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Results of all the analysis can be summarized in the schemes of figure 11. 

  

During the interval of S1 surfaces temperatures were not collected. In this case, just an energy balance of the 
environment and the loads removed by the TABS were calculated. As already said, in the 2 days before the 
hydronic system was not running. The slab accumulated a lot of radiant heat that was removed during the following 
days. The temperature in the room was high, but this is explained by the fact that no systems were working. From 
this interval of time the temperature started to decrease.  

During the interval of S2 TABS continued to remove the loads accumulated in the previous days. Loads removed 
by the room were almost the same than the load calculated with the heat balance. This means that in that interval of 
time, the TABS were balancing the cooling needs of the room. 

Here, the indoor operative temperature was around 26°C (upper limit of category II according with [24]). During 
all S2 the temperature was between 25°C and 26°C. This means that the comfort requests were respected, being 
that the building has been designed to be in category II of thermal comfort. 

 

During the interval of S3 the ventilation was contributing to remove loads from the room. The calculations denote 
that the system was not removing instantaneously enough heat as required by the energy balance. The slabs 
accumulated heat that was later removed. However it is important to specify that people in the office were moving 
and opening windows and doors. This means than the heat balance determined with dynamic simulations could not 
be constant during all the 6 hours of analyzed interval. Also the ventilation system allowed to remove heat from the 
room, and the operative temperature was around 24°C, respecting category I of thermal comfort. 
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Figure 11 – Total Energy balance -  intervals of scenario1, 2 and 3. 
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In order to analyze the performance of TABS, the loads removed by the TABS for the three scenarios were 
calculated in relation to the difference between the average water temperature and room operative temperature This 
is equivalent to the total heat exchange coefficient between water and room7: 

htotal = L / [Top – (Tsupp + Tret) / 2]                     (3)  

 

Where: 

Lrt = Total heat exchange coefficient i.e. loads removed by the TABS for degree temperature difference between 
average water temperature in the circuit, pour square meter [W/m2°C] 

L = loads removed by the TABS, calculated with (1) [W/m2] 

Top = operative temperature [°C] 

Tsupp = Supply water temperature in the TABS [°C] 

Tret = Return water temperature in the TABS [°C] 

 

Results are shown in figure 12. 

 

Figure 12 - Loads removed by the system per degree temperature difference between average water temperature in 
the pipes. 
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Figure 12 shows that the system removed averagely about 8 W/m2 per degree temperature difference between 
average water temperature (cooling capacity = 8 W/m2°C), during all the scenarios. This means that also in case of 
different heat loads in the room, the system control allowed to maintain a good performance.  

From the graph the average water temperature in the pipes was always around 20°C, while the operative 
temperature decreased from S1 to S3. When for example the operative temperature was 26°C (S2), and 
consequently the temperature difference was 8°C, the system could remove about 48 W/m2. Wanting to evaluate 
how much loads could be removed by the system at lower water temperature, if the average water temperature in 
the pipes in that case was 18°C, it could be said that the system could then remove about 64 W/m2, but in that case 
the supply temperature would be too low (< 18C), which could increase the risk for condensation on the supply 
pipes (not concrete surface) and it would be more difficult to control. So a cooling capacity of 40-50 W/m2 can be 
documented by the present test. 

 

Conclusions 
 

In this paper the performance (cooling capacity) of a Thermal Active Building System (TABS) was  studied by 
field measurements and dynamic simulations, . The following results were obtained: 

- Support of dynamic building simulations is useful for designing a more accurate field test and for the 
analysis of the results, in particular in the calculation of internal loads. 

- The measurements show that under different scenarios the total heat exchange coefficient between the 
average water temperature and the room (operative temperature) was almost constant about 8 W/m2 per 
degree temperature.   

- The analyzed system could remove from the room a cooling load of 30 W/m2 using an average supply 
water temperature in the pipes of 18 °C. Higher cooling loads could be removed with lower temperature.  

- The presence of the suspended ceiling did not interfere with the ability of the system to keep comfort in the 
room. 

- Also with high loads in the room the hydronic system was able to keep the thermal comfort conditions. In 
particular when also the ventilation system was running. Employees that were working in the office during 
the third scenario confirmed that fact filling subjective questionnaires. 
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ABSTRACT 
Low temperature heating and high temperature cool- 
ing systems such as thermally activated building sys- 
tems (TABS) offer the chance to use low exergy 
sources, which can be very beneficial financially as 
well  as  ecologically when using renewable energy 
sources. 
The above has led to a considerable increase of water 
based radiant systems in modern buildings and a need 
for reliable simulation tools to predict the indoor envi- 
ronment and energy performance. 
This paper describes the comparison of the building 
simulation tools IDA ICE, IES <VE>, EnergyPlus 
and TRNSYS. The simulation tools are compared to 
each other using the same room and boundary condi- 
tions. 
The results show significant differences in predicted 
room temperatures, heating and cooling degree hours 
as well as thermal comfort in winter and summer. 

INTRODUCTION 
Over the past years, building simulation has become 
more and more important for the design of new build- 
ings.  Building simulation can be used to (i) increase 
comfort, (ii) decrease energy consumption and at the 
same time (iii) lower the overall costs for heating and 
cooling. 
Providing better comfort can increase productivity and 
reduce sickness or other problems of the occupants. 
Reducing the energy consumption in buildings can 
contribute greatly towards the goal of a sustainable so- 
ciety.  From 2006 to today, the delivered energy for 
residential and commercial buildings has risen and its 
share has increased from 15 to 20 per cent (U.S. En- 
ergy Information Administration, 2009, 2010).  The 
use of low temperature heating and high temperature 
cooling systems, such as thermally activated building 
systems (TABS) can help to reduce this share. TABS 
can be operated using temperature levels close to the 
desired room temperature due to the use of large heat 
transfer areas. The consequential decrease of the tem- 
perature difference leads to the opportunity to use re- 
newable energy sources, many of which can also be 
considered as low exergy sources. In this way not only 
energy consumption can be reduced but also exergy 

destruction can be minimized. 
A transition from current heating and cooling systems 
to low temperature heating and high temperature cool- 
ing is also needed to be able to decrease losses in the 
distribution systems of centralized energy supply like 
district heating and cooling plants and increase energy 
performance of decentralized energy systems like heat 
pumps, chillers, boilers, co-generation etc.. 
Compared to full air conditioning systems the use of 
water based cooling may reduce investment costs in 
equipment, lower operation costs and reduce building 
height (building materials). Reducing the overall first 
costs of a building increases its attractiveness to in- 
vestors. Whereas reducing the running costs is attrac- 
tive for the user. It is however, important in future cost 
analysis to look both at investment and running costs, 
when evaluating the cost benefits of different concepts. 

Whereas the simulation of air based heating and cool- 
ing systems is supported by most simulation tools, 
not all of them support the use of thermally activated 
building systems (TABS)(Crawley et al., 2005b).  In 
most cases the simulation of TABS requires the instal- 
lation of an additional module to the regular simulation 
tool or can only be performed by some questionable 
modification like simulating the TABS as an additional 
space. 
In the end, the question remains how reliable the sim- 
ulation of TABS is and how the results compare to an 
actually existing building. This paper is trying to an- 
swer this question for a selection of simulation tools. 

PROGRAM OVERVIEW 
Different commercial available simulation tools have 
been used to model a modern office building using 
TABS for heating and cooling purposes.  These sim- 
ulation tools are IDA ICE (4.101), IES <VE>  (6.3 
April 2011), Energy Plus (6.0.0) and TRNSYS 
(16.01.0003). 

IDA ICE 4 

URL: www.equa.se/ice 
The modular dynamic multi-zone simulation tool, IDA 
Indoor Climate and Energy (IDA ICE), is a commer- 
cial program which was first released in May 1998. It 
can be used for the study of the thermal indoor climate 
of individual zones as well as the energy consumption 
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of the ent ire building.  IDA has been programmed in 
the simulation languages Neutral Model Format and 
Modelica using symbolic equat ions. Depending on the 
experience of the user and the complexity of the prob- 
lem at hand, three different, but integrated user levels 
are available: Wizard, Standard and Advanced. 
The Wizard level can be used to make fast and easy 
simulations of a single room. It can be used to calcu- 
late heating and cooling loads. Both, the Standard as 
well as the Advanced level are capable of simulating 
multiple zones within a building.  The Standard level 
is used to  build the general simulation model using the 
available domain specific concepts and objects, such 
as zones, heating devices or windows. The Advanced 
level can then be used to edit the mathematical model 
of the system. 

The modular nature o f IDA ICE makes it possible to 
write individual models extending its capabilities as 
needed by the individual user. (Crawley et al., 2008) 

IES <VE> 

URL: www.iesve.com 
IES <VE> is a commercial simulat ion platform with 
the first major version 3.0 released in the late 1990’s. 
The program combines several software components 
for different simulation tasks. 

The main modelling tool in IES <VE>  is ModelIT, 
where it is possible to  construct a 3D model of rooms 
or a whole building.  Additionally, CAD data can be 
imported using plug-ins (e.g. in Revit or SketchUp) or 
by importing CAD files (e.g. DFX). 

For the dynamic thermal simulation, the component 
ApacheSim is used, whose calculations are based on 
first-princip le mathemat ical models of heat transfer 
processes. 

ApacheSim can  be  linked  to  other components of 
IES  <VE>  to  include  detailed  results  of  shad- 
ing devices and solar penetration (SunCast), airflow 
analysis (MacroFlow), component based HVAC sys- 
tems (ApacheHVAC) and lighting (LightPro, Radian- 
ceIES). The results can also be exported for a more de- 
tailed CFD simulation by Microflow. (Crawley et al., 
2005a; IES, 2011) 

 

EnergyPlus 

URL: http://apps1.eere.energy.gov/buildings/ 
energyplus/ 

EnergyPlus is a new-generation building energy sim- 
ulation program based on DOE-2 and BLAST, with 
numerous added capabilities. It was released in April 
2001, and developed by several U.S. Universit ies with 
support from the U.S. Department of Energy, Office 
of Build ing Technology, State and Community Pro- 
grams. EnergyPlus is actually a trademark of the U.S. 
Department of Energy and a new version of the tool is 
period ically available online. 
EnergyPlus is a stand-alone simulation program with- 
out an (user friendly) graphical interface. EnergyPlus 

is capable of making whole building energy simula- 
tions.  It enables to model heating and cooling loads, 
levels of light, vent ilation, other energy flows and wa- 
ter use.  It allows to simultaneously model different 
kinds of embedded systems, obtaining simulation out- 
put as the real building would.  It includes many in- 
novative simulation capabilit ies, like, but not limited 
to, time-steps less than an hour, modular systems and 
plants with integrated heat balance-based zone simula- 
tion, multi-zone air flow, thermal comfort, water use, 
natural ventilation, and photovoltaic systems. 

The build ing model and the input files can be made 
through the program itself or imported from different 
bu ilding design programs (EERE, 2011). 

TRNSYS 

URL: http://sel.me.wisc.edu/trnsys/index.html 
TRNSYS,  standing for transient system simulation 
program, is a complete and extensible simulation en- 
vironment.   It is commercially available since 1975 
(Klein, 2006).  It is a flexible tool designed to simu- 
late the transient performance of thermal energy sys- 
tems. TRNSYS was first developed in a joint project 
between the University of Wisconsin-Madison, Solar 
Energy Lab and Colorado State University, Solar En- 
ergy Applications Lab in the 1970’s. 
TRNSYS is  an  algebraic and  different ial  equation 
solver in which components are connected graphically 
in the simulation stud io.  In bu ilding simulations, all 
HVAC components are solved simultaneously with the 
bu ilding envelope thermal balance and the air network 
at each time step.  The simulation results are based 
on the individual component simulation performances 
which can be selected from the simulation studio.  It 
is suitable for the simulation of complicated systems. 
Users can easily accomplish the desired system con- 
trol strategies by writing the log ical programming or 
use simple equations thanks to TRNSYS open source 
code. 

TRNSYS also includes the program TRNEdit, which 
is an all-in-one editor for reading and writing TRN- 
SYS input and output files. TRNEdit can also perform 
parametric TRNSYS simulations and plot data from 
the TRNSYS simulation output (Crawley et al., 2008; 
Klein, 2006; Price and Blair, 2003). 

METHODS 
In order to analyse the quality of the simulations, it 
was decided that they should start on a basic level. 
The complexity of the simulat ions has been increased 
from one stage to the next.  At the final stage, which 
is not part o f this paper, the simulat ions will represent 
a real building, for which extensive measurement data 
for multiple years is available. Through comparison of 
the simulat ion results with the genuine measurement 
data, it is then possible to evaluate the simulation qual- 
ity. In the present paper only the results of the different 
tools are compared with one another. 
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Comparison of operative temperature 

Through the analysis of the operative temperature it 
is possible to quickly assess the general correlation of 
the simulation results. If the trend of the lines is syn- 
chronized, it is possible to conclude that the programs 
react similar to the changing input data. 

Deviation of operative temperature 

By comparison of the average calculated operative 
temperature of all included tools with the individual 
operative temperature, it is possible to observe how the 
differences between the tools change over the course 
of the year. 

Degree hours 

Degree hours of overheating for summer as well as for 
insufficient heating in winter were calculated. In this 
case however they can naturally not be used to assess 
the quality of the installed system.  Instead, they can 
be used to easily compare the programs. 

Thermal comfort 

The thermal environment can be assessed through the 
thermal comfort categories introduced by the standard 
EN 15251 (CEN, 2007). This method of representing 
the results describes the percentage of occupied hours 
when the operative temperature exceeds the specified 
ranges. 

Other  metrics 

For the comparison of any heating or cooling system, a 
number of other metrics such as energy consumption 
or other comfort factors are of cause relevant.  How- 
ever, due to the nature of the simulation tools , pa- 
rameters such as draught, vertical air temperature gra- 
dients, and radiant temperature asymmetry cannot be 
calculated. 
In the present study the energy use for auxiliary equip- 
ment like fans and pumps are not included. Some of 
the tools can calculate this directly and in other tools 
the information for calculating this part of the total en- 
ergy consumption will be available 

Using default settings 

As far as possible the different default settings of the 
tools have been used. This will likely result in a lower 
correlation between the results of the different tools. 
On the other hand, it is not likely that a user is adjust- 
ing any of the default values without any incentive. It 
was therefore decided that - rather then trimming all 
possible variables to unison in order to get the highest 
possible correlation - to leave them as they were to get 
a more realistic deviation. 

TABS 

For the final stage in this paper, TABS were modelled 
in all tools.  In the following, the used approach for 
each of the tools is described. 

• IDA allows for the simulation of TABS on both, 
the Standard and the Advanced level. The TABS 

is hereby inserted as an additional layer in the 
slab construction. 
On the Standard level, the input values are limited 
to design cooling and heating power, temperature 
difference for design power, controller (Pi, Pro- 
portional, Thermostat or always on), coil mass 
flow, depth in the slab and a heat transfer coef- 
ficient that should be selected in accordance to 
standard EN 15377-1 (CEN, 2008). 
On the Advanced level, additional changes to the 
system can be made, including, but not limited to, 
changing the pipe length and inner diameter, the 
heat capacity of the liquid in the pipes or fine tune 
the control of the system. 
In both cases the slab temperature is assumed to 
be constant over the entire area. 

• In IES <VE>, TABS are simulated by splitting 
the internal ceilings into a ceiling - room - ceiling 
construction. 
The ceiling construction should be  divided  at 
the  pipe  level. The  room  representing  the 
slabs should be small and the surface resistances 
should be adjusted to give the construction a more 
realistic heat transfer behaviour. 
The easiest way to obtain results for the thermal 
behavior of the office room is to use ApacheSim. 
Here, the temperature of the fictive room between 
the ceilings is set to the supply temperature of the 
real system.  It can be controlled by either giv- 
ing it absolute values or using a profile based on, 
for instance, the air or operative temperature of 
an office room, the outside air temperature or an 
equation including both. 
A more complicated, but also more promising 
approach for evaluating TABS is ApacheHVAC. 
In which ”radiators” or ”cooled ceilings” should 
be introduced into the fictive room between the 
ceilings.  In this case, care should be taken also 
of heat transfer coefficients, water flow rates and 
heating or cooling areas of the systems. 

• EnergyPlus allows to simulate TABS including 
an internal source layer in the floor/ceiling con- 
struction. Water  flow  and  internal  diameter, 
length of the pipes and distance between the tubes 
are required.   Supply water temperature in the 
system/tubes can be set, but the final system con- 
trol has to be based on a set point temperature 
(here the indoor air temperature). 

• TRNSYS simulates TABS by defining an active 
layer in the floor or ceiling.  The definition pro- 
cess begins similarly to that of a normal wall. The 
parameters like pipe spacing, pipe outer diameter, 
pipe wall thickness and pipe wall conductivity are 
required when defining the active layer. 
To ensure a correct calculation, a minimum mass 
flow rate (generally greater than 13 kg/m2 h) has 
to be set.  The ordinary piping system has been 
modelled in two segments in this simulation. 
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The reasoning behind this approach 

The comparison of computer tools is a laborious and 
time consuming business.   Virtually all parameters 
have to be controlled and sometimes this might not 
even be completely possible. In any case, one can ar- 
gue that this approach is valid and offers a high in- 
sight into the program at an academic level.  On the 
other hand many of these adjustments might be omit- 
ted while ”just” simulating a real building, simply be- 
cause they are unknown. Consequently this means that 
many of the default values remain unchanged and in- 
fluence the outcome of the simulation. For this reason 
it is important to see how the results are changing with 
increasing complexity of the simulations. 

SIMULATION 
As mentioned before, the comparison is made through 
a number of stages.  In the following, the stages pre- 
sented in this paper are explained in more detail. In the 
end, some fundamental differences between the tools 
are mentioned, that should also be controlled for fur- 
ther analysis. 

Stage 1 - Basic building 

As a first step of the comparison, a basic simulation 
has been made in the selected simulation tools.  For 
this comparison, only the building envelope has been 
modelled and placed in the outdoor thermal environ- 
ment.  Internal loads as well as any installations (e.g. 
heating and cooling systems, lighting and others) have 
been neglected. 

• Building dimensions and construction as refer- 
ence building (see figure 1). 

• Infiltration is at 0.2 AC H . 
• Simulation of zones A, B, C and D as indicated 

in figure 1 (only zone A used). 
• No HVCR&H systems. 
• No internal loads. 
• Weather data for Brussels (TRY from ASHRAE 

2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Reference building floor plan with 
indication of simulated zones - 2nd floor 

Stage 2a and 2b - Shading 

In the second stage of the simulations, the simple 
model was extended with shading.  For Stage 2a in- 
ternal shading and for Stage 2b external shading was 
used. In both cases the shading was modelled to rep- 
resent Venetian blinds with an angle of 45◦ . 
 

Stage 3a and 3b - Ventilation 

Both stage 3a and 3b have been based on stage 2a. 
For both stages the air was supplied untreated from the 
outside and exhausted without heat recovery. In stage 
3a 5.6 l/s · person and in stage 3b 10 l/s · person of 
outside air have been provided. 

Stage 4 - Internal Loads 

Starting from the model of stage 3b, internal loads 
were introduced for stage 4.   The loads for stage 4 
where: 

• Occupants: 2  with  1  M ET   and  summer: 
0.5 C LO, winter: 1 C LO; Schedule: Workdays 
from 7:00 to 16:00 with break from 12:00 to 
13:00, else not present. 

• Lighting: 10 W/m ; Schedule: Workdays from 
7:00 to 8:30 at 100 %, then linear decline to 0 % 
at 11:00, else off. 

• Equipment: 75 W/Occ (Computer and Screen); 
Schedule: Workdays from 7:00 to 16:00, else off. 

Stage 5 - TABS 

For the modelling of TABS the data given in table 
1 has been used as indicated for each program.  For 
the comparison the default values from TRNSYS have 
been used except for the h-value (H-water-pipe-fin co- 
efficient as defined in EN 15377-1) wich is only used 
by IDA and suggested within the program. 

Differences between tools 

The following points are differences between the four 
programs that can have a considerable impact on sim- 
ulation results. The different approaches for the calcu- 
lation of a TABS system were introduced in the TABS 
section of the METHODS. 

• All tools but IES <VE>  have the possibility to 
model occupants based on MET and CLO val- 
ues.   In IES <VE>   it is necessary to spec- 
ify the heat generation in absolute values (e.g. 
W/m2 ). This means that in IES <VE> the heat 
delivered to the zones is constant for the entire 
year, whereas it depends on the room temperature 
when a real occupant model is used.  Between 
IES <VE> and IDA, this difference can exceed 
200W . 

• In all simulation tools it is possible to adjust a 
number of parameters. These parameters can in- 
fluence the run time of the simulation as well as 
its accuracy.  Bad selection of these parameters 
can even lead to a premature termination of the 
simulation.  This is especially true for IDA as it 
becomes more and more challenging to solve the 
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Table 1: Input data used for the simulation of TABS 
depending on the simulation tool 

 
 
 

parameters Values 

ulations are a result of different start-up procedures 
between the programs. The lower peak temperatures 
for IDA and IES found in the summer time could be 
explained by a higher sensitivity to small infiltration 
rates, for EnergyPlus and TRNSYS it seems to be vice 
versa.  For simulations without any infiltrations (not 

 

pipe conductivity 1.26    kJ   
h·m·K 

 

– + – + 
presented in this paper) the highest temperatures were 
found to be in a much closer range of one another. 

pipe spacing 150 mm  * + + + 

inner pipe diameter 12 mm  * + + + 

pipe wall thickness 2 mm  * + – + 

depth in slab 200 mm + + – + 

constant water flow 350 kg/h +  – + + 

supply temp. summer  22 ◦ C + + + + 

supply temp. winter 24.5 ◦ C + + + + 

For reference the outdoor air temperature is included 
here. 
 

 
45         

40         

35         

30         

25         

20         

15         

10         

h-value 30   W   + – – –  
5           

0           

+ required; – not used by tool; 
 

* optional on advanced level 
 
 
 

system of differential equations the more com- 
plex it gets.   For instance the by default exist- 
ing heat recovery unit should be deleted if it is 
not used. It can otherwise prolong the simulation 
time considerably and in extreme cases even lead 
to the premature termination of the simulation. 

• The warm-up phase is handled differently for all 
of the programs. The used settings are: 

IDA: 14 days of periodic simulations with 
the first day of the simulation period. 

IES: 30 days of dynamic simulations with 
the last days of the previous year. 

EnergyPlus: Up to 100 days (default 25) of 
warm up. Iterations are aborted once the start-up 
temperature (23◦ C ) converges with the ambient 
temperature. 

TRNSYS: Two year simulation, first year as 

0           1000         2000         3000         4000          5000         6000         7000          

8000    Hour    of    the    Year     

Outdoor     Air   Temperature     IES      IDA     Energy+   TRNSYS     

Figure 2: Operative temperature (24h moving 
average) for Stage 1 

 
 
Figure 3 shows the deviation of the operative temper- 
atures (Top ) for each simulation tool from their com- 
mon average simulation result. For the basic building 
the deviation is very high. This deviation however de- 
creases from here on as can be seen in figure 6b. 
 
 

8            
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---4              

 

 
---8              

start-up phase. 
If any of these times are set too short it will have a 
negative impact on, at least, the beginning of the 
simulation.  Also the different approaches, peri- 
odic or dynamic, can have an influence since they 
will lead to different starting conditions for the 
simulations. 

Apart from these points many other settings could 
have an influence on the outcome of the simulations. 

RESULTS AND DISCUSSION 
Stage 1 

For the simulations at stage 1 the results for the op- 
erative temperature (Top ) are shown in figure 2.  The 
development of Top   for all tools shows the same char- 
acteristic. The differences in the beginning of the sim- 

0            1000         2000         3000         4000          5000         6000         7000         
8000     

Hour        of    the   

 Year     

IES                 IDA            Energy+           TRNSYS   

  

Figure 3: Operative temperature difference between 
average simulation results and indicated tool for 

stage 1. (24h moving average) 
 
 
Stage 2 

Introducing blinds (internal for stage 2a and external 
for stage 2b) lowers the temperature and results in a 
smoothed short term temperature fluctuation as can be 
found by comparing figures 2, 4a and 4b. Between the 
simulation of internal and external shading, the agree- 
ment between the tools is higher for external shading. 
The overall shape of the curve however remains un- 
changed. 
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(a)  Stage 2a - Internal Blinds 
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(a)  Stage 3a (2a + Ventilation: 5.6 l/s ∗ person) 
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(b)  Stage 2b - External Blinds 

Figure 4: Operative temperature for internal and 
external shading. 

 

 
 

Stage 3 

Through the introduction of ventilation the, results of 
the simulation tools are coming closer together.  IES 
and IDA show significant lower temperatures during 
the summer for Stage 3a (5.6 l/s · person),   com- 
pared to EnergyPlus and TRNSYS as seen in figure 
5a. Looking at figure 5b for Stage 3b (10 l/s · person) 
all simulation tools are much closer to each other. 

 

Stage 4 

Starting from Stage 3b, the addition of internal loads 
increases Top   for all tools.  Figure 6a shows that the 
agreement between the tools however remains high. 
The deviation of the operative temperature, from the 
average has its maximum at about 2 K as ilustrated in 
figure 6b. 

 

Stage 5 

Finally TABS are added to the building simulation. As 
can be seen in figure 7, the calculated temperatures are 
fluctuating by around 5◦ C (based on a 24 h average) 
for all tools. However, the fluctuations are not, as on 
all previous stages, synchronous between the tools. 
Figures 8a and 8b show the comfort categories 
achieved with the used rudimentary controll for TABS. 
Both, for winter and summer the results are not the 
best.  This is not due to the TABS itself but rather to 
the poor control of them. However, the results for each 
tool are quite different and would not necessarily trig- 
ger the same reactions by the engineer using the tool. 

IES                 IDA            Energy+           TRNSYS    

  

(b)  Stage 3b (2a + Ventilation: 10 l/s ∗ person) Figure 5: 

Operative temperature for two different 
ventilation rates. 

 
 
Degree hours 

Tables 2 and 3 show the calculated degree hours of 
cooling and heating for each tool and stage for set- 
point temperatures of 24.5◦ C and 22◦ C respectively. 
As has been expected, the degree hours for each tool 
show the same consistent pattern. 

For cooling (Table 2) they drop from stage 1 to stage 
3a gradually with each building improvement. The in- 
crease from 3a to 3b is due to the higher ventilation 
rate. Especially for TRNSYS the higher air supply has 
an overall cooling effect, which is also reflected in the 
heating period.  Naturally, the values for stage 4 are 
increasing again as additional loads are present in the 
zone. The addition of a cooling system (TABS) again 
reduces the remaining degree hours. 
Comparing the different tools to one another, it is ap- 
parent that the results are significantly different for 
most stages. IDA shows for all stages the by far low- 
est cooling degree hours.  EnergyPlus and TRNSYS 
calculate the highest cooling degree hours. 

For heating (Table 3) the pattern is exactly reversed. 
This is of cause only consequent. Shading reduces so- 
lar gains, the ventilation replaces warm indoor air with 
colder outside air and the internal loads provide heat. 
Regarding the heating degree hours, the results are 
closer together the more complex (higher stage num- 
ber) the simulation becomes. 

The degree hours presented in tables 2 and 3 show that 
results of each tool are too different to always draw 
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Stage IDA IES Energy+ TRNSYS 
[degree hours in thousand] (cooling) 

1 14.2 20.3 36.1 34.9 
2a 5.7 8.5 26.0 31.0 
2b 0.0 0.0 0.0 0.2 
3a 0.0 0.0 0.0 0.2 
3b 0.2 0.2 3.3 5.6 
4 1.4 1.4 3.1 4.7 
5 0.1 0.1 1.7 1.2 
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(a)  Stage 5 - Comfort Categories Summer 
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(a)  Stage 4 (3b + Internal Loads) 
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(b)  Stage 5 - Comfort Categories Winter 

Figure 8: Comfort categories with operating TABS. 
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(b)  Stage 4 (3b + Internal Loads) 

 
differs greatly. For instance in IES occupants are more 
similar to equipment, having a constant heat produc- 
tion, in IDA this heat production is greatly depending 

Figure 6: Operative temperature and temperature 
difference with internal loads. 
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on the air temperature. 
A second reason for the differences between the tools 
are the default parameters that have not been adjusted. 
Using different parameters will consequently effect 
the outcome of the simulation. 
Even though the tools did not predict the same results 
at each stage, the relative changes in the results new 
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Table 2: Calculated degree hours of cooling to 
24.5◦ C from April through September 

Figure 7: Operative temperature for Stage 5 (24h 
moving average) 

 
 

the same conclusion from them. This shows the dan- 
gerous potential of building simulation. Depending on 
the used tool (and detail of the simulation), one might 
come to different conclusions depending rather on the 
choice of the tool than the building itself. 

CONCLUSIONS 
The present study has shown that different building 
simulation tools lead to essentially different results for 
building simulations under the given conditions. This 
result is not unexpected considering that not all possi- 
ble settings were controlled. However the magnitude 
of the differences was higher than expected. 
Part of these differences can be explained through the 
different detail between the models.  The way occu- 
pants, shading, TABS and other things are modelled 

 
 
 
 
Table 3: Calculated degree hours of heating to 22◦ C 

from October through March 
 

Stage IDA IES Energy+ TRNSYS 
[degree hours in thousand] (heating) 

 

1 28.3 29.0 16.3 31.0 
2a 33.9 34.9 18.7 32.6 
2b 50.7 54.0 41.4 53.2 
3a 50.7 54.0 41.4 53.2 
3b 54.0 55.8 46.0 50.6 
4 42.9 46.9 43.5 47.6 
5 6.2 1.9 2.6 4.4 
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input parameters (from stage to stage) are similar for 
all tools. 

Inserting a TABS system in the model showed a reduc- 
tion in operative temperature differences between the 
simulating tools. 

Essentially the results show that the choice of the sim- 
ulation tool can greatly influence the building evalua- 
tion through the simulation, since in a real world case 
not all variables are known. 

The simulation of TABS has lead to a much smaller 
deviation of simulation results than on any previous 
stage. 
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