POLITECNICO DI TORINO
Repository ISTITUZIONALE

The multi-path Traveling Salesman Problem with stochastic travel costs

Original
The multi-path Traveling Salesman Problem with stochastic travel costs / Tadei, Roberto; Perboli, Guido; Perfetti,
Francesca. - ELETTRONICO. - CIRRELT-2013-01:(2013), pp. 1-17.

Availability:
This version is available at: 11583/2505595 since:

Publisher:
CIRRELT

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

04 October 2023



The Multi-Path Traveling Salesman
Problem with Stochastic Travel Costs

Roberto Tadei
Guido Perboli
Francesca Perfetti

January 2013

CIRRELT-2013-01

Bureaux de Montréal : Bureaux de Québec:

Université de Montréal Université Laval

C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)

Canada H3C 3J7 Canada G1V 0A6

Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie :418 656-2624

www.cirrelt.ca



The Multi-Path Traveling Salesman Problem with
Stochastic Travel Costs

Roberto Tadeil, Guido Perboli?, Francesca Perfetti!

' Department of Control and Computer Engineering, Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129, Torino, Italy

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

Abstract. Given a set of nodes, where each pair of nodes is connected by several paths
and each path shows a stochastic travel cost with unknown distribution, the multipath
Traveling Salesman Problem (TSP) with stochastic travel costs aims at finding an
expected minimum Hamiltonian tour connecting all nodes. Under a mild assumption on
the unknown probability distribution a deterministic approximation of the stochastic
problem is given. The comparison of such approximation with a Montecarlo simulation
shows both the accuracy and the efficiency of the deterministic approximation, with a
mean percentage gap around 2% and a reduction of the computational times of two

orders of magnitude.
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The Multi-Path Traveling Salesman Problem with Stochastic Travel Costs

1 Introduction

In the past decade, City Logistics pushed researchers towards the definition of
a new paradigm of transportation and supply chain integration in urban areas.
In recent years, this paradigm has been extended with the introduction of the
concept of Smart City (Chourabi et al., 2012), where ”smart” implies to incor-
porate a plethora of methods and disciplines in a holistic vision in order to miti-
gate the problems generated by population growth and its rapid urbanization. In
this context, new transportation issues emerge, bringing researchers to define new
transportation problems and, in particular, to incorporate information about un-
certainty and multiple attributes (Perboli et al., 2012, 2011; Tadei et al., 2012). In
this paper we present the multi-path Traveling Salesman Problem with stochas-
tic travel costs (mpTSP;), a new stochastic variant of the Traveling Salesman
Problem. Given a set of nodes, where each pair of nodes is connected by several
paths and each path shows a stochastic travel cost with unknown distribution, the
mp TSP, aims at finding an expected minimum Hamiltonian tour connecting all
nodes.

The mp TSPy arises in City Logistics applications when one has to design tours
to provide services such as garbage collection, periodic delivery of goods in urban
grocery distribution, and periodic checks of shared resources as in bike sharing
services. In these situations the decision maker must provide tours that will be used
for a time horizon which spans from one to several weeks. In this case the different
paths connecting pairs of nodes in the city are affected by the uncertainty due to the
different time dependent travel time distributions of the different paths. Moreover,
in many cases even an approximated knowledge of the travel time distribution is
made difficult by the large size of the data involved and the high variance of the
travel times. In more detail, the introduction of this problem is also motivated by
a real-life Smart City application, the PIE_ZVERDE project, a project funded by
the ERDF - European Regional Development Fund for the development of new
planning tools for freight delivery in urban areas by means of electrical vehicles. In
this project one of the goals is to plan and manage a two-echelon delivery service,
where the trucks are not allowed to directly enter inside the city, but the freight
is consolidated in small peripheral depots and from them brought to customers by
means of environmental-friendly vehicles (Perboli et al., 2011). In this application
context, a crucial part is played by the planning of periodic tours between recurrent
nodes. In this case one aims to plan a tour for each vehicle which is valid for a
given time horizon. Unfortunately, at the time of planning, the decision maker
has only a rough idea of the different paths interconnecting any pair of nodes of
the transportation network. Moreover, due to congestion the travel time profile of
these paths rapidly changes during the day.

Similar problems can be also found in other applications, like garbage collec-
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tion or periodic replenishment of medium-sized grocery stores, where the tours
of the trucks are designed in advance and cannot be changed for a fixed number
of weeks.Recently, the Furopean project Citylog (CITYLOG Consortium, 2010),
a joint project between IVECO and TNT, presented the BentoBox, a modular
system of containers for envelopes delivery. The BentoBox are usually placed in
malls and shopping centers and the company needs to design fixed tours in order
to store the envelopes in the BentoBox.

This paper introduces the formulation of the mpTSP,. From this formulation
a deterministic approximation is derived. In particular, under a mild hypothesis
on the unknown probability distribution of the travel time for the different paths,
the deterministic approximation becomes a TSP problem where the minimum
expected total travel cost is equivalent to the maximum of the logarithm of the
total accessibility of the Hamiltonian tours to the path set. The quality of the
deterministic approximation is then evaluated by comparing it with the results of
a Montecarlo simulation of the stochastic model. The comparison shows a good
accuracy of the deterministic approximation, with a reduction of the computational
times of two orders of magnitude.

The paper is organized as follows. In Section 2 a relevant literature is recalled.
Section 3 presents the stochastic model of the mpTSP, and Section 4 derives its
deterministic approximation. In Section 5 we compare the results of the determin-
istic approximation with the results of a Montecarlo simulation of the stochastic
problem. Finally, in Section 6 conclusions are drawn.

2 Literature review

While different stochastic and/or dynamic variants of TSP (and more in general
of vehicle routing problem) are present in the literature, the mpTSP; is absent
(Gendreau et al., 1996; Golden et al., 2008). For this reason, we will consider
some relevant literature on similar problems, highlighting the main differences
with the problem faced in this paper.

In the literature several stochastic TSP problems can be found. In these prob-
lems a known distribution affecting some problem parameters is given and the
theoretical results are strongly connected with the hypotheses on such distribu-
tion. The main sources of uncertainty are related to the arc costs (Leipala, 1978;
Toriello et al., 2012)and the location and the subset of cities to be visited (Jaillet,
1988; Goemans and Bertsimas, 1991).

If we consider general routing problems, different types of uncertainty and
dynamics can be considered. The most studied variants are related to the online
arrival of the customers, with the requests being both goods (Hvattum et al.,
2006, 2007; Ichoua et al., 2006; Mitrovié¢-Mini¢ and Laporte, 2004) and services
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(Beaudry et al., 2010; Bertsimas and Van Ryzin, 1991; Gendreau et al., 1999;
Larsen et al., 2004). Only in recent years the dynamics related to the travel time
has been considered in the literature (Chen et al., 2006; Fleischmann et al., 2004;
Giiner et al., 2012; Kenyon and Morton, 2003; Tagmouti et al., 2011; Taniguchi
and Shimamoto, 2004), while, to the best of our knowledge, service time has not
been explicitly studied. The last variants of vehicle routing problems are related to
the dynamically revealed demands of a known set of customers (Novoa and Storer,
2009; Secomandi and Margot, 2009) and the vehicle availability (Li et al., 2009a,b;
Mu et al., 2011). For a recent review, the reader can refer to (Pillac et al., 2013).

All the papers presented in this survey deal with uncertainty and/or dynamic
aspects of the routing problems where the magnitude of the uncertainty is limited
and the values of the parameters are revealed in a time interval compatible with the
operations optimization. Then, even if multiple paths can be present between two
given nodes, the multi-path aspects can be ignored, being possible an a priori choice
of the path connecting the two points. In our case, the mpTSP, is thought to be
used for the planning of a service. Thus, the enlarged time horizon as well as strong
dynamic changes in the travel times due to traffic congestion and other nuisances
typical of the urban transportation force the presence, in the decision problem, of
multiple paths connecting every pair of nodes, each one with its stochastic cost.
This is, to our knowledge, an aspect of the transportation literature considered
only in transshipment problems, where the routing aspect is heavily relaxed (Baldi
et al., 2012; Tadei et al., 2012).

3 The mpTSP;

Given any pair of nodes, we consider the set of paths between the two nodes. Each
path is characterized by a travel cost which is composed by a deterministic travel
cost plus a random term, which represents the travel cost oscillation due to the
path congestion. In practice, such travel cost oscillations randomly depend on some
time scenarios and are actually very difficult to be measured. This implies that
the probability distribution of these random terms must be assumed as unknown.

Let it be

e N: set of nodes

e [: set of time scenarios

e K;;: set of paths between nodes 7 and j

e ¢};: unit deterministic travel cost of path k € K

CIRRELT-2013-01 3
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° éfjl: random travel cost oscillation of path k € K;; under time scenario [ € L

o éfj(éfjl) = + éf;l unit random travel cost of path k£ € Kj; under time
scenario [

) xf’] boolean variable equal to 1 if path k£ € Kj; is selected, 0 otherwise.

e y;;: boolean variable equal to 1 if node j is visited just after node %, 0
otherwise.

The mpTSP; is formulated as follows

min K ) IO Uil (1)

iEN jEN  keK,; leL

subject to

JEN:j#i
IEN:i#]
YD =zl YUCN (4)
icU jgU
xf, €{0,1} keKy i€N, jEN (5)
yijE{O,l} iEN, jEN (6)

The objective function (1) expresses the minimization of the expected total
travel cost; (2) and (3) are the standard assignment constraints; (4) are the subtour
elimination constraints. Finally, (4)-(5) are the integrality constraints.

Let us assume that the paths are enough disjoint each other to consider éf]l as
independent and identically distributed (i.i.d.) random variables. The common
and unknown probability distribution of these random variables is given by the
following cumulative right distribution function

F(z) = Pr{éfjl > x} (7)

Following (Tadei et al., 2012), we define éfj as the minimum of the random
travel cost oscillations Hfj-l of path k € K;; among the alternative time scenarios
lel

9?- = min 9/
7 ler Y

ke K;;, 1€N, jeN (8)
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Because F'(x) is unknown, QNZ are still of course random variables with a com-
mon unknown probability distribution given by

B(z) = Pr {éfj > 91;} 9)

As, for any path k € Kj;, 0’“ > = 9’“1 >z, l €L and 9“ are independent,
using (7) one gets

=TIPe{d > o} = T] Flo) = (Fl)™ (10)

leL leL

We assume that the routing is efficiency-based so that among the alternative
time scenarios [ € L the one which minimizes the random travel cost ¢ (9“) will
be selected.

Then, the random travel cost of path k € K;; becomes

ek (92) rlréanc (9“) = —i—mm@kl = —|—9k ke K;, i€N, jeN (11)

The minimum travel cost oscillation ék can be either positive or negative, but,

in practice, its absolute value does not overcome the travel cost ¢, so that ¢t (Hk)
is always non negative.

For each pair of node (4, 5), let us consider the path £* (for the sake of simplicity,
we assume it is unique) which gives the minimum random travel cost.

The minimum random travel cost between ¢ and j is then

2]7

6Z~j(§fj*) = krgll(n Cij (9’“) i1eN, jeN (12)

and the optimal variables {xf;} of problem (1)-(6) become

1, if k=Fk*

h=d ' (13)
0, otherwise

Using (12), (13), and the linearity of the expected value operator E, the objec-
tive function (1) becomes

> D vt 0h) ] = min > D vk [Cm o )] = min > ity

i€EN jEN iEN jEN i€EN jEN
(14)

min E ;.
05}
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where

Cij = By [éij(éfj*ﬂ i€EN, jEN (15)
The mpTSP, then becomes
min y ) i (16)
W ieN jen
subject to (2)-(6).
However, the calculation of ¢;; in (16) requires to know the probability distri-

bution of the minimum random travel cost between ¢ and j, i.e. CZ](Q *), which
will be derived in the next section.

4 The deterministic approximation of the mpTSP;

By (11) and (12), let

Gij(z) = {c”(e’“ ) > } = Pr { min ¢ (0’“) } ieN, jeN (17)

kEK;;

be the cumulative right distribution function of the minimum random travel cost
between ¢ and j.

As, for any pair of nodes (i, j), mingeg,; G (0’“) >xr = ¢ ((9’“) >z, ke
K;;, and the random variables éf] are mdependent (because Hfjl are independent),
due to (9) and (10), G;;{z} in (17) becomes a function of the total number |L| of
time scenarios as follows

Gij(z,|L]) =Pr {krélll{n 62“]- } H Pr {~’f ek }

ek
:HPr{éfj>x—C} HBz_CZJ
keK;; keKi;
ST Fe-d" ien, jen 09
ek,

First, let us consider the following aspect: the optimal solution of problem
(1)-(6) does not change if any arbitrary constant is added or subtracted to the
random variables éfjl

Let us choose this constant as the root a of the equation

1= F(a) =1/|L] (19)
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Let us assume that |L| is large enough to use the asymptotic approximation
lim|z|—+00 Gij(7, |L|) as a good approximation of G;;(x), i.e.

Gij(x) = ‘Llhm Gij(z,|L])) 1e€N, jeN (20)

The calculation of the limit in (20) would require to know the probability

distribution F'(.) in (7), which is unknown. From (Tadei et al., 2012), we know

that under a mild assumption on the shape of the unknown probability distribution

F(.) (i.e. it is asymptotically exponential in its left tail), the limit in (20) tends
towards the following Gumbel Gumbel (1958) probability distribution

Gij(x) = wlgn Gij(x,|L])) = exp (—Aije/j”) 1€N, jeN (21)

where [ > 0 is a parameter to be calibrated and

Aj=Y e’  ieN, jeN (22)

kEKi]'

is the accessibility, in the sense of Hansen (Hansen, 1959), of the pair of nodes ¢, j
to the set of paths between 7 and j.

Using the probability distribution G;;(x) given by (21), after some manipula-
tions, ¢; in (15) becomes

+oo +oo 1
éij = —/ $dG2]($) = / T exp (—Aijeﬁx) AijeﬁxﬁdJT = —B(h'l A”‘l"}/) Z € N,

o0 o0

(23)
where v ~ 0.5772 is the Euler constant.
By (23) and up to the constant —3 > 7,c v > ey ¥ij = —3[V], (16) becomes

S Gy =

€N jeEN

= BII{l;iXZZlnAy” =

i€EN jEN

= —H{lij}xlnH H Ay” =

i€EN jEN

1
= —maxIln® 24
B {v} ( )

subject to (2)-(6), where ® = [[;cy [1;en Aij is the total accessibility of the set
of arcs of an optimal Hamiltonian tour to the global set of paths.

CIRRELT-2013-01 7
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From (24), it is interesting to observe that the expected minimum total travel
cost is equivalent, but the constant %, to the maximum of the logarithm of the
total accessibility.

5 Computational results

In this section, we present and analyze the results of the computational experi-
ments. The goal is to evaluate the effectiveness of the deterministic approximation
of the mpTSP, we derived.

We do that by comparing our deterministic approximation with a Montecarlo
simulation performed on the stochastic problem. The Montecarlo simulation is
implemented in C++4, with the underlying TSP instances solved by means of the
Concorde TSP solver (Applegate et al., 2007; Cook, 2012). Experiments were
performed on an Intel 17 2 GHz workstation with 8 GB of RAM.

Section 5.1 introduces the instance sets. The details of the Montecarlo simu-
lation are presented in Section 5.2. The calibration of the parameter involved in
the deterministic approximation of the mpTSPy is described in Section 5.3, whilst
the comparison between the Montecarlo simulation and the approximated results
is given in Section 5.4.

5.1 Instance sets

No real-life instances are present in the literature for this stochastic version of the
TSP problem. Then, we generated instances, partially based on those available in
the TSPLIB (Reinelt, 1991) for the deterministic TSP problem. According to the
literature, we generated the stochastic costs according to the guidelines presented
in (Kenyon and Morton, 2003):

e Instances. In order to limit the computational time, which is mainly due
to the Montecarlo simulation, we considered all instances with a number
of nodes up to 200 in the TSP Library set. In particular, we split those
instances into two sets: 11 instances with up to 100 nodes (set S100) and 15
instances with number of nodes between 101 and 200 (set S200).

e Nodes. The nodes and their position on the plane are the same of the original
TSP instances.

e Multiple paths. The number of paths is set to 1, 3, and 5. Although the
mpTSP, hypothesizes that several paths are present between any pair of
nodes, we decided to also test the case where only one path is available.
In fact, it is interesting to observe the behavior of the approximation in an

8 CIRRELT-2013-01
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extreme situation where the aspect characterizing the problem is just the
stochasticity of the travel times on a single path.

e Path costs. The cost cfj associated to each path k between nodes ¢ and j
is considered as a function of the Euclidean distance between ¢ and j. In
details, this cost has been drawn from U(EC;;,3EC;;), where EC;; is the
Euclidean distance between ¢ and j and U is the uniform distribution. The
random travel cost oscillations ij have been drawn as 'D(—cfj /2, 20%), where
D is a probability distribution with its support limited to 50% and 100% of
the corresponding deterministic cost, such that cfj + Hfj > EC;;. For D we
have considered both the Uniform and the Gumbel distribution.

5.2 Montecarlo simulation

In order to evaluate the stochastic objective function of our problem, we used a
Montecarlo simulation. Our Montecarlo simulation repeats I times the following
overall process:

e Create S scenarios with the random costs Hfj generated as described in 5.1.

e Solve each scenario as follows. Build a TSP with the node set equal to the
node set of the stochastic problem. Set the cost ¢;; between nodes ¢ and j
as cjj = mink(cfj + ij) Indeed, when a cost scenario becomes known, its
optimal solution is obtained by using, as path between the two nodes, the
path with the minimum random travel cost. The scenarios are solved to
optimality by means of the Concorde TSP solver.

e Given the scenario optima, compute the expected value of the total cost.

e Compute the distribution of the expected value of the total cost for the
scenario-based simulations.

In order to obtain the most reliable results of the Montecarlo simulation, we
performed a set of tuning testbeds by using a subset of instances (5 from S100
and 5 from S200). The values for the parameters I (number of repetitions) and
S (number of scenarios) have been set such that the standard deviation of the
distribution of the expected value was less than 1% of its mean. These values were
I =10 and S = 100.

5.3 Calibration of the J parameter

The deterministic approximation of the mpTSPj requires, see (24), an appropriate
value of the parameter 3. This parameter describes the propensity of the model to
choose among the set of the paths characterized by different random travel costs.

CIRRELT-2013-01 9
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B is obtained by calibration as follows. Let us consider the standard Gumbel
distribution G(z) = exp (e~*). If an approximation error of 2% is accepted, then
G(zr)=1< x=6.08and G(z) =0 < x = —1.76. Let us consider the distribution
range [m, M]. The following equations hold

Blm —¢) =—1.76 (25)

B(M — () =6.08 (26)

where  is the mode of the Gumbel distribution G(z) = exp (e #==9)).
By subtracting (25) from (26) one gets for 3 the value

6.08 — (—1.76) 7.84

b= M—m T M-m (27)

According to our random oscillations rule, m is set equal to min, ; £C;;. In
order to calculate M we need to know the order of magnitude of the travel cost
oscillations in the final solution. This is needed to avoid considering those arcs
with travel costs very far from the travel costs in the solution, which could lead us
to overestimate M. In fact, the presence of arcs with a travel cost much greater of
the mean travel cost is a quite common situation in the TSP and VRP problems.

M has been calculated as follows

e Solve a TSP instance with the same node set of the stochastic problem and
the cost of each arc determined as ¢;; = miny, cfj Let us call Cp the optimum
of this deterministic instance.

e Set m = min, ; EC;; and M = 2}(]\([;‘[) , where |N| is the number of nodes and
K is the number of paths. The rationale of the formula for calculating M
is that Cp/|N| gives us the order of magnitude of the mean deterministic
cost, which, given the rules we used to generate the instances, can have a
maximum oscillation of 100%. The number of paths K is used for normalizing

the accessibility effect when the path cardinality increases.

More sophisticated methods to calibrate 5 can be found in (Galambos et al.,
1994).

5.4 Comparison of Montecarlo simulation and determinis-
tic approximation results

Here we summarize the results for all instances with different combinations of the
parameters. The performance, in terms of percentage gap, is defined as the relative
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percentage error of the approximated optimum when compared to the mean of the
expected value distribution given by the Montecarlo simulation.

Table 1 reports the percentage gap for all combinations of the parameters,
while varying the probability distribution (either Uniform or Gumbel). The first
two columns display the instance set and the number of paths between any pair of
nodes, while Columns 3-4 report the mean of the percentage gaps. The best mean
values are obtained for the Gumbel distribution. For both distributions the best
results are obtained with one path between the nodes, with a gap of less than 1%
for the Gumbel distribution. This gap increases with the number of paths. The
quality of the approximation seems to be inversely correlated with the number of
nodes. However, the percentage gap is, in all cases, quite limited, with a worst
case of 7.77% for the Uniform and 4.46% for the Gumbel distribution.

Computational times, expressed in seconds, are reported in Table 2. Notice
that, being the computational time in both cases (Montecarlo and deterministic
approximation) mainly given by the TSP instances computational time and be-
ing the number of the TSP instances independent from the number of multiple
paths, also the computational times are independent from the number of multiple
paths. Thus, the results are summarized by considering the instance set only. The
Montecarlo simulation needs a computational time of about 2 orders of magnitude
greater than the deterministic approximation. This makes the deterministic ap-
proximation more and more interesting when applied to large instances, where the
Montecarlo simulation becomes impracticable.

Table 1: Percentage gap between the deterministic approximation and the Mon-
tecarlo simulation

Set Path Uniform Gumbel

S100 1 1.32 0.62
3 3.41 1.86
5 4.01 2.22
Avg 2.91 1.57
S200 1 0.71 0.35
3 7.46 3.13
5 7.7 4.46
Avg 5.31 2.64
Global avg 4.30 2.19

In conclusion, the results seem very promising. The deterministic approxima-
tion performs quite well for all types of instances and distributions and guarantees
a good accuracy. The best performance is obtained when the random travel costs
have a Gumbel distribution, that is usually the case for real travel cost random

CIRRELT-2013-01 11
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Table 2: Computational times in seconds of the Montecarlo simulation and the
deterministic approximation

Set Montecarlo Approx
S100 523.40 5.52
5200 1507.71 14.54
Global avg 1091.27 10.72

oscillations.

6 Conclusions

In this paper we have addressed the multi-path Traveling Salesman Problem with
stochastic travel costs, which consists in finding an expected minimum Hamiltonian
tour connecting all nodes, when each pair of nodes is connected by several paths
and each path shows a stochastic travel cost with unknown distribution.

From a theoretical perspective, the paper shows that, under a mild assump-
tion, the probability distribution of the minimum random travel cost between any
pair of nodes becomes a Gumbel distribution. Moreover, the expected minimum
total travel cost is proportional to the maximum of the logarithm of the total
accessibility of the Hamiltonian tours to the path set.

The deterministic approximation of the stochastic model provides very promis-
ing results on a large set of instances in negligible computational times.

In conclusion, the performance of the methodology proposed is particularly
good when the probability distribution of the random travel costs of the stochastic
model is a Gumbel distribution, even if good results are also provided with the
Uniform distribution. This feature makes our deterministic approximation a good
predictive tool for addressing stochastic travel costs in multi-path networks.
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