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Classical, Refined and Component-Wise Analysis of

Reinforced-Shell Wing Structures

E. Carreral, A. Pagani?, and M. Petrolo®
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

This paper compares early and very recent approaches to the static analysis of
reinforced-shell wing structures. Early approaches were those based on the pure semi-
monocoque theory along with beam assumptions of the Euler-Bernoulli and Timoshenko
type. The recent approaches are based on a hierarchical, one-dimensional (1D) formu-
lation. These are obtained by adopting various polynomial expansions of the displace-
ment field above the cross-section of the structure according to the Unified Formulation
(UF) which was recently proposed by the first author. Two classes were developed in
the UF framework: (1) In the first class we developed Taylor Expansion (TE) models
which exploit N-order Taylor-like polynomials; classical beam theories (Euler-Bernoulli
and Timoshenko) were obtained as special cases of TE. (2) In the second class Lagrange
Expansion (LE) models were built by means of four- (L4) and nine-point (L9) Lagrange-
type polynomials over the cross-section of the wing. Component-wise (CW) approach
was obtained by using different L4 and L9 descriptions for different wing components
including panels, ribs, spar caps, stringers and transverse ribs. The finite element
method was used to develop numerical applications in the weak form. Finite element
matrices and vectors are expressed in terms of fundamental nuclei whose forms do not
formally depend on the order and the expansion. A number of typical aeronautical
structures were analyzed and semimonocoque results were compared to classical (Euler-

Bernoulli and Timoshenko), refined (TE) and component-wise (LE) models. Stress and
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displacement fields of simple statically determinate, redundant and open section wing-
box structures were analyzed. Finite element models by a commercial software that
make use of solid and shell elements were used for comparison purposes. Results have
highlighted the enhanced capabilities of the present refined and component-wise for-
mulations. The present Component-Wise approach appears the natural tool to analyze
wing structures, as it leads to results that can only be obtained by use of 3D elastic-
ity (solid) elements whose costs are at least one-order of magnitude higher than CW
cases. CW models in conjunction with FE could be seen as a modern way of analyzing
reinforced shell structures by removing classical assumptions of constant shear in the

spar webs and panels.

Nomenclature
~ij — material coefficients
épp, é’pn, é’np, C~',m = material stiffness subarrays
D, D,,, D,, = differential operator matrices
E = Young’s modulus
F, — cross-section function of the variation
F. — cross-section function of the variable
G = shear modulus
K¢ = fundamental nuclei of stiffness matrix
L = dimension of the structure in the y direction
Loyt — external work
Lins — internal work
N = order of the expansion above the cross-section for the TE models
N; = shape function of the variable
N; = shape function of the variation
q = nodal displacement vector



u = displacement vector

Uy, Uy, ¥, = displacement components in the z, y, and z directions
T, Y, Z = coordinates reference system

) = virtual variation

€ = strain vector

v = Poisson’s ratio

o = stress vector

Q = cross-section domain

I. Introduction

Primary aircraft structures are essentially reinforced thin shells [1]. These are so-called semi-
monocoque constructions which are obtained by assembling three main components: skins (or pan-
els), longitudinal stiffening members (including spar caps) and transversal stiffeners (ribs). The
determination of stress/strain fields in these structural components is of prime interest for struc-
tural analysts. Many different approaches were developed in the first half of the last century. These
are discussed in major reference books [1, 2] and more recently in [3]. Among these approaches
the so-called Pure Semimonocoque (PS) (or “idealized semimonocoque”) is the most popular, since
it assumes constant shear into panels and shear webs. The main advantage of PS is that it leads
to a system of linear algebraical equations. However the number of such equations rapidly in-
creases for multi-bay box structures with high redundancy. The number of resulting equations (and
redundancy) can be strongly reduced by coupling PS with assumptions from Euler-Bernoulli (Euler-
Bernoulli Beam Theory, EBBT) or Timoshenko theories (Timoshenko Beam Theories, TBT). Many
works are known to overcome limitations related to constant shear hypotheses, see [4-8] as examples.
The systematic use of matrix methods in aircraft structure analysis was introduced by Argyris and
Kensley [9]. Here, the PS approach and force methods were used to describe an automatic technique
to build compliance matrices. This automatic technique is one of the pioneering contributions to
the development of finite element methods (FEM).

Due to the advent of computational methods, mostly FEM, the analysis of complex aircraft



structures continued to be made using a combination of solids (3D), plates/shells (2D) and beams
(1D). These were implemented first in NASTRAN codes. Many others commercial FE codes have
been developed and used in aerospace industries. Nowadays FEM models with a number of un-
knowns (degrees of freedom, DOFs) close to 105 are widely used in common practise. The possible
manner in which stringers, spar caps, spar webs, panels, ribs are introduced into FE mathematical
models is part of the knowledge of structural analysts. A short discussion of this follows. A number
of works have shown the necessity for a proper simulation of the stiffeners-panel “linkage”. Satsangi
and Murkhopadhyay [10] used 8-node plate elements assuming the same displacement field for stiff-
eners and plates. Kolli and Chandrashekhara [11] formulated an FE model with 9-node plate and
3-node beam elements. Gangadhara [12] carried out linear static analyzes of composite laminated
shells using a combination of 8-node plate elements and 3-node beam elements. Recently, Thinh
and Khoa [13] have developed a new 9-node rectangular plate model to study the free vibrations of
shell structures with arbitrary oriented stiffeners. It is often necessary to model stiffeners out of the
plate/shell element plane. In this case beam nodes are connected to the shell element nodes via rigid
fictitious links. This methodology presents some inconsistencies. The main problem is that the out-
of-plane warping displacements in the stiffener section are neglected and the beam torsional rigidity
is not correctly predicted. Several solutions have been proposed in the literature to overcome this
issue. Patel et al. [14] introduced a torsion correction factor. Voros [15, 16] proposed a procedure to
model the connection between the plate/shell and the stiffener where the shear deformation of the
beam is neglected and the formulation of the stiffener is based on the well-known Bernoulli- Vlasov
[17] theory. In Voros’ method the stiffener element has two nodes with seven degrees of freedom
per node. In order to maintain the displacement compatibility between the beam and the stiffened
element, a special transformation was used, which included torsional-bending coupling and the ec-
centricity of internal forces between the stiffener and the plate elements. 3D finite element models
are usually implemented as soon as the wing’s structural layouts are determined. Because of their
complexity, solid models are commonly used only within optimization procedures. In fact, despite
the availabilities of even cheaper computer power, these FEM models present large computational

costs and their use in a multi-field iterative process, such as in an aeroelastic analysis, is quite a



burden. Nowadays the trend is to use equivalent, simplified, lower fidelity 1D FEM models (the
so-called "stick-model”) of the wing structure to be used within iterative algorithms. There are nu-
merous papers dealing with wing stick models in the literature, such as [18-20]. These methodologies
are based on the extraction of the structural stiffness of the wing with respect to its principal axes.
Those stiffness properties are then employed to generate the wing stick model. Simplified models
are generally created along the wing’s elastic axis. This applies a geometrical constraint so that
the stick model principal torsional axis act as the wing elastic axis. It could be concluded that the
development of computationally cheaper models compared to those by standard FE models, but
with high accuracy, still plays a crucial role in aircraft structure analysis.

The present work falls in the framework of the Carrera Unified Formulation, CUF, which has
been developed during the last decade by the first author and his co-workers. CUF was initially
devoted to the development of refined plate and shell theories, see [21, 22]. In recent works [23, 24],
CUF has been extended to beam modeling. Two classes of CUF 1D models were proposed: the
Taylor-expansion class, hereafter referred to as TE, and the Lagrange-expansion class, hereafter
referred to as LE. TE models exploit N-order Taylor-like polynomials to define the displacement
field above the cross-section with N as a free parameter of the formulation. Static [25, 26] and
free-vibration analyzes [27, 28] showed the strength of CUF 1D models in dealing with arbitrary
geometries, thin-walled structures and local effects. Moreover, asymptotic-like analyzes leading to
reduced refined models were carried out [29]. The Euler-Bernoulli (EBBT) and Timoshenko (TBT)
classical beam theories are derived from the linear Taylor-type expansion. The LE class is based on
Lagrange-like polynomials to discretize the cross-section displacement field. LE models have only
pure displacement variables. Static analyzes on isotropic [30] and composite structures [31] revealed
the strength of LE models in dealing with open cross-sections, arbitrary boundary conditions and
obtaining Layer-Wise descriptions of the 1D model.

The present paper proposes CUF-based approach in the analysis of complex wing structures. A
number of significant problems dealing with reinforced-shell structures are addressed in the following
sections. Classical, refined and component-wise (CW) models are implemented for different struc-

tural configurations. Particular attention is given to the CW approach. ’Component-wise’ means



that each typical component of a reinforced-shell structure (i.e. stringers, sheet panels and ribs) can
be modelled by means of a unique 1D formulation. The CW approach has recently been exploited
for the analysis of laminated composites [32] and it has proven to be able to model single fibers
and related matrices, entire layers and whole multilayers. In the present work the CW approach is
presented as a efficient way of dealing with analysis of reinforced-shell wing structures.

The paper is organized as follows: a brief description of the models adopted is given in Section II;
advanced beam theories based on CUF are described in Section III, together with the finite element
formulation; numerical results are provided in Section IV; main conclusions are then outlined in

Section V.

II. Description of the considered Structural Models
A brief description of the models used in the present paper is herein provided. Firstly analytical
Pure Semimonocoque approaches are drawn. Refined and CW as well as classical beam theories are

then introduced by means of 1D CUF, which is described in Section III.

A. Pure Semimonocoque (PS)

These models are based on the simplifying assumptions of the semimonocoque assembled com-
ponents, as described in the Section I. Stringers are here considered as concentrated areas carrying
only axial stresses, while webs and panels carry only shearing stresses. According to [1-3] the in-
ternal loads in a statically determinate reinforced-shell structure can be found by the use of static
equilibrium equations alone. In a statically indeterminate structure, additional equations along with
the static equilibrium equations are necessary to find all the internal stresses. In such a case we
should impose compatibility conditions in order to deal with redundant forces and stresses. These
conditions can be written in various forms by applying elasticity theorems; among these the Prin-
ciple of Virtual Displacements (PVD) is used in this article as in [2, 3]. This approach is hereafter

referred to as the PS (Pure Semimonocoque) model.



B. Beam Semimonocoque (BS)

The classical and best-known beam theories are EBBT [33] and TBT [34]. The former does not
account for transverse shear deformations. The latter foresees a uniform shear distribution along
the cross-section of the beam. For instance, referring to the coordinate frame shown in Fig. 1, the

displacement components given by TBT can be written as:

Uy = Ug,

= 1
Uy = Uy, + T Uy, + 2 Uy, (1)
Uy = Uy,

where the parameters on the right hand sides (ug,, Uy, , Uz, Uy,, Uy, ) are the displacements and the
rotations on the reference axis. EBBT requires a further condition, which results in the penalization
of the shear strain components, €;, and €.

If EBBT is applied to the idealized semimonocoque assumptions it is possible to reduce re-
dundancy in statically indeterminate structures. This method, hereafter referred to as BS (Beam
Semimonocoque) model, is certainly less accurate than PS since more assumptions are required. It

should be noted that for statically determinate structures the two methods coincide.

C. Refined Beam Models based on Taylor-Expansion (TE)

Several higher-order beam models can be found in open literature to overcome planar conditions
on the displacement field over the wing cross-section. The Taylor-based CUF can be adopted to
refine the displacement field of classical 1D models by adding expansion terms in Eq. (1). For

instance, the TE second-order (N = 2) refined 1D model presents the following kinematic model

um:uml—l—xumz+zu$3—|—x2uu+xzuw5+z2uw6
Uy = Uy, + T Uy + 2 Uy + T2 Uy, + T2 Uy + 22w (2)
Yy — Yy Y2 Y3 Ya Ys Yo

2 2
Uy = Uz F T Ugy + 2 Uzy + X7 Uy + T2 Uyy + 27 Ugg

The 1D model described by Eq. 2 has 18 generalized displacement variables: three constant, six

linear, and nine parabolic terms. The possibility of refining 1D models permits us to deal with a



wide variety of problems with no need for ad hoc formulations. Non-classical effects (e.g. warping,
in-plane deformations, shear effects, bending-torsion couplings) are accounted for by opportunely
varying the order of the adopted model. More details about TE models can be found in Section III

and in the book by Carrera et al. [24].

D. Component-Wise (CW)

In a wing structural analysis, each component (e.g. ribs, stringers, panels, etc.) is commonly
modelled through different elements (e.g. beams, shells, solids, etc.). For instance, by considering
a simplified wing-box (see Fig. 2), stringers are considered as beams, whereas panels and ribs are
modelled with 2D plate elements. 3D elasticity elements could be also used for stringers or for both
stringers and panels. In the present paper, 1D LE elements were used to simultaneously model all
the wing components. In a finite element framework this means that spar caps, webs, panels and
ribs are modelled by means of the same 1D finite element and, therefore, with no need of ad hoc
formulations for each component. More details about the LE beam theory and the implementation

of CW models can be found in Section III.

III. CUF 1D Formulation
In this Section a brief description of models based on CUF is provided. First, some notations
are introduced. Then TE and LE models are described. In Section IIIC the higher-order finite
elements are formulated. Finally, in Section IIID the use of the LE 1D elements in CW models is

discussed.

A. Preliminaries
Referring to the coordinate frame shown in Fig. 1, let us introduce the transposed displacement

vector,

o) = { u, u, . }T 3)



The cross-section of the structure is 2, and the beam boundaries over y are 0 < y < L. The stress,

o, and strain, €, components are grouped as follows:

T T
Op = { Ozz2 Ogx Ozx } » €p = { €22 €xx €zx }
T T (4)
O, = €, =
" {Uz,y Ozy Uyy} o {GZy €xy 6yy}

The subscript "n" stands for terms lying on the cross-section, while "p" stands for terms lying on
planes which are orthogonal to 2. In the case of small displacements with respect to a characteristic

dimension of 2, linear strain - displacement relations can be used

€, =D,u

€, =D,u=(D,q+ D,y)u

where D), and D,, are linear differential operators,

002 020 0 0 2
Dp=1200 | Dna=|0Z 0|, Dw=|L 0 0 (6)
) ) )
_an_ _000_ _Oa—yO_
Constitutive laws were exploited to obtain stress components,
o=Ce (7

According to Eq.s (4), Eq. (7) becomes

op=Cprpep +Chrey

on =Chpep, +Chrpney



In the case of isotropic material the matrices Cp, Cpn, Cpn, and C,,, are

A+2G
A

0

A 0
A+2G 0
0 G

G 0 0
0 G 0
0 0 A+2G

00X

00 A

000

where G and A are the Lamé’s parameters. If Poisson v and Young F moduli are used one has

G=5Z— and A = ((1+UU7E Additional details can be found in [35] and [36].

2(1+v) )(1—-2v)) "

B. One-dimensional advanced formulation with variable (hierarchial) kinematics
In the framework of the CUF, the displacement field above the cross-section is the expansion of

generic functions, F,
(10)

where F- vary over the cross-section. u, is the displacement vector and M stands for the number
of terms of the expansion. According to the Einstein notation, the repeated subscript, 7, indicates
summation. The choice of F, determines the class of 1D CUF model that has to be adopted. Two
cases are addressed in this paper: TE and LE.

TE 1D models are based on polynomial expansions, z* 2/, of the displacement field above the
cross-section of the structure, where ¢ and j are positive integers. A generic N-order displacement

field is therefore expressed by

N;
= < LL‘N_M ZM HN(N+1)+M+1> (].].)
2
N;=0 \M=0

Eq. (2) is a particular case of Eq. (11). The order N of the expansion is arbitrary and defines the
beam theory. N is set as an input of the analysis. The choice of N, for a given structural problem,
is usually made through a convergence study.

The refined TE models described above are characterized by degrees of freedom (displacements

and N-order derivatives of displacements) with a correspondence to the axis of the beam (see Fig.

10



3). The expansion can also be made by using only pure displacement values, e.g. by using Lagrange
polynomials. The LE class exploits Lagrange-like polynomials to build 1D higher-order models. In
this work, two types of cross-section polynomial sets were adopted: four-point elements, L4, and
nine-point elements, L9. The isoparametric formulation was exploited to deal with arbitrary shaped

geometries. The L4 interpolation functions are given in [37],
1
FT:Z(l—i—rTT)(l—i—ssT) T=1,2,3,4 (12)

where r and s vary from —1 to +1, whereas r, and s, are the coordinates of the four points whose
numbering and location in the natural coordinate frame are shown in Fig. 4a. In the case of an L9

element the interpolation functions are given by

Fr=2(r+rr)(s*+ss;) T=1,3,57
Fr=13s2(s? —ss)(1—r?) + ir2(r? —rr.)(1 — %) T=2,4,6,8 (13)

Fr=01-7)(1-s?% T=9

The nine points of the L9 element are shown in Fig. 4b. For instance, the displacement field given

by an L4 element is

Uy = F1 Ugy + F Ugy + F3 Ugy + Fiy Uy,
Uy = F1 uy, + Fo Uy, + F3 Uy, + Fy uy, (14)

Uy = F1 Uy + Fo Uy + F3 Uy + Fy uy,

where uy,,...,u,, are the displacement variables of the problem and represent the translational
displacement components of each of the four points of the L4 element. The adopted cross-section
displacement field (L4 or L9) defines the beam theory. For further refinements, the cross-section
can be discretized by using several L-elements as in Fig. 3b-d. More details about LE models can

be found in the paper by Carrera and Petrolo [30].

11



C. FE Formulation based on LE and TE
The FE approach was adopted to discretize the structure along the y-axis. This process is

conducted via a classical finite element technique, where the displacement vector is given by
u(z,y, z3t) = Fr(2,2)Ni(y)a-4(t) (15)

N; stands for the shape functions and q.; for the nodal displacement vector,

T
qT’i = { quITi quyTi quZTi } (16)

For the sake of brevity, the shape functions are not reported here. They can be found in many
books, for instance in [38]. Elements with four nodes (B4) were adopted in this work, that is, a
cubic approximation along the y axis was assumed. The choice of the cross-section discretization for
the LE class (i.e. the choice of the type, the number and the distribution of cross-section elements)
or the theory order, N, for the TE class is completely independent of the choice of the beam finite
element to be used along the axis of the beam.

The stiffness matrix of the elements and the external loadings vector were obtained via the PVD
OLint = / (5650’1) + 5eZan)dV = 0Lyt (17)
v

where L;,; stands for the strain energy, L.,: is the work of the external loadings and ¢ stands for
the virtual variation. The virtual variation of the strain energy was rewritten using Eq.s (5), (8),

(10) and (15):
SLint = 6q-, K" qy; (18)

where K¥7* is the stiffness matrix in the form of the fundamental nucleus. In a compact notation,

12



it can be written as:

ij

K™ =1 < (DL F, 1) {én,, (D, F. 1) + Cpp (D Fy I)} n
(D] P 1)| Gy (Dy B T) + Con (Dup B 1) | 0 +
117« [(DE, Fo 1) G + (D] Fo 1) G| Fu oo Toy +
1" Iy 4 Fy | Cup (Dy B T) + Con (Dp 1) | 500 +

by Js =
I[y yIQyQF‘rCnnFs >0 IQy
where:

010
Io, =100 <1...I>Q=/...dQ
Q

001

i PR
(Il , Iljvy, Il ny, Ilvyjly) — /l(NlNJ, NiNj,y; Ni,y Nj, Ni,y Nj1y> dy

(19)

(20)

(21)

It should be noted that K“7* does not depend either on the expansion order or on the choice

of the F, expansion polynomials. These are the key-points of CUF which allows, with only nine

FORTRAN statements, the implementation of any-order of multiple class theories.

The loadings vector which is variationally coherent to the model was derived for the case of a

generic concentrated load P acting on the application point (z,, yp, 2p),

T
PZ{Puz p,, Puz}

Any other loading condition can be similarly treated. The virtual work due to P is

5Lezt = P5UT

13

(22)

(23)



The virtual variation of u in the framework of CUF has been introduced in Eq. (10), then

§Lext = FPSul (24)

By introducing the nodal displacements and the shape functions, Eq. (24) becomes

6Lext = FN;PSqL; (25)

where F. and N, are evaluated in (z,,z,) and y, respectively. The last equation permits the
identification of the components of the nucleus which have to be loaded, that is, it permits the
proper assembling of the loading vector by detecting the displacement variables that have to be
loaded.

A detailed description of 1D formulations based on CUF can be found in the recent book by

Carrera et al. [24].

D. CW models through 1D LE elements

The LE formulation was used in this paper to implement CW models of reinforced-shell wing
structures, as shown in Fig. 5a where a two-stringer spar is considered. Figure 5b shows a possible
CW model of the spar where each component was modelled via one 1D LE element. Each LE
element is then assembled above the cross-section to obtain the global stiffness matrix based on
the 1D formulation. Since panels could not be reasonably modelled via a 1D formulation, 1D
CW models can be refined by using several L-elements for one component. This aspect is shown
in Fig. 5c where the panel is modelled via two 1D LE elements. By exploiting the present 1D
formulation, the analysis capabilities of a structural model can be enhanced by 1. locally refining

the LE discretization; 2. using higher-order LE elements (e.g. 4-node, 9-node, 16-node, etc.).

IV. Numerical Results
The various approaches considered to wing structure analysis are evaluated in this section and

compared to commercial FEM software results.

14



Two classical spars are considered for the first assessment. Then two more complex wing struc-
tures are analyzed to show the capability of the present CUF models of dealing with ribs and open
sections. Unless otherwise stated, the results by refined and CW models are compared to 3D solid
FEM models since the present models are not affected by the discontinuities in the displacement
fields that may result from a combination of 1D, 2D, and 3D elements. TE and LE models are
also compared with classical beam theories and analytical results by theories based on idealized
stiffened-shell structures for further comparisons. Particular attention is given to the capabilities
offered by CW models of dealing with thin-walled reinforced structures as well as with solid and

shell-like FEM analyzes with significantly lower computational costs.

A. Two-Stringer Spar

The simplest spar structure shown in Fig. 6 was considered first. Stringers were taken to be
rectangular for convenience, however their shape does not effect the validity of the proposed analysis.
The geometrical data are as follows: axial length, L = 3 [m]; cross-section height, h = 1 [m]; area of
the spar caps, As = 0.9 x 1073 [m?]; web thickness, t = 1 x 1073 [m]. The whole structure is made
of an aluminum alloy material. The material data are: the Young modulus, E=75 [GPal; Poisson
ratio, v= 0.33. The beam was clamped at y = 0 and a point load, F, = —1 x 10* [N], was applied
at [0, L, 0].

The vertical displacement, u,, at the loaded point is reported in Table 1. Results were related
to a MSC/NASTRAN® FE model with 8-node solid elements and to classical beam theories, EBBT
and TBT. Refined theories related to higher-order TE models are also reported in Table 1. N refers
to the expansion order of the TE beam theory. Component-Wise LE results are given. These models
were obtained by using two different L9 cross-section distributions, as shown in Fig. 7. All the 1D
CUF models were implemented by considering 10 B4 elements along the y-axis since this mesh
offers good accuracy. A detailed analysis of the effects of the number and the type of finite elements
along the beam axis can be found in [24]. The third column in Table 1 quotes the number of the
degrees of freedom (DOFs) for each model. DOFs are used to estimate the computational efficiency

of the proposed models. It should be noticed that another advantage given by 1D formulations is

15



that they can, in general, lead to lower stiffness-matrix bandwidths with respect to 2D or 3D FE
mathematical models.

It should be noted that the CW FE approach uses only physical surfaces (the four faces of caps
and the inner and outer surfaces of the panel) to build FE mathematical models. The FE models
and the classical beam and plate/shell approaches usually introduce artificial surfaces and lines (e.g.
the beam axis and the reference surface for shell elements). This characteristic of CW models is a
unique feature that makes this approach advantageous in a CAE/CAD scenario.

The analytical results related to BS and PS approaches are provided and evaluated as follows
(see [3]):

F.L? F.I? F.L
Uz = s Uz = a7
53 3ET rs 3ET AG

(26)

where I is the cross-section moment of inertia about the xz-axis, G is the shear modulus and A is the
overall cross-section area. In the present paper stress fields are evaluated in terms of axial loads in
stringers and shear flows on panels/webs, in order to compare the results with classical analytical
models. Table 2 reports the axial load in the upper stringer, P, at y = 0 and the mean shear flow in
the panel, ¢, at y = g In according with [3, chap. 6 p. 88], for both BS and PS analytical models,

P and q were evaluated as

(27)

where h is the distance between the centers of the two stringers.

CUF and solid models are not affected by the generalization of the classical ideal reinforced-
shell assumptions. For this reason, the shear flows acting on panels in 1D refined CUF models and
in MSC/ NASTRAN® models are not constant within the panels and are reported as mean shear

flows, evaluated as

16



Conversely, in both MSC/NASTRAN® and CUF models, P was computed by evaluating the con-
straint forces multiplying the non-constrained stiffness matrix by the displacement vector.

The variation in the axial stress and the shear stress versus the z-axis is presented in Fig.s
8. Results by SOLID, TE, LE and classical beam models are reported. A convergence study was
carried out for MSC/NASTRAN® models and the results are shown in Table 3. The following

considerations arise from the analyzes.

1. Refined beam theories, especially LE, allows us to obtain the results of the solid model (which

is the most accurate and at the same time the most computationally expensive).

2. The number of degrees of freedom of the present models is significantly reduced with respect

to the MSC/NASTRAN® solid model.

3. Both MSC/NASTRAN® and higher-order CUF models, unlike analytical theories based on
idealized stiffened-shell structures and classical 1D models, highlight the fact that the axial
stress component, o, is not linear versus z and that the shear stress component, oy, is not

constant along the sheet panel.

4. The Component-Wise capability of the present LE approach is clearly evident from the con-

ducted analysis.

B. Three-Stringer Spar

A longeron with three longitudinal stiffeners was subsequently considered. The geometry of the
structure is shown in Fig. 9. The spar was clamped at y = 0, whereas a point load, F,, was applied
at the center of the upper stringer at y = L. The magnitude of F, is equal to —1 x 10* [N]. The
geometrical characteristics were as follows: axial length, L = 3 [m]; cross-section height, h = 1 [m];
area of the stringers, A, = 1.6 x 1072 [m?]; sheet panel thickness, ¢t = 2 x 1073 [m]; distance from
the intermediate stringer to the x-y plane, b = 0.18 [m]. The whole structure is made of the same
isotropic material as in the previous case.

Table 4 shows the displacement, u,, evaluated at the center of the intermediate stringer together

with the indication of the number of degrees of freedom for each considered model. In the 1% and
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274 rows classical analytical models results are reported. The increasing order Taylor-type models
are considered in rows 3 to 7. The CW LE model was obtained by discretizing the cross-section with
5 L9 elements, one for each spar component (stringers and webs), and the results are shown in row
7. The last row shows the solid model result obtained by an FE model in MSC/NASTRAN®. The
SOLID model was obtained so that to guarantee a low aspect-ratio of the 8-node solid elements.
Table 5 shows the stress fields of the considered structure. Axial loads in the top (P;), middle
(P2) and bottom (Ps) stringers are evaluated at y = 0, together with the mean shear flows on the
upper (¢1) and bottom (g2) sheet panels at y = g Referring to the BS model, the axial loads in the
stringers were evaluated by means of the Navier equation that gives the longitudinal normal stress
distribution over the spar section. Considering a coordinate frame laying on the center of mass, the

following equation holds,

F.L
PiBs = TAiZi (28)

where P; is the axial force in the i-th stringer, A; the concentrated boom area and Z; the vertical
coordinate. The shear flows g; were evaluated from the equilibrium equations. For the structural
configuration analyzed, the PS differs from the BS solution. In fact, the three-stringer spar has
one redundance (¢; and go consist of two independent unknowns along the z-axis which are related
by only one common equilibrium equation). The PVD was employed to take into account the
deformability of stringers and panels. Let X be the redundant force in the lower longitudinal. By

using the formula in [3], one has:

E ho\1 2 h 1\1
201+ 3G )

G\n /)t n2 7 2h ) A
T E /B2 hon1 2 /K2 hy 177 (29)
2 2
e T Tl (R SEAC IS | P
G(h%+L)t+3 (h%+h1+ )%

where h; is the distance between the top and the intermediate stringer, hs is the distance between

the intermediate and the bottom stringer. The axial forces P;., and the shear flows ¢;., were
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computed by substituting Eq. (29) in the equilibrium equations (for details see [3, chap. 8 p.168]).

P = —th—l + XZ—?

Pape = P = X(1+72)

Ps,, = X (30)
Qips = % - XLh—;l

QPps = X%

The distribution of the axial stress, oy,, and the shear stress, o,, versus the z-axis are shown in

Fig. 10. The following statements hold.

5. The 5 L9 model is very close to the solid solution with a significant reduction of computational

costs.
6. Results from Taylor-type models are less accurate than those from CW models.

7. The classical models are totally inadequate for the detection of stress fields of the considered

structural problems.

8. Even in this particular case the CW capability of the CUF-based LE approach is highly
evident. Hence, the stress fields in the stringers/panels are described as accurately as those

in the FE solids cases.

C. Rectangular Wing Box

A proper wing box both with and without a rib at the tip section (Fig. 11) was further analyzed.
The length-to-width ratio, L/b, is equal to 3.125 with L as high as 3 [m]. The cross-section height,
h, is equal to 0.46 [m], whereas the thickness of the four sheet panels is t = 2 x 1073 [m]. The area
of the spar caps is A; = 1.6 x 1073 [m?]. The wing box configuration with a rib at the tip presents a
transversal stiffener with a thickness of » = ¢t. The structure is made of the same isotropic material
as in the previous cases. A point load, F, = —1 x 10* [N], was applied at [b, L, g]

First, a convergence study of the LE CW models was carried out. Table 6 shows the mean shear

flows on the panels, the axial forces in the stringers and the number of degrees of freedom for both
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CW and MSC/NASTRAN® models. Each CW model has a different number of LE elements on the
panels. In particular, in the 8 L9 model stringers and panels were modelled with 1 L9 element each.
In the 12 L9 model, one L9 element was used for each stringer and two elements were used for each
panel. In the 20 L9 model, one L9 element was used for each stringer and four elements were used for
each panel. The rib was discretized with a combination of L4 and L9 elements. The SOLID model
was completely built with 8-node solid elements, while the SOLID/SHELL model was obtained as a
combination of both solid and 4-node plate finite elements. Both stringers and rib were discretized
by means of solid elements in the SOLID/SHELL model, whereas plate elements were used for
skins and webs. ¢; and P; refer to the top panel and to the top right stringer respectively, g2, ¢s,
qs and P>, P3, P, follow a clock-wise enumeration. It should be underlined that LE CW models,
differently from TE, allow the local refinement of the components. For the structure considered, one
L9 element was not sufficient to accurately detect the shear lag within the panel. Consequently, the
axial forces in the stringers were not correct. The solution was enhanced by increasing the number
of 1D L9 elements used to discretize the panel.

Table 7 quotes the mean shear flows on the panels, the axial forces in the stringers and the
number of degrees of freedom for each implemented model. Results from both analytical methods
and classical beam theories are reported. Rows 5 to 7 consider the TE models. Finally, the conver-
gent solution by the CW method is given in row 8 and the MSC/NASTRAN® models are reported
in the last two rows.

BS and PS models (but also classical beam theories) are not able to correctly detect the behavior
of the no rib configuration of the rectangular wing box. In fact, one of the main assumptions of these
methods is that the ribs are “rigid within their planes”. The solutions provided by these methods
for the wing box are described in the following. In accordance with the BS method, the axial forces
and the shear flows were evaluated by solving firstly Eq. (28) and then the equilibrium equations.

Conversely, as in the previous case, the PS solution requires the application of the PVD. Let X be
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the redundant force applied in the bottom left stringer [3, chap. 10 p.196],

(b—"h)
_ 4Gth
Y=o eaw (31)
3EA 2LGt

Subsequently, PS stress fields were computed by substituting X in the equilibrium equations.
Deformed tip cross-sections of both configurations are shown in Fig. 12 and 13, together with
variations in the shear stress components on the sheet panels. Confirming the previous remarks,

the following further considerations can be made:

9. The results from the LE and MSC/NASTRAN® models coincide for both structural config-
urations. In particular, the results from the CW model of the un-ribbed box are more similar
to those from the SOLID model than to those from the SOLID/SHELL model. This is most
likely due to the discontinuities in the displacement fields on the panel-stringer interfaces that

affect the SOLID /SHELL model.

10. For the wing-box considered, the results given by the eight-order (N = 8) TE model are not
sufficiently accurate. An higher than eight-order TE model could be necessary to correctly
detect the shear-lag. However, higher-order models imply a larger number of the degrees of

freedom.

11. Classical beam models and the PS approach are not able to correctly describe the wing box

model without the rib.

D. Three-Bay Wing Box

The last analysis case was carried out on the three-bay wing box for which PS and BS solutions
were given in Rivello’s book. The considered structure is shown in Fig. 14a [2, chap. 11 p. 301],
whereas Fig.s 14b and c show its variations. These examples highlight the capability of the present
advanced 1D models to accurately describe the effects due to ribs and open sections. The structures
consist of three wing boxes each with a length, I, equal to 0.5 [m]. The cross-section is a trapezium
with a height b = 1 [m]. The two webs of the spars have a thickness of 1.6 x 1072 [m], whereas

hy = 0.16 [m] and hy = 0.08 [m]. The top and the bottom panels have a thickness of 0.8 x 1073
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[m], as well as ribs. The area of the stringers is A; = 8 x 10=* [m?]. The wing is completely made
of an aluminium alloy 2024, having G/E = 0.4. The cross-section in y = 0 was clamped and a point
load, F, = 2 x 10* [N], was applied at [b,2 x I, %]

Table 8 shows the vertical displacement values, u, and the computational costs for each model.
Results related to the CUF models are validated by an MSC/NASTRAN® model built both with
solid and shell FE elements as discussed in the previous analysis. The CW models were obtained
by using both L4 and L9 elements, as in the rectangular wing box.

Fig.s 15, 16 and 17 show the spanwise variation of the axial and the shear stress components
for the three different configurations. BS and PS solutions are provided for the full model of the
three-bay wing box for comparison. The structure has three redundancies. The PVD can be used
to correct the BS solution. Let X7, X5 and X3 be the redundant forces that must be added to the
BS solution to obtain the true forces in the lower left stringer at a distance of 0, [ and 2 x [ from

the root. The redundant forces are calculated by means of the PVD. The following results hold:
X1 = —36.446 [N]; X2 = —6.912 [N]; X5 =13.908 [N] (32)

These values allow us to compute the axial forces and the shear flows for the PS method. For the
complete resolution see [2, chap. 11 p. 301].
Finally, Table 9 reports the values of the stress components of both LE and SOLID/SHELL

models. The following remarks can be made.

12. LE models correctly predict ribs and local effects, as match the results obtained with solid/shell

models.

13. Higher than sixth-order TE models are required to correctly predict the cross-section deforma-

bility.

14. The PS method is quite accurate in the description of the full configuration of the three-bay
wing box. Conversely, the BS method is not suitable as the structure is statically indetermi-

nate.
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V. Conclusions

This paper has considered and compared existing methods and recent approaches that exploit
one-dimensional structural theories based on the Unified Formulation, which allows for the straight-
forward implementation of higher-order analysis without the need of extensive revisions of the model.
Pure Semimonocoque analyses along with beam assumptions have been compared to refined and
component-wise models and to shell and solid solutions obtained by a commercial FEM software.

As general guidelines and recommendations, it can be stated that TE should be used for global
responses, such as displacements. On the other hand, CW models have to be adopted if local
responses - such as stress, strains - are of interest. The main conclusion to be drawn is that the
present component-wise analysis of reinforced shell structures appears to the authors as the most
convenient way, in terms of both accuracy and computational costs, to capture the global and local
(component-wise) physical behavior of wing structures. 3D FEM analysis is required to reach the
same accuracy with a number of degrees of freedom at least one-order of magnitude higher than
the present models. Additionally, the present CW approach allows us to build FE mathematical
models by only using physical surfaces; artificial lines (beam axes) and surfaces (plate/shell reference

surfaces) are no longer used.
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Tables

u, % 10% [m| DOFs
Analytical Methods

BS —2.671 -
PS —3.059 -
Classical Beam Theories
EBBT —1.827 279
TBT —2.117 279
TE
N=3 —2.514 930
N=5 —2.629 1953
N=7 —2.738 3348
N=9 —2.890 5115
CW

AL9, Fig. 7a  —3.639 2883
8L9, Fig. 7b  —3.639 4743
MSC/NASTRAN®
SOLID —3.815 76050

Table 1 Displacement values, u., at the loaded point and number of degrees of freedom of
each model, two-stringer spar.

P N] ¢ [N/m]
*all values are multiplied x10—%

Analytical Methods

BS 3.192 —1.064
PS 3.192 —1.064
Classical Beam Theories
EBBT 1.993 —0.274
TBT 1.993 —0.274
TE
N=3 2.434 —0.665
N=5 2.350 —0.561
CwW

419, Fig. 7a 2.833 —1.034
8 L9, Fig. 7b 2.739 —1.035
MSC/NASTRAN®©
SOLID 2.713 —1.036

Table 2 Axial load in the upper stringer, P, at y = 0 and mean shear flow on the sheet panel,

L .
q, at y = 3 two-stringer spar.
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u, x 103 [m] P [N] DOFs

SOLID #1  —3.785  2.577 2805
SOLID #2  —3.815  2.713 76050
SOLID #3  —3.862  2.709 198246

Table 3 Displacement values, u., at the loaded point, axial load in the upper stringer, P, at
y = 0 and number of degrees of freedom of SOLID models, two-stringer spar.

u, x 10% [m| DOFs
Analytical Methods

BS —1.309 -
PS —1.471 -
Classical Beam Theories

EBBT —1.325 279

TBT —1.487 279
TE

N =4 —1.661 1395

N=6 —1.707 2604

N =38 —1.730 4185
CW

5 L9 —1.846 3813

MSC/NASTRAN®©
SOLID —1.857 72450

Table 4 Displacement values, u., at the center of the intermediate stringer and number of
degrees of freedom, three-stringer spar.

q1 [N/m]| g2 [N/m| P, [N] P [N] P5 |N]
*all values are multiplied x10~4

Analytical Methods

Table 5 Axial loads in the stringers at y = 0 and mean shear flows on the sheet panels at

BS —0.859 —1.095 2.574 0.730 —3.285
PS —0.949 —-1.118 2.847 0.507 —3.353
Classical Beam Theory
EBBT -0.305 —0.305 2.323 0.733 —2.766
TBT —-0.305 —0.305 2.323 0.733 —2.766
TE
N =4 -0.071 -0.902 3.208 0.081 —3.202
N=6 -0.402 -1.006 2.997 0.727 —3.251
N=8 -0.469 -1.052 2916 0.639 —3.215
Ccw
5L9 —0.820 —1.150 2.495 0.633 —2.980
MSC/NASTRAN®©
SOLID -0.816 —1.150 2.457 0.572 —2.781

L .
y = —, three-stringer spar.

2
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a1 [N/m] g> [N/m] gs [N/m] g [N/m] P, [N] P> [N] _Ps [N]_Pi[N] DOFs

*all values are multiplied x10~3

CW
8 L9 5.092  —5.173 —5.121 —16.624 23.313 —23.313 —26.211 26.211 6588
(—0.032) (0.005) (0.033) (—21.789) (—5.839) (5.839) (—55.007) (55.007) (5952)
12 L9 4.969  —5.171 —4.966 —16.654 21.033 —21.033 —24.603 24.603 9036
(—0.164) (0.013) (0.164) (—21.841) (—5.488) (5.488) (—51.143) (51.143) (8184)
20 L9 5.037 —5.145 —5.034 —16.654 20.286 —20.286 —23.767 23.767 13932
(—0.061) (0.010) (0.092) (—21.827) (—5.235) (5.235) (—49.548) (49.548) (12648)
MSC/NASTRAN®

SOLID/SHELL 5.077 —5.200 —5.149 —16.651 21.670 —21.670 —24.660 24.660 22346
(—0.381) (0.293) (—0.242) (—21.530) (—5.435) (5.435) (—51.765) (51.765) (22020)

SOLID 5.074 —5.104 —5.074 —16.368 20.166 —20.166 —22.942 22.942 115362
(—0.071) (0.011) (0.071)  (—21.483) (—5.163) (5.163) (—48.271) (48.271) (112200)

Table 6 Convergence of the CW models. Mean shear flows on the sheet panels at y = g, axial

loads in the stringers at y = 0 and number of degrees of freedom. Rectangular wing box with
rib at the tip. Results by models without rib are reported in brackets.

@1 [N/m] g2 [N/m] g3 [N/m] ga [N/m] Pr [N] P2 [N] Ps[N] Py[N] DOFs

*all values are multiplied x10~3

Analytical Methods

BS 5.435 —5.435 —5.435 —16.304 32.609 —32.609 —32.609 32.609 -
PS 5.221 —5.221 —5.221 —16.518 31.325 —31.325 —33.893 33.893 -
Classical Beam Theories
EBBT 0 —1.701 0 —1.701 19.757 —19.757 —19.757 19.757 306
TBT 0 —1.701 0 —1.701 19.757 —19.757 —19.757 19.757 306
TE
N =4 4.470 —4.603 —4.470 —14.142 23.197 —23.197 —26.418 26.418 1530
(4.769) (—4.897)  (—4.769) (—13.848) (23.167) (—23.167) (—26.448) (26.448) (1395)
N=6 4.848 —4.579 —4.846 —14.218 23.529 —23.523 —27.567 27.556 2856
(5.654) (—=5.329)  (—5.655) (—13.467) (23.404) (—23.404) (—27.684) (27.686) (2604)
N=38 4.647 —5.148 —4.894 —16.240 23.803 —23.837 —26.579 26.722 4490
(1.478) (—1.204) (—1.478) (—20.060) (1.555) (—1.531) (—48.968) (48.976) (4185)
CwW
5.037 —5.145 —5.034 —16.654 20.286 —20.286 —23.767 23.767 13932
(—0.061) (0.010) (0.092)  (—21.827) (—5.235) (5.235) (—49.548) (49.548) (12648)
MSC/NASTRAN®

SOLID/SHELL 5.077 —5.200 —5.149 —16.651 21.670 —21.670 —24.660 24.660 22346
(—0.381) (0.293)  (—0.242) (—21.530) (—5.435) (5.435) (—51.765) (51.765) (22020)

SOLID 5.074  —5.104 —5.074 —16.368 20.166 —20.166 —22.942 22.942 115362
(—0.071)  (0.011) (0.071)  (—21.483) (—5.163) (5.163) (—48.271) (48.271) (112200)
L . . .
Table 7 Mean shear flows on the sheet panels at y = —, axial loads in the stringers at y =0

and number of degrees of freedom. Rectangular wing box with rib at the tip. Results by
models without rib are reported in brackets.
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Full Model No Ribs Case  Open Mid-bay Case
u, x 10 [m| DOFs u, x 10? [m] DOFs u, x 10? [m] DOFs
MSC/NASTRAN®©
SOLID/SHELL 1.412 100026 3.051 89400 1.963 89621
Classical Beam Theories

EBBT 0.464 495 0.464 495 0.464 495
TBT 0.477 495 0.477 495 0.477 495
TE
N=3 0.793 1650 0.794 1650 0.873 1650
N=5 1.108 3465 1.203 3465 1.500 3465
N=7 1.251 5940 2.158 5940 1.745 5940
N=9 1.325 9075 2.649 9075 1.836 9075

Cw
1.397 10750 2.981 10560 1.919 10446

Table 8 Displacement values, u., at the loaded point and number of degrees of freedom for
the considered structural configurations of the three-bay wing box.

Full Model No Ribs Case Open Mid-bay Case
Model oyy [MPa] o,. [MPa] oy, [MPa] o,, [MPa] o,, [MPa] o,. [Pa]
SOLID/SHELL 80.598 120.730  178.147  155.368  123.841 115.351
CW LE 80.404  120.603 177.018 151.876  118.684 115.810

Table 9 Stress components, oy, at [b,%,—%z] and o,. at [b,£,0], of the different structural

configurations of the three-bay wing box.
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Figures

Fig. 1 Coordinate frame of the beam model.
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Fig. 2 Component-wise approach.
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Fig. 3 Differences between the TE and LE models.
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Fig. 6 Two-stringer spar.
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Fig. 7 Cross-section L9 distributions for the LE models of the two-stringer spar.
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Fig. 8 Axial stress, oy, and shear stress, o,., versus
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Fig. 9 Three-stringer spar.
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Fig. 10 Axial stress, oy, and shear stress, 0,., versus the z-axis, three-stringer spar.
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Fig. 11 Rectangular wing boxes.
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g. Deformed tip cross-section by eighth-order TE model is drawn (amplifying factor x10),

rectangular wing box with rib at the tip.
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Fig. 14 Different structural configurations of the three-bay wing box.
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Fig. 15 Stress components distribution along the wing span. Comparison of analytical,

MSC/NASTRAN© and CUF models, full model of the three-bay wing box.
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Fig. 16 Stress components distribution along the wing span. Comparison

MSC/NASTRAN© and CUF models, three-bay wing box with no ribs.
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Fig. 17 Stress components distribution along the wing span. Comparison

MSC/NASTRAN© and CUF models, three-bay wing box with open mid-bay.
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