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Classi
al, Re�ned and Component-Wise Analysis ofReinfor
ed-Shell Wing Stru
turesE. Carrera1, A. Pagani2, and M. Petrolo3Polite
ni
o di Torino, Corso Du
a degli Abruzzi 24, 10129 Torino, ItalyThis paper 
ompares early and very re
ent approa
hes to the stati
 analysis ofreinfor
ed-shell wing stru
tures. Early approa
hes were those based on the pure semi-mono
oque theory along with beam assumptions of the Euler-Bernoulli and Timoshenkotype. The re
ent approa
hes are based on a hierar
hi
al, one-dimensional (1D) formu-lation. These are obtained by adopting various polynomial expansions of the displa
e-ment �eld above the 
ross-se
tion of the stru
ture a

ording to the Uni�ed Formulation(UF) whi
h was re
ently proposed by the �rst author. Two 
lasses were developed inthe UF framework: (1) In the �rst 
lass we developed Taylor Expansion (TE) modelswhi
h exploit N-order Taylor-like polynomials; 
lassi
al beam theories (Euler-Bernoulliand Timoshenko) were obtained as spe
ial 
ases of TE. (2) In the se
ond 
lass LagrangeExpansion (LE) models were built by means of four- (L4) and nine-point (L9) Lagrange-type polynomials over the 
ross-se
tion of the wing. Component-wise (CW) approa
hwas obtained by using di�erent L4 and L9 des
riptions for di�erent wing 
omponentsin
luding panels, ribs, spar 
aps, stringers and transverse ribs. The �nite elementmethod was used to develop numeri
al appli
ations in the weak form. Finite elementmatri
es and ve
tors are expressed in terms of fundamental nu
lei whose forms do notformally depend on the order and the expansion. A number of typi
al aeronauti
alstru
tures were analyzed and semimono
oque results were 
ompared to 
lassi
al (Euler-Bernoulli and Timoshenko), re�ned (TE) and 
omponent-wise (LE) models. Stress and1 Professor of Aerospa
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tures and Aeroelasti
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arrera�polito.it. Member AIAA, Corresponding Author.2 PhD student, Department of Me
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displa
ement �elds of simple stati
ally determinate, redundant and open se
tion wing-box stru
tures were analyzed. Finite element models by a 
ommer
ial software thatmake use of solid and shell elements were used for 
omparison purposes. Results havehighlighted the enhan
ed 
apabilities of the present re�ned and 
omponent-wise for-mulations. The present Component-Wise approa
h appears the natural tool to analyzewing stru
tures, as it leads to results that 
an only be obtained by use of 3D elasti
-ity (solid) elements whose 
osts are at least one-order of magnitude higher than CW
ases. CW models in 
onjun
tion with FE 
ould be seen as a modern way of analyzingreinfor
ed shell stru
tures by removing 
lassi
al assumptions of 
onstant shear in thespar webs and panels.
Nomen
lature

C̃ij = material 
oe�
ients
C̃pp, C̃pn, C̃np, C̃nn = material sti�ness subarrays
Dp, Dnp, Dny = di�erential operator matri
es
E = Young's modulusFs = 
ross-se
tion fun
tion of the variationFτ = 
ross-se
tion fun
tion of the variable
G = shear modulusKijτs = fundamental nu
lei of sti�ness matrixL = dimension of the stru
ture in the y dire
tion
Lext = external work
Lint = internal workN = order of the expansion above the 
ross-se
tion for the TE modelsNi = shape fun
tion of the variableNj = shape fun
tion of the variationq = nodal displa
ement ve
tor2



u = displa
ement ve
torux, uy, uz = displa
ement 
omponents in the x, y, and z dire
tionsx, y, z = 
oordinates referen
e system
δ = virtual variation
ǫ = strain ve
tor
ν = Poisson's ratio
σ = stress ve
tor
Ω = 
ross-se
tion domain I. Introdu
tionPrimary air
raft stru
tures are essentially reinfor
ed thin shells [1℄. These are so-
alled semi-mono
oque 
onstru
tions whi
h are obtained by assembling three main 
omponents: skins (or pan-els), longitudinal sti�ening members (in
luding spar 
aps) and transversal sti�eners (ribs). Thedetermination of stress/strain �elds in these stru
tural 
omponents is of prime interest for stru
-tural analysts. Many di�erent approa
hes were developed in the �rst half of the last 
entury. Theseare dis
ussed in major referen
e books [1, 2℄ and more re
ently in [3℄. Among these approa
hesthe so-
alled Pure Semimono
oque (PS) (or �idealized semimono
oque�) is the most popular, sin
eit assumes 
onstant shear into panels and shear webs. The main advantage of PS is that it leadsto a system of linear algebrai
al equations. However the number of su
h equations rapidly in-
reases for multi-bay box stru
tures with high redundan
y. The number of resulting equations (andredundan
y) 
an be strongly redu
ed by 
oupling PS with assumptions from Euler-Bernoulli (Euler-Bernoulli Beam Theory, EBBT) or Timoshenko theories (Timoshenko Beam Theories, TBT). Manyworks are known to over
ome limitations related to 
onstant shear hypotheses, see [4�8℄ as examples.The systemati
 use of matrix methods in air
raft stru
ture analysis was introdu
ed by Argyris andKensley [9℄. Here, the PS approa
h and for
e methods were used to des
ribe an automati
 te
hniqueto build 
omplian
e matri
es. This automati
 te
hnique is one of the pioneering 
ontributions tothe development of �nite element methods (FEM).Due to the advent of 
omputational methods, mostly FEM, the analysis of 
omplex air
raft3



stru
tures 
ontinued to be made using a 
ombination of solids (3D), plates/shells (2D) and beams(1D). These were implemented �rst in NASTRAN 
odes. Many others 
ommer
ial FE 
odes havebeen developed and used in aerospa
e industries. Nowadays FEM models with a number of un-knowns (degrees of freedom, DOFs) 
lose to 106 are widely used in 
ommon pra
tise. The possiblemanner in whi
h stringers, spar 
aps, spar webs, panels, ribs are introdu
ed into FE mathemati
almodels is part of the knowledge of stru
tural analysts. A short dis
ussion of this follows. A numberof works have shown the ne
essity for a proper simulation of the sti�eners-panel �linkage�. Satsangiand Murkhopadhyay [10℄ used 8-node plate elements assuming the same displa
ement �eld for sti�-eners and plates. Kolli and Chandrashekhara [11℄ formulated an FE model with 9-node plate and
3-node beam elements. Gangadhara [12℄ 
arried out linear stati
 analyzes of 
omposite laminatedshells using a 
ombination of 8-node plate elements and 3-node beam elements. Re
ently, Thinhand Khoa [13℄ have developed a new 9-node re
tangular plate model to study the free vibrations ofshell stru
tures with arbitrary oriented sti�eners. It is often ne
essary to model sti�eners out of theplate/shell element plane. In this 
ase beam nodes are 
onne
ted to the shell element nodes via rigid�
titious links. This methodology presents some in
onsisten
ies. The main problem is that the out-of-plane warping displa
ements in the sti�ener se
tion are negle
ted and the beam torsional rigidityis not 
orre
tly predi
ted. Several solutions have been proposed in the literature to over
ome thisissue. Patel et al. [14℄ introdu
ed a torsion 
orre
tion fa
tor. Vörös [15, 16℄ proposed a pro
edure tomodel the 
onne
tion between the plate/shell and the sti�ener where the shear deformation of thebeam is negle
ted and the formulation of the sti�ener is based on the well-known Bernoulli-Vlasov[17℄ theory. In Vörös' method the sti�ener element has two nodes with seven degrees of freedomper node. In order to maintain the displa
ement 
ompatibility between the beam and the sti�enedelement, a spe
ial transformation was used, whi
h in
luded torsional-bending 
oupling and the e
-
entri
ity of internal for
es between the sti�ener and the plate elements. 3D �nite element modelsare usually implemented as soon as the wing's stru
tural layouts are determined. Be
ause of their
omplexity, solid models are 
ommonly used only within optimization pro
edures. In fa
t, despitethe availabilities of even 
heaper 
omputer power, these FEM models present large 
omputational
osts and their use in a multi-�eld iterative pro
ess, su
h as in an aeroelasti
 analysis, is quite a4



burden. Nowadays the trend is to use equivalent, simpli�ed, lower �delity 1D FEM models (theso-
alled �sti
k-model�) of the wing stru
ture to be used within iterative algorithms. There are nu-merous papers dealing with wing sti
k models in the literature, su
h as [18�20℄. These methodologiesare based on the extra
tion of the stru
tural sti�ness of the wing with respe
t to its prin
ipal axes.Those sti�ness properties are then employed to generate the wing sti
k model. Simpli�ed modelsare generally 
reated along the wing's elasti
 axis. This applies a geometri
al 
onstraint so thatthe sti
k model prin
ipal torsional axis a
t as the wing elasti
 axis. It 
ould be 
on
luded that thedevelopment of 
omputationally 
heaper models 
ompared to those by standard FE models, butwith high a

ura
y, still plays a 
ru
ial role in air
raft stru
ture analysis.The present work falls in the framework of the Carrera Uni�ed Formulation, CUF, whi
h hasbeen developed during the last de
ade by the �rst author and his 
o-workers. CUF was initiallydevoted to the development of re�ned plate and shell theories, see [21, 22℄. In re
ent works [23, 24℄,CUF has been extended to beam modeling. Two 
lasses of CUF 1D models were proposed: theTaylor-expansion 
lass, hereafter referred to as TE, and the Lagrange-expansion 
lass, hereafterreferred to as LE. TE models exploit N -order Taylor-like polynomials to de�ne the displa
ement�eld above the 
ross-se
tion with N as a free parameter of the formulation. Stati
 [25, 26℄ andfree-vibration analyzes [27, 28℄ showed the strength of CUF 1D models in dealing with arbitrarygeometries, thin-walled stru
tures and lo
al e�e
ts. Moreover, asymptoti
-like analyzes leading toredu
ed re�ned models were 
arried out [29℄. The Euler-Bernoulli (EBBT) and Timoshenko (TBT)
lassi
al beam theories are derived from the linear Taylor-type expansion. The LE 
lass is based onLagrange-like polynomials to dis
retize the 
ross-se
tion displa
ement �eld. LE models have onlypure displa
ement variables. Stati
 analyzes on isotropi
 [30℄ and 
omposite stru
tures [31℄ revealedthe strength of LE models in dealing with open 
ross-se
tions, arbitrary boundary 
onditions andobtaining Layer-Wise des
riptions of the 1D model.The present paper proposes CUF-based approa
h in the analysis of 
omplex wing stru
tures. Anumber of signi�
ant problems dealing with reinfor
ed-shell stru
tures are addressed in the followingse
tions. Classi
al, re�ned and 
omponent-wise (CW) models are implemented for di�erent stru
-tural 
on�gurations. Parti
ular attention is given to the CW approa
h. 'Component-wise' means5



that ea
h typi
al 
omponent of a reinfor
ed-shell stru
ture (i.e. stringers, sheet panels and ribs) 
anbe modelled by means of a unique 1D formulation. The CW approa
h has re
ently been exploitedfor the analysis of laminated 
omposites [32℄ and it has proven to be able to model single �bersand related matri
es, entire layers and whole multilayers. In the present work the CW approa
h ispresented as a e�
ient way of dealing with analysis of reinfor
ed-shell wing stru
tures.The paper is organized as follows: a brief des
ription of the models adopted is given in Se
tion II;advan
ed beam theories based on CUF are des
ribed in Se
tion III, together with the �nite elementformulation; numeri
al results are provided in Se
tion IV; main 
on
lusions are then outlined inSe
tion V. II. Des
ription of the 
onsidered Stru
tural ModelsA brief des
ription of the models used in the present paper is herein provided. Firstly analyti
alPure Semimono
oque approa
hes are drawn. Re�ned and CW as well as 
lassi
al beam theories arethen introdu
ed by means of 1D CUF, whi
h is des
ribed in Se
tion III.A. Pure Semimono
oque (PS)These models are based on the simplifying assumptions of the semimono
oque assembled 
om-ponents, as des
ribed in the Se
tion I. Stringers are here 
onsidered as 
on
entrated areas 
arryingonly axial stresses, while webs and panels 
arry only shearing stresses. A

ording to [1�3℄ the in-ternal loads in a stati
ally determinate reinfor
ed-shell stru
ture 
an be found by the use of stati
equilibrium equations alone. In a stati
ally indeterminate stru
ture, additional equations along withthe stati
 equilibrium equations are ne
essary to �nd all the internal stresses. In su
h a 
ase weshould impose 
ompatibility 
onditions in order to deal with redundant for
es and stresses. These
onditions 
an be written in various forms by applying elasti
ity theorems; among these the Prin-
iple of Virtual Displa
ements (PVD) is used in this arti
le as in [2, 3℄. This approa
h is hereafterreferred to as the PS (Pure Semimono
oque) model.
6



B. Beam Semimono
oque (BS)The 
lassi
al and best-known beam theories are EBBT [33℄ and TBT [34℄. The former does nota

ount for transverse shear deformations. The latter foresees a uniform shear distribution alongthe 
ross-se
tion of the beam. For instan
e, referring to the 
oordinate frame shown in Fig. 1, thedispla
ement 
omponents given by TBT 
an be written as:
ux = ux1

uy = uy1 + x uy2 + z uy3

uz = uz1

(1)
where the parameters on the right hand sides (ux1 , uy1 , uz1 , uy2, uy3) are the displa
ements and therotations on the referen
e axis. EBBT requires a further 
ondition, whi
h results in the penalizationof the shear strain 
omponents, ǫxy and ǫzy.If EBBT is applied to the idealized semimono
oque assumptions it is possible to redu
e re-dundan
y in stati
ally indeterminate stru
tures. This method, hereafter referred to as BS (BeamSemimono
oque) model, is 
ertainly less a

urate than PS sin
e more assumptions are required. Itshould be noted that for stati
ally determinate stru
tures the two methods 
oin
ide.C. Re�ned Beam Models based on Taylor-Expansion (TE)Several higher-order beam models 
an be found in open literature to over
ome planar 
onditionson the displa
ement �eld over the wing 
ross-se
tion. The Taylor-based CUF 
an be adopted tore�ne the displa
ement �eld of 
lassi
al 1D models by adding expansion terms in Eq. (1). Forinstan
e, the TE se
ond-order (N = 2) re�ned 1D model presents the following kinemati
 model

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(2)
The 1D model des
ribed by Eq. 2 has 18 generalized displa
ement variables: three 
onstant, sixlinear, and nine paraboli
 terms. The possibility of re�ning 1D models permits us to deal with a7



wide variety of problems with no need for ad ho
 formulations. Non-
lassi
al e�e
ts (e.g. warping,in-plane deformations, shear e�e
ts, bending-torsion 
ouplings) are a

ounted for by opportunelyvarying the order of the adopted model. More details about TE models 
an be found in Se
tion IIIand in the book by Carrera et al. [24℄.D. Component-Wise (CW)In a wing stru
tural analysis, ea
h 
omponent (e.g. ribs, stringers, panels, et
.) is 
ommonlymodelled through di�erent elements (e.g. beams, shells, solids, et
.). For instan
e, by 
onsideringa simpli�ed wing-box (see Fig. 2), stringers are 
onsidered as beams, whereas panels and ribs aremodelled with 2D plate elements. 3D elasti
ity elements 
ould be also used for stringers or for bothstringers and panels. In the present paper, 1D LE elements were used to simultaneously model allthe wing 
omponents. In a �nite element framework this means that spar 
aps, webs, panels andribs are modelled by means of the same 1D �nite element and, therefore, with no need of ad ho
formulations for ea
h 
omponent. More details about the LE beam theory and the implementationof CW models 
an be found in Se
tion III.III. CUF 1D FormulationIn this Se
tion a brief des
ription of models based on CUF is provided. First, some notationsare introdu
ed. Then TE and LE models are des
ribed. In Se
tion III C the higher-order �niteelements are formulated. Finally, in Se
tion IIID the use of the LE 1D elements in CW models isdis
ussed.A. PreliminariesReferring to the 
oordinate frame shown in Fig. 1, let us introdu
e the transposed displa
ementve
tor, u(x, y, z) = { ux uy uz

}T (3)
8



The 
ross-se
tion of the stru
ture is Ω, and the beam boundaries over y are 0 ≤ y ≤ L. The stress,
σ, and strain, ǫ, 
omponents are grouped as follows:

σp =

{

σzz σxx σzx

}T

, ǫp =

{

ǫzz ǫxx ǫzx

}T

σn =

{

σzy σxy σyy

}T

, ǫn =

{

ǫzy ǫxy ǫyy

}T (4)The subs
ript "n" stands for terms lying on the 
ross-se
tion, while "p" stands for terms lying onplanes whi
h are orthogonal to Ω. In the 
ase of small displa
ements with respe
t to a 
hara
teristi
dimension of Ω, linear strain - displa
ement relations 
an be used
ǫp = Dpu
ǫn = Dnu = (DnΩ +Dny)u (5)where Dp and Dn are linear di�erential operators,

Dp =
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
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(6)
Constitutive laws were exploited to obtain stress 
omponents,

σ = Cǫ (7)A

ording to Eq.s (4), Eq. (7) be
omes
σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(8)
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In the 
ase of isotropi
 material the matri
es C̃pp, C̃nn, C̃pn, and C̃np are
C̃pp =












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λ+ 2G λ 0
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
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
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T
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




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
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0 0 λ

0 0 λ

0 0 0

















(9)
where G and λ are the Lamé's parameters. If Poisson ν and Young E moduli are used one has
G = E

(2(1+ν) and λ = νE
((1+ν)(1−2ν)) . Additional details 
an be found in [35℄ and [36℄.B. One-dimensional advan
ed formulation with variable (hierar
hial) kinemati
sIn the framework of the CUF, the displa
ement �eld above the 
ross-se
tion is the expansion ofgeneri
 fun
tions, Fτ , u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (10)where Fτ vary over the 
ross-se
tion. uτ is the displa
ement ve
tor and M stands for the numberof terms of the expansion. A

ording to the Einstein notation, the repeated subs
ript, τ , indi
atessummation. The 
hoi
e of Fτ determines the 
lass of 1D CUF model that has to be adopted. Two
ases are addressed in this paper: TE and LE.TE 1D models are based on polynomial expansions, xi zj, of the displa
ement �eld above the
ross-se
tion of the stru
ture, where i and j are positive integers. A generi
 N-order displa
ement�eld is therefore expressed byu =

N
∑

Ni=0

(

Ni
∑

M=0

xN−M zM uN(N+1)+M+1
2

) (11)Eq. (2) is a parti
ular 
ase of Eq. (11). The order N of the expansion is arbitrary and de�nes thebeam theory. N is set as an input of the analysis. The 
hoi
e of N , for a given stru
tural problem,is usually made through a 
onvergen
e study.The re�ned TE models des
ribed above are 
hara
terized by degrees of freedom (displa
ementsand N-order derivatives of displa
ements) with a 
orresponden
e to the axis of the beam (see Fig.10



3). The expansion 
an also be made by using only pure displa
ement values, e.g. by using Lagrangepolynomials. The LE 
lass exploits Lagrange-like polynomials to build 1D higher-order models. Inthis work, two types of 
ross-se
tion polynomial sets were adopted: four-point elements, L4, andnine-point elements, L9. The isoparametri
 formulation was exploited to deal with arbitrary shapedgeometries. The L4 interpolation fun
tions are given in [37℄,
Fτ =

1

4
(1 + r rτ )(1 + s sτ ) τ = 1, 2, 3, 4 (12)where r and s vary from −1 to +1, whereas rτ and sτ are the 
oordinates of the four points whosenumbering and lo
ation in the natural 
oordinate frame are shown in Fig. 4a. In the 
ase of an L9element the interpolation fun
tions are given by

Fτ = 1
4 (r

2 + r rτ )(s
2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s

2 − s sτ )(1− r2) + 1
2r

2
τ (r

2 − r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1 − s2) τ = 9

(13)
The nine points of the L9 element are shown in Fig. 4b. For instan
e, the displa
ement �eld givenby an L4 element is

ux = F1 ux1 + F2 ux2 + F3 ux3 + F4 ux4

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4

uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(14)
where ux1 , ..., uz4 are the displa
ement variables of the problem and represent the translationaldispla
ement 
omponents of ea
h of the four points of the L4 element. The adopted 
ross-se
tiondispla
ement �eld (L4 or L9) de�nes the beam theory. For further re�nements, the 
ross-se
tion
an be dis
retized by using several L-elements as in Fig. 3b-d. More details about LE models 
anbe found in the paper by Carrera and Petrolo [30℄.11



C. FE Formulation based on LE and TEThe FE approa
h was adopted to dis
retize the stru
ture along the y-axis. This pro
ess is
ondu
ted via a 
lassi
al �nite element te
hnique, where the displa
ement ve
tor is given byu(x, y, z; t) = Fτ (x, z)Ni(y)qτi(t) (15)
Ni stands for the shape fun
tions and qτi for the nodal displa
ement ve
tor,qτi =

{

quxτi
quyτi

quzτi

}T (16)For the sake of brevity, the shape fun
tions are not reported here. They 
an be found in manybooks, for instan
e in [38℄. Elements with four nodes (B4) were adopted in this work, that is, a
ubi
 approximation along the y axis was assumed. The 
hoi
e of the 
ross-se
tion dis
retization forthe LE 
lass (i.e. the 
hoi
e of the type, the number and the distribution of 
ross-se
tion elements)or the theory order, N , for the TE 
lass is 
ompletely independent of the 
hoi
e of the beam �niteelement to be used along the axis of the beam.The sti�ness matrix of the elements and the external loadings ve
tor were obtained via the PVD
δLint =

∫

V

(δǫTp σp + δǫTnσn)dV = δLext (17)where Lint stands for the strain energy, Lext is the work of the external loadings and δ stands forthe virtual variation. The virtual variation of the strain energy was rewritten using Eq.s (5), (8),(10) and (15):
δLint = δqT

τiKijτsqsj (18)where Kijτs is the sti�ness matrix in the form of the fundamental nu
leus. In a 
ompa
t notation,
12



it 
an be written as:
K

ij τ s = I
ij

l ⊳
(

D
T
np Fτ I

)

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

+

(

D
T
p Fτ I

)

[

C̃pp

(

Dp Fs I
)

+ C̃pn

(

Dnp Fs I
)

]

⊲ Ω +

I
ij,y
l ⊳

[

(

D
T
np Fτ I

)

C̃nn +
(

D
T
p Fτ I

)

C̃pn

]

Fs ⊲ Ω IΩ y +

I
i,y j

l IΩ y ⊳ Fτ

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

⊲ Ω +

I
i,y j,y
l IΩ y ⊳ Fτ C̃nn Fs ⊲ Ω IΩ y

(19)
where:

IΩ y =

















0 1 0

1 0 0

0 0 1

















⊳ . . . ⊲ Ω =

∫

Ω

. . . dΩ (20)
(

I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)

=

∫

l

(

NiNj , NiNj,y
, Ni,y

Nj , Ni,y
Nj,y

)

dy (21)It should be noted that Kijτs does not depend either on the expansion order or on the 
hoi
eof the Fτ expansion polynomials. These are the key-points of CUF whi
h allows, with only nineFORTRAN statements, the implementation of any-order of multiple 
lass theories.The loadings ve
tor whi
h is variationally 
oherent to the model was derived for the 
ase of ageneri
 
on
entrated load P a
ting on the appli
ation point (xp, yp, zp),P =

{

Pux
Puy

Puz

}T (22)Any other loading 
ondition 
an be similarly treated. The virtual work due to P is
δLext = PδuT (23)
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The virtual variation of u in the framework of CUF has been introdu
ed in Eq. (10), then
δLext = FτPδuT

τ (24)By introdu
ing the nodal displa
ements and the shape fun
tions, Eq. (24) be
omes
δLext = FτNiPδqT

τi (25)where Fτ and Ni are evaluated in (xp, zp) and yp respe
tively. The last equation permits theidenti�
ation of the 
omponents of the nu
leus whi
h have to be loaded, that is, it permits theproper assembling of the loading ve
tor by dete
ting the displa
ement variables that have to beloaded.A detailed des
ription of 1D formulations based on CUF 
an be found in the re
ent book byCarrera et al. [24℄.D. CW models through 1D LE elementsThe LE formulation was used in this paper to implement CW models of reinfor
ed-shell wingstru
tures, as shown in Fig. 5a where a two-stringer spar is 
onsidered. Figure 5b shows a possibleCW model of the spar where ea
h 
omponent was modelled via one 1D LE element. Ea
h LEelement is then assembled above the 
ross-se
tion to obtain the global sti�ness matrix based onthe 1D formulation. Sin
e panels 
ould not be reasonably modelled via a 1D formulation, 1DCW models 
an be re�ned by using several L-elements for one 
omponent. This aspe
t is shownin Fig. 5
 where the panel is modelled via two 1D LE elements. By exploiting the present 1Dformulation, the analysis 
apabilities of a stru
tural model 
an be enhan
ed by 1. lo
ally re�ningthe LE dis
retization; 2. using higher-order LE elements (e.g. 4-node, 9-node, 16-node, et
.).IV. Numeri
al ResultsThe various approa
hes 
onsidered to wing stru
ture analysis are evaluated in this se
tion and
ompared to 
ommer
ial FEM software results.14



Two 
lassi
al spars are 
onsidered for the �rst assessment. Then two more 
omplex wing stru
-tures are analyzed to show the 
apability of the present CUF models of dealing with ribs and opense
tions. Unless otherwise stated, the results by re�ned and CW models are 
ompared to 3D solidFEM models sin
e the present models are not a�e
ted by the dis
ontinuities in the displa
ement�elds that may result from a 
ombination of 1D, 2D, and 3D elements. TE and LE models arealso 
ompared with 
lassi
al beam theories and analyti
al results by theories based on idealizedsti�ened-shell stru
tures for further 
omparisons. Parti
ular attention is given to the 
apabilitieso�ered by CW models of dealing with thin-walled reinfor
ed stru
tures as well as with solid andshell-like FEM analyzes with signi�
antly lower 
omputational 
osts.A. Two-Stringer SparThe simplest spar stru
ture shown in Fig. 6 was 
onsidered �rst. Stringers were taken to bere
tangular for 
onvenien
e, however their shape does not e�e
t the validity of the proposed analysis.The geometri
al data are as follows: axial length, L = 3 [m]; 
ross-se
tion height, h = 1 [m]; area ofthe spar 
aps, As = 0.9× 10−3 [m2]; web thi
kness, t = 1× 10−3 [m]. The whole stru
ture is madeof an aluminum alloy material. The material data are: the Young modulus, E=75 [GPa℄; Poissonratio, ν= 0.33. The beam was 
lamped at y = 0 and a point load, Fz = −1× 104 [N ], was appliedat [0, L, 0].The verti
al displa
ement, uz, at the loaded point is reported in Table 1. Results were relatedto a MSC/NASTRAN 
© FE model with 8-node solid elements and to 
lassi
al beam theories, EBBTand TBT. Re�ned theories related to higher-order TE models are also reported in Table 1. N refersto the expansion order of the TE beam theory. Component-Wise LE results are given. These modelswere obtained by using two di�erent L9 
ross-se
tion distributions, as shown in Fig. 7. All the 1DCUF models were implemented by 
onsidering 10 B4 elements along the y-axis sin
e this mesho�ers good a

ura
y. A detailed analysis of the e�e
ts of the number and the type of �nite elementsalong the beam axis 
an be found in [24℄. The third 
olumn in Table 1 quotes the number of thedegrees of freedom (DOFs) for ea
h model. DOFs are used to estimate the 
omputational e�
ien
yof the proposed models. It should be noti
ed that another advantage given by 1D formulations is15



that they 
an, in general, lead to lower sti�ness-matrix bandwidths with respe
t to 2D or 3D FEmathemati
al models.It should be noted that the CW FE approa
h uses only physi
al surfa
es (the four fa
es of 
apsand the inner and outer surfa
es of the panel) to build FE mathemati
al models. The FE modelsand the 
lassi
al beam and plate/shell approa
hes usually introdu
e arti�
ial surfa
es and lines (e.g.the beam axis and the referen
e surfa
e for shell elements). This 
hara
teristi
 of CW models is aunique feature that makes this approa
h advantageous in a CAE/CAD s
enario.The analyti
al results related to BS and PS approa
hes are provided and evaluated as follows(see [3℄):
uzBS

=
FzL

3

3EI
, uzPS

=
FzL

3

3EI
+

FzL

AG
(26)where I is the 
ross-se
tion moment of inertia about the x-axis, G is the shear modulus and A is theoverall 
ross-se
tion area. In the present paper stress �elds are evaluated in terms of axial loads instringers and shear �ows on panels/webs, in order to 
ompare the results with 
lassi
al analyti
almodels. Table 2 reports the axial load in the upper stringer, P , at y = 0 and the mean shear �ow inthe panel, q, at y =

L

2
. In a

ording with [3, 
hap. 6 p. 88℄, for both BS and PS analyti
al models,

P and q were evaluated as
P =

FzL

h
, q = −

Fz

h
(27)where h is the distan
e between the 
enters of the two stringers.CUF and solid models are not a�e
ted by the generalization of the 
lassi
al ideal reinfor
ed-shell assumptions. For this reason, the shear �ows a
ting on panels in 1D re�ned CUF models andin MSC/NASTRAN 
© models are not 
onstant within the panels and are reported as mean shear�ows, evaluated as

qm =
1

l

∫

A

τ dA

16



Conversely, in both MSC/NASTRAN 
© and CUF models, P was 
omputed by evaluating the 
on-straint for
es multiplying the non-
onstrained sti�ness matrix by the displa
ement ve
tor.The variation in the axial stress and the shear stress versus the z-axis is presented in Fig.s8. Results by SOLID, TE, LE and 
lassi
al beam models are reported. A 
onvergen
e study was
arried out for MSC/NASTRAN 
© models and the results are shown in Table 3. The following
onsiderations arise from the analyzes.1. Re�ned beam theories, espe
ially LE, allows us to obtain the results of the solid model (whi
his the most a

urate and at the same time the most 
omputationally expensive).2. The number of degrees of freedom of the present models is signi�
antly redu
ed with respe
tto the MSC/NASTRAN 
© solid model.3. Both MSC/NASTRAN 
© and higher-order CUF models, unlike analyti
al theories based onidealized sti�ened-shell stru
tures and 
lassi
al 1D models, highlight the fa
t that the axialstress 
omponent, σyy is not linear versus z and that the shear stress 
omponent, σyz , is not
onstant along the sheet panel.4. The Component-Wise 
apability of the present LE approa
h is 
learly evident from the 
on-du
ted analysis.B. Three-Stringer SparA longeron with three longitudinal sti�eners was subsequently 
onsidered. The geometry of thestru
ture is shown in Fig. 9. The spar was 
lamped at y = 0, whereas a point load, Fz , was appliedat the 
enter of the upper stringer at y = L. The magnitude of Fz is equal to −1 × 104 [N ]. Thegeometri
al 
hara
teristi
s were as follows: axial length, L = 3 [m]; 
ross-se
tion height, h = 1 [m];area of the stringers, As = 1.6× 10−3 [m2]; sheet panel thi
kness, t = 2 × 10−3 [m]; distan
e fromthe intermediate stringer to the x-y plane, b = 0.18 [m]. The whole stru
ture is made of the sameisotropi
 material as in the previous 
ase.Table 4 shows the displa
ement, uz, evaluated at the 
enter of the intermediate stringer togetherwith the indi
ation of the number of degrees of freedom for ea
h 
onsidered model. In the 1st and17



2nd rows 
lassi
al analyti
al models results are reported. The in
reasing order Taylor-type modelsare 
onsidered in rows 3 to 7. The CW LE model was obtained by dis
retizing the 
ross-se
tion with
5 L9 elements, one for ea
h spar 
omponent (stringers and webs), and the results are shown in row7. The last row shows the solid model result obtained by an FE model in MSC/NASTRAN 
©. TheSOLID model was obtained so that to guarantee a low aspe
t-ratio of the 8-node solid elements.Table 5 shows the stress �elds of the 
onsidered stru
ture. Axial loads in the top (P1), middle(P2) and bottom (P3) stringers are evaluated at y = 0, together with the mean shear �ows on theupper (q1) and bottom (q2) sheet panels at y =

L

2
. Referring to the BS model, the axial loads in thestringers were evaluated by means of the Navier equation that gives the longitudinal normal stressdistribution over the spar se
tion. Considering a 
oordinate frame laying on the 
enter of mass, thefollowing equation holds,

PiBS
=

FzL

I
AiZi (28)where Pi is the axial for
e in the i-th stringer, Ai the 
on
entrated boom area and Zi the verti
al
oordinate. The shear �ows qi were evaluated from the equilibrium equations. For the stru
tural
on�guration analyzed, the PS di�ers from the BS solution. In fa
t, the three-stringer spar hasone redundan
e (q1 and q2 
onsist of two independent unknowns along the z-axis whi
h are relatedby only one 
ommon equilibrium equation). The PVD was employed to take into a

ount thedeformability of stringers and panels. Let X be the redundant for
e in the lower longitudinal. Byusing the formula in [3℄, one has:

X =

E

G

(h2

h1

)1

t
+

2

3
L2
(h2

h2
1

+
1

2h1

) 1

A

E

G

(h2
2

h2
1

+
h2

L

)1

t
+

2

3
L
(h2

2

h2
1

+
h2

h1
+ 1
) 1

A

Fz (29)where h1 is the distan
e between the top and the intermediate stringer, h2 is the distan
e betweenthe intermediate and the bottom stringer. The axial for
es PiPS
and the shear �ows qiPS

were
18




omputed by substituting Eq. (29) in the equilibrium equations (for details see [3, 
hap. 8 p.168℄).
P1PS

= −Fz

L

h1
+ X

h2

h1

P2PS
= Fz

L

h1
− X(1 +

h2

h1
)

P3PS
= X

q1PS
=

Fz

h1
− X

h2

Lh1

q2PS
= X

1

L

(30)
The distribution of the axial stress, σyy, and the shear stress, σyz versus the z-axis are shown inFig. 10. The following statements hold.5. The 5 L9 model is very 
lose to the solid solution with a signi�
ant redu
tion of 
omputational
osts.6. Results from Taylor-type models are less a

urate than those from CW models.7. The 
lassi
al models are totally inadequate for the dete
tion of stress �elds of the 
onsideredstru
tural problems.8. Even in this parti
ular 
ase the CW 
apability of the CUF-based LE approa
h is highlyevident. Hen
e, the stress �elds in the stringers/panels are des
ribed as a

urately as thosein the FE solids 
ases.C. Re
tangular Wing BoxA proper wing box both with and without a rib at the tip se
tion (Fig. 11) was further analyzed.The length-to-width ratio, L/b, is equal to 3.125 with L as high as 3 [m]. The 
ross-se
tion height,
h, is equal to 0.46 [m], whereas the thi
kness of the four sheet panels is t = 2× 10−3 [m]. The areaof the spar 
aps is As = 1.6×10−3 [m2]. The wing box 
on�guration with a rib at the tip presents atransversal sti�ener with a thi
kness of r = t. The stru
ture is made of the same isotropi
 materialas in the previous 
ases. A point load, Fz = −1× 104 [N ], was applied at [b, L, h

2
].First, a 
onvergen
e study of the LE CW models was 
arried out. Table 6 shows the mean shear�ows on the panels, the axial for
es in the stringers and the number of degrees of freedom for both19



CW and MSC/NASTRAN 
© models. Ea
h CW model has a di�erent number of LE elements on thepanels. In parti
ular, in the 8 L9 model stringers and panels were modelled with 1 L9 element ea
h.In the 12 L9 model, one L9 element was used for ea
h stringer and two elements were used for ea
hpanel. In the 20 L9 model, one L9 element was used for ea
h stringer and four elements were used forea
h panel. The rib was dis
retized with a 
ombination of L4 and L9 elements. The SOLID modelwas 
ompletely built with 8-node solid elements, while the SOLID/SHELL model was obtained as a
ombination of both solid and 4-node plate �nite elements. Both stringers and rib were dis
retizedby means of solid elements in the SOLID/SHELL model, whereas plate elements were used forskins and webs. q1 and P1 refer to the top panel and to the top right stringer respe
tively, q2, q3,
q4 and P2, P3, P4 follow a 
lo
k-wise enumeration. It should be underlined that LE CW models,di�erently from TE, allow the lo
al re�nement of the 
omponents. For the stru
ture 
onsidered, oneL9 element was not su�
ient to a

urately dete
t the shear lag within the panel. Consequently, theaxial for
es in the stringers were not 
orre
t. The solution was enhan
ed by in
reasing the numberof 1D L9 elements used to dis
retize the panel.Table 7 quotes the mean shear �ows on the panels, the axial for
es in the stringers and thenumber of degrees of freedom for ea
h implemented model. Results from both analyti
al methodsand 
lassi
al beam theories are reported. Rows 5 to 7 
onsider the TE models. Finally, the 
onver-gent solution by the CW method is given in row 8 and the MSC/NASTRAN 
© models are reportedin the last two rows.BS and PS models (but also 
lassi
al beam theories) are not able to 
orre
tly dete
t the behaviorof the no rib 
on�guration of the re
tangular wing box. In fa
t, one of the main assumptions of thesemethods is that the ribs are �rigid within their planes�. The solutions provided by these methodsfor the wing box are des
ribed in the following. In a

ordan
e with the BS method, the axial for
esand the shear �ows were evaluated by solving �rstly Eq. (28) and then the equilibrium equations.Conversely, as in the previous 
ase, the PS solution requires the appli
ation of the PVD. Let X be

20



the redundant for
e applied in the bottom left stringer [3, 
hap. 10 p.196℄,
X =

(b− h)

4Gth

−
4L

3EA
−

(b+ h)

2LGt

Fz (31)Subsequently, PS stress �elds were 
omputed by substituting X in the equilibrium equations.Deformed tip 
ross-se
tions of both 
on�gurations are shown in Fig. 12 and 13, together withvariations in the shear stress 
omponents on the sheet panels. Con�rming the previous remarks,the following further 
onsiderations 
an be made:9. The results from the LE and MSC/NASTRAN 
© models 
oin
ide for both stru
tural 
on�g-urations. In parti
ular, the results from the CW model of the un-ribbed box are more similarto those from the SOLID model than to those from the SOLID/SHELL model. This is mostlikely due to the dis
ontinuities in the displa
ement �elds on the panel-stringer interfa
es thata�e
t the SOLID/SHELL model.10. For the wing-box 
onsidered, the results given by the eight-order (N = 8) TE model are notsu�
iently a

urate. An higher than eight-order TE model 
ould be ne
essary to 
orre
tlydete
t the shear-lag. However, higher-order models imply a larger number of the degrees offreedom.11. Classi
al beam models and the PS approa
h are not able to 
orre
tly des
ribe the wing boxmodel without the rib.D. Three-Bay Wing BoxThe last analysis 
ase was 
arried out on the three-bay wing box for whi
h PS and BS solutionswere given in Rivello's book. The 
onsidered stru
ture is shown in Fig. 14a [2, 
hap. 11 p. 301℄,whereas Fig.s 14b and 
 show its variations. These examples highlight the 
apability of the presentadvan
ed 1D models to a

urately des
ribe the e�e
ts due to ribs and open se
tions. The stru
tures
onsist of three wing boxes ea
h with a length, l, equal to 0.5 [m]. The 
ross-se
tion is a trapeziumwith a height b = 1 [m]. The two webs of the spars have a thi
kness of 1.6 × 10−3 [m], whereas
h1 = 0.16 [m] and h2 = 0.08 [m]. The top and the bottom panels have a thi
kness of 0.8 × 10−321



[m], as well as ribs. The area of the stringers is As = 8× 10−4 [m2]. The wing is 
ompletely madeof an aluminium alloy 2024, having G/E = 0.4. The 
ross-se
tion in y = 0 was 
lamped and a pointload, Fz = 2× 104 [N ], was applied at [b, 2× l,
h2

2
].Table 8 shows the verti
al displa
ement values, uz and the 
omputational 
osts for ea
h model.Results related to the CUF models are validated by an MSC/NASTRAN 
© model built both withsolid and shell FE elements as dis
ussed in the previous analysis. The CW models were obtainedby using both L4 and L9 elements, as in the re
tangular wing box.Fig.s 15, 16 and 17 show the spanwise variation of the axial and the shear stress 
omponentsfor the three di�erent 
on�gurations. BS and PS solutions are provided for the full model of thethree-bay wing box for 
omparison. The stru
ture has three redundan
ies. The PVD 
an be usedto 
orre
t the BS solution. Let X1, X2 and X3 be the redundant for
es that must be added to theBS solution to obtain the true for
es in the lower left stringer at a distan
e of 0, l and 2 × l fromthe root. The redundant for
es are 
al
ulated by means of the PVD. The following results hold:

X1 = −36.446 [N ]; X2 = −6.912 [N ]; X3 = 13.908 [N ] (32)These values allow us to 
ompute the axial for
es and the shear �ows for the PS method. For the
omplete resolution see [2, 
hap. 11 p. 301℄.Finally, Table 9 reports the values of the stress 
omponents of both LE and SOLID/SHELLmodels. The following remarks 
an be made.12. LE models 
orre
tly predi
t ribs and lo
al e�e
ts, as mat
h the results obtained with solid/shellmodels.13. Higher than sixth-order TE models are required to 
orre
tly predi
t the 
ross-se
tion deforma-bility.14. The PS method is quite a

urate in the des
ription of the full 
on�guration of the three-baywing box. Conversely, the BS method is not suitable as the stru
ture is stati
ally indetermi-nate. 22



V. Con
lusionsThis paper has 
onsidered and 
ompared existing methods and re
ent approa
hes that exploitone-dimensional stru
tural theories based on the Uni�ed Formulation, whi
h allows for the straight-forward implementation of higher-order analysis without the need of extensive revisions of the model.Pure Semimono
oque analyses along with beam assumptions have been 
ompared to re�ned and
omponent-wise models and to shell and solid solutions obtained by a 
ommer
ial FEM software.As general guidelines and re
ommendations, it 
an be stated that TE should be used for globalresponses, su
h as displa
ements. On the other hand, CW models have to be adopted if lo
alresponses - su
h as stress, strains - are of interest. The main 
on
lusion to be drawn is that thepresent 
omponent-wise analysis of reinfor
ed shell stru
tures appears to the authors as the most
onvenient way, in terms of both a

ura
y and 
omputational 
osts, to 
apture the global and lo
al(
omponent-wise) physi
al behavior of wing stru
tures. 3D FEM analysis is required to rea
h thesame a

ura
y with a number of degrees of freedom at least one-order of magnitude higher thanthe present models. Additionally, the present CW approa
h allows us to build FE mathemati
almodels by only using physi
al surfa
es; arti�
ial lines (beam axes) and surfa
es (plate/shell referen
esurfa
es) are no longer used. Referen
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Tables
uz × 103 [m℄ DOFsAnalyti
al MethodsBS −2.671 -PS −3.059 -Classi
al Beam TheoriesEBBT −1.827 279TBT −2.117 279TE

N = 3 −2.514 930

N = 5 −2.629 1953

N = 7 −2.738 3348

N = 9 −2.890 5115CW
4 L9, Fig. 7a −3.639 2883

8 L9, Fig. 7b −3.639 4743MSC/NASTRAN 
©SOLID −3.815 76050Table 1 Displa
ement values, uz, at the loaded point and number of degrees of freedom ofea
h model, two-stringer spar.
P [N℄ q [N/m℄

∗all values are multiplied ×10−4Analyti
al MethodsBS 3.192 −1.064PS 3.192 −1.064Classi
al Beam TheoriesEBBT 1.993 −0.274TBT 1.993 −0.274TE
N = 3 2.434 −0.665

N = 5 2.350 −0.561CW
4 L9, Fig. 7a 2.833 −1.034

8 L9, Fig. 7b 2.739 −1.035MSC/NASTRAN 
©SOLID 2.713 −1.036Table 2 Axial load in the upper stringer, P , at y = 0 and mean shear �ow on the sheet panel,
q, at y =

L

2
, two-stringer spar.
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uz × 103 [m℄ P [N℄ DOFsSOLID #1 −3.785 2.577 2805SOLID #2 −3.815 2.713 76050SOLID #3 −3.862 2.709 198246Table 3 Displa
ement values, uz, at the loaded point, axial load in the upper stringer, P , at
y = 0 and number of degrees of freedom of SOLID models, two-stringer spar.

uz × 103 [m℄ DOFsAnalyti
al MethodsBS −1.309 -PS −1.471 -Classi
al Beam TheoriesEBBT −1.325 279TBT −1.487 279TE
N = 4 −1.661 1395

N = 6 −1.707 2604

N = 8 −1.730 4185CW
5 L9 −1.846 3813MSC/NASTRAN 
©SOLID −1.857 72450Table 4 Displa
ement values, uz, at the 
enter of the intermediate stringer and number ofdegrees of freedom, three-stringer spar.

q1 [N/m℄ q2 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄
∗all values are multiplied ×10

−4Analyti
al MethodsBS −0.859 −1.095 2.574 0.730 −3.285PS −0.949 −1.118 2.847 0.507 −3.353Classi
al Beam TheoryEBBT −0.305 −0.305 2.323 0.733 −2.766TBT −0.305 −0.305 2.323 0.733 −2.766TE
N = 4 −0.071 −0.902 3.208 0.081 −3.202

N = 6 −0.402 −1.006 2.997 0.727 −3.251

N = 8 −0.469 −1.052 2.916 0.639 −3.215CW
5 L9 −0.820 −1.150 2.495 0.633 −2.980MSC/NASTRAN 
©SOLID −0.816 −1.150 2.457 0.572 −2.781Table 5 Axial loads in the stringers at y = 0 and mean shear �ows on the sheet panels at

y =
L

2
, three-stringer spar. 27



q1 [N/m℄ q2 [N/m℄ q3 [N/m℄ q4 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄ P4 [N℄ DOFs
∗all values are multiplied ×10−3 CW
8 L9 5.092 −5.173 −5.121 −16.624 23.313 −23.313 −26.211 26.211 6588

(−0.032) (0.005) (0.033) (−21.789) (−5.839) (5.839) (−55.007) (55.007) (5952)

12 L9 4.969 −5.171 −4.966 −16.654 21.033 −21.033 −24.603 24.603 9036
(−0.164) (0.013) (0.164) (−21.841) (−5.488) (5.488) (−51.143) (51.143) (8184)

20 L9 5.037 −5.145 −5.034 −16.654 20.286 −20.286 −23.767 23.767 13932
(−0.061) (0.010) (0.092) (−21.827) (−5.235) (5.235) (−49.548) (49.548) (12648)MSC/NASTRAN 
©SOLID/SHELL 5.077 −5.200 −5.149 −16.651 21.670 −21.670 −24.660 24.660 22346
(−0.381) (0.293) (−0.242) (−21.530) (−5.435) (5.435) (−51.765) (51.765) (22020)SOLID 5.074 −5.104 −5.074 −16.368 20.166 −20.166 −22.942 22.942 115362
(−0.071) (0.011) (0.071) (−21.483) (−5.163) (5.163) (−48.271) (48.271) (112200)Table 6 Convergen
e of the CW models. Mean shear �ows on the sheet panels at y =

L

2
, axialloads in the stringers at y = 0 and number of degrees of freedom. Re
tangular wing box withrib at the tip. Results by models without rib are reported in bra
kets.

q1 [N/m℄ q2 [N/m℄ q3 [N/m℄ q4 [N/m℄ P1 [N℄ P2 [N℄ P3 [N℄ P4 [N℄ DOFs
∗all values are multiplied ×10−3 Analyti
al MethodsBS 5.435 −5.435 −5.435 −16.304 32.609 −32.609 −32.609 32.609 -PS 5.221 −5.221 −5.221 −16.518 31.325 −31.325 −33.893 33.893 -Classi
al Beam TheoriesEBBT 0 −1.701 0 −1.701 19.757 −19.757 −19.757 19.757 306TBT 0 −1.701 0 −1.701 19.757 −19.757 −19.757 19.757 306TE
N = 4 4.470 −4.603 −4.470 −14.142 23.197 −23.197 −26.418 26.418 1530

(4.769) (−4.897) (−4.769) (−13.848) (23.167) (−23.167) (−26.448) (26.448) (1395)

N = 6 4.848 −4.579 −4.846 −14.218 23.529 −23.523 −27.567 27.556 2856
(5.654) (−5.329) (−5.655) (−13.467) (23.404) (−23.404) (−27.684) (27.686) (2604)

N = 8 4.647 −5.148 −4.894 −16.240 23.803 −23.837 −26.579 26.722 4490
(1.478) (−1.204) (−1.478) (−20.060) (1.555) (−1.531) (−48.968) (48.976) (4185)CW
5.037 −5.145 −5.034 −16.654 20.286 −20.286 −23.767 23.767 13932

(−0.061) (0.010) (0.092) (−21.827) (−5.235) (5.235) (−49.548) (49.548) (12648)MSC/NASTRAN 
©SOLID/SHELL 5.077 −5.200 −5.149 −16.651 21.670 −21.670 −24.660 24.660 22346
(−0.381) (0.293) (−0.242) (−21.530) (−5.435) (5.435) (−51.765) (51.765) (22020)SOLID 5.074 −5.104 −5.074 −16.368 20.166 −20.166 −22.942 22.942 115362
(−0.071) (0.011) (0.071) (−21.483) (−5.163) (5.163) (−48.271) (48.271) (112200)Table 7 Mean shear �ows on the sheet panels at y =

L

2
, axial loads in the stringers at y = 0and number of degrees of freedom. Re
tangular wing box with rib at the tip. Results bymodels without rib are reported in bra
kets.28



Full Model No Ribs Case Open Mid-bay Case
uz × 102 [m℄ DOFs uz × 102 [m℄ DOFs uz × 102 [m℄ DOFsMSC/NASTRAN 
©SOLID/SHELL 1.412 100026 3.051 89400 1.963 89621Classi
al Beam TheoriesEBBT 0.464 495 0.464 495 0.464 495TBT 0.477 495 0.477 495 0.477 495TE

N = 3 0.793 1650 0.794 1650 0.873 1650

N = 5 1.108 3465 1.203 3465 1.500 3465

N = 7 1.251 5940 2.158 5940 1.745 5940

N = 9 1.325 9075 2.649 9075 1.836 9075CW
1.397 10750 2.981 10560 1.919 10446Table 8 Displa
ement values, uz, at the loaded point and number of degrees of freedom forthe 
onsidered stru
tural 
on�gurations of the three-bay wing box.

Full Model No Ribs Case Open Mid-bay CaseModel σyy [MPa℄ σyz [MPa℄ σyy [MPa℄ σyz [MPa℄ σyy [MPa℄ σyz [Pa℄SOLID/SHELL 80.598 120.730 178.147 155.368 123.841 115.351CW LE 80.404 120.603 177.018 151.876 118.684 115.810Table 9 Stress 
omponents, σyy at [b, l

2
,−h2

2
] and σyz at [b, l

2
, 0], of the di�erent stru
tural
on�gurations of the three-bay wing box.
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(a)
4 L9 (b)

8 L9Fig. 7 Cross-se
tion L9 distributions for the LE models of the two-stringer spar.
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(b) σyz vs. z at x = 0, y =
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2Fig. 8 Axial stress, σyy, and shear stress, σyz, versus the z-axis, two-stringer spar.
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(b) σyz vs. z at x = 0, y =
L
2Fig. 10 Axial stress, σyy, and shear stress, σyz, versus the z-axis, three-stringer spar.
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