
13 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Asynchronous scheduling/binding using a genetic approach / Blunno, I.; Lazarescu, MIHAI TEODOR. - ELETTRONICO.
- (2002). (Intervento presentato al convegno MIPRO 2002 tenutosi a Opatija, Croatia nel May 2002).

Original

Asynchronous scheduling/binding using a genetic approach

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507490 since:

Asyn
hronous S
heduling/Binding

Using a Geneti
 Approa
h

Ivan Blunno

Polite
ni
o di Torino

Torino, Italy

blunno�polito.it

Mihai Lazares
u

Caden
e Design Systems

Milan, Italy

mihail�
aden
e.
om

Abstra
t

In this paper a new approa
h to operation s
heduling and bind-

ing in asyn
hronous High Level Synthesis (HLS) is presented.

We developed a geneti
 algorithm and integrated it inside Pip-

e�tter [5℄, an existing tool for the automated synthesis of asyn-

hronous
ir
uit. A Control Data Flow Graph (CDFG), derived

by Pipe�tter from an HDL spe
i�
ation, is the input format

for our algorithm. The designer
an steer the sear
h of an op-

timized solution either in the dire
tion of minimum area or in

the dire
tion of maximum throughput. In the �nal solution

ea
h operation in the CDFG will be assigned to an operative

unit (stati
 binding), while the exe
ution sequen
e will be de-

termined run-time by the
ontrol unit (dynami
 s
heduling) in

order to improve performan
es. This solution is then returned

to Pipe�tter that will
omplete the synthesis pro
ess down to

the layout level.

1 Introdu
tion

The transition from \System-on-Board" to \System-on-Chip"

(SoC) approa
h
an be
onsidered a key element in the last few

years mi
roele
troni
 design trend. Basi
 devi
es like mi
ro
on-

trollers, DSP's, memories, FPGA's that on
e were pla
ed on the

same board
an now be �tted onto a single die. However, the
a-

pability of redu
ing the transistor size thereby rea
hing a higher

density of
omponents on the same
hip is two fold; smaller and

faster devi
es
an be designed and �t on the same die allowing

to rea
h very high
lo
k frequen
y and level of integration, but,

at the same time, problems like Ele
tro Magneti
 Interferen
e,

interfa
ing and
lo
k distribution are be
oming more diÆ
ult

to solve. Asyn
hronous systems seem to be better suited than

syn
hronous ones for helping the issues mentioned above for a

number of reasons:

� Operations are performed on a distributed time range,

avoiding the simultaneous swit
hing of logi
 gate and hen
e

redu
ing
urrent and voltage glit
hes on the power supply

whi
h are responsible for high frequen
ies Ele
tro Mag-

neti
 Emissions.

� Asyn
hronous systems naturally adapt their speed and

performan
e to the environment in whi
h they are work-

ing and interfa
ing to ea
h other
an be easily done with-

out the design of spe
i�
 units dedi
ated to this purpose.

This properties makes also the reuse of devi
es easier (e.g.,

reusable IP
ores).

� Asyn
hronous devi
es are syn
hronized using lo
al hand-

shakes instead of a global
lo
k signal, ta
kling the issue

of distributing a low-skew
lo
k signal to a large number

of memory elements (i.e.,
ip-
ops).

Despite the many advantages presented above, in the past

years, asyn
hronous
ir
uits have just been taken in
onsider-

ation for very few ni
he appli
ations. Asyn
hronous design is

indeed made mu
h harder than syn
hronous one due to the pres-

en
e of hazards. In the last de
ade, however, the interest for

the asyn
hronous world has signi�
antly in
reased yielding to

the development of some asyn
hronous Ele
troni
 Design Au-

tomation (EDA) tools. The algorithm presented in this paper

is part of one of this tools. Se
tion 2 is meant to give a gen-

eral overview on existing syn
hronous and asyn
hronous HLS

approa
hes. Our approa
h will be des
ribed in detail in se
-

tions 3 and 4. In se
tion 5 the results of the implementation of

our algorithm will be showed through an example. The in
u-

en
e of some parameters on the algorithm is shown in se
tion 6.

Finally, se
tion 7
on
ludes the paper dis
ussing some possible

future improvements.

2 Asyn
hronous High Level Synthesis

High Level Synthesis is the design pro
ess where a behavioral

des
ription is mapped onto a register transfer level (RTL) rep-

resentation that implements the spe
i�ed behavior [1℄. Three

main tasks
an be identi�ed as part of HLS: allo
ation, s
hedul-

ing, and binding. In this paper we fo
us our attention only on

the automation of s
heduling and binding tasks. In parti
ular,

only operative units (OU) and multiplexer binding is optimized,

while ea
h variable is synthesized as a separate register.

HLS basi
ally
onsists in de
iding whi
h physi
al unit is re-

sponsible for ea
h logi
al operation (binding) and at whi
h time

ea
h operation has to be performed (s
heduling). If the designer

is looking into an un
onstrained implementation for the
ir
uit

the two tasks
an be
onsidered separately from ea
h other. For

instan
e it
ould be possible to allo
ate an OU for ea
h logi
al

operation and exe
ute them all sequentially. However, in most

appli
ations a small area o

upation and a fast exe
ution time

are requested. In fa
t HLS aims at �nding a trade o� between

two
on
i
ting requirements:

� Using the minimum number of resour
es in order to redu
e

the area of the implemented
ir
uit (resour
e-
onstrained

s
heduling/binding).

� Exe
ute as many operations as possible
on
urrently in or-

der to improve the performan
e of the implemented
ir
uit

(time-
onstrained s
heduling/binding).

An approa
h that takes in
onsideration both the
onstraints

is referred to as time- and resour
e-
onstrained s
heduling/bind-

ing.

The existing syn
hronous s
heduling/binding algorithms are

based on the division of the time into
ontrol steps [4℄. The

use of a global
lo
k signal guarantees all the
ontrol steps to

have the same length. On this basis some algorithms, su
h

A

B C

++

Figure 1: Fragment of CDFG

A

B C

++

Figure 2: Fragment of modi�ed CDFG

as ASAP/ALAP s
heduling, list s
heduling, and for
e-dire
ted

s
heduling have been developed.

Asyn
hronous operations, unfortunately, don't have a �xed

exe
ution time and therefore it is not possible to use approa
hes

similar to those used in the syn
hronous
ase. Ea
h operation

an take any amount of time between a minimum and a maxi-

mum value. This
hara
teristi
 makes asyn
hronous s
heduling

and binding mu
h more
ompli
ated and explains why in the

past only few attempts were made to solve this problem. A

number of algorithms have been developed all based on the idea

of traversing the CDFG as it was a timed Petri net [2, 3℄. Time

slots are asso
iated with ea
h operation and a stati
 order for

their exe
ution is determined. The vagueness of this estimation

however
an bring to very ineÆ
ient solutions. For this reason

our approa
h was based on a
ompletely di�erent idea: dynam-

i
ally modifying the order of exe
ution by means of arbitration.

Let's
onsider, for example, the fragment of Control Flow

Graph (CFG) shown in �gure 1. After operation A has been

ompleted, two bran
hes
an be exe
uted simultaneously. That

means that operations B and C will start at the same time. The

sum operations present on ea
h bran
h
an start at any time

inside a minimum and maximum time range, depending on the

end time of operations B and C. The duration of ea
h operation

an also be identi�ed by a minimum and a maximum value. We

an �nally de�ne two time slots identifying when the operations

an o

ur: S

1

= (t

1

min

; t

1

max

) and S

2

= (t

2

min

; t

2

max

). If we

have only one OU able to perform the sum operation, we have

to de
ide whi
h of the two sums has to be performed �rst. If

the two slots are not overlapping, no
on
i
t
an o

ur between

the two operations, hen
e no a
tion has to be taken. Otherwise

we have to de
ide whi
h operation has to be performed �rst.

In order to do this, we have to add a
ontrol edge in the CFG

going from the �rst operation to the se
ond one. We
hoose the

order of exe
ution trying to optimize the average
ase.

In �gure 2 is shown the
ase in whi
h the left sum will always

be performed before the right one (i.e., operation B is in general

faster than operation C). However, on
e an order of exe
ution

has been
hosen, even when operation C terminates before op-

eration B (and hen
e the right sum
ould start) we will have to

F

+

+

J

*

F

*

+

J

+

F

J

* +

1

2

3

4

5

6

7

8

9

1110

12 13

14

Figure 3: Example of CFG

wait for operation B to end and therefore for the left sum to be

performed. In our approa
h, a non �xed order of exe
ution is

implemented by the
ontroller. When either the B or C oper-

ation
ompletes, the following sum will be enabled to exe
ute.

The other sum will wait until the �rst one has been
ompleted.

This kind of approa
h requires the use of arbiters and therefore

a larger area o

upation but, in general, it leads to mu
h more

eÆ
ient solutions.

3 The dynami
 s
heduling approa
h

A generi
 CFG is a set of nodes and edges. Ea
h node represents

an operation, while ea
h edge represents a sequential relation

between operations. Ea
h operation must be performed by a

physi
al operative unit, while ea
h operative unit
an perform

more than one operation, but only one at a time. The designer

has to spe
ify how many resour
es are available and list whi
h

operations they
an perform. These spe
i�
ations are usually

referred to as resour
e allo
ation.

The example shown in �gure 3
an help us to explain how

our approa
h works.

Four kinds of nodes are shown in this CFG: F nodes, rep-

resenting fork operations, and J nodes, representing join oper-

ations are
ontrol nodes, while the nodes labeled + and � are

sum and multipli
ation nodes.

Let's assume that we allo
ate two physi
al resour
es: one

able to perform only sums, the other able to perform only mul-

tipli
ations. Thus, nodes 3, 4, 7, 9, and 13 will be assigned to

the �rst OU unit, while nodes 5, 8, and 12 will be assigned to the

se
ond one. The problem of managing the
on
i
ts between the

operations that
ould
ompete for the same resour
e is solved

using arbiters. When the algorithm establishes that two or more

operations are assigned to the same OU and may be
on
urrent,

an arbiter is generated. This arbiter will dynami
ally s
hedule

the requests that will
ome to the OU. In this
ase, a �ve-input

arbiter should be used for the adder and a three-input arbiter

for the multiplier (i.e., one input for ea
h node).

The same example
an be
ompli
ated further if two OU's

are able to perform a sum. In this
ase, we have more than

one possible solution to the problem. We
ould, for example,

hoose the one found before, where only one OU and a �ve-

inputs arbiter was used. Another possible solution
ould be

to use two adders: one for operations 3 and 4 and the other

for operations 7, 9, and 13. In this
ase, we wouldn't need an

arbiter for the �rst OU (sin
e the two operations are exe
uted

one after the other) while we would need a two-inputs arbiter

for the se
ond one, where operations 7 and 9
ould try to a

ess

the adder at the same time.

Finding the optimal solution for su
h a problem is a matter

of
hoosing whether it is better to have one adder and one �ve-

inputs arbiter or two adders and one two-inputs arbiter. In order

to do this a
ost fun
tion must be determined that provides the

algorithm with a
riteria to evaluate ea
h solution.

It must be also taken in
onsideration that the resour
es

shared by more than one operation
ould have to be provided

with input multiplexers. Swapping the two operators (whenever

possible)
an help remove some multiplexers and redu
e the

total area for the
ir
uit. For example, if we assign the two

operations Y = A+B and Y = C+A to the same adder, a two-

inputs multiplexer would be needed on ea
h input. Swapping

either the operands of the �rst sum or those of the se
ond one

would save one multiplexer (for both operations the register A

would be
onne
ted to the same input of the adder).

4 A formal approa
h to the algorithm

Two nodes
an be in
on
i
t when they are on
on
urrent

bran
hes. In order to identify all possible
on
i
ts between op-

erations without traversing the graph every time the binding is

hanged, ea
h node is labeled with all the fork nodes that pre-

edes it and are still not
losed by a join node. Therefore, a

fork-label L

N

of node N will be a list of
ouples (F

k

; B

k

); F

k

is

the fork node on whose bran
h the node N is exe
uted, while

B

k

is the a
tual bran
h on whi
h N is exe
uted. Two nodes are

on
i
ting when all of the following three
onditions are met:

� They have one or more fork nodes in
ommon in their

fork-labels.

� The two nodes are not on the same bran
h.

� The two operations represented by the two nodes have

been bound to the same operative unit.

In the example of �gure 3, the node N

3

has the fork-label

L

N

3

= f(F

1

; 1); (F

2

; 1)g, while the node N

7

has the fork-label

L

N

7

= f(F

1

; 2); (F

6

; 1)g. If these two nodes are bound to the

same resour
e, they are
on
i
ting sin
e in their fork-label the

�rst element refers the same fork node but with a di�erent

bran
h value.

The labeling operation is performed only on
e at the begin-

ning, sin
e it depends only on the topology of the CFG and not

on the binding
hoi
es performed by the algorithm.

A solution for the binding problem
onsists in assigning ea
h

node whi
h performs an operation (i.e., non
ontrol nodes) to

a physi
al resour
e and in de
iding whether to swap the oper-

ators for that operation or not. We
an de�ne a binding ele-

ment as a
ouple of variables, one representing the resour
e to

whi
h the node is assigned and the other to de�ne if the in-

put must be swapped for that operation: B

j

= fR

j

;W

j

g. The

swapping variable W

j

an be assigned value 0 or 1 (swapped

or not-swapped). Su
h a solution
an be represented by a ve
-

tor V = fB

N

1

; B

N

2

; :::; B

N

l

g, where l is the total number of

operation nodes.

As the number of nodes and resour
es in
reases, the num-

ber of solutions
an be
ame very large and exploring them all

next to impossible. For example, a CFG with 15 nodes, ea
h

of whi
h
an be assigned to 3 possible resour
es (with 2 possi-

ble values for the swapping variable) has (2 � 3)

15

' 4:7 � 10

11

possible solutions! In these situations it is not possible to use

traditional linear programming algorithms [6℄. Self-adaptive al-

gorithms (e.g., geneti
, neuro-fuzzy, simulated annealing, et
.)

on the other hand, are a possible way to ta
kle this problem.

A A A

B B B A A A A A B B

B B B B B A A

Figure 4: Crossover s
heme

Geneti
 algorithms (GA) mimi
 the natural evolution pro-

ess of a population of
hromosomes, where those whi
h are �t

for the \environment" survive and generate new ones, while the

others are deleted. The key aspe
t of this
lass of algorithms is

the
hoi
e of a good representation for both the solutions of the

problem and a good �tness fun
tion to evaluate them.

In our approa
h, the binding elements asso
iated with ea
h

node play the role of genes, while a ve
tor of genes (i.e., a solu-

tion) play the role of a
hromosome. A set of
hromosomes will

be referred to as population. The environment whi
h applies a

sort of natural sele
tion on
hromosomes is played by the CFG

itself in the form of the fork-labels introdu
ed above.

The geneti
 algorithm
an be summarized as follows:

1. New population generation. The initial population

is generated randomly. A larger population in
reases the

probability to �nd the optimal solution, but the
omputa-

tional e�ort in
reases, too. A similar observation
an be

made about the number of iterations of the pro
ess. How

these parameters in
uen
e the eÆ
ien
y of the algorithm

will be dis
ussed in se
tion 6.

2. Population evaluation. The population is evaluated by

estimating the number of resour
es, multiplexers and ar-

biters used. Ea
h of them must be asso
iated with a
ost.

A higher
ost for OU's will result in a smaller
ir
uit area,

sin
e solutions with fewer OU's will be preferred by the al-

gorithm. On the other hand, higher
ost for arbiters will

result in higher
ir
uit throughput, be
ause the algorithm

will favor solutions with more OU's and fewer arbiters (i.e.,

fewer
on
i
ts). The
hoi
e of
osts is therefore a means

for the designer to dire
t the algorithm toward either a

small area or a high throughput solution.

3. Population sorting. The
hromosomes in the popula-

tion are then sorted out. The worst ones are dis
arded

and repla
ed by new ones generated by mating the best

ones.

4. Chromosomes mating. The s
heme used to mate
hro-

mosomes is the typi
al two-points
rossover s
heme shown

in �gure 4, where two indexes are randomly
hosen and

all the genes between them are ex
hanged.

5. Chromosomes mutation. In order to apply some ran-

dom variations to the population, some small
hanges are

arried out over
hromosomes. This pro
ess
an help the

algorithm to avoid getting stu
k around lo
al minimums.

The probability whi
h
hara
terizes this pro
ess is another

parameter that will be dis
ussed in se
tion 6.

5 A simple example: an arithmeti
 unit

In this example, we will show the results of the use of our tool

on a simple arithmeti
 unit, whose CFG is shown in �gure 5.

The geneti
 algorithm has been run on this spe
i�
ation 3 times

with di�erent
osts and allo
ations:

Run 1. Two adders and two multipliers have been provided for

the �rst run, and the
ost of arbiters has been set to 0. As

a result all the sums have been bound on one adder and all

the multipli
ations on one multiplier. Two arbiters have

 <0> start

 <1> always

 <2> fork

 <4> fork <10> fork

 <6> X = A + B <8> Z = 3 * A

 <7> Y = X + 3

 <5> join

 <9> L = Y * Z

 <3> join

 <16> endalways

 <12> W = D + 1

 <13> K = C * 3

 <11> join

 <15> M = W + J

 <14> J = K + A

Figure 5: Arithmeti
 unit CFG

been spe
i�ed: a �ve-inputs arbiter for the adder and a

three-inputs one for the multiplier. The only interesting

result is the swapping of the input variables for operations

13 and 14 in order to redu
e input multiplexers area.

Run 2. For the se
ond run, the same number of fun
tional

units have been provided as the �rst run. In this
ase,

however, their
ost has been set to 0, while the
ost of the

arbiters have been set to a greater value. The algorithm

found a solution where both multipliers have been used in

order to avoid
on
i
ts (no arbiter was needed) and two

adders have been used in order to minimize the number

of
on
i
ts. An arbiter was still ne
essary be
ause of the

on
i
t between operations 12 and 14.

Run 3. For the third run the same
osts have been used for

arbiters and fun
tional units as in the previous run. One

more adder has been allo
ated. A solution without
on-

i
ts and therefore without arbiters has been found by the

algorithm.

All the s
heduling/binding pro
esses have been run using 100

hromosomes and 100 iterations, with a mutation probability of

5%. Ea
h run took less than a se
ond to
omplete on a 800MHz

CPU. Table 1 summarizes the results for the example des
ribed

in this se
tion.

Available Used

Run ADD MUL ADD MUL Con
i
ts

1 2 2 1 1 7

2 2 2 2 2 2

3 3 2 3 2 0

Table 1: Results for examples of se
tion 5

6 Quality
onsiderations

The problem of �nding the optimal allo
ation, s
heduling, and

binding for an asyn
hronous
ir
uit is of
lass NP
omplete.

The algorithms that explore the whole solution spa
e run into

serious eÆ
ien
y limitations when attempting to solve problems

of pra
ti
al size. The use of heuristi
s emerged as an eÆ
ient

mean to limit the
omputation load and improve the overall

algorithm eÆ
ien
y.

In this work we used geneti
 algorithms. Like many other

heuristi
s, these algorithms are not guaranteed to rea
h the best

solution. They have an in
remental approa
h instead, attempt-

ing to improve the solution quality every new iteration. More-

over, using relatively few hardware resour
es, the geneti
 algo-

rithms are able to a
hieve high quality solutions even with a

oarse des
ription of what the optimum is (e.g., they
an
on-

verge even using just a
riterion to dis
riminate any two valid

solutions, without quantifying their individual quality).

The
onvergen
e of the geneti
 algorithms depends on many

fa
tors, su
h as: the representation
hosen for the physi
al prob-

lem, the population size, the quality fun
tion, the algorithms

used for sear
hing the solution spa
e (typi
ally mutation and

rossover), et
. Tweaking all these parameters by hand often

prove to be time
onsuming and a heuristi
 work by itself [7℄.

However, without exploring these parameters, we
annot

know if the algorithm
onverged on a lo
al optimum, far from

the overall best, nor even if the
onvergen
e speed (i.e., the use

the algorithm makes of the hardware resour
es) is good [8, 9℄.

In the sequel we will present some experimental results re-

garding the in
uen
e of the variation of the geneti
 algorithm-

spe
i�
 parameters over the
onvergen
e and the probability to

�nd the best solution. The goal of this exploration is to ob-

tain a fully adaptive algorithm, able to autonomously tune its

parameters on the
lass of problem to solve.

In our experiments, the same problem was solved for 2000

times (full s
ale on the Y axis), using a random starting point

and 500 generations (full s
ale of the X axis). The sweep pa-

rameters were the mutation probability (0-100%) and the pop-

ulation size (4-1024
hromosomes). The best possible solution

for the problem was known, in order to be able to evaluate the

quality of the algorithms.

In �gure 6 are reprodu
ed the results for two
hara
teristi

ases. In these graphs, ea
h point P (x; y) measures how many

runs needed less than or at most x generations to �nd the best

solution. These graphs
an also be seen as the
umulative dis-

tribution of the probability density to �nd the best solution.

In �gure 6 (a), a very thin population with respe
t to prob-

lem size was used. Con
eptually, this population is not able to

maintain enough diversity to ensure a good exploration of the

solution spa
e, thus is prone to be trapped in lo
al optimums.

We
an see that it needs a good in
ux of variations from out-

side (about 15% mutation ratio) to be able to perform enough

solution spa
e exploration to �nd the overall best solution.

On the other side, �gure 6 (b) shows that a large population

with respe
t to problem size is very likely to have intrinsi
ally

enough diversity for �nding the best solution using a very few

0

200

400

600

800

1000

1200

1400

1600

1800

2000

50 100 150 200 250 300 350 400 450 500

S
ol

ut
io

ns

Generations

Cumulative distribution of the probability to find the best solution (8 chromosomes)

0% mutation
5% mutation

10% mutation
15% mutation
20% mutation
25% mutation
30% mutation
35% mutation
40% mutation
45% mutation
50% mutation
55% mutation
60% mutation
65% mutation
70% mutation
75% mutation
80% mutation
85% mutation
90% mutation
95% mutation

100% mutation

(a)

0

500

1000

1500

2000

50 100 150 200 250 300 350 400 450 500

S
ol

ut
io

ns

Generations

Cumulative distribution of the probability to find the best solution (1024 chromosomes)

0% mutation
5% mutation

10% mutation
15% mutation
20% mutation
25% mutation
30% mutation
35% mutation
40% mutation
45% mutation
50% mutation
55% mutation
60% mutation
65% mutation
70% mutation
75% mutation
80% mutation
85% mutation
90% mutation
95% mutation

100% mutation

(b)

Figure 6: EÆ
ien
y of the geneti
 algorithms with respe
t to the

population size and probability of mutation (2D representation)

generations and low (if any) external diversity (mutation ratios

very
lose to 0%).

In both
ases, as we would expe
t, a high mutation ratio

(
lose to 100%) is per
eived as a random fa
tor, whi
h
an over-

whelm the quality fun
tion feedba
k and evenly distribute the

han
es to �nd the best solution with respe
t to the number of

generations. In �gure 6 this
an be seen as an almost straight

line of
onstant slope.

The optimum of the geneti
 algorithm parameters should

seek to minimize two negative e�e
ts:

� the mutation probability should be
hosen su
h way as

to bring enough diversity to avoid lo
al optimums on one

hand, but also avoid disturbing the sele
tion based on the

quality fun
tion feedba
k;

� the population
an drain out too many
omputation re-

sour
es if oversize, while it may get easily trapped into

lo
al optimums if too thin.

In �gure 7 are presented the same results using 3D graphs.

This makes very easy to observe the impa
t the population size

and the mutation probability have on the quality of the geneti

algorithm.

Figure 7 (a) uses a very thin population, of only 4
hromo-

somes. The la
k of intrinsi
 diversity makes almost impossible

Cumulative distribution of the probability to find the best solution (4 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(a)

Cumulative distribution of the probability to find the best solution (16 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(b)

Cumulative distribution of the probability to find the best solution (256 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(
)

Cumulative distribution of the probability to find the best solution (1024 chromosomes)

50
100
150
200
250
300
350
400
450
500

Generations

00.10.20.30.40.50.60.70.80.91

Mutation probability

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Solutions

(d)

Figure 7: EÆ
ien
y of the geneti
 algorithms with respe
t to the

population size and probability of mutation (3D representation)

to �nd the best solution, even after many generations, in absen
e

of external variations (0% mutation probability). The best this

thin population
an do is for around 15% mutation probability,

while for higher ratios the sele
tion feedba
k from the quality

fun
tion is
luttered by too mu
h randomness.

Figure 7 (b) shows how a larger population (of 16
hromo-

somes) is
apable to make good use of external variations (muta-

tion ratios of 25-30%) to a

elerate the sear
h for the optimum

solution. On this population size we
an still see that there is

not enough intrinsi
 diversity to �nd the best solution in ab-

sen
e of mutations, as well as the negative impa
t of too mu
h

randomness indu
ed by very high mutation ratios.

Higher population sizes (256
hromosomes in �gure 7 (
) and

1024
hromosomes in �gure 7 (d)) exhibit both enough intrinsi

diversity to �nd the best solution in absen
e of mutations, as

well as better resilien
e to external random in
uxes for higher

mutation ratios. However, large populations mean higher use of

omputational resour
es and a trade-o� should be found.

7 Con
lusions and future work

Asyn
hronous
ir
uit allo
ation, s
heduling, and binding is a

very
omplex problem. In this paper, an e�e
tive method based

on geneti
 algorithms for s
heduling and binding was presented.

The algorithm
an be dire
ted to optimize the
ir
uit area

or the throughput. The hazards are avoided by automati
 in-

sertion of arbiters whenever ne
essary and the number of input

multiplexers for shared resour
es is minimized as well.

Moreover, experimental results that illustrate the in
uen
e

of main parameters on the geneti
 algorithm
onvergen
e are

presented. These open the way to automati
 parameter tuning

at run-time, greatly improving the eÆ
ien
y and quality of the

algorithm.

Referen
es

[1℄ D. D. Gajski, Loganath, and Rama
handran, \Introdu
-

tion to High-Level Synthesis", in IEEE Design & Test of

Computers, Vol. 11, No. 4, O
t-De
 1994, pp. 45-54.

[2℄ R. M. Badia and J. Cortadella, \High-Level Synthesis

of Asyn
hronous Systems: S
heduling and Pro
ess Syn-

hronization", European Design Automation Conferen
e,

Feb 1993, pp. 70-74.

[3℄ J. Cortadella, R. M. Badia, E. Pastor, and A. Pardo,

\A
hilles: A High-Level Synthesis System for Asyn-

hronous Cir
uits", 6

th

Workshop on High-Level Synthesis,

1992.

[4℄ R. A. Walker and S. Chaudhuri, \High Level Synthesis:

Introdu
tion to the S
heduling Problem", IEEE Design &

Test of Computers, Vol. 12, Issue 2, summer 1995, pp. 60-

69.

[5℄ I. Blunno and L. Lavagno, \Automated synthesis of mi
ro-

pipelines form Verilog HDL ", IEEE 6

th

Symposium on Ad-

van
ed Resear
h on Asyn
hronous Cir
uits and Systems,

April 2000, pp. 84-92

[6℄ K. H. Borgwardt, \The simplex method: a probabilisti

analysis", Springer-Verlag, 1987.

[7℄ A. E. Eiben, R. Hinterding, and Z. Mi
halewi
z. \Parame-

ter
ontrol in evolutionary algorithms", IEEE Transa
tions

on Evolutionary Computation, 3(2):124{141, 1999.

[8℄ S. F. S. Vin
ent, A. Ci
irello, \Modeling GA Perfor-

man
e for Control Parameter Optimization", Pro
eedings

of the Geneti
 and Evolutionary Computation Conferen
e

(GECCO-2000), Morgan Kaufmann, 10-12, pp. 235-242,

2000.

[9℄ T. Krink, B. H. Mayoh, and Z. Mi
halewi
z, \A Pat
h-

work Model for Evolutionary Algorithms with Stru
tured

and Variable Size Populations", Pro
eedings of the Geneti

and Evolutionary Computation Conferen
e, vol. 2, 13-17,

Morgan Kaufmann, pp. 1321-1328, 1999.

[10℄ L. Davis, \Handbook of geneti
 algorithms", VNR, 1991.

