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Abstract

In this paper a new approach to operation scheduling and bind-
ing in asynchronous High Level Synthesis (HLS) is presented.
We developed a genetic algorithm and integrated it inside Pip-
efitter [5], an existing tool for the automated synthesis of asyn-
chronous circuit. A Control Data Flow Graph (CDFQG), derived
by Pipefitter from an HDL specification, is the input format
for our algorithm. The designer can steer the search of an op-
timized solution either in the direction of minimum area or in
the direction of maximum throughput. In the final solution
each operation in the CDFG will be assigned to an operative
unit (static binding), while the execution sequence will be de-
termined run-time by the control unit (dynamic scheduling) in
order to improve performances. This solution is then returned
to Pipefitter that will complete the synthesis process down to
the layout level.

1 Introduction

The transition from “System-on-Board” to “System-on-Chip”
(SoC) approach can be considered a key element in the last few
years microelectronic design trend. Basic devices like microcon-
trollers, DSP’s, memories, FPGA’s that once were placed on the
same board can now be fitted onto a single die. However, the ca-
pability of reducing the transistor size thereby reaching a higher
density of components on the same chip is two fold; smaller and
faster devices can be designed and fit on the same die allowing
to reach very high clock frequency and level of integration, but,
at the same time, problems like Electro Magnetic Interference,
interfacing and clock distribution are becoming more difficult
to solve. Asynchronous systems seem to be better suited than
synchronous ones for helping the issues mentioned above for a
number of reasons:

e Operations are performed on a distributed time range,
avoiding the simultaneous switching of logic gate and hence
reducing current and voltage glitches on the power supply
which are responsible for high frequencies Electro Mag-
netic Emissions.

e Asynchronous systems naturally adapt their speed and
performance to the environment in which they are work-
ing and interfacing to each other can be easily done with-
out the design of specific units dedicated to this purpose.
This properties makes also the reuse of devices easier (e.g.,
reusable IP cores).

e Asynchronous devices are synchronized using local hand-
shakes instead of a global clock signal, tackling the issue
of distributing a low-skew clock signal to a large number
of memory elements (i.e., flip-flops).
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Despite the many advantages presented above, in the past
years, asynchronous circuits have just been taken in consider-
ation for very few niche applications. Asynchronous design is
indeed made much harder than synchronous one due to the pres-
ence of hazards. In the last decade, however, the interest for
the asynchronous world has significantly increased yielding to
the development of some asynchronous Electronic Design Au-
tomation (EDA) tools. The algorithm presented in this paper
is part of one of this tools. Section 2 is meant to give a gen-
eral overview on existing synchronous and asynchronous HLS
approaches. Our approach will be described in detail in sec-
tions 3 and 4. In section 5 the results of the implementation of
our algorithm will be showed through an example. The influ-
ence of some parameters on the algorithm is shown in section 6.
Finally, section 7 concludes the paper discussing some possible
future improvements.

2 Asynchronous High Level Synthesis

High Level Synthesis is the design process where a behavioral
description is mapped onto a register transfer level (RTL) rep-
resentation that implements the specified behavior [1]. Three
main tasks can be identified as part of HLS: allocation, schedul-
ing, and binding. In this paper we focus our attention only on
the automation of scheduling and binding tasks. In particular,
only operative units (OU) and multiplexer binding is optimized,
while each variable is synthesized as a separate register.

HLS basically consists in deciding which physical unit is re-
sponsible for each logical operation (binding) and at which time
each operation has to be performed (scheduling). If the designer
is looking into an unconstrained implementation for the circuit
the two tasks can be considered separately from each other. For
instance it could be possible to allocate an OU for each logical
operation and execute them all sequentially. However, in most
applications a small area occupation and a fast execution time
are requested. In fact HLS aims at finding a trade off between
two conflicting requirements:

e Using the minimum number of resources in order to reduce
the area of the implemented circuit (resource-constrained
scheduling/binding).

e Execute as many operations as possible concurrently in or-
der to improve the performance of the implemented circuit
(time-constrained scheduling/binding).

An approach that takes in consideration both the constraints
is referred to as time- and resource-constrained scheduling/bind-
ing.

The existing synchronous scheduling/binding algorithms are
based on the division of the time into control steps [4]. The
use of a global clock signal guarantees all the control steps to
have the same length. On this basis some algorithms, such



Figure 2: Fragment of modified CDFG

as ASAP/ALAP scheduling, list scheduling, and force-directed
scheduling have been developed.

Asynchronous operations, unfortunately, don’t have a fixed
execution time and therefore it is not possible to use approaches
similar to those used in the synchronous case. Each operation
can take any amount of time between a minimum and a maxi-
mum value. This characteristic makes asynchronous scheduling
and binding much more complicated and explains why in the
past only few attempts were made to solve this problem. A
number of algorithms have been developed all based on the idea
of traversing the CDFG as it was a timed Petri net [2, 3]. Time
slots are associated with each operation and a static order for
their execution is determined. The vagueness of this estimation
however can bring to very inefficient solutions. For this reason
our approach was based on a completely different idea: dynam-
ically modifying the order of execution by means of arbitration.

Let’s consider, for example, the fragment of Control Flow
Graph (CFG) shown in figure 1. After operation A has been
completed, two branches can be executed simultaneously. That
means that operations B and C will start at the same time. The
sum operations present on each branch can start at any time
inside a minimum and maximum time range, depending on the
end time of operations B and C. The duration of each operation
can also be identified by a minimum and a maximum value. We
can finally define two time slots identifying when the operations
can occur: St = (t1,,;,,t1mee) and So = (t2,,;,, 12,4, ). If we
have only one OU able to perform the sum operation, we have
to decide which of the two sums has to be performed first. If
the two slots are not overlapping, no conflict can occur between
the two operations, hence no action has to be taken. Otherwise
we have to decide which operation has to be performed first.
In order to do this, we have to add a control edge in the CFG
going from the first operation to the second one. We choose the
order of execution trying to optimize the average case.

In figure 2 is shown the case in which the left sum will always
be performed before the right one (i.e., operation B is in general
faster than operation C). However, once an order of execution
has been chosen, even when operation C terminates before op-
eration B (and hence the right sum could start) we will have to

Figure 3: Example of CFG

wait for operation B to end and therefore for the left sum to be
performed. In our approach, a non fixed order of execution is
implemented by the controller. When either the B or C oper-
ation completes, the following sum will be enabled to execute.
The other sum will wait until the first one has been completed.
This kind of approach requires the use of arbiters and therefore
a larger area occupation but, in general, it leads to much more
efficient solutions.

3 The dynamic scheduling approach

A generic CFG is a set of nodes and edges. Each node represents
an operation, while each edge represents a sequential relation
between operations. Each operation must be performed by a
physical operative unit, while each operative unit can perform
more than one operation, but only one at a time. The designer
has to specify how many resources are available and list which
operations they can perform. These specifications are usually
referred to as resource allocation.

The example shown in figure 3 can help us to explain how
our approach works.

Four kinds of nodes are shown in this CFG: F nodes, rep-
resenting fork operations, and J nodes, representing join oper-
ations are control nodes, while the nodes labeled + and * are
sum and multiplication nodes.

Let’s assume that we allocate two physical resources: one
able to perform only sums, the other able to perform only mul-
tiplications. Thus, nodes 3, 4, 7, 9, and 13 will be assigned to
the first OU unit, while nodes 5, 8, and 12 will be assigned to the
second one. The problem of managing the conflicts between the
operations that could compete for the same resource is solved
using arbiters. When the algorithm establishes that two or more
operations are assigned to the same OU and may be concurrent,
an arbiter is generated. This arbiter will dynamically schedule
the requests that will come to the OU. In this case, a five-input
arbiter should be used for the adder and a three-input arbiter
for the multiplier (i.e., one input for each node).

The same example can be complicated further if two OU’s
are able to perform a sum. In this case, we have more than
one possible solution to the problem. We could, for example,
choose the one found before, where only one OU and a five-
inputs arbiter was used. Another possible solution could be



to use two adders: one for operations 3 and 4 and the other
for operations 7, 9, and 13. In this case, we wouldn’t need an
arbiter for the first OU (since the two operations are executed
one after the other) while we would need a two-inputs arbiter
for the second one, where operations 7 and 9 could try to access
the adder at the same time.

Finding the optimal solution for such a problem is a matter
of choosing whether it is better to have one adder and one five-
inputs arbiter or two adders and one two-inputs arbiter. In order
to do this a cost function must be determined that provides the
algorithm with a criteria to evaluate each solution.

It must be also taken in consideration that the resources
shared by more than one operation could have to be provided
with input multiplexers. Swapping the two operators (whenever
possible) can help remove some multiplexers and reduce the
total area for the circuit. For example, if we assign the two
operations Y = A+ B and Y = C + A to the same adder, a two-
inputs multiplexer would be needed on each input. Swapping
either the operands of the first sum or those of the second one
would save one multiplexer (for both operations the register A
would be connected to the same input of the adder).

4 A formal approach to the algorithm

Two nodes can be in conflict when they are on concurrent
branches. In order to identify all possible conflicts between op-
erations without traversing the graph every time the binding is
changed, each node is labeled with all the fork nodes that pre-
cedes it and are still not closed by a join node. Therefore, a
fork-label Ly of node N will be a list of couples (Fj, By); F}. is
the fork node on whose branch the node N is executed, while
By, is the actual branch on which NV is executed. Two nodes are
conflicting when all of the following three conditions are met:

e They have one or more fork nodes in common in their
fork-labels.

e The two nodes are not on the same branch.

e The two operations represented by the two nodes have
been bound to the same operative unit.

In the example of figure 3, the node N3 has the fork-label
Ly, = {(F1,1),(F>,1)}, while the node N has the fork-label
Ly, = {(F1,2),(Fs,1)}. If these two nodes are bound to the
same resource, they are conflicting since in their fork-label the
first element refers the same fork node but with a different
branch value.

The labeling operation is performed only once at the begin-
ning, since it depends only on the topology of the CFG and not
on the binding choices performed by the algorithm.

A solution for the binding problem consists in assigning each
node which performs an operation (i.e., non control nodes) to
a physical resource and in deciding whether to swap the oper-
ators for that operation or not. We can define a binding ele-
ment as a couple of variables, one representing the resource to
which the node is assigned and the other to define if the in-
put must be swapped for that operation: B; = {R;, W;}. The
swapping variable W; can be assigned value 0 or 1 (swapped
or not-swapped). Such a solution can be represented by a vec-
tor V. = {Bn,, Bn,, ..., BN, }, where [ is the total number of
operation nodes.

As the number of nodes and resources increases, the num-
ber of solutions can became very large and exploring them all
next to impossible. For example, a CFG with 15 nodes, each
of which can be assigned to 3 possible resources (with 2 possi-
ble values for the swapping variable) has (2 - 3)'® ~ 4.7 - 10"!
possible solutions! In these situations it is not possible to use
traditional linear programming algorithms [6]. Self-adaptive al-
gorithms (e.g., genetic, neuro-fuzzy, simulated annealing, etc.)
on the other hand, are a possible way to tackle this problem.

[A[AlA[B[B[B[B[B[A[A]

[B[B[B|A|A[A[A[A[B]B]

Figure 4: Crossover scheme

Genetic algorithms (GA) mimic the natural evolution pro-
cess of a population of chromosomes, where those which are fit
for the “environment” survive and generate new ones, while the
others are deleted. The key aspect of this class of algorithms is
the choice of a good representation for both the solutions of the
problem and a good fitness function to evaluate them.

In our approach, the binding elements associated with each
node play the role of genes, while a vector of genes (i.e., a solu-
tion) play the role of a chromosome. A set of chromosomes will
be referred to as population. The environment which applies a
sort of natural selection on chromosomes is played by the CFG
itself in the form of the fork-labels introduced above.

The genetic algorithm can be summarized as follows:

1. New population generation. The initial population
is generated randomly. A larger population increases the
probability to find the optimal solution, but the computa-
tional effort increases, too. A similar observation can be
made about the number of iterations of the process. How
these parameters influence the efficiency of the algorithm
will be discussed in section 6.

2. Population evaluation. The population is evaluated by
estimating the number of resources, multiplexers and ar-
biters used. Each of them must be associated with a cost.
A higher cost for OU’s will result in a smaller circuit area,
since solutions with fewer OU’s will be preferred by the al-
gorithm. On the other hand, higher cost for arbiters will
result in higher circuit throughput, because the algorithm
will favor solutions with more OU’s and fewer arbiters (i.e.,
fewer conflicts). The choice of costs is therefore a means
for the designer to direct the algorithm toward either a
small area or a high throughput solution.

3. Population sorting. The chromosomes in the popula-
tion are then sorted out. The worst ones are discarded
and replaced by new ones generated by mating the best
ones.

4. Chromosomes mating. The scheme used to mate chro-
mosomes is the typical two-points crossover scheme shown
in figure 4, where two indexes are randomly chosen and
all the genes between them are exchanged.

5. Chromosomes mutation. In order to apply some ran-
dom variations to the population, some small changes are
carried out over chromosomes. This process can help the
algorithm to avoid getting stuck around local minimums.
The probability which characterizes this process is another
parameter that will be discussed in section 6.

5 A simple example: an arithmetic unit

In this example, we will show the results of the use of our tool
on a simple arithmetic unit, whose CFG is shown in figure 5.
The genetic algorithm has been run on this specification 3 times
with different costs and allocations:

Run 1. Two adders and two multipliers have been provided for
the first run, and the cost of arbiters has been set to 0. As
a result all the sums have been bound on one adder and all
the multiplications on one multiplier. Two arbiters have



Figure 5: Arithmetic unit CFG

been specified: a five-inputs arbiter for the adder and a
three-inputs one for the multiplier. The only interesting
result is the swapping of the input variables for operations
13 and 14 in order to reduce input multiplexers area.

Run 2. For the second run, the same number of functional
units have been provided as the first run. In this case,
however, their cost has been set to 0, while the cost of the
arbiters have been set to a greater value. The algorithm
found a solution where both multipliers have been used in
order to avoid conflicts (no arbiter was needed) and two
adders have been used in order to minimize the number
of conflicts. An arbiter was still necessary because of the
conflict between operations 12 and 14.

Run 3. For the third run the same costs have been used for
arbiters and functional units as in the previous run. One
more adder has been allocated. A solution without con-
flicts and therefore without arbiters has been found by the
algorithm.

All the scheduling/binding processes have been run using 100
chromosomes and 100 iterations, with a mutation probability of
5%. Each run took less than a second to complete on a 800MHz

CPU. Table 1 summarizes the results for the example described
in this section.

Available Used
| Run | ADD | MUL | ADD | MUL | Conflicts |
1 2 2 1 1 7
2 2 2 2 2 2
3 3 2 3 2 0

Table 1: Results for examples of section 5

6 Quality considerations

The problem of finding the optimal allocation, scheduling, and
binding for an asynchronous circuit is of class NP complete.
The algorithms that explore the whole solution space run into
serious efficiency limitations when attempting to solve problems
of practical size. The use of heuristics emerged as an efficient
mean to limit the computation load and improve the overall
algorithm efficiency.

In this work we used genetic algorithms. Like many other
heuristics, these algorithms are not guaranteed to reach the best
solution. They have an incremental approach instead, attempt-
ing to improve the solution quality every new iteration. More-
over, using relatively few hardware resources, the genetic algo-
rithms are able to achieve high quality solutions even with a
coarse description of what the optimum is (e.g., they can con-
verge even using just a criterion to discriminate any two valid
solutions, without quantifying their individual quality).

The convergence of the genetic algorithms depends on many
factors, such as: the representation chosen for the physical prob-
lem, the population size, the quality function, the algorithms
used for searching the solution space (typically mutation and
crossover), etc. Tweaking all these parameters by hand often
prove to be time consuming and a heuristic work by itself [7].

However, without exploring these parameters, we cannot
know if the algorithm converged on a local optimum, far from
the overall best, nor even if the convergence speed (i.e., the use
the algorithm makes of the hardware resources) is good [8, 9].

In the sequel we will present some experimental results re-
garding the influence of the variation of the genetic algorithm-
specific parameters over the convergence and the probability to
find the best solution. The goal of this exploration is to ob-
tain a fully adaptive algorithm, able to autonomously tune its
parameters on the class of problem to solve.

In our experiments, the same problem was solved for 2000
times (full scale on the Y axis), using a random starting point
and 500 generations (full scale of the X axis). The sweep pa-
rameters were the mutation probability (0-100%) and the pop-
ulation size (4-1024 chromosomes). The best possible solution
for the problem was known, in order to be able to evaluate the
quality of the algorithms.

In figure 6 are reproduced the results for two characteristic
cases. In these graphs, each point P(z,y) measures how many
runs needed less than or at most x generations to find the best
solution. These graphs can also be seen as the cumulative dis-
tribution of the probability density to find the best solution.

In figure 6 (a), a very thin population with respect to prob-
lem size was used. Conceptually, this population is not able to
maintain enough diversity to ensure a good exploration of the
solution space, thus is prone to be trapped in local optimums.
We can see that it needs a good influx of variations from out-
side (about 15% mutation ratio) to be able to perform enough
solution space exploration to find the overall best solution.

On the other side, figure 6 (b) shows that a large population
with respect to problem size is very likely to have intrinsically
enough diversity for finding the best solution using a very few



Cumulative distribution of the probability to find the best solution (8 chromosomes) Cumulative distribution of the probability to find the best solution (4 chromosomes)
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In both cases, as we would expect, a high mutation ratio
(close to 100%) is perceived as a random factor, which can over-
whelm the quality function feedback and evenly distribute the
chances to find the best solution with respect to the number of
generations. In figure 6 this can be seen as an almost straight
line of constant slope.
The optimum of the genetic algorithm parameters should
seek to minimize two negative effects: 1900

1600

e the mutation probability should be chosen such way as Egg
to bring enough diversity to avoid local optimums on one &0
hand, but also avoid disturbing the selection based on the 400

quality function feedback; o

Cumulative distribution of the probability to find the best solution (1024 chromosomes)

T
|
\\\}}}}}\\\\\\\e\l\‘\

T
\
\
i)

1y

W
iy

WY
\

\
N\
W
Wi

T
\
m
QN
N
AW

Solutions

r
W
\
AN

\\\\
AN
Q}\\\

W
N
0\
R
N
A\
A\

AR
NN

N

I
N

AN\
.
N
N

NN

AN

iy

NN

ARy
NN

AR

ENN

NaN

\\
X

I"lll“ 7T

AN

LAY
i
S
N

e the population can drain out too many computation re- Mutation probabilty
sources if oversize, while it may get easily trapped into
local optimums if too thin. (d)

In figure 7 are presented the same results using 3D graphs.
This makes very easy to observe the impact the population size  Figure 7: Efficiency of the genetic algorithms with respect to the
and the mutation probability have on the quality of the genetic ~population size and probability of mutation (3D representation)
algorithm.

Figure 7 (a) uses a very thin population, of only 4 chromo-
somes. The lack of intrinsic diversity makes almost impossible



to find the best solution, even after many generations, in absence
of external variations (0% mutation probability). The best this
thin population can do is for around 15% mutation probability,
while for higher ratios the selection feedback from the quality
function is cluttered by too much randomness.

Figure 7 (b) shows how a larger population (of 16 chromo-
somes) is capable to make good use of external variations (muta-
tion ratios of 25-30%) to accelerate the search for the optimum
solution. On this population size we can still see that there is
not enough intrinsic diversity to find the best solution in ab-
sence of mutations, as well as the negative impact of too much
randomness induced by very high mutation ratios.

Higher population sizes (256 chromosomes in figure 7 (c) and
1024 chromosomes in figure 7 (d)) exhibit both enough intrinsic
diversity to find the best solution in absence of mutations, as
well as better resilience to external random influxes for higher
mutation ratios. However, large populations mean higher use of
computational resources and a trade-off should be found.

7 Conclusions and future work

Asynchronous circuit allocation, scheduling, and binding is a
very complex problem. In this paper, an effective method based
on genetic algorithms for scheduling and binding was presented.

The algorithm can be directed to optimize the circuit area
or the throughput. The hazards are avoided by automatic in-
sertion of arbiters whenever necessary and the number of input
multiplexers for shared resources is minimized as well.

Moreover, experimental results that illustrate the influence
of main parameters on the genetic algorithm convergence are
presented. These open the way to automatic parameter tuning
at run-time, greatly improving the efficiency and quality of the
algorithm.
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