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Abstract 

Using FPGAs as hardware accelerators that 
communicate with a central CPU is becoming a common 
practice in the embedded design world but there is no 
standard methodology and toolset to facilitate this path yet. 
On the other hand, languages such as CUDA and OpenCL 
provide standard development environments for Graphical 
Processing Unit (GPU) programming. FASTCUDA is a 
platform that provides the necessary software toolset, 
hardware architecture, and design methodology to 
efficiently adapt the CUDA approach  into a new FPGA 
design flow. With FASTCUDA, the CUDA kernels of a 
CUDA-based application are partitioned into two groups 
with minimal user intervention: those that are compiled and 
executed in parallel software, and those that are 
synthesized and implemented in hardware. A modern low 
power FPGA can provide the processing power (via 
numerous embedded micro-CPUs) and the logic capacity 
for both the software and hardware implementations of the 
CUDA kernels. This paper describes the system 
requirements and the architectural decisions behind the 
FASTCUDA approach.  

1. Introduction  
The ever increasing design complexity, where 

embedded systems consist of several complex components, 
some of which are implemented in software and others in 
hardware, makes the task of a designer more and more 
difficult. Tools that can combine the flexibility and low cost 
of  software solutions with the performance and power 
characteristics of  hardware approaches are becoming 
imperative in the embedded design world.  

In order to solve today’s challenges of high-complex 
embedded system designs, a number of approaches have 
been proposed. Hardware-software codesign is the first big 
step and an essential enabling technology towards this end. 
Electronic System Level (ESL) design is the next big step 
which addresses the complexity problem by elevating 
design to a higher level of abstraction, resulting in a more 
predictable and productive design process. Finally, parallel 
hardware platforms such as Graphical Processing Units 

(GPUs) and Field Programmable Gate Arrays (FPGAs) are 
becoming very popular within PC-based heterogeneous 
systems for speeding up numerous compute-intensive 
applications.  

FASTCUDA combines all above approaches by 
enabling hardware-software codesign and ESL design 
methodologies onto a low power parallel FPGA-based 
platform.  

CUDA[1] is a data parallel programming model that 
supports several key abstractions (thread blocks, 
hierarchical memory and barrier synchronization) for 
allowing efficient applications development. In CUDA, the 
routines of an application are split into two groups: those 
that can benefit from a multi-threaded parallel execution 
and those that can not. The first group of routines, called 
the “CUDA kernels”, are written in standard C/C++ using 
special annotations and constructs to specify the parallelism 
and the memory hierarchy. The second group of routines, 
called the “CUDA host program” are written in standard 
C/C++. 

Execution starts with the CUDA host program running 
single-threaded on the host CPU. Whenever a CUDA 
kernel is invoked, the host CPU dispatches the execution of 
the kernel to an accelerator (separate device) that supports 
parallel execution of multiple threads. Traditionally these 
are Nvidia’s GPUs or other multi-core platforms. However, 
we believe that even higher acceleration can be obtained if 
a CUDA kernel is synthesized into hardware and mapped 
onto an FPGA for execution. Therefore, FASTCUDA 
employs a hybrid approach: it uses an FPGA-based 
accelerator for executing the time critical CUDA kernels 
and a multi-core processor for executing the CUDA kernels 
that could not fit in the FPGA fabric.  

FASTCUDA is a design methodology and 
accompanying toolset that allows CUDA programs to be 
executed efficiently on a shared memory, multi-core CPU 
communicating with an FPGA-based accelerator. A modern 
FPGA provides all required resources; multiple embedded 
micro-CPUs for the CUDA host program and the CUDA 
kernels that will be executed on the multi-core processor, 
referred to as "SW kernels" in the rest of the paper, and 
large logic capacity for the CUDA kernels that will be 
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implemented on the FPGA accelerator, referred to as "HW 
kernels" in the rest of the text. Toward this end 
FASTCUDA will not develop everything from scratch but 
it will join numerous on-going efforts in industry and 
academia to create a unified efficient open-source 
framework. 

Note that, while in this project we focus on the CUDA 
language, the overall approach can fit very well (and the 
developed toolset can be easily adapted to) the competing, 
and essentially equivalent, OpenCL standard.  

2. Related Work 
The use of FPGAs as hardware accelerators began in 

late 1980’s and since then many FPGA-based embedded 
systems and tools have been developed. While a 10x-100x 
performance acceleration can usually be provided now by 
Reconfigurable Computing (RC) the cost in terms of 
difficulty in the development process increases significantly 
over time due to the fact that the designs are becoming 
larger and more complex. 

A significant effort by the research community towards 
an efficient solution to the design tool problem tackles the 
hardware/software codesign process which provides a 
unified path from the application description, done in an 
abstract system model, down to a mix of hardware and 
software. Many of the tools provide an automated path 
from a parallel C-like code down to a hardware platform, 
but in most cases there are many issues that can be resolved 
only with the intervention of the designer.  

FASTCUDA is distinct from other existing platforms 
since it is the first to provide a unified environment for 
programming both a multi-core processor and an FPGA-
based accelerator. In other words, the CUDA kernel code 
may be flexibly mapped to a multi-processor or to 
dedicated hardware resources. In this Section we 
investigate related work to a) multi-core processors, b) 
high-level synthesis and c) HW-SW communication.  
 
Multi-core processor 

FASTCUDA will employ a multi-core processor in 
order to run the host program and the SW kernels as 
described in Section 6. That processor may be, for example, 
an embedded soft processor, a hard high performance 
processor (for example Xilinx FPGAs incorporated ARM 
processors [15]), or an external processor. In order to 
facilitate the software-hardware communication, 
FASTCUDA architecture employs an embedded multi-core 
processor. AMD and Intel have followed similar hybrid 
approaches[3] embedding a CPU and a GPU on the same 
chip.  

Research on multi-core platforms on FPGAs has been 
performed in the past [4] [9][10]. FASTCUDA will adapt 
the framework described in [14] which provides a multi-
core processor architecture tailored to the requirements of 
the CUDA kernels. This innovative multi-core processor 
features data parallel processing, a thread synchronization 
mechanism, and shared memory access. 

 

High-level synthesis 
High level design simulation languages such as 

SystemC, SystemVerilog, Handel C and Streams-C are 
usually used by High Level Synthesis tools in order to 
describe the functionality of the system.  

Several commercial tools provide answers to various 
aspects of the high-level synthesis problem, ranging all the 
way from sophisticated techniques for untimed to RTL 
synthesis of C, C++ and SystemC models (Forte 
Cynthesizer, Cadence CtoSilicon, and Mentor Catapult), to 
synthesis of a declarative rule-based specification 
(BlueSpec), to synthesis from Matlab and SystemC to 
FPGA implementation (Celoxica and AccelChip) up to 
synthesis of processors from C code (Tensilica Xpress and 
LisaTek). 

However, none of the above tools considers 
software/hardware codesign in a holistic manner. Some 
tools, such as Synopsys Platform Architect, or CoFluent 
Studio, provide some level of hardware/software 
interfacing and co-simulation. However, they do not 
support effective design space exploration, due to the need 
to implement manually the hardware part of the design, 
which is a lengthy process, usually limiting such 
exploration to a few design space points. 

Recently, there is an increased interest for adapting 
OpenCL-like and CUDA-like languages to FPGA-based 
environments since using such languages for FPGAs has a 
significant time-to-market advantage compared to 
traditional FPGA development processes. Altera was the 
first FPGA vendor that announced a development program 
in order to enable, in the future, the use of OpenCL to 
program its FPGAs [2].  

Moreover, in [5] the authors describe a CUDA to FPGA 
flow using AutoPilot as a high-level synthesis tool. The 
authors extend their architecture in [6] proposing a novel 
high-level synthesis framework which considers different 
granularities of parallelism for mapping CUDA kernels 
onto an FPGA-based accelerator. The framework employs a 
design space search heuristic in tandem with the estimation 
models as well as design layout information to derive a 
performance near-optimal configuration. However this 
work focuses only on the high-level synthesis framework 
without providing details for the system memory and the 
communication between the FPGA-based accelerator and 
the host processor, while the first work relies on a specific 
commercial tool for the synthesis part. 

In [8] the authors describe an OpenCL to FPGA flow 
where the proposed architecture decouples data accesses 
and computations by using blocks with explicit FIFO 
channels that produce and consume data elements. 
Reconfigurable links are formed from the outputs of 
producing functional units to the inputs of the next 
consuming functional units. FASTCUDA also decouples 
data accesses from computations in a simpler and more 
efficient way.  

 
HW-SW communication 

The authors in [11] describe how to communicate and 
instantiate a routine implemented in hardware using user 
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directives. In a similar way, CUDA supports memory 
allocation and data transfer routines for instantiating a 
CUDA kernel. Data transfers between the host processor 
executing the CUDA host program and the accelerator 
executing the CUDA kernels can be accelerated by using 
both pinned and paged host memory buffers [12][13].  
FASTCUDA provides an even faster communication 
mechanism between the multi-core processor and the 
FPGA accelerator through a shared memory infrastructure. 
This can significantly boost the performance since no data 
transfers are required in order to execute a HW kernel  
(Section 7).  

 

3. The FASTCUDA Approach 
Today’s complex systems employ both software and 

hardware implementations of components. General purpose 
CPUs, or more specialized processors such as GPUs, 
running the software components, will routinely interact 
with special purpose ASICs or FPGAs that implement time-
critical functions in hardware. In these systems the 
separation of duties between software and hardware is 
usually very clear. 

FASTCUDA aims to bring software and hardware 
closer together, interacting and cooperating for the 
execution of a common source code. As a proof of concept 
FASTCUDA will focus on source codes written in CUDA. 

 

 
Figure 1. Example CUDA code 

CUDA is a single instruction multiple threads (SIMT) 
architecture and programming model initially developed by 
Nvidia for its GPUs. Figure 1 shows an example CUDA 
code that adds two arrays, A and B, into a resulting array C. 
The addition is performed in a CUDA “kernel” that runs in 
parallel across multiple cores in a SIMT fashion. The 
CUDA kernels are invoked by the CUDA “host program” 
which runs serially on a single core. 

Each kernel implicitly describes multiple CUDA 
threads that are organized in groups, called "thread-blocks". 
Thread-blocks are further organized into a grid structure. 

Threads within a thread-block are executed by a single 
"streaming multiprocessor" inside a GPU and are 
synchronized and share data through a fast and small 
private memory of the streaming multiprocessor, called 
"shared memory". On the other hand, synchronization 
between threads belonging to different thread-blocks is not 
supported. However, a slow and large "global memory", is 
accessible by all thread-blocks. Similar to a GPU, 
FASTCUDA employs two separate memory spaces (global 
and local) as well as a similar mapping of the block-threads 
onto the FPGA resources as described below. 

Bringing software and hardware close together, 
FASTCUDA will accelerate the execution of CUDA 
programs by running some of the kernels in hardware. A 
modern state-of-the-art FPGA will provide all required 
resources; multiple embedded micro-CPUs for the host 
program and the SW kernels, and logic capacity for the HW 
kernels. 

Figure 2 shows a block diagram of the overall system. A 
multi-core processor, consisting of multiple embedded 
cores (configurable small processors), is used to run the 
host program serially and the SW kernels in parallel. 
Threads belonging to the same CUDA thread-block are 
executed by the same core. The HW kernels are partitioned 
into thread-blocks, and synthesized and implemented inside 
an “Accelerator” block. Each thread-block has a local 
private memory while the global shared memory can be 
accessed by any thread following the philosophy of the 
CUDA model. This is more elaborated in Sections 6 and 7. 

 

 
Figure 2. FASTCUDA Block Diagram 

For our prototype version, we will be using the Xilinx 
Virtex-6 FPGA with 500MB of external DDR memory 
placed on a Xilinx ML605 evaluation board [17], and the 
multi-core processor will consist of an array of Xilinx 
Microblaze CPUs. However, the final product should use 
faster embedded processors such as the ARM Cortex-A9 
MPCore. 

//kernel 
__global__ void vectorAdd(float *A, float *B, float *C) {  
int i = threadIdx.x;  
C[i] = A[i] + B[i];  
}  
# define N 100 
#define M N*sizeof(int) 
//host program 
main() { 
int A[N], B[N], C[N]; 
... 
//copy input vectors from host memory to device memory 
cudaMemcpy( d_A, A, M, cudaMemcpyHostToDevice); 
cudaMemcpy( d_B, B, M, cudaMemcpyHostToDevice); 
// kernel invocation 
vectorAdd<<<1,N>>>(d_A, d_B, d_C); 
//copy output vectors from device memory to host memory 
cudaMemcpy(C, d_C, M, cudaMemcpyDeviceToHost ); 
... 
} 
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4. FASTCUDA “Compilation” 
The process that we use in FASTCUDA in order to 

“compile” a CUDA source code for execution onto our 
prototype platform is depicted in Figure 3. 

 
Figure 3. FASTCUDA Design Flow 

The FASTCUDA toolset is responsible for automating 
most of this process, thus minimizing user intervention. The 
following sections will discuss in greater detail the various 
steps of this process. 

 

5. Design Space Exploration 
This first step basically needs to decide how to make the 

best use of the available FPGA resources for a given 
CUDA program; it needs to answer the following 
questions: 

 
� What percentage of the FPGA real estate should be 

allocated to the multi-core processor for the SW 
kernels, and what percentage should be allocated to 
the Accelerator for the HW kernels? 

� Which kernels should be run in software and which in 
hardware? 

� What area-speed tradeoff is best for each of the HW 
kernels? 

� What is the optimal configuration (number of cores, 
cache sizes, memory banks, etc.) for the multi-core 
processor? 

 
In order to make these decisions each kernel is first 

carefully examined and run through several simulation and 
synthesis runs. The simulation tool provides runtime 
estimates for the execution of each kernel in software, for 
several configurations of the multi-core processor (with 
varying cache sizes, memory banks, etc.). The synthesis 

tool provides latency estimates for the execution of each 
kernel in hardware, with varying hardware footprints (i.e. 
trading area for speed). 

The design space exploration tool uses these area and 
performance estimates, along with its full knowledge of the 
underlying platform’s resources and available 
configurations, to heuristically search for the best answers 
to the questions listed above. User experience can be used 
to guide the tool, e.g. by restricting the search to a smaller 
set with the most “interesting” multi-core configurations. 
 

6. Multi-Core Processor 
The CUDA host program as well as the SW kernels (the 

subset of the kernels determined by the design space 
exploration tool) will run in software on the multi-core 
processor of Figure 2. In this section we first review the 
architecture of this processor, and then we discuss the 
required process in order to port the CUDA source code to 
this architecture. 

6.1. Architecture 

 
Figure 4. Multi-Core Processor Architecture 

Figure 4 shows our prototype’s multi-core processor 
architecture. It uses Xilinx Microblaze soft cores 
(configurable small processors) with separate instruction 
caches and a shared data cache all communicating through 
two AXI4-based buses [16]. FASTCUDA follows a similar 
mapping of the threads with a GPU. Each core executes a 
thread-block which can use the core's scratchpad memory 
as a private local memory. All the threads from any thread-
block can access the global shared memory  which can also 
be accessed by the HW accelerator (notice the connection 
on the AXI4 bus in the Figure). 

The AXI4_Lite bus is used for the communication 
between the multi-core processor and the Accelerator block 
that is running the HW kernels. A simple handshake 
protocol is employed to pass the arguments and trigger a 
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specific HW kernel to start running, which will then 
respond back when it has finished running. 

Lastly, the timer and mutex blocks on the AXI4_Lite 
bus are a requirement for the symmetric multiprocessing 
(SMP) support of the runtime running on the processor as 
we will explain in the following section. 

Notice that the number of cores, as well as the data 
cache size and organization (single or multiple banks), the 
configuration of the Microblazes, and other configuration 
parameters, are application-dependent and are determined 
by the design space exploration tool of the previous section 
according to the requirements of the CUDA application. 

6.2. Implementing CUDA kernels on the multi-
processor 

The OS-level software running on our multi-core 
processor is a modified version of the Xilinx kernel 
“Xilkernel”. Xilkernel supports POSIX threads, mutexes 
and semaphores, but was meant to run on a single core, thus 
having no support for a SMP environment like ours. We 
consequently had to add SMP support to Xilkernel (see [14] 
for a description of the methodology on how to do this). 

CUDA kernels are supposed to run on SIMT devices 
(i.e. GPUs), which are drastically different from our multi-
core processor. Thus, the next step is to port the CUDA 
kernels to run on top of the multi-core multi-threaded 
environment provided by our modified Xilkernel, using 
MCUDA[7]. 

The compilation process that results in a single 
executable code is shown in the following Figure. 

 
Figure 5. Software Porting Process 

MCUDA transforms the CUDA code into thread-based 
C code that uses the MCUDA library in order to create a 
pool of threads and coordinate the operations of the threads 
as well as to provide the basic CUDA runtime functionality 
for kernel invocation and data movements.  

Xilkernel provides the mutex support required by the 
MCUDA library and the thread-based support required by 
the multi-threaded SW kernels. 

7. Accelerator 
In CUDA the host program is usually run on a separate 

chip from the CUDA kernels; the first is run on a general-
purpose CPU and the latter on a GPU. Thus the CUDA 
programming model assumes that the host and device 

maintain their own separate memory spaces, referred to as 
host memory and device memory respectively. The 
execution of a kernel, involves a) memory transfers of the 
input vectors from the host memory to the device memory, 
b) the kernel execution which uses the input vectors in 
order to generate the output vectors and c) memory 
transfers of the output vectors from the device memory to 
the host memory as shown in Figure 1. The addresses of the 
input and output vectors are passed as arguments to the 
CUDA kernel. 

In contrast, FASTCUDA runs everything on the same 
chip, thus favoring a different memory model where all the 
threads of a kernel and the host program can share a single 
global memory (see Figure 2). In this model, the HW 
kernels inside the Accelerator have direct access to the 
memory in order to read their input vectors and write their 
output vectors. 

7.1. Implementing CUDA kernels in hardware 

In FASTCUDA, the code of the HW kernels is pre-
processed before it is synthesized. To aid in this pre-
processing the programmer is required to use “#pragma“ 
directives in order to specify which ones among the kernel 
arguments are inputs and outputs, as well as their sizes. 

The result of translation from CUDA to SystemC is 
shown in Figure 6. An advanced memory interface, using a 
SystemC interface called fcMem, will be provided to 
coalesce global memory accesses, like in a modern GPU, in 
order to better exploit the AXI interface bandwidth. 

Note how argument pointer accesses are transformed 
into reads and writes to and from a base address (A, B and 
C) and an offset (i) using the global memory port. 

 
Figure 6.Example CUDA to SystemC transformation 

This simple example does not show the use of shared 
memory on the GPU, which is generally used to perform 
computations on fast local data, and which will also be 
modeled in SystemC as a port implementing the fcMem 
interface. Transfers between global memory and shared 
memory are managed by CUDA programmers by hand, and 
thus can be considered akin to sophisticated application-
specific DMA engines. Our translation strategy naturally 
exploits the fast local BRAM (FPGA Block RAM), where 
the shared CUDA memory is mapped, by converting the 

//SystemC module 
SC_MODULE(addMod) { 
  sc_in<int> A, B, C, threadIdx_x; 
  sc_port<fcMem> sMem, gMem; 
  sc_in<bool> clk, start; 
  sc_out<bool> done; 
  SC_CTOR(addMod) { 
    SC_CTHREAD(add, clk); 
    reset_signal_is(start); 
  } 
// kernel 
void add() { 
  int i = threadIdx_x; 
  gMem.writeFloat (C+i, 
     gMem.readFloat(A+i) + gMem.readFloat(B+i));  
} 
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CUDA transfers between global and shared memory into 
SystemC accesses to global memory and local vectors. 

CUDA assumes that the GPU supports three distinct 
device memories referred to as global, shared and constant 
memories. These will be implemented as global memory 
(shared with the host processor and the multi-processor, 
and implemented in an external DRAM), local per thread-
block memory (implemented in BRAM or registers) and 
constants (translated directly to logic by the synthesis tool). 

Any high-level synthesis tool that takes SystemC as 
input and can perform the synthesis required, such as the 
AutoPilot tool which has been recently acquired by Xilinx 
[19], can then be used for synthesis. 

The aforementioned flow is depicted in Figure 7. 

 
Figure 7.CUDA to FPGA flow 

8. Applications 
Software developers, scientists and researchers are 

finding broad-ranging uses for GPU computing with 
CUDA. Most of the CUDA applications mentioned in [18]  
should run on the FASTCUDA platform. However, 
FASTCUDA provides performance and power advantages 
over GPUs only for applications that exhibit some specific 
characteristics.  

A GPU supports a sophisticated memory interface 
which coalesces accesses to speed up bulk memory 
transfers. Therefore, memory intensive applications may 
run faster on a GPU than on the FASTCUDA platform. On 
the other hand FPGAs can provide enormous parallelism 
and much lower power and energy consumption when 
performing the computations of a kernel. Hence, compute 
intensive applications may run faster and with lower power 
consumption on FASTCUDA than on a GPU.  

9. Conclusion 
In this paper we presented a novel open-source 

framework, FASTCUDA, which aims to bring software and 
hardware closer together, interacting and cooperating for 
the execution of a common source code under a unified 
environment and with minimal user intervention. 
FASTCUDA will allow CUDA programs to be executed 
efficiently on a multi-core processor communicating with 
an FPGA accelerator. A shared memory infrastructure 
provides a fast communication mechanism between the 
multi-core processor and the FPGA accelerator. The 
FASTCUDA framework provides a higher level 
programming abstraction than traditional FPGA design 
tools, combining a novel CUDA to FPGA flow that uses a 
high-level synthesis tool with a CUDA to multi-core 
compilation flow that employs a source to source 
translation tool.  
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