
Dynamic trace-based data dependency analysis for
parallelization of C programs

Mihai T. Lazarescu
Politecnico di Torino

mihai.lazarescu@polito.it

Luciano Lavagno
Politecnico di Torino

luciano.lavagno@polito.it

Abstract—Writing parallel code is traditionally considered a
difficult task, even when it is tackled from the beginning of a
project. In this paper, we demonstrate an innovative toolset that
faces this challenge directly. It provides the software developers
with profile data and directs them to possible top-level, pipeline-
style parallelization opportunities for an arbitrary sequential C
program. This approach is complementary to the methods based
on static code analysis and automatic code rewriting and does
not impose restrictions on the structure of the sequential code or
the parallelization style, even though it is mostly aimed at coarse-
grained task-level parallelization. The proposed toolset has been
utilized to define parallel code organizations for a number of
real-world representative applications and is based on and is
provided as free source.

Index Terms—C program parallelization, KPN, C-to-C rewrite,
execution trace, data dependency analysis, graph analysis

I. INTRODUCTION

There is an urgent need to parallelize massive amounts of
legacy sequential code to better utilize processors and systems
that refocus from the acceleration of the execution of a single-
thread to the increase of the overall throughput, by means of
multi-processor architectures. However, even when parallelism
is taken into account from the start of a project, writing
programs for efficient execution on parallel architectures is
still considered a difficult task.

Automated software parallelization has been extensively ex-
plored at the instruction and loop levels, which are appropriate
for VLIW and vector processors. By contrast, parallelization
opportunities at the task level, which are best suited for modern
multi-core processors, were less explored, with some notable
exceptions [1], [2]. Most of the latter techniques are so far
restricted to specific types of loops and data access patterns.

The innovative toolset, developed in the context of the Eu-
ropean project HEAP, addresses these challenges. It helps soft-
ware developers to profile and parallelize existing sequential
C-language applications by exploiting top-level parallelism.
It synergistically uses and extends past work of [3], [4],
based on runtime, full scope data-dependency tracing and
sophisticated graph visualization techniques, to allow code de-
velopers to optimistically find the best manual parallelization
opportunities. The developer can use the toolset to quickly
detect possible parallelization opportunities whose effective
suitability for parallelization have to be subsequently checked
by other means, e.g., by code inspection.

The approach proposed in this paper supports any style
of parallel code writing, including, but not limited to, the
intrinsically race-free Kahn Process Network style [5].

Section II of the paper overviews other approaches and tools
for sequential code parallelization. Section III presents the
toolset flow and the operation of component tools. Section IV
demonstrates the toolset use for analysis and parallelization of
a real-life application and Section V concludes the paper.

II. RELATED WORK

Code parallelization is one of the most widely studied topics
in compilers for parallel machines since the 1970’s. Most
of previous work has focused on selection of code segments
within innermost loops (do in Fortran, for and while in C)
that can be executed either fully in parallel (do-all) due to
the lack of dependencies, or as a software pipeline [6]–[8].

These techniques are efficient for applications in specific
problem domains (physics, fluid dynamics, structural engineer-
ing), but quite limited in the general case and cannot fully
exploit architectures developed for gaming and multi-media
applications in the PC world.

Thus, there is a strong need for techniques that assist the
developer to manually partition an application beyond the
limitations of automated analysis, for instance at top program
level (as opposed to the innermost loop level) [9], [10].

A technique similar to the one implemented by our toolset
was proposed in [3]. Our toolset extends this approach by
providing techniques based on data compression and advanced
visualization to effectively display the very large amount of
data generated by data dependency tracing for, e.g., a large
video encoding or decoding application.

Several compilation and debugging tools, often based on
proprietary extensions of the C language, have also been
proposed by dominant industrial players. For example, Apple
introduced recently the Grand Central technology based on
OpenCL, a newly developed programming language. Its poten-
tial scope is parallelization of C-like programming languages
for execution on graphics processors. NVidia proposed the
CUDA language, very similar to OpenCL, which can be used
to translate sequential C code into parallel threads that can be
run on NVidia’s GPUs and Stream is AMD’s similar offering.

The recently announced Prism tool from criticalBlue tackles
the same problem of legacy sequential code parallelization. It
essentially predicts the application performance under different

Fig. 1. The toolset flow.

thread decompositions, and the corresponding inter-thread de-
pendencies. Like in our case, its assessment of parallelization
opportunities is bound by the quality of the testbench used.

III. TOOLSET DESCRIPTION

The toolset supports software developer efforts to parallelize
sequential C programs using the four-stage flow presented in
Fig. 1 (source instrumentation, runtime trace collection and
compaction, trace data visualization and analysis) based on
toolset components: C source annotator, execution tracer, trace
data graphical visualizer, and IDE for project development,
toolset integration and visualizer-source code cross-reference.

The first stage automatically rewrites the original C source,
while adding calls to execution tracer API and preserving
the functionality, using a C-to-C compiler based on the CIL
infrastructure [11].

After linking with the tracer library, the instrumented pro-
gram is run in stage two with an input data set (provided by the
developer) that should maximize the discovered dynamic data
dependencies by exercising as many statement-to-statement
data dependencies as possible. Execution data are automati-
cally collected and compacted at runtime, and made available
at the end of the run to the analysis stage.

Stage three allows the developer to interactively analyze the
trace data and execution statistics in a compact graphical for-
mat to discover parallelization opportunities, such as pairs of
statements or functions with uni-directional data dependencies
that can be executed in parallel as stages of a coarse-grained
task pipeline. Cross-reference with the sequential C source and
other special functions facilitate the exploration.

Manual program parallelization can be done as a new IDE
project in stage four, supported by IDE advanced features
and the cross-reference with the sequential project and the
graphical trace data visualizer.

All toolset components are free software projects. The
execution tracer library is a new project in C, the IDE is
based on Code::Blocks [12] in C++, the C source annotator

*mptr = (*mptr + *qmatrix/2)/(*qmatrix);

⇓
__cil_tmp9 = *qmatrix;
__cil_tmp10 = __cil_tmp9 / 2;
__cil_tmp11 = *mptr;
__cil_tmp12 = __cil_tmp11 + __cil_tmp10;

*mptr = __cil_tmp12 / __cil_tmp9;

Fig. 2. Three-address code rewrite of source complex expressions.

iptr = &ivect[i];
heap_write(..., &iptr, 4, ...);
...
ivect[i] = 256;
heap_write(..., &ivect[i], 4, ...);
...
heap_read(..., &iptr, 4, ...);
heap_read(..., &(*iptr), 4, ...);
ivar = *iptr + 12;
heap_write(..., &ivar, 4, ...);

Fig. 3. Annotation of instruction data dependencies.

leverages the CIL infrastructure [11] in OCAML, and the trace
data visualizer uses the ZGRViewer project [13] in Java.

A. Automatic code annotator tool

A special CIL module automatically instruments the source
code for program execution tracing. CIL represents a C
program using a subset of C syntax and concepts to simplify
its manipulation. It is structured as a compiler, with processing
modules activated and configured by command-line switches.
A Perl wrapper provides a GCC-compatible interface for easy
integration in make-based projects.

The code annotation module traverses the CIL represen-
tation of sequential program sources and include files, and
inserts tracer API calls to collect runtime data of interest. It
expects a code with only three-address code instructions (see
Fig. 2) and one exit point per function, obtained by activating
two modules from the CIL library before the annotation
module.

Several source code elements are annotated so that the
tracer can keep an accurate program execution trace. This
is visualized as a dynamic Data Dependency Graph (DDG)
with a node for each program element at an interactively-
selectable granularity level (C statement, function, function
and its callees). A graph edge links each element that reads
data from an address with the element that wrote the last data
at that address. For example, the memory location called iptr

in Fig. 3 determines a dependency edge between the first and
third assignment (if no other instruction between the first and
second assignment changes the value of iptr and no other
instruction between the second and third assignment changes
the i-th element of array ivect) and between the second and
third assignment (due to memory location ivect[i], pointed
by iptr). No dependency is created between the first and
second assignment, as they can be executed in any order.

Statement annotations include a unique ID, data address and
size, and the source file name and position. Data write annota-
tions include a complexity estimation obtained by adding the
weights of statement elementary operations (Fig. 2). Whenever

int initVideoIn(THeaderInfo *HeaderInfo)
{
int t;
heap_startFunction("initVideoIn", ...);
heap_arg_write(39, "initVideoIn", 1,

..., &HeaderInfo, 4, ...);
heap_decl(21, ..., &t, 4, 1, 0, ...);
<function body>
heap_arg_read(18, "initVideoIn", 0,

..., &_retres14, 4, ...);
heap_endFunction("initVideoIn", ...);
return _retres14;

}

(a)

heap_arg_read(54, "getc", 1, ..., &fh1, 4, ...);
ch = getc(fh1);
heap_arg_write(55, "getc", 0, ..., &ch, 4, ...);

(b)

Fig. 4. Annotation of a function definition (a) and call (b).

static int i = -1;

⇓

static int i = -1;
...
void initVideoIn(THeaderInfo *HeaderInfo)
{

...
if (!heap_decl_globals_done)

heap_decl_globals();
...

}
...
static void heap_decl_globals(void)
{
heap_decl(1114, "i", &i, 4, 1, 1, ...);
....
heap_decl_globals_done = 1;

}

Fig. 5. Annotation of global variable declarations.

possible, annotations use source variable names instead of
temporary variables created during complex expression dis-
mantling.

Function definition annotations (Fig. 4-a) include the
entry and the exit points (heap_startFunction(),
(heap_endFunction()), and data dependencies through the
stack (for formal arguments and return value) – the tracer
uses a virtual stack controlled by complementary API calls to
heap_arg_write() (push) and heap_arg_read() (pop)
in both callee and function call site (Fig. 4-b)1.

All variable declarations are annotated using calls to
heap_decl() API (Fig. 4-a, 5) that associate a memory
address to a symbolic name: (1) permanently (static variables),
(2) during a function call (automatic variables), or (3) between
the malloc() and free() calls (heap variables). Function-
scope variable declarations (Fig. 4-a) include a unique ID,
variable name, address, size, number of elements (for index
analysis through pointer aliases for vector types), storage class,
and its source file path and position.

The C syntax does not allow one to annotate global variables
directly where they are declared. Hence their declaration
API calls are collected in each source file in a function

1Functions with a variable number of arguments require a slightly more
dynamic handling within the called function body.

img->m_buffer = (uint8_t*)malloc(stride*h);
if (NULL==img->m_buffer)

free(img);

⇓

img = (RT_Image *)malloc(16U);
heap_alloc(653, img, 16U, ...);
heap_write(653, &img, 4, ...);
...
if (__cil_tmp19 == __cil_tmp17) {

free(img);
heap_free(672, img, ...);

Fig. 6. Annotation of dynamic memory operations.

(heap_decl_globals() in Fig. 5) that is called at the begin
of every annotated function in the file until is executed once.

Dynamic memory operations are annotated to track data
dependencies through heap memory blocks (Fig. 6). An API
call to heap_alloc() associates the heap block address with
the pointer name and heap_free() removes the association
– very much like tools such as purify or valgrind trace
the validity of memory accesses.

Control flow expressions (conditional statements and loops)
are not annotated as they would uselessly clutter the paral-
lelization guidance based only on data flow dependencies.

Annotated code can be freely mixed with unannotated code
(in source or binary form) to accelerate the execution and allow
the use of languages unsupported by the annotator, such as
C++. However, the analysis scope is limited as runtime data
tracing of unannotated parts is not available (e.g., for library
functions). This can be a serious problem for functions that
take pointer or non-scalar arguments, or use global pointers,
e.g., string manipulation functions. For a reliable analysis their
source code should be available and annotated.

B. Execution tracer

The execution tracer is implemented as a library providing
the API presented in Section III-A. Linked with the annotated
program, it collects execution data into a complex data struc-
ture during program run.

Since the calling context is essential for the subsequent
analysis for parallelization, most collected data are indexed
by it (i.e., nodes of the data dependency graph are uniquified
by calling context). This is inefficient for heavily recursive
code, and requires compressing call chains with multiple
occurrences of the same node (called function ID) to the
minimum common sub-chain2.

Each heap_write() API call updates the correspnding
DDG node data structure with information that includes its
computational weight (an execution time estimate) and source
code position. As mentioned above, a DDG node is uniquely
identified by instruction ID and call stack. The API call
also updates the last write DDG node for the corresponding
memory address in the tracer data structure.

API calls to heap_read() build the list of read dependen-
cies for the next write instruction. Each dependency between

2Formally, one can generate the minimum Finite State Machine which
recognizes all the call stack strings, and then follow a shortest path on that
FSM for each call stack leaf.

a = b + c; /* instruction ID: 10 */
x = y + z; /* instruction ID: 100 */
r = x + a; /* instruction ID: 1000 */

⇓

Fig. 7. Creation of data dependencies between instructions.

Fig. 8. Data structure to record all call stacks during program execution.

this read and the last previous write is added to the program
data dependencies as a DDG graph edge. Thus, each DDG
node is associated with a list of DDG nodes that produced its
data (Fig. 7).

Function calls and returns are tracked using API calls to
heap_startFunction() and heap_endFunction() that
update both the current call stack and the call tree (Fig. 8).
The current call stack is a LIFO, while the full call tree is a
tree of hash tables where each call level (called function) is
associated with a hash table that records the functions it calls.

Data dependencies through the program stack (function
arguments and return value) are tracked using the virtual stack
explained in Section III-A. Data dependencies between caller
actual arguments and callee formal arguments are recorded
by the tracer in the same way as data dependencies for
instructions.

A symbol table records the base address, size, symbolic
name, and source file location for all program variables using
an AVL tree [14] indexed by address. Automatic variables are
pushed in the symbol table by each heap_decl() call and
removed at function exit.

At the end of the annotated program execution, the tracer
saves data dependencies, call stacks, and other statistics col-
lected in an XML file to be used by the graphic analysis tool.

C. Graphic analysis tool

The huge amount of detail collected during program exe-
cution is presented in a very abstract and summarized form,
in order to help the developer to focus on data dependencies
that lead to parallelization opportunities. The IDE and DDG
visualizer are thus very interactive and provide a set of
keyboard and mouse actions for efficient data exploration.

Fig. 9. Most summarized view of program execution trace.

Once the DDG data are loaded, the viewer presents the
most summarized representation of program execution (Fig.
9), where the execution of all instructions and all data depen-
dencies are folded into the starting function of the program.
The fold name represents the source file, the function name,
and its unique call stack ID. Node statistics in the yellow
frame indicate node type, that it accounts for 100% of program
execution, the call stack up to its function and its source file
location.

A “fold” node is a collection (compression) of children
nodes such as leaves (elementary C statements) or function
calls with or without an entire call tree below them. When
folding a node, all data dependencies among its children are
hidden, and only dependencies between other leaf nodes or
folds and its children are shown. The idea is to represent what
would be the incoming and outgoing data dependencies if this
node was chosen as the parallelization unit (task, thread, Kahn
process).

Trace data exploration starts by unfolding this view to
display its direct callees (Fig. 10). Data dependencies are
represented by directed edges from producer to consumer
nodes. Graph element hues go from whitish to intense red and
encode the relative execution frequency for nodes (an estimate
of amount of computation due to the nodes and their children)
and data dependency frequency for edges (an estimate of the
amount of data communication between the nodes).

To reduce graph cluttering with many uninteresting folds,
the graph can be “re-rooted” to the most significant fold for
exploration of parallelization opportunities only within it. Re-
rooting assumes that the execution starts on the selected fold
and discards everything above it in the call stack. For instance,
a re-root to fold raytracer.c:Render().18 in Fig. 10
would only discard about 0.01% of program execution.

The viewer adds to the standard functions of the underlying
ZGRViewer tool (e.g., zoom, pan, magnifier) some DDG-
specific functionalities. The latter include a navigatable history
of folding and re-rooting states, node bi-directional cross-
reference with program source in the IDE, and external data
dependency view for functions, which is very important for
thread-level parallelization. The latter summarizes the graph
to the set of nodes (leaves or folds) that exchange data with a
given node, in order to simplify data dependency exploration
using viewer-IDE cross-reference. It can be used as the basis
to define the set of incoming and outgoing data dependencies
for a node that needs to be extracted as a thread.

IV. TOOLSET USE EXAMPLE

This section goes through the four stage flow of the toolset
presented in Fig. 1 to find a few parallelization opportunities

raytracer.c:AddObjectToScene().10

raytracer.c:Render().18

light2Obj,
floorObj,
light1Obj,

scene,
light3Obj,

yellowSphereObj,
redSphereObj,
blueSphereObj

raytracer.c:SaveImage().275

*((uint8_t **)__cil_tmp13)

raytracer.c:GetRayID().280

g_rayID

raytracer.c:GetStat().279

g_statCounter[0],
g_statCounter[3],
g_statCounter[2],
g_statCounter[1]

raytracer.c:AllocateImageBuffer().5

img

img

raytracer.c:SaveRawImage().276

img

raytracer.c:main().1

__retres26

light1Obj,
light2Obj,

yellowSphereObj,
scene,

light3Obj,
blueSphereObj,
redSphereObj,

floorObj

[12/159]

scene

image image

raytracer.c:ParseArgs().2

scene,
argv[4],
argc[4]

raytracer.c:ReleaseImageBuffer().277

image

raytracer.c:SetQuadVertex().11

lightSize

raytracer.c:SetVec3().9

light2Obj,
light1Obj,
light3Obj

raytracer.c:CloseLog().281

id__retres4

raytracer.c:OpenLog().6

scene

scene

scene

scene

raytracer.c:PrintLog().278

__retres11

raytracer.c:ResetStats().8

g_statCounter[0],
g_statCounter[3],
g_statCounter[2],
g_statCounter[1]

floor___0,
light2,
light3,
light1

floor___0,
light2,
light3,
light1

raytracer.c:SetupQuad().13

floor___0,
light2,
light3,
light1

floor___0,
light2,
light3,
light1

[10/174]

Fig. 10. Trace view expansion to first callees.

⇒

Fig. 11. Controller-worker parallelization.

for a sequential implementation of a ray tracing program.
Ray tracer algorithms model light sources as rays that

bounce on scene objects to compute realistic lighting for
computer-generated images. Light rays are processed mostly
independent of each other, and offer good thread-level paral-
lelization opportunities as multiple parallel workers (Fig. 11).

In the first stage (Fig. 1), the sequential program is imported
as a make-based IDE project, with added targets to build the
annotated source and instrument the program for tracing.

During the second stage, trace data are collected by running
the annotated program with an input set chosen by the de-
veloper to exercise program dependencies. This data set must
also be small enough to result in an acceptable execution time,
considering the 500× slowdown due to annotation.

In the third stage, trace data exploration starts from the top-
level view in Fig. 9, unfolded as in Fig. 10. The focus is

<initilizations>
for (c = 0; c < numClusters; c++)
for (y = 0; y < blockSize; y++)

for (x = 0; x < blockSize; x++)
RenderPixel(scene, x, y, image, c);

<cleanups>

Fig. 13. Controller-worker form of Render() function.

on folds with most computational load and Fig. 12 a-c show
several parallelization opportunities. For instance, function
Render() and its callees account for most execution in Fig. 10
and calls to function RenderPixel() and its callees account
for virtually all computational cost of Render() unfolded in
Fig. 12-a. Data flow analysis shows good data independence
for RenderPixel(). Moreover, the Render() source code
(Fig. 13) closely resembles the controller-worker pattern (Fig.
11), with RenderPixel() as worker.

However, unfolding further on and cross-referencing with
the source code we easily see that a very similar analysis
can be applied to function IntersectionWithScene() and
its workers in Fig. 12-b and 12-c, for which a parallelization
example is presented in Fig. 14.

V. CONCLUSIONS

The toolset presented in this paper supports manual paral-
lelization of sequential C programs. It automatically rewrites

raytracer.c:InitRandomBuffers().19

raytracer.c:RenderPixel().21

scene,
*samplingGrid raytracer.c:Render().18

scene scene[4],
image[4]

c,
scene[4],
y,

image[4],
x

raytracer.c:PrintLog().274

raytracer.c:Add2Vec3().89

raytracer.c:Mul1Vec3().96

pixelColor

raytracer.c:UpdateStat().90

pixelColor

raytracer.c:WritePixel().97

pixelColor

raytracer.c:SetVec3().22

pixelColor

raytracer.c:GetRayID().26

raytracer.c:RenderPixel().21

id

raytracer.c:IntersectionWithScene().27

g_rayID

scene[4]

primaryRay,
data,

scene[4]

clusterY,
clusterX,
image[4]

sampleY,
sampleX

data

datag_rayID

data,
__retres39

pixelColor

pixelColor

primaryRay

primaryRay

raytracer.c:NormalizeVec3().24

primaryRayraytracer.c:Sub2Vec3().23

primaryRay,
sampleLocationOnScreen

primaryRay,
localData

primaryRay

raytracer.c:IntersectObjet().28

raytracer.c:ShadeObject().41

reflectedColor,
g_statCounter[3],

lightNormal,
localData,
shadowRay

raytracer.c:IntersectionWithScene().27

__retres25

res,
CS,

g_statCounter[3]

data

caster[4],
obj,

ray[4]

data[4],
scene[4],
ray[4]

raytracer.c:SetVec3().40

data[4]

data

data

(a) (b) (c)

Fig. 12. Sequential unfolding of high-execution folds (b-99.77%, c-99.3%) and applying graph re-rooting.

while (obj != NULL) {
<setup>
if (IntersectObjet(obj,ray,caster,&localData)==1)
if (localData.m_distance < data->m_distance)

*data = localData;
obj = obj->m_next;

}

⇓

while (obj != NULL) {
for (n = 0; n < NWORKERS; n++) {
<setup for worker n>
if (obj != NULL) {

obj = obj->m_next;
<start IntersectObjet() worker n>;

}
}
for (n = 0; n < NWORKERS; n++) {
if (<exit code worker n> == 1)
if (localData[n].m_distance<data->m_distance)

*data = localData[n];
}
if (obj != NULL) obj = obj->m_next;

}

Fig. 14. IntersectionWithScene() function controller-worker
format and parallelization.

the source code with annotations that trace data dependencies
and other events during program execution. The developer can
analyze the data collected in an interactive graphical form and
can use exploration and analysis tools that effectively support
the search for any type of parallel code rewriting opportunities,
including, but not limited to, the intrinsically race-free Kahn
Process Network style.

The tool is part of the EU FP7 HEAP project where its
functionality is complemented and enhanced by two other
tools: one for automatic parallelization indices using KPNs [1],
[2], and one for functional verification of parallelized code.

ACKNOWLEDGMENTS

This work is supported by the European Commission in the
context of the FP7 HEAP project (#247615). The ray tracing

application analyzed in this paper has been kindly provided
by ST Microelectronics within the HEAP project.

REFERENCES

[1] Compaan Design BV, 2012. See http://www.compaandesign.com/.
[2] B. Kienhuis, E. Rijpkema, and E. F. Deprettere, “Compaan: deriv-

ing process networks from matlab for embedded signal processing
architectures,” in Proceedings of the Eighth International Workshop on
Hardware/Software Codesign, pp. 13–17, 2000.

[3] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach
to exploiting coarse-grained pipeline parallelism in C programs,” in
Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM Inter-
national Symposium on, pp. 356–369, dec. 2007.

[4] J.-Y. Mignolet, R. Baert, T. J. Ashby, P. Avasare, H.-O. Jang, and J. C.
Son, “Mpa: Parallelizing an application onto a multicore platform made
easy,” IEEE Micro, vol. 29, no. 3, pp. 31–39, 2009.

[5] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information processing (J. L. Rosenfeld, ed.), (Stockholm,
Sweden), pp. 471–475, North Holland, Amsterdam, Aug 1974.

[6] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Comput. Surv., vol. 26, pp. 345–
420, Dec. 1994.

[7] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.
Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “Suif: an infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Not., vol. 29, pp. 31–
37, Dec. 1994.

[8] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software
pipelining,” ACM Comput. Surv., vol. 27, pp. 367–432, Sept. 1995.

[9] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in Split-C,” in
Supercomputing ’93. Proceedings, pp. 262–273, nov. 1993.

[10] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. Cronquist,
and M. Sivaraman, “Pico: automatically designing custom computers,”
Computer, vol. 35, pp. 39–47, sep 2002.

[11] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer, “CIL: Intermedi-
ate language and tools for analysis and transformation of C programs,”
in Int’l Conference on Compiler Construction, pp. 213–228, 2002.

[12] “Code::Blocks IDE.” http://www.codeblocks.org/.
[13] E. Pietriga, “A toolkit for addressing HCI issues in visual language

environments,” IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), vol. 00, pp. 145–152, 2005.

[14] R. Sedgewick, Algorithms. Addison-Wesley, 1983. chapter 15: Balanced
Trees.

