
24 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SystemC Model Generation for Realistic Simulation of Networked Embedded Systems / Lazarescu, MIHAI TEODOR;
Sayyah, P.; Quaglia, D.; Stefanni, F.. - ELETTRONICO. - (2012), pp. 423-426. (Intervento presentato al convegno 15th
Euromicro Conference on Digital System Design tenutosi a Izmir, Turkey nel September 2012) [10.1109/DSD.2012.123].

Original

SystemC Model Generation for Realistic Simulation of Networked Embedded Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2012.123

Terms of use:

Publisher copyright

©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2507482 since: 2020-07-05T15:23:21Z

IEEE

SystemC model generation for realistic simulation of networked embedded systems

Mihai Lazarescu, Parinaz Sayyah
Department of Electrical Engineering,

Politecnico di Torino, Italy
firstname.lastname@polito.it

Davide Quaglia, Francesco Stefanni
EDALab s.r.l., Verona, Italy

firstname.lastname@edalab.it

Abstract—Verification and design-space exploration of to-
day’s embedded systems require the simulation of heteroge-
neous aspects of the system, i.e., software, hardware, commu-
nications. This work shows the use of SystemC to simulate
a model-driven specification of the behavior of a networked
embedded system together with a complete network scenario
consisting of the radio channel, the IEEE 802.15.4 protocol
for wireless personal area networks and concurrent traffic
sharing the medium. The paper describes the main issues
addressed to generate SystemC modules from Matlab/Stateflow
descriptions and to integrate them in a complete network
scenario. Simulation results on a healthcare wireless sensor
network show the validity of the approach.

I. I NTRODUCTION

The design of today’s embedded systems is becoming
ever more complex due to the need to cover a large set
of heterogeneous domains, such as digital (hardware and
software), analog (hardware, MEMS, power sources, exter-
nal environment) and network (communications with other
systems). In this paper we focus on a realistic complex
wireless sensor network application for health monitoring
designed in the COMPLEX European project [1]. Each
person wears a wireless node which senses different kinds
of body information, analyses them and communicates with
a base station on a shared radio channel which hosts
also other concurrent traffic. Nodes consist of non-trivial
software components running over a 32-bit system-on-chip
architecture by ST-Microelectronics. To simplify application
development, a model-driven approach has been chosen and
software components are specified by using implementation-
independent languages such as UML/MARTE and Stateflow.

To allow verification and design-space exploration of the
platforms supporting this kind of applications, we need to
simulate the following aspects:

• system behavior, modeled in an implementation-
independent fashion, e.g., as a set of interacting state
charts instead of using CPUs, memories, hardware
accelerators;

• network scenario, consisting of channel behavior (e.g.,
path loss, collisions), communication protocols (e.g.,
IEEE 802.15.4), concurrent traffic and noise.

Research activity partially supported by the European project COMPLEX
FP7-2007-IST-4-247999

A possible way to simulate all these aspects is co-
simulation [2], i.e., the combined and synchronized execu-
tion of different simulation tools, e.g., Stateflow for the state
charts of the application, VHDL for hardware components,
NS-2 [3] for the network. This solution is time-consuming
and, for this reason, in the COMPLEX project we decided
to model all these aspects with the same language, namely
SystemC, which has a great flexibility and extensibility.

To enable this methodology, thegeneration and integra-
tion of SystemC modelsfrom the different aspects of the
application is crucial. In particular, this paper describes:

• the generation of SystemC modules from Stateflow
specifications;

• the creation of network scenarios in SystemC by using
the SystemC Network Simulation Library [4];

• the integration of the resulting modules in a compre-
hensive simulation scenario.

The paper is organized as follows. Section II describes
the generation of SystemC models from Stateflow. Sec-
tion III describes how SystemC is used to model a network
scenario. Section IV introduces the case study. Section V
describes the model integration into the SystemC platform
while Section VI reports some results about communication
performance.

II. GENERATION OFSYSTEMC FROM STATEFLOW

To implement the generation flow we extended HIFSuite
tool [5] which provides an intermediate format, named
Heterogeneous intermediate Format (HIF), and a set of
functions to manipulate it. Moreover, the HIF language has
a well-defined formal semantics, borrowed from theUNI-
VERCM [6] computational model. Therefore, the mapping
is correct-by-construction.

Nevertheless, Stateflow state charts and HIF descriptions
have some semantic differences, which have to be addressed
during conversion:

1) Stateflow has hierarchical states and allows transitions
between different hierarchical levels while HIF pro-
vides only flat automata.

2) Stateflow allows actions both on transitions and into
states while HIF allows only actions on transitions.

3) Stateflow provides the so-calledcondition actions
and transition actions, leading to complex semantics

behaviors. HIF provides only actions associated to
transitions, which has a different semantic with respect
to Stateflow actions.

4) Stateflow provides the so-calledjunctions, with asso-
ciated transitions that have different semantics from
transitions between states. HIF provides only transi-
tions between states.

5) Stateflow provides events, whose broadcasting can
lead to unexpected behaviors, when they are raised
within states or as condition actions. HIF has labels,
that can be raised only on transitions, and that have a
very strict semantics.

Since HIF supports only flat EFSMs, the first step of
Stateflow to SystemC conversion consists in removing state
hierarchy by using a recursive algorithm.

Then, each HIF automaton will be mapped into a SystemC
process. This mapping introduces a difference with respect
to the original Stateflow behavior: on one hand, in Stateflow
parallel states are executed in a pre-defined order thus avoid-
ing explicit synchronization mechanisms for reading/writing
data shared among different automata. On the other hand,
SystemC does not have such a guarantee, and thus it requires
explicit synchronization.

Stateflow junctions are a kind of “soft states” with a
backtrack semantics according to which a set of consecutive
junctions cannot be traversed until the destination state is
reached. This backtrack behavior has been reproduced in
our SystemC translation by exploiting the similar behavior
of C++ function calls. Each junction and transition involving
a junction generates a method call in SystemC. At the end
of recursive calls, the last called function returns a flag to
check whether a state has been successfully reached.

Stateflow provides two kinds of actions related to a
transition, i.e.,condition action and transition action. A
transition action is executed only when a destination state
is reached, while a condition action is executed as soon
as the condition becomes valid. These kinds of actions
create complex interactions, especially in case of events.To
avoid such complex interactions, we decided to put some
restrictions in the generation of SystemC as follows:

• Transition actions are supported, since their semantics
matches the traditional semantics of EFSMs. In case
of transition actions involving junctions, these actions
will be “moved” to the last transition thus guaranteeing
their execution only in case a valid state is reached.

• Condition actions are supported only if they do not
raise events. Note that even the Stateflow documen-
tation suggests to avoid this kind of behavior, since
the graphical representation does not match the actual
simulation behavior.

III. M ODELING A NETWORK SCENARIO WITHSYSTEMC

The SystemC Network Simulation Library(SCNSL),
freely available at [4], extends the SystemC simulation

capability to network-oriented scenarios.
SCNSL taskscontain the application functionality which

is being designed. From the point of view of a network
simulator, a task is just the producer or consumer of
packets and therefore its implementation is not important.
However, for the system designer, task implementation is
crucial and many operations are connected to its modeling,
e.g., choice of abstraction level, validation, fault injection,
HW/SW partitioning, mapping to an available platform,
synthesis, and so forth. For this reasonTaskProxyinstances
has been introduced to decouple task implementation from
the backend which simulates the network.

Nodesare containers of tasks and provide access to the
channel.

Channelsare an abstraction of the transmission medium,
and thus they simulate various communication aspects, like
packet collisions. SCNSL provides models for both wired
(full-duplex, half-duplex and unidirectional) and wireless
channels.

Designers can either implement protocols ex-novo in
custom tasks or rely on protocol models provided by
the simulator through optional backend components named
Communicators. Communicators can be interconnected with
each other to create chains modeling protocol stacks as well
as buffers to store packets, simulation tracing facilitiesand
so forth.

Another critical point in the design of the tool has
been the concept ofPacket. Generally, the packet format
depends on the corresponding protocol even if some header
fields are almost always present, e.g., packet length and
source/destination addresses. System design requires a bit-
accurate description of the packet content, to test parsing
functionality, while from the point of view of the network
simulator the strictly required fields are the length (for bitrate
computation) and some flags to mark collisions (if routing
is performed by the simulator, source/destination addresses
are also needed). To meet these opposite requirements in
SCNSL, an internal packet format is used by the simulator,
while the system designer can use different packet formats
according to protocol design. The conversion between the
user packet format and the internal packet format is per-
formed in the TaskProxy.

IV. CASE STUDY: SPINEAPPLICATION

In this section, we describe a realistic Wireless Sensor
Network (WSN) application, from the health monitoring
domain. It couples all major aspects of WSNs (sensing,
processing, radio transmission) with a non-trivial amountof
local computation on the raw sensed data to reduce the total
amount of energy consumed for transmission. This requires
the use of a powerful 32-bit processor and optimization of
the node HW/SW platform according to the goals of the
COMPLEX project.

Figure 2. Top view of SPINE network scenario in SCNSL.

The application is a health monitoring-oriented virtual
machine that conforms to the SPINE (Signal Processing
in Node Environment [7]) specification. It provides the
application developer with a set of functions like:

1) sensing various kinds of data (e.g. temperature, accel-
eration, blood oxigenation level, hearth pulse rate) and
storing them inside local buffers;

2) performing a variety of filtering, threshold detection,
and other mathematical functions over the buffers;

3) sending data packets to a base station either regularly,
or when some interesting or emergency event occurs.

All the functions described above are dynamically trig-
gered by the Base Station (BS) node, by sending configura-
tion packets to the SPINE node. Examples of configuration
parameters include the sampling period of individual sen-
sors, the buffer sizes, the features (e.g., max, mean, median)
that need to be computed. The last configuration packet
contains the list of tasks (sampling, feature computation,
radio packet dispatch) that must be activated. The SPINE
nodes process configuration packets from the BS, perform
the configured computations and transmit the results to the
BS.

As shown in Figure 1, the SPINE behavior has been
modeled in Stateflow by using three concurrent state charts,
namely: SpineSchedulerEngine, SpinePktProcessingEngine,
Timer. The SpinePktProcessingEngineis responsible for
processing incoming packets (represented in Stateflow as
PKT events), from the BS. TheTimer state machine is in
charge of activating each task with the appropriate period.
It keeps a queue of task activation times, and wakes up
the SpineSchedulerEnginewhenever needed. Finally, the
SpineSchedulerEngineexecutes the actual tasks. i.e., sam-
pling and storing sensor data, computing signal processing
functions, and sending data to the BS.

V. I NTERFACING SYSTEMC CODE WITH SCNSL

This section illustrates how the SystemC code generated
from the Stateflow model is integrated into the SCNSL
simulation environment.

Table I
NETWORK PERFORMANCE VARYING THE NUMBER OF NODES

Number Transmission Delivery Maximum Average
of nodes delay (ms) ratio backoffs hits backoff (ms)

2 7.5 1.0 0 2
4 14 0.98 20 3.5
6 18 0.9 400 4.5
8 20 0.8 800 4.7

The top view of the experimental scenario is shown in Fig-
ure 2, where n0 represents the BS, and n1, n2 and n3 are the
SPINE nodes. Figure 3 shows the architecture of theSPINE_t

class which includes twoSC_THREAD, namelyspineWakeupCLK
andspine_TX_Pkt. The spineWakeupCLK thread provides the
basic timing functionality to the SPINE model. It uses the
wait method to callwakeup.notify, which in turn calls the
main SPINE model with the CLK periodic input event used
by the Timer process. Thespine_TX_Pkt thread is sensitive
to the sendPacket event and thus it remains sleeping until
the SPINE model has a data packet to send back to the BS.
At this time, the SPINE model executes thesendDataPkt.
notify method, which wakes upspine_TX_Pkt to start the
packet transmission on the radio channel. The BS class is
similar (only the application code differs).

VI. EXPERIMENTAL RESULTS

The IEEE 802.15.4 protocol is configured to operate in
unslotted CSMA/CA mode and 16 bit short addresses are
used in data packets. The communication is synchronized
and controlled by the Base Station which starts by sending
three configuration packets followed by the start command
packet in a short interval. After receiving the start command,
each SPINE node samples the accelerometers every 40 ms
and sends a 64-byte data packet to the Base Station. The
simulation is carried out for 20 seconds of simulated time
(i.e. about 500 packets per node) and considers up to
eight SPINE nodes, which may be placed, for example, on
different people in the same room.

According to the IEEE 802.15.4 protocol, each SPINE
node waits for a random number of backoff units (320µs)
within the [0,2BE

−1] range before accessing the channel,
where the backoff exponentBE is initially set to 3 and
it is increased up to 7 if the channel is still found busy.
Transmission is retried up to 4 times.

Table I shows the key performance numbers obtained from
the network simulation, as a function of the total number of
SPINE nodes in the network (excluding the base station).
The average transmission delay increases and the packet
delivery ratio decreases, as expected. Transmission delay
increases due to the increase in retransmissions and backoff
time.

VII. C ONCLUSIONS

A methodology for the simulation of a wireless sensor
node has been presented and validated. We described how

Figure 1. SPINE behavior described in Stateflow as three concurrent state charts.

Figure 3. Architecture of the SCNSL model of the SPINE node

the node behavior can be modeled by using Stateflow and
how HIFSuite can be used to transform it into a multi-
process SystemC model. The generated SystemC model
can be easily incorporated into a SystemC-based network
simulator, called SCNSL, in order to explore aspects such as
network latency under varying channel and traffic conditions.
Future work will address the incorporation of a SystemC
instruction-set simulator and a cycle-accurate power model
of the hardware platform, to explore the impact of network-
aware power management strategies on the battery lifetime.

REFERENCES

[1] European Commission, “COdesign and power Management
in PLatform-based design space EXploration - COMPLEX,”
URL: https://complex.offis.de/, no. FP7-IST-247999, 2009.

[2] M. Chung and C.-M. Kyung, “Enhancing performance of
HW/SW cosimulation and coemulation by reducing commu-

nication overhead,”IEEE Transactions on Computers, vol. 55,
no. 2, pp. 125–136, Feb. 2006.

[3] S. McCanne and S. Floyd, “NS Network Simulator – version
2,” URL: http://www.isi.edu/nsnam/ns.

[4] “SystemC Network Simulation Library – version 1,” 2008,
URL: http://sourceforge.net/projects/scnsl.

[5] EDAlab, “HIFSuite home page,” http://www.hifsuite.com/.

[6] L. Di Guglielmo, F. Fummi, G. Pravadelli, F. Stefanni, and
S. Vinco, “UNIVERCM: The UNIversal VERsatile computa-
tional model for heterogeneous embedded system design,” in
High Level Design Validation and Test Workshop (HLDVT),
2011 IEEE International, nov. 2011, pp. 33 –40.

[7] Signal Processing In Node Environment, “SPINE home page,”
http://spine.tilab.com/.

