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An efficient artificial neural network (ANN) approach for the modeling of reflectarray elementary components is introduced
to improve the numerical efficiency of the different phases of the antenna design and optimization procedure, without loss in
accuracy. The comparison between the results of the analysis of the entire reflectarray designed using the simplified ANN model
or adopting a full-wave characterization of the unit cell finally proves the effectiveness of the proposed model.

1. Introduction

Printed reflectarrays (RAs) have become nowadays a well-
established technology for the realization of high perfor-
mance antennas to be used in different applications, ranging
from earth stations or onboard antennas in satellite commu-
nication systems to radar antennas mounted on vehicles (see
e.g., [1–10]).

The need of providing high performances and satisfying
potentially conflicting requirements generally forces the
use of complex configurations, with a large number of
reradiating elements. At their turn, the latter could present
a complex structure, with several degrees of freedom, which
have to be adjusted in order to satisfy the antenna constraints.
All these factors concur to increase the RA design complexity
and, therefore, the use of an indirect synthesis procedure
based on an optimization algorithm could be convenient,
since it can handle a large number of degrees of freedom
and provide a configuration satisfying at the best the different
constraints on the antenna [11–13].

The RA design procedure can be seen as the cascade of
two steps, organized as in the block diagram of Figure 1: the
characterization of the single RA reradiating element with
respect to several parameters, and the optimized design of the
entire structure, managed by a global optimization tool. A
further step could be added, before the antenna manufactur-
ing, consisting in a full-wave analysis of the entire RA (virtual
prototyping).

The starting point of the design procedure is to obtain
a map of the phase and the amplitude of the reflection
coefficient of the RA single element as a function of selected
geometrical parameters. This is usually done adopting a full
wave MoM approach and considering the single RA element
embedded in a periodic lattice on which a plane wave
impinges. The generation of these maps is computationally
expensive, since it requires the full-wave analysis of the
periodic array for several values of the free geometrical
parameters, as well as for different frequencies and angles of
incidence. Moreover, if the design of the entire reflectarray
is carried out exploiting an optimization procedure, based
on the use of a pseudo-stochastic algorithm, the reflection
coefficient sampling rate has to be quite high. Finally, the
storage of data produced by these simulations requires a large
amount of dynamic memory. In view of reducing these com-
putational and memory efforts, it would be useful to intro-
duce an equivalent model of the reradiating element. If its
geometry is simple, its behavior could be approximated with
an equivalent transmission line model [11, 14]: in this case,
no full-wave analysis has to be carried out, since the sim-
plified model is directly managed by the optimization tool.
Unfortunately, such an approximation is no longer appli-
cable when the geometry complexity increases and a more
general model is required.

Here, a modeling technique, independent from the RA
reradiating element structure and able to reproduce its
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Figure 1: Block diagram of the proposed design procedure.

behavior at a reduced computational cost, is presented. It
is based on the use of an artificial neural network (ANN)
for simulating the relationship between the local re-radiated
field and the geometrical parameters of the element, so that
it becomes possible to compute the reflection coefficient of
the reradiating element for any value of the RA parameters,
starting from a reduced set of data obtained through the
standard full-wave analysis.

Preliminary results of the modeling of a RA reradiating
element behavior with an ANN have been presented in [15],
where only some plots of the phase of the reflection coeffi-
cient computed with the ANN and a guess of the introduced
error are shown, and in [16] where the reflection coefficient
phase reconstructed by the ANN has been used to compute
the field re-radiated by a reflectarray in which the reradiating
elements are double square concentric rings and only one
geometric parameter has been used to control the phase
variation. The validity of the approach has been confirmed
also in [17], where it is used for the reflection coefficient
phase of a multilayer reradiating element; however, also in
this paper only the results about the comparison between the
full-wave and the ANN computed reflection coefficient are
shown.

Here, the ANN model will be used for computing the
variation of the entire reflection coefficient for both the
vertical and horizontal polarizations with the reradiating
element geometrical parameters, the frequency, and the
angle of incidence. First, the computational time and the
memory reduction due to the introduction of the ANN are
investigated, considering reradiating elements of increasing
complexity. Then, the attention has been focused on the
RA introduced in [7] where the reradiating elements are
modified Malta Cross, characterized by two geometrical
degrees of freedom for controlling the re-radiated field: the
effect of the use of the ANN model will be considered
not only analyzing the error introduced on the reflection
coefficient, but also that on the field radiated by the entire
reflectarray.

2. Artificial Neural Networks

An artificial neural network (ANN) is a computational
model that simulates the features and behaviors of the

human brain neurons [18, 19], that is, it is a self-adaptive
data modeling tool that changes its structure on the basis
of external or internal information that flows through the
network during the learning phase. In particular, an ANN
consists of an interconnected group of artificial neurons that
suitably processes information according to the strength of
connections among them.

In more practical terms neural networks are nonlinear
statistical data modeling tools. They can be used to model
complex relationships between inputs and outputs or to find
patterns in data. For this reason, ANNs are useful tools when
it is necessary to understand the complex and nonlinear
relationships among data, without any a priori assumption
concerning the nature of these correlations.

In recent years, ANN have been extensively employed in
many antenna applications and in particular in problems
involving smart antennas: in [20] an ANN is employed to
model the active-aperture antenna shape in real time, in
[21, 22] direction-of-arrival and multiple-source tracking for
wireless terrestrial, and satellite mobile communications are
addressed employing neural-network-based smart antennas.
Moreover, in [23] ANNs are applied to the scattering of a
nonlinearly loaded antenna by modeling its RCS. ANN has
been also used for antenna optimization in conjunction with
evolutionary algorithms: in [24] the design of a wideband
microstrip antenna is performed using a genetic-algorithm-
coupled ANN in computing the radiation pattern and the
resonant frequency; in [25] an ANN is proposed to predict
the input impedance of a broadband antenna as a function
of its geometric parameters. The antenna structure is then
optimized for broadband operation via a genetic algorithm
that uses input impedance estimates provided by the trained
ANN. Patch antenna modeling is another application of
ANN: in [26] an ANN is used to design the parameters
of square and rectangular patch antenna; in [27] a neural
network model of slotted patch antenna is developed to
calculate the resonant frequency and minimum value of
S11 parameter considering both antenna dimensions and
dielectric characteristics. Moreover, in [28] a neural network-
based solution is employed to relate a given radiated field
distribution with the voltages that must be applied to
each radiating element taking into account mutual coupling
effects without increase of complexity.

The characteristics of an ANN depend on its topology,
that is, on the pattern of connections between the neurons
and the propagation of data. Here, for the modeling of the
reradiating element behavior, the multilayered perceptron
(MLP), has been used.

The MLP implements a feed-forward topology, in which
the data flow from the input to the output layers is strictly
forward, and consists of an input layer, one or more
hidden layer, and an output layer. The resulting network
structure is that depicted in Figure 2, where the dependencies
between variables are represented by the connections among
neurons. The input composition in each neuron is made by
a nonlinear weighted sum,

f (x) = k(x)

⎛
⎝∑

i

wigi(x)

⎞
⎠, (1)
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Figure 3: Part of the block diagram of Figure 1 modified by
introduction of ANN.

where k(x) is a nonlinear activation function which models
the activity of biological neurons in the brain. This function
must always be normalizable and differentiable and it is
modeled in several ways; the most common is the hyperbolic
tangent, which ranges from −1 to 1:

k(x) = tanh(x). (2)

2.1. Neural Network Training. A neural network works
properly when, for any set of inputs, it produces the desired
set of outputs. This means that the connections between the
different nodes in the network are set properly, that is, the
weights wi have been correctly chosen.

The definition of these weights is generally done during a
training phase: in the so-called supervised learning scheme
the neural network is fed with a set of input-output pairs
already known, called Training Set (TS): for a given number
N of these pairs (xi, yi), where xi ∈ X , yi ∈ Y , it is necessary
to find a function:

f : X −→ Y , (3)

that matches the examples of the TS. Thus, weights are
changed according to a suitable learning rule, until the error
on the ANN outputs is minimized [29].

S

S

t
l

Figure 4: Single cell of the modified Malta Cross.

Among different learning rules, error backpropagation
(EBP) is a well-known analytical algorithm used for neural
networks training. In literature, there are several forms of
backpropagation, all of them requiring different levels of
computational efforts; the conventional back-propagation
method is, however, the one based on the gradient descent
algorithm. EBP propagates error backwards through the
network to allow the error derivatives for all network weights
to be efficiently computed. In other words, network weights
are optimized in order to reach a good and accurate output
and this objective is reached typically minimizing the mean-
squared error between the network’s output, f (xi), and the
target value yi over all the N example pairs.

Training is time and memory consuming and is the most
critical phase in the ANN set up, since it must provide
continuous feedback on the quality of solutions obtained
thus far.

To test the ANN generalization capability, a validation set
(VS) is defined too, containing known (xi, yi) pairs not used
in the TS, in order to check the correct association between
unknown input and output data.

2.2. Neural Network Use in RA Characterization. Once
trained, the ANN can be considered as a black box: the
desired output can be forecast for any arbitrary set of input
data. For the case under analysis, the inputs are represented,
as sketched in Figure 2, by the reradiating element geomet-
rical degrees of freedom, the frequency, and the angle of
incidence, while the expected output is the total reflection
coefficient for both the horizontal and vertical polarization.
Note that the angle of incidence of the impinging field could
noticeably vary from one border to the other of the planar
reflector, especially when it has a large electrical size and
the feed is offset. Note also that generally the amplitude of
the reflection coefficient is neglected during the design of
a RA, since it is assumed to be equal to unity; however,
for some particular values of the geometrical parameters,
this amplitude decreases (at the structure resonances), and
therefore it becomes necessary to take into account also of
this phenomenon.

It has been found that the relation between the above
inputs and outputs could properly model with an ANN
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Figure 5: Reflection coefficient amplitude (left) and phase (bottom) versus the two RA geometrical parameters � and t of the modified Malta
Cross, computed with direct full-wave (top) and reconstructed with the ANN (bottom). f = 10.7 GHz, θinc = 0◦.

consisting in two hidden layers with 11 neurons in the first
layer and 9 in the second one.

Introducing the ANN model of the reradiating element,
the RA design procedure is modified as sketched in Figure 3,
with the advantage that only the TS data are computed with
the full wave approach and stored only for the training phase,
since after that they are useless. In fact, during the RA
design procedure, guided by the optimization tool, this latter
will directly introduce in the ANN the geometrical free
parameters relative to each RA element and the ANN will
produce the corresponding reflection coefficient, with a clear
reduction of the computational time and of the memory
requirements, as proved by the results relative to different
types of reradiating elements reported in the next section.

3. Numerical Results

The effectiveness of the use of a proper ANN for modeling
the behavior of a single RA element has been investigated,

considering both its numerical efficiency and the error intro-
duced not only on the single element reflection coefficient,
but also on the radiation patterns of an entire RA.

For what concerns the ANN model numerical efficiency,
we have considered different types of reradiating elements,
with different degrees of complexity, and for all of them
we have computed the time and the memory reduction
introduced by the ANN model. For doing that, first we have
computed the reflection coefficient maps with the periodic
full-wave approach; since they depend also on both the
frequency and the angle of incidence, which, at their turn,
vary from one application to another, we have decided to
refer, as a reference example, to a particular reflectarray, the
one that is described in [7]: it consists of 36 × 36 elements,
corresponding to an electrical size of almost 16λ × 16λ at
the central frequency of 11.7 GHz, it is offset fed, and the
direction of maximum radiation forms a slant angle of 15◦

with respect to the broadside. Moreover, the design has been
carried out so that the antenna works on the frequency band
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Cross, computed with direct full-wave (top) and reconstructed with the ANN (bottom). f = 10.7 GHz, θinc = 65◦.

[10.7–12.7] GHz. For such a structure, it has been seen that
a total number of 50 samples is required to well represent
the reflection coefficient variation with frequency and angle
of incidence. Note that the maximum angle of incidence
considered is equal to 65◦ and that the variation of the
reflection coefficient increases for greater angle of incidence.
This behaviour makes it necessary to consider a not uniform
sampling of this quantity. This number of frequency and
angle of incidence samples will be assumed to be the same
for all the different types of reradiating element that will be
considered in the following.

The simplest type of reradiating element we have con-
sidered has been a square, single-layer patch, for which the
reflection coefficient variation is obtained varying the side
� of the patch itself. It has been seen that a reasonable
discretization of the interval of variation for � is obtained
with 35 samples. As a second example of reradiating element,
we have considered the modified Malta Cross introduced
in [7] and shown also in Figure 4 for the sake of clarity,
in which, to better control the frequency dependence of
the re-radiated field and to enhance the bandwidth, two

geometrical parameters, that is, � and t in Figure 4, are used.
Their good discretization is reached with 31 samples for each
of the two geometrical quantities. The other two config-
urations considered consist in two and three-layer stacked
square patches. In both cases the geometrical free parameters
are the side of the square patches, whose interval of variation
has been discretized with 34 samples each.

In the second and third columns of Table 1, it is reported
the total time needed to compute the reflection coefficient
maps and the dynamic memory necessary for their storage
using the periodic full-wave approach relatively to the four
types of reradiating elements. These full-wave simulations
have been performed using Ansoft Designer, on an Intel
Core2 Duo E4700, 2.6 GHz, 2 Gb RAM system. Note that
both the computational cost and the memory requirements
increase drastically with the reradiating element complexity.

In view of reducing both the computational time and
the memory occupation, the dependence of the reflection
coefficient from the free geometrical parameters of each
reradiating element, from the frequency, and from the angle
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Table 1: Computational time and memory requirement for the evaluation and the storage of the reflection coefficient maps for different
types of re-radiating elements, with the periodic full-wave approach and the ANN training.

Element type
Full wave ANN training

Computational time Memory requirement Computational time Memory requirement

1-layer square patch 4 h 45 min 0.9 Mb 55 min 9.5 Kb

1-layer modified Malta Cross 65 h 2.5 Mb 4 h 134 Kb

2-layer stacked patches 241 h 3.2 Mb 13 h 30 min 160 Kb

3-layer square patches 1.2× 104 h 67 Mb 341 h 50 min 2.87 Mb

of incidence has been modeled with the ANN described in
Section 2.

Since the most critical end expensive phase in the use
of an ANN is its training, we consider here as the ANN
computational cost and memory occupation those required
in that phase. The computational time required for the
neural network training is given by the sum of the time
necessary to compute the data for the training and that
required by the actual training. In the fourth column of
Table 1 the training total computational time for the four

reradiating element is reported. The data for the training
are still obtained with the full-wave simulations: it has been
seen that a good reconstruction of the reflection coefficient
has been guaranteed by 10 samples for the total of frequency
and angle of incidence, while the number of samples for the
geometrical parameters varies from one element to another.
Comparing the second and the fourth columns of Table 1,
it is possible to see that the ANN training requires globally
a computational cost varying from 0.19 to 0.028 times that
needed for collecting the data when the traditional approach
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is used. Note that, when used in the RA design and/or
analysis procedure, the computational time required by the
ANN to compute the reflection coefficient in correspondence
of a value for the geometrical degrees of freedom, for the
frequency and for the angle of incidence is of the order of
40 μsec.

The use of the neural network drastically reduces also
the memory occupation: in the fifth column of Table 1, it
is reported the dynamic memory needed to store the data
during the training section, obviously lower than the case in
which the full-wave approach is used. However, it has to be
remarked that the memory reduction factor, that comes out
from comparing the third and the fifth column of Table 1,
is valid only for the training section, since at the end of
the training these data could be removed, and the memory
occupation of the neural network is around 5 KB, equal to
0.002 times that required by collecting all the data used in
the traditional approach.

In order to verify if the use of the ANN for the modeling
of the RA single cell does not only guarantees a strong

reduction of both the computational cost and of the memory
requirement but also gives its accurate representation, we
have also investigated the error that ANN model introduces
on the reflection coefficient and on the radiating characteris-
tics of the RA. With this aim, we have considered the 16× 16
offset reflectarray already introduced in [7] and described
at the beginning of this section, in which the reradiating
elements are the modified Malta Cross.

Figures 5, 6, 7, and 8 show the variation of the reflection
coefficient phase and amplitude with the two geometrical
parameters � and t reconstructed using the ANN (bottom)
or obtained by the direct full-wave analysis of the periodic
structure (top), for one of the extremes and the central
frequency of the RA band and for two different angles of
incidence (θinc = 0◦ and θinc = 65◦). The colorbars on the top
give the values of the reflection coefficient amplitude (left)
and phase (right), while those on the bottom show the error
introduced by the use of the ANN model.

From the plots in Figures 5, 6, 7, and 8, it is possible to
draw the following conclusions:
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(i) the amplitude of the reflection coefficient does not
vary substantially for low values of frequency and
angles of incidence;

(ii) the error introduced by the ANN on the amplitude of
the reflection coefficient is really small;

(iii) the phase varies in the range [0–600◦];

(iv) the error introduced by the use of the ANN on the
phase is well controlled, even if there are some single
spots, where the slope of the phase curve is higher
than could become remarkable. It is worth noting
that these spots take place in correspondence of the
RA element resonances where the full-wave analysis

is critical. However, this error is really localized and
it will not affect the computation of the RA radiation
parameters.

The ANN model of the single reradiating element has
then be used in computing the gain pattern of the entire
RA by using the physical optics approximation. Figure 9
shows the antenna gain patterns at the central frequency of
11.7 GHz for both the principal planes. The gain patterns
have been computed by using both the exact value and
the ANN approximation of the reflection coefficient. The
relevant plots show a good agreement: the main beams are
almost coincident and also the relative error introduced by
the ANN on the sidelobes is always below few percent.
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A similar observation applies also to the plot in Figure 10,
in which the variation of the maximum gain versus fre-
quency, computed with different techniques or obtained
from the measurement of a prototype of the designed
antenna, is shown. In particular, when we compare the
results obtained by using the physical optics approximation
together with the data for the reflection coefficient computed
through the full-wave simulation of the unit cell (dash line)
or by adopting the ANN approximated model (continuous
line), it is evident that the latter underestimates the antenna
gain. However, if we look at the values obtained by applying
the MoM to the entire antenna [30] (dots) and the mea-
surement results, it is evident that the error introduced by
the ANN approximated model is negligible with respect to
the one introduced by the physical optics approximation
itself. Thus, the ANN approximated model can be conve-
niently used to obtain a reflectarray layout and to make a
first optimization of the RA with the same uncertainty of
the time-consuming accurate interpolation of the reflection
coefficients.

4. Conclusions

The results of the previous section confirm the validity of
the proposed characterization technique for the modeling
of the behaviour of the RA reradiating element. The use
of the artificial neural network for the characterization of
the relationship between the RA single element reflection
coefficient and the geometrical parameters that affect it
allows a drastic reduction of both the computational time
and the memory storage, without altering the accuracy of the
solution.
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