
20 March 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Relativistic space-time positioning: principles and strategies / Tartaglia, Angelo. - In: ACTA FUTURA. - ISSN 2309-1940.
- ELETTRONICO. - 7(2013), pp. 111-124. [10.2420/ACT-BOK-AF]

Original

Relativistic space-time positioning: principles and
strategies.

Publisher:

Published
DOI:10.2420/ACT-BOK-AF

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2505159 since:

ESA - ESTEC
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Department of Applied Science and Technology, Politecnico di Torino, and INFN, Italy

December 3, 2012

Abstract

Starting from the description of space-time
as a curved four-dimensional manifold, null
Gaussian coordinates systems as appropriate
for relativistic positioning will be discussed.
Different approaches and strategies will be
reviewed, implementing the null coordinates
with both continuous and pulsating electro-
magnetic signals. In particular, methods based
on purely local measurements of proper time
intervals between pulses will be expounded
and the various possible sources of uncertainty
will be analyzed. As sources of pulses both ar-
tificial and natural emitters will be considered.
The latter will concentrate on either radio- or
X ray-emitting pulsars, discussing advantages
and drawbacks. As for artificial emitters, vari-
ous solutions will be presented, from satellites
orbiting the Earth to broadcasting devices car-
ried both by spacecrafts and celestial bodies
of the solar system. In general the accuracy of
the positioning is expected to be limited, be-
sides the instabilities and drift of the sources,
by the precision of the local clock, but in any

∗E-mail: angelo.tartaglia@polito.it

case in long journeys systematic cumulated er-
rors will tend to become dominant. The prob-
lem can be kept under control properly using
a high level of redundancy in the procedure
for the calculation of the coordinates of the
receiver and by mixing a number of different
and complementary strategies. Finally various
possibilities for doing fundamental physics
experiments by means of space-time topogra-
phy techniques will shortly be presented and
discussed.

1 Introduction
The problem of positioning is as old as the
history of wandering of mankind especially
by see. Since the oldest times the problem
was tackled looking at the sky and associat-
ing the observation with time measuring. Ini-
tially time was determined using the rotation
of the earth as a clock and one had to wait
until the 18th century for the invention of the
chronometer to reach an accuracy appropri-
ated to the development of modern technolog-
ical societies.

In our days the global positioning on earth
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and close to it is obtained by means of global
positioning systems. The first and most used
system, starting to be deployed at the end of
the ’70’s of the last century, is named after its
acronym GPS. A similar one developed by the
former Soviet Union is GLONASS; Europe
has started the deployment of its own Galileo
system, which at the moment has three satel-
lites in the sky. China is planning to build
its global navigation and positioning system,
named Bei Dou (North star). India and Japan
are also planning to develop national systems,
and others are also considering the possibility
to do the same. The reason for this vast in-
terest is mainly political, since both GPS and
GLONASS are under military control, even
when they are used for civilian purposes. In
any case all these systems, deployed or un-
der implementation, are such that a continu-
ous control and intervention from the ground
is needed.

GPS, which is a sort of an archetype of all
current positioning systems, is like a chimera
made of different pieces. Basically, even us-
ing a constellation of 31 satellites (in this very
moment) distributed in six orbital planes, it
is transposing at the global terrestrial scale
old techniques of Euclidean geometry together
with Newtonian physics. It essentially de-
termines ranges between the observer and a
number of satellites (normally six of them) by
means of a time of flight determination of sig-
nals sent from the orbiting emitters. At the
scale of the needed positioning it is immedi-
ately clear that special and general relativistic
effects cannot be neglected, so they are intro-
duced as corrections to the classical data. Rel-
ativity enters the process in order to take into
account the behaviour of the orbiting atomic
clocks: on one side their pace appears to be
slowed down with respect to a similar clock

at rest on the surface of the earth because of
the orbital speed of the satellite; on the other
side the frequency of the orbiting device is in-
creased because of the gravitational blue-shift
depending on the hight of the orbit. Finally
the orbiting clocks must be synchronous with
respect to one another and to the local clock
of the user on earth, because of the need to
measure times of flight. However the purely
kinematical relativistic Sagnac effect produces
de-synchronization of each clock with itself at
each revolution, so that from earth one has to
periodically re-align all clocks.

Besides these complications and the way
they are managed, it is also true that GPS is not
fit to guide spacecrafts navigating across the
solar system. For such navigation other tech-
niques are used, all requiring an almost contin-
uous guidance from earth. The distance to the
spacecraft can be determined with a good ac-
curacy (in the order of millimeters) by means
of laser or radio ranging from earth, but the
transverse positioning is far worse and the ac-
curacy rapidly decays with distance. Usually
the spacecrafts for the exploration of the solar
system are equipped with limited capacities of
self-guidance; for instance they carry pictures
of the sky that allow them to an autonomous
control of their trim; similarly real or recon-
structed images of the final destination enable
the spacecraft to autonomously guess its dis-
tance and position with respect to the intended
arrival. All this is however rather complicated
and not easy to manage.

The above drawbacks, despite the enor-
mous strength of political and commercial
constraints, have begun to stimulate the search
for a more up-to-date approach to positioning.
To say the least, we speak today of space-
time as a continuous four-dimensional Rie-
mannian manifold with Lorentzian signature.
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We should try and start from that fact for the
building of appropriate methods to be used
in order to navigated across space-time; such
an approach would include general relativity
from scratch and not as a set of ”corrections”
to be made more or less by hands.

The consequent studies have brought to a
better definition of the concepts at the base of
positioning, to the introduction of light coor-
dinates and to the development of a number of
proposals [1]-[8]. Here I shall present a rel-
ativistic positioning system that has been im-
plemented to the level of algorithms and sim-
ulations [9]-[13]. It is based on the local mea-
surement of the ”length” (i.e. the proper time
interval) of a stretch of the world-line of an
observer between the arrivals of subsequent
pulses from not less than four independent
sources represented by known world-lines in
space-time. An idea considered by many au-
thors is the one of using pulsars [14]-[18],[9]-
[11], but other solutions can also be envisaged.

The timing, be it of laser or radio pulses,
combined with relativistic positioning can also
be of paramount importance for fundamental
physics and I will shortly review some possi-
bilities in the final part of the present docu-
ment.

2 Reference frames
The very idea of finding a position in space-
time implies the definition and assumption of
a reference system with respect to which the
position is defined. There can exist reference
frames at various scales according to the pecu-
liar applications one is interested in, however,
in the end, some global frame needs be defined
within which all other local and partial frames
are located. Of course what I am writing im-

plies that a global reference frame can indeed
exist and uniquely be defined, which issue is
not at all trivial when applied to the whole vis-
ible universe.

In practice the background reference frame
that people commonly use is the one of the
”fixed stars”. Today by ”fixed stars” quasars
are meant. Quasars (quasi stellar objects) are,
according to the most accepted interpretation,
active galactic nuclei; the source of their en-
ergy is commonly ascribed to the presence of
a massive black hole, but there are various hy-
potheses concerning the mass to energy con-
version mechanism. What matters here, how-
ever, is that those bright object are very far
away, from approximately 3 to approximately
13 billion light years. Their distance implies
that, at the human time scales, the quasars
appear as being fixed in the sky despite any
proper motion they might be endowed with.
From this fact arises the possibility of hav-
ing fixed directions pointing along the axes
of any Cartesian non-orthogonal reference
frame. Thousands of quasars are known; fig. 1
taken from the Sloan Digital Survey shows the
distribution in the sky of a few of them. The
reciprocal angular positions of the quasars in
the sky are determined by the Very Long Base-
line Interferometry (VLBI) and are known, at
the moment, with an accuracy of the order of
10−9 rad.

Of course, in order to have a reference
frame, three fixed non-co-planar directions are
not enough. An origin also needs be chosen
and this can be done arbitrarily, in principle. In
practice the best we can do, at the moment, is
to choose the origin of our frame located at the
barycenter of the solar system. The barycenter
of the solar system is indeed moving with re-
spect to the quasars and its motion is not an in-
ertial one because it is constrained by the grav-
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Figure 1: The distribution in the sky of a few quasars taken from the Sloan Digital Survey

itational field of the galaxy, but we assume that
the acceleration due to the galaxy is negligible
and consequently we pretend the motion to be
inertial.

This essentially is the International Ce-
lestial Reference System (ICRS), being the
quasars the International Celestial Reference
Frame (ICRF).

We may then refer to the International Ter-
restrial Reference System (ITRS) which can
be connected to the ICRS using the Earth Ori-
entation Parameters given by the IERS (Inter-
national Earth Rotation Service, now Interna-
tional Earth Rotation and Reference Systems
Service).

2.1 Space-time
Everything I have written above is OK in three
dimensions, however, if we wish to have a fun-
damental relativistic description, we must re-
fer to space-time as a Riemannian continuum
with Lorentzian signature. This means that we
need to include time among the coordinates.
When defining an origin for our reference sys-
tem we need to introduce an origin of time as

well; it can be arbitrary, of course, but what we
really need is to associate a duration standard
to our space origin. We consequently imagine
to place an atomic clock in the barycenter of
the solar system and to use its time as our co-
ordinate time. This assumption is not trivial
at all, since we know that, if we compare the
readings of two identical clocks located along
two different world-lines, we find they can dif-
fer from one another because of relative mo-
tion of the two clocks and them being placed
in different gravitational potential wells.

In fact, considering space-time, we see that
it appears locally as a sort of crumpled mani-
fold like in fig. 2.

The warps between the quasars and the local
terrestrial observers can be no problem pro-
vided they stay stable during our progressive
exploration of our world-line, over times of
the order of typical human times. This as-
sumption can be reasonable for the path along
our past light-cone out of the solar system, but
may be questionable in the final portion close
to the observer, where the proper motion of the
latter in the local gravitational potential well
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Figure 2: Artistic three-dimensional view of a ”crumpled” space-time

can introduce non-negligible time changes.

When setting up a global reference system
in a general relativistic framework, our defini-
tions actually rest on a number of implicit as-
sumptions that are added to the explicit ones.
For instance the ICRS implicitly assumes that
space-time is asymptotically flat. Treating
quasars as fixed (point-like) objects amounts
to say that their world-lines are straight and
parallel: this implies that ”there” space-time
is flat. Most likely, however, in the universe
there is no asymptotic flatness; at most we
may say that in between galaxies, far away
from any matter bunch, space-time is almost
flat.

Putting everything together, we should
rather say that the ICRS (or any other anal-
ogous reference system) is defined as be-
ing ”drawn” on a flat Minkowski space-time
which coincides with the tangent space-time
in the origin of our reference frame. In or-
der to use the proper time of the atomic clock
located in the origin as the global coordinate
time of our reference implies that we treat it
as being in a globally flat environment.

We have no such problem at the moment,
but the use of the local tangent space-time
would make it not trivial at all to uniquely and
understandably transfer position information
to another observer a few million light years
away.

2.2 Coordinates and geodesics
Looking at the problem of defining efficient
reference systems for a Riemannian manifold
we need also to decide how to uniquely and
smoothly attribute to each event in the man-
ifold a quadruple of numbers i.e. an ap-
propriate coordinate set. This may be done
in principle drawing four independent fami-
lies of curves. The curves of each family do
not intersect each other and densely cover the
whole manifold. Labeling each curve by a
progressive real number, any intersection of
four curves from different families identifies
an event on the manifold and endows it with
four coordinates. What I have described by
this process is known as a Gaussian coordi-
nates system. As for the curves to be used
they can for instance be geodesics of the man-
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ifold. Not considering singularities and de-
fects, geodesics do indeed cover the whole
manifold. In the case of space-time and in
view of the importance of the null cones a
good choice for building a Gaussian coordi-
nate system is to use independent families of
null geodesics. Fig. 3 visualizes our choice in
a simplified bi-dimensional space-time.

In a flat manifold a whole family of null
geodesics may be identified by means of a tan-
gent vector to anyone of them. It would be a
null four-vector like the one written in eq. (1).

χ = cT (1, cosα, cos β, cos γ) (1)

It is indeed χ2 = 0. The space compo-
nents of (1) are the direction cosines of a three-
vector defined with respect to some global ref-
erence system of our choice. The cT factor is
optional and does not change the null charac-
ter of χ, but contains an additional information
on the period of the signals traveling along the
null geodesics of the family identified by χ,
provided they are indeed periodic.

Suppose now that we have four independent
null four-vectors χ1,2,3,4 and use them as a ba-
sis for vectors in the manifold; the position of
any event in the same manifold is identified
by a ”radial” four-vector, expressed as a linear
combination of the basis vectors:

r = (
τ

T
)aχ

a (2)

The index a runs from 1 to 4; the periods
of the signals are assumed to be different from
one another in the quadruple; τ ’s are named
”light coordinates” of the event and the ratios
( τ
T
)a = xa are pure numbers due to the choice

for the scale factor in eq. (1).
The number of actual degrees of freedom in

our representation deserves a comment. All
χ’s of the basis are on the light cone of the

origin of the reference frame (actually on any
light cone if the manifold is globally flat),
which means that, as far as we stay on the
light cone, only three of the null wave vectors
can be mutually independent. Three χ’s are
enough to localize events on the light cone; we
need four of them for time-like or space-like
events, i.e. for events out of the light cone.

Rather than using the families of null
geodesics, we may adopt a dual vision. Each χ
is associated with a null four-dimensional hy-
perplane obtained by Hodge conjugation. The
corresponding four-form ϖ is ϖ = ∗χ, or ex-
plicitly:

ϖabc = ϵabcdχ
d (3)

ϵabcd is the Levi-Civita fully antisymmetric
tensor. Now we have four independent fami-
lies of hyperplanes covering the whole space-
time and intersecting each other. The hyper-
planes of a family are null and orthogonal to
the corresponding χ.

All this is globally true if the manifold is
flat; if it is curved it holds locally.

3 Positioning

On the bases laid down in the previous sec-
tion, we may outline a fully relativistic posi-
tioning method. Suppose you have (not less
than) four independent sources of electromag-
netic signals located at infinity; suppose then
that they emit pulses at the rate of 1/T per
second. The T parameter of formula (1) is
now interpreted as the repetition time of the
pulses rather than the period of a monochro-
matic continuous wave. Once this has been
specified we may apply the procedure outlined
in the previous section. The χ’s are associated
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Figure 3: Two sets of null geodesics covering a bidimensional curved manifold

to the four (or more) sources; we may iden-
tify as duals to the χ’s four discrete sets of hy-
perplanes ϖ covering space-time with an egg
crate whose spacings along the directions of
the basis vectors are given by the T ’s, when
measured along the time axis of the back-
ground global reference frame.

The situation is schematically shown in fig.
4.

The world-line of an observer necessarily
crosses the walls of successive boxes of the
egg crate. If we are able to label each cell
of the crate, we are also able to reconstruct
the position of the observer in the manifold.
The use of pulses implies that, realistically,
the walls of the cells are ”thick”. In practice
the hypersurfaces on the graph correspond to
”sandwich waves” carrying the pulse. A typi-
cal emission diagram of one of the sources will
more or less be like the one sketched in fig. 5.

The shape of the pulse is not important as
well as it is not the spectral content of it. What

matters is its reproducibility and the stabil-
ity of the repetition time. Considering natural
pulses, as the ones coming from pulsars, we
find repetition times ranging from several sec-
onds down to a few milliseconds and lasting a
fraction of the period. As an example of artifi-
cial pulses the highest performance is obtained
with lasers: GHz frequencies are possible with
pulses as short as ∼ 10−15 s.

Once pulses are used, we may label them in
order, by integer numbers, as it can schemati-
cally be seen in fig. 6.

The integers can be though of as rough co-
ordinates identifying the cells of the grid. At
this level the approximation would be rather
poor, being of the order of the size of each
cell. If the periods are of the order of mil-
liseconds this corresponds to hundreds of kilo-
meters. Looking at fig. 6 we may however
notice that the intersections of a given world-
line with the walls of the cells are labeled by
a quadruple of numbers, at least one of which
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Figure 4: A bidimensional flat space-time covered by a grid made of null hypersurfaces (actu-
ally lines) conjugated to the null vectors χa,b. The wavy line is the world-line of an observer.

Figure 5: Typical emission sequence of the pulses from a source. Vertically intensities are
drawn; the profile of the pulse is not important; times are proper times of the emitter.
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Figure 6: A straight portion of a world-line is shown in a local flat patch of space-time. The
lines of the grid correspond to different pulses labeled by their ordinal integer. The intersections
of the world-line with the walls are localized by quadruples (actually pairs in the figure) of real
numbers one of which is always an integer.
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is an integer: these numbers are the coordi-
nates of the intersection points. We may write
the typical coordinate of a position in the crate
as ξa = na + xa; the n’s are the integers,
whilst the x’s are the fractional parts. If we
have a means to determine the x’s the local-
ization of an intersection event can be done
with an accuracy much better than the hun-
dreds of km I mentioned above. Considering
that the intersections coincide with the arrivals
of pulses from different sources, the determi-
nation of the fractional part of the coordinates
is indeed a trivial task, provided the traveler
carries a clock, the space-time is flat and the
world-line is straight. Once one measures the
proper intervals between the arrivals of suc-
cessive pulses a simple linear algorithm based
on elementary four-dimensional flat geometry
produces the x’s [11]. The corresponding light
coordinates are τa = [(n + x)T ]a. The ac-
curacy of the result depends on the precision
of the clock which is being used in order to
measure the proper intervals between pulses
and on the stability of the period of the pulses,
which in turn tells us what the effective ”thick-
ness” of the walls of the cells of our space-
time crate is. Just to fix some order of mag-
nitude, let me remark that nowadays to have a
portable clock with a 10−10s accuracy is quite
easy (much better can be achieved in the lab);
on the other side, considering pulsars, we have
some, whose period is known and stable down
to 10−15s. With these figures the final posi-
tioning can be within a few centimeters.

Of course the traveler’s motion will not in
general be an inertial one and space-time will
not be flat, however a short enough stretch of
the world-line can always be confused with the
tangent straight line to it and a small enough
patch of space-time can always be confused
with a portion of the local tangent space. In

practice we work on the local tangent space
and on a linearized portion of the world-line.
The acceptability of these assumptions de-
pends on the accuracy required for the posi-
tioning and on the constraints posed by the
linear algorithm in use. The reconstruction of
a piece of the world-line requires the knowl-
edge of at least eight successive arrival times
of pulses from the minimal set of independent
sources (four) [11]. So, if δτ is the maximum
proper time inaccuracy that we decide to be
tolerable, the final relative accuracy of the po-
sitioning will be:

|δx
x
| ≤ 4(

1

τi,i+4n

+
τi,i+1

τ 2i,i+4n

)δτ (4)

The index i in eq. (4) labels the order of the
arrival events; τi,i+4n is the proper time inter-
val between the ith and the (i + 4n)th arrival,
being n ≥ 1 an integer; n should assume the
highest value compatible with the straightness
hypothesis for the world-line. Of course the
number of pitches that can safely be consid-
ered depends on the periods Ta of the emitting
sources: the shorter are the periods, the bigger
is the number of paces that can be used within
the linearity assumption.

A pictorial view of what we are doing
is as follows. Imagine to embed the real
four-dimensional manifold, together with its
tangent space at the start event, in a five-
dimensional flat manifold; then consider the
real world-line of the traveler and project it
onto the tangent space. The world-line on the
tangent space is what we are piecewise recon-
structing by our linear algorithm: in practice
we are building a flat chart containing the pro-
jection of our space-time trajectory. The time
dependence of the a-dimensional coordinates
of the projected world-line may of course be
written in the form of a power series, as:
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xa = ua
τ

Ta

+
1

2
αa

τ 2

T 2
a

+ ... (5)

The coefficients ua and αa are proportional
to the four-velocity and four-acceleration of
the traveler. The individual segments used for
the reconstruction are short enough so that the
second and further terms of (5) are negligible
with respect to the linear one. Going on, after
a number of paces, the possible presence of an
extrinsic curvature of the projected world-line
shows up; we know that locally it is impossi-
ble to distinguish a gravitational field from a
non-gravitational acceleration so we need ad-
ditional information for that purpose. In the
case of a gravitational field evidenced by the
reconstruction process I am describing, we get
from the data the gradient of the Newtonian
gravitational potential.

In order not to cumulate the distortion intro-
duced by the projection from the real curved
manifold to the tangent space at a given event,
we need periodically to restart from a further
event on the world-line, i.e. to pass to the tan-
gent space at a different event. If the visible
curvature of the line on the tangent space as
well as the tilt of the successive tangent spaces
continues for long in the same sense, the lin-
earization process, as in all similar cases, tends
to produce a growing systematic discrepancy
with respect to the real world-line, so that pe-
riodically one has to have recourse to some in-
dependent position fixing means in order to re-
set the procedure.

3.1 Pulsars
I have already mentioned pulsars as possible
natural sources of pulses. This kind of neu-
tron stars are indeed good pulse emitters be-
cause of their extreme stability and long dura-

tion. As we know, their emission is in the form
of a continuous beam. The apparent periodic-
ity is due to the fact that the emission axis (the
magnetic axis) does not coincide with the spin
axis of the object so that it steadily rotates, to-
gether with the whole star, about the direction
of the angular momentum. The pulses arise
from the periodic illumination of the earth by
the rotating beam. The stability is guaranteed
by the angular momentum conservation.

The advantages of pulsars are numerous.
Their period is extremely stable and is some-
times known with the accuracy of 10−15 s; it
tends to decay slowly (the relevant times are
at least months), but with a very well known
trend, determined by the emission of gravita-
tional radiation. Typically the fractional decay
rate of the period is in the order of one part in
1012 per year. The number of such sources is
rather high, so that redundancy in the choice
of the sources is not a problem: at present ap-
proximately 2000 pulsars are known and their
number continues to increase year after year.
Being these stars at distances of thousands of
light years from the earth, they can be treated
as being practically fixed in the sky; in any
case their slow apparent motion in the sky is
known, so corrections for the position are eas-
ily introduced. Just to recall some numbers,
the rate of change of a typical angular coordi-
nate α in the position in the sky is

|δα
t
| ≈ 10−6(

100pc

distance
)
rad

year
(6)

Unfortunately pulsars have also major
drawbacks. One is that their distribution in the
sky is uneven, since they are mostly concen-
trated in the galactic plane, which fact brings
about the so called ”geometric dilution” of the
accuracy of the final positioning: sources lo-
cated on the same side of the observer pro-
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duce an amplification of the inaccuracy orig-
inating in the intrinsic uncertainties. Further-
more individual pulses differ in shape from
one another so that some integration time is
needed in order to reconstruct a fiducial series
of pulses; this fact, also considering the length
of the repetition time, can conflict with the
linearization of the world-line of the traveler.
It should also be mentioned that most pulsars
are subject to sudden jumps in the frequency
(glitches), causes by matter falling onto the
star; these unpredictable changes can be made
unoffensive by means of redundancy, i.e. mak-
ing use of more than four sources at a time.

However the most relevant inconvenience
with pulsars is their extreme faintness. In the
radio domain their signals can be even 50 dB
below the noise at the corresponding frequen-
cies; to overcome this problem big antennas
are required (not less than 100 m2) and con-
venient integration times accompanied with
”folding” techniques must be employed. In
principle at least four different sources must
be looked at simultaneously and this is not an
easy task, especially with huge antennas. The
weakness problem has led to consider X-ray-
rather than radio-pulsars for positioning. A
few hundreds X-ray emitting pulsars are in-
deed known; their signals are weak too, and
can be received only outside the atmosphere,
but the background noise is far smaller than
the one typical in the radio domain; as for
the hardware, X-ray antennas can be much
smaller than the typical radio-antennas. Since
many galactic X sources emit also at radio fre-
quencies, one can envisage the opportunity to
combine both X-ray and radio pulses from one
single source for the positioning process.

3.2 Artificial and blended solu-
tions

In principle what can be done using pulsars
can as well be done by means of artificial emit-
ters of electromagnetic pulses. Artificial emit-
ters can have far higher intensities than pul-
sars; the repetition time can easily be in the
range of ns or less, thus making the lineariza-
tion process more reliable. The stability over
time of the source is not as good as for pulsars,
but this can represent no inconvenience as far
as the number of sources is redundant and they
are kept under control. A problem is in the
sources clearly not being at infinite distance,
which implies a more complicated geometry
and of course the need for a good knowledge
of the world-line of the emitter in the back-
ground reference frame.

One could think of building a Solar System
reference frame made of pulse emitters laid
down on the surface of various celestial bodies
whose orbits are well known and reproducible:
the earth of course, the moon, Mars, maybe
some of the asteroids; even some space station
following a well defined, highly stable orbit
around the sun or a planet.

A blended solution for self-guided naviga-
tion in the solar system could combine some
artificial emitters, as quoted above, together
with a limited number of pulsars (the most in-
tensely emitting ones).

The fully relativistic method I have de-
scribed is of course specially fit for space nav-
igation, but it can also be useful in rather lim-
ited areas. Think for instance to the accurate
mapping of a depopulated region, where tradi-
tional topography may be rather expensive. If
one puts a limited number of antennas (not less
than four in any case) emitting pulses, located
in precisely defined positions at the boundary
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of the region to map, their signals may be used
by a moving vehicle to draw a chart of the
area within centimeter accuracy. Of course the
same can be done using differential GPS, but
with the specific features of GPS, mainly the
fact that it is under military control and the
best performance of the system is not reserved
to ordinary civilian applications.

One could also think that the new rela-
tivistic method will be implemented in the
next generations of global positioning sys-
tems, even though the approach tends to be
rather conservative there, the reason being that
the huge amount of money already spent for
developing and deploying the traditional GPS
makes present applications based on it cheap,
whereas any new solution would initially be
more expensive. Probably a gradual transition
will happen, triggered by new applications,
especially outside the terrestrial environment,
and, last but not least, political reasons.

4 Positioning and funda-
mental physics in space

The method I have being describing for posi-
tioning purposes is based on electromagnetic
signals and their accurate timing. The same
kind of technology can be used for various ex-
periments aimed to the detection of fundamen-
tal properties of space-time. It is worth men-
tioning a few possibilities.

4.1 Intercommunicating swarms
of satellites

Consider a swarm of identical satellites (as the
ones of the future Galileo system), equipped
with pulse emitters and receivers and able to

accurately measure the arrival times and to
recognize the origin of each pulse (this could
be achieved tuning the emitters on different in-
dividual frequencies). The information gath-
ered by the whole constellation would allow
for space-time geodesy, based on multiple tri-
angulations performed on null triangles. It
would be a means to reconstruct the aver-
age curvature of the patch of the manifold
where the world-lines of the satellites lie. The
Galileo satellites will indeed be able to inter-
communicate and also the present GPS satel-
lites may communicate with each other even
though this possibility (introduced for military
reasons) is not actually used at the moment.

4.2 Ring-lasers
Electromagnetic waves can be used as probes
for the structure of space-time and in partic-
ular the gravito-magnetic part of the gravita-
tional interaction, exploiting the anisotropic
propagation of light induced by the chiral
symmetry associated with a rotating mass.
This possibility is the basis of the proposal
to use ring lasers for the measurement of the
Lense-Thirring (frame dragging) effect of the
earth [19]. If a light beam is obliged, by con-
veniently located mirrors, to follow a closed
path in space, the total time of flight for a loop
is different according to the fact that light is
moving in the same sense as the rotation of the
central mass or in the opposite sense. In fact
the difference in the proper (i.e. of the labo-
ratory) times of flight for one turn in co- and
counter-rotating sense, is obtained as [19]:

δτ = −2
√
g00

∮ g0ϕ
g00

dϕ (7)

Polar coordinates centered on the earth are
assumed and the gµν’s are elements of the met-
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ric tensor of an axially symmetric stationary
space-time. A ring laser converts the time of
flight difference in a beat note obtained from
the two counter-rotating beams in steady state;
the beat note arises from the different equilib-
rium frequencies of the two beams. The de-
vice in practice can measure effective angu-
lar velocities, which contain the kinematical
effect (classical Sagnac effect), the geodetic
(or de Sitter) effect (coupling of the gravito-
electric field of the earth with the kinemati-
cal rotation of the apparatus) and the gravito-
magnetic contribution (Lense-Thirring frame
dragging). The latter two terms are 9 or-
ders of magnitude smaller than the classical
Sagnac effect when measured on the surface
of the planet, so that a very high sensitivity is
needed, but contemporary laser technologies
are approaching the required accuracy level.
Both the de Sitter and Lense-Thirring effects
have already been measured in space by a dif-
ferent technique based on the behaviour of me-
chanical gyroscopes. The most difficult to
reveal is the Lense-Thirring drag and it has
been measured with an accuracy of 19% by
the GP-B experiment [20] and 10% by the
laser ranging of the LAGEOS satellites [21];
laser ranging of the orbit is also being used by
the LARES experiment launched on February
13th 2012, with the purpose of reaching the
1% accuracy [22]. The newly proposed ring
laser GINGER experiment [19] is aimed at
reaching a 1% accuracy for the physical terms
in a terrestrial laboratory.

Here I would like to mention the possi-
bility of bringing a ring laser experiment in
space. One could for instance think of a three-
dimensional array of four mirrors, rigidly at-
tached to one another in the shape of a tetra-
hedron; the whole thing could be in free fall
(stable orbit) around the earth. Each face of

the tetrahedron would coincide with a triangu-
lar ring laser; the signal extracted from each
face would give information on the projection
of the total rotation vector on the normals to
the faces. In the case of a circular equatorial
orbit the frequency of the beat note extracted
from one of the faces of area S and perimeter
length P would be:

fbeat = 4
S

λPR

√
G
M

R
[(1− 3

4

√
G

M

c2R
+ 4G

M

c2R
)n̂a · n̂S

−(
1

2
G

M

c2R
+

GJ

c4R
)n̂θ · n̂S] (8)

M is the mass of the earth; J is its angular
momentum; G is Newton’s constant; R is the
radius of the orbit; λ is the wavelength of the
light of the laser; n̂S , n̂a, n̂θ are unit vectors,
respectively, perpendicular to the plane of the
ring, aligned with the axis of the earth, aligned
with the local meridian in the sense of increas-
ing co-latitude (here, in practice, perpendicu-
lar to the equatorial plane).

The term depending on the angular momen-
tum of the earth in eq. (8) is the smallest
and is eight orders of magnitude below the
biggest; an extremely good accuracy is always
required, but in free fall one has a far smaller
environmental noise than on earth.

4.3 Linear cavities

Another interesting possibility is represented
by simple linear resonating cavities as the ones
in Fabry-Pérot interferometers. In fact, when
describing a simple bounce back from a mirror
to the other in four-dimensional space-time,
one has a bidimensional graph, like the one
shown on fig. 7 where an active region is as-
sumed in the middle of two mirrors.
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Figure 7: World-sheet representation of light being reflected back and forth in a linear cavity.
A and B are mirrors; O-O’ is the world-line of an active region in the middle of the two mirrors;
the gray stripes identify a space-time area δS.

As it can be seen, the light beams moving
back and forth in the cavity delimit a closed
contour at each cycle. This fact implies that
the effects of the curvature and the chiral sym-
metry of space-time may expressed in terms
of the Riemann tensor and the contoured area.
Considering the electromagnetic tensor Fµν ,
its change after one cycle is given by:

δF µν = (Rµ
ϵ0iF

ϵν +Rν
ϵ0iF

µϵ)δS0i (9)

Latin indices are used for space-
coordinates; δSµν is the antisymmetric
area 2-form.

For practical purposes, only the least useful
approximation of the Riemann tensor needs be
retained down to the order of the angular mo-
mentum of the earth. An example of the ap-
proximated version of one of the equations (9)
is for instance:

δF θϕ ∼= (
GM3/2

c3R7/2
−3

GJ

c3R4
)
cos θ

sin2 θ

l2

R
F θr (10)

δF θϕ is the change in the radial component
of the magnetic field expressed as a function of
the East-West component; l is the length of the
cavity and R is its radial position with respect
to the center of the earth.

The result depends on the orientation of the
cavity and builds up with the successive reflec-
tions. One could think of combining this ef-
fect along an array of mutually perpendicular
freely falling cavities.

4.4 An orbital ring cavity

The satellites of the GPS constellation are dis-
tributed on 6 different orbital planes so that 5
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of them are on the same orbit; the Galileo sys-
tem, when fully deployed will have 30 satel-
lites on 3 orbital planes so that 10 satellites
will share the same orbit. The presence of at
least three satellites on the same orbit opens
an interesting possibility if they are enabled to
communicate with each other. Suppose each
satellite is sending laser pulses to the others
who are forwarding them along the orbit. In
practice we would have a sort of ring laser
at orbital scale. If at least one of the satel-
lites is equipped with interferometric devices
or can accurately measure the arrival time dif-
ference between pulses having completed a
clockwise turn with respect to the ones re-
volving in the counter-clockwise sense, the
whole system behaves a gigantic ring laser (or
Sagnac interferometer) with a sensitivity mea-
sured by the huge scale factor given by the ra-
tion between the contoured area and the length
of the perimeter of the polygon followed by
the light pulses.

5 Conclusion
Summing up, I have shown how the ap-
proaches to positioning and navigation could
be implemented in order to become fully rel-
ativistic. The idea is in the use of space-
time as such as a reference, and in the ex-
ploitation of four-dimensional geometry. In
practice a generalization is possible of the
ordinary three-dimensional topographic tech-
niques, upgrading them to four dimensions
and the Lorentzian signature. The method,
with the related algorithms, is per se simple
and relies on plain proper time measurements
made by the traveller needing to localize him-
self in a given background reference frame.
Reducing everything to the essentials, we see

that the pattern of the proper arrival times of
regular pulses from not less than four indepen-
dent sources is uniquely related to the position
of the receiver in space-time and to its starting
event. The relativistic positioning method has
positively been tested with simulators. Fig. 8
shows for instance the reconstruction of three
days of the absolute motion of the antenna
of the radio-telescope at the Parkes observa-
tory,obtained by the simulated timing of four
real pulsars [10].

This approach, either based on signals from
pulsars (X ray or radio waves emitters) or on
artificial sources laid down on the surface of
the earth and other bodies of the solar system,
will probably raise growing interest little by
little as the need for positioning systems freed
from the control of any specific power will in-
crease. The same holds with the expansion
of navigation within the solar system. I have
also given a few examples of the importance of
timing measurements together with the use of
laser beams or pulses for fundamental physics.
It turns out that light is indeed a perfect rela-
tivistic probe for testing the structure of space-
time.
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