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Summary

Ultrasonic techniques are one of the most widely used approaches to non-
destructive material characterization. In this thesis I have analyzed both
linear and non-linear ultrasonic wave propagation in complex materials, i.e.
in materials which may present anisotropy, heterogeneities and/or flaws of
different kinds (cracks, delaminations,...). The approach to the topic has
been numerical throughout my Ph.D. studies.

Computer simulation techniques are continuously expanding their role as
basic tools in fields, such as Quantitative Non Destructive Evaluation (QN-
DE) and Geophysics, in which it is important to gain a good understanding of
the propagation mechanisms of waves or pulses in complex media. A method,
which has been designed for the above purpose and is particularly efficient,
especially in conjunction with parallel processing, is the Local Interaction
Simulation Approach (LISA) [1]-[4]. Although it appears formally similar
to finite difference methods (FD), LISA is based on a heuristic modeling of
local interactions. As spin-offs of LISA, the Sharp Interface Model (SIM)
[5] and the Spring Model have overcome [6] the difficulties encountered in
treating sharp interfaces or strongly heterogeneous systems by means of the
usual FD techniques. The LISA approach has been successfully applied to
several linear [7] and non-linear problems [8], showing a good accuracy in
reproducing both experimental and theoretical results.

For a quantitative comparison with experimental results it is, however,
necessary to properly include in the model the attenuation and dispersion
properties of the propagation media. Such effects are seldom negligible in
the ultrasonic domain and are required ingredients for the understanding of
intriguing effects, such as the hysteretic behavior of rocks and other aggregate
systems [9]. Even the prediction of the time-of-flight (TOF’s) for a pulse



from a transducer to a receiver may be falsified, when the distortion no longer
allows a correct determination of the peak position. Also, in ultrasonic NDE,
the knowledge of additional informations, such as the wave-form, the Fourier
components, second and higher order TOF’s, etc., may be relevant for the
inversion.

In the field of material characterization, composite plate-like structures
are becoming increasingly important, since they have found basic applications
in civil engineering, aerospace, ground transportation, etc. They are often
over-designed to compensate for a lack of efficient techniques for testing the
initial integrity of the mechanical structures and/or for a reliable monitoring
of damage and ageing. Consequently the race for ever improving QNDE
techniques (in particular ultrasonic) is still open. Also, considerable attention
has been recently devoted to the emerging science of damage assessment, i.e.
the combination of ultrasonic excitation with embedded array detection and
signature recognition [10].

Established ultrasonic techniques for QNDE take advantage of a wide
variety of sources and propagating modes [11]. Surface waves are extremely
efficient in probing surfaces and thin plates, since they can propagate a long
distance without appreciable attenuation and therefore a large specimen re-
gion can be interrogated with a single transducer. In particular, Lamb waves
(LW) [12] can explore the entire thickness of a thin plate. The wealth of
information provided, however, may be of not trivial interpretation, due to
the coexistence of at least two propagation modes [13], in addition to the
complexity arising from the heterogeneity and anisotropy of the specimen,
its geometry and the presence of defects.

Reliable numerical simulation techniques may be a very valuable tool in
this analysis. To this purpose, I investigated the applicability of LISA to the
study of the propagation of Lamb Waves in complex structures [14].

In the field of micro-damage diagnostics, nonlinear acoustics has experien-
ced a rapid growth in recent years. In fact, whenever mesoscopic features (i.e.
mechanical inhomogeneities, whose characteristic spatial scale is small with
respect to the acoustic wavelength, but far exceeds interatomic spacing) are
present, acoustic nonlinearity may be up to four orders of magnitude higher

than in an unblemished specimen. Correspondingly, nonlinear parameters



are much more sensitive to the properties of micro-inhomogeneities and, in
particular, of micro-damage. In fact, nonlinear behavior is observed early on
in a degradation process, long before linear parameters start to show dama-
ge dependent effects. Any increase in the values of nonlinear parameters is
univocally related to an increase in micro-structural features in the material
considered.

The interest on the topic initially grew within the field of acoustical geo-
physics. Multigrained materials such as rocks, sand, soil, concrete, etc., which
are collectively called Nonlinear Mesoscopic Elastic (NME) materials, show
a rich phenomenology that includes observation from both quasistatic and
dynamic experiments. Furthermore a sequence of these experiments perfor-
med on numerous materials yields the significant conclusion that damaged
atomic elastic materials (such as polycrystalline aggregates with micro-scale
damages) behave as NME media. In fact, since they share characteristic
properties, they have been conjectured to belong to the same class of NME
materials [9]. Therefore they show a far greater non linear elastic response
than undamaged ones.

They stand in sharp contrast to materials such as aluminum, diamond and
water that have atomic elasticity, which arises from atomic-level forces betwe-
en atoms and molecules. Materials with atomic elasticity are well described
by the classical (Landau) theory of elasticity [15]. However this theory does
a poor job when treating the elastic properties of NME materials, which, for
low strain levels, are well described by the P-M (Preisach-Mayergoyz) model
of non-classical nonlinear elasticity [16].

A very important feature of LISA is the capability of implementing, at
a local level, very complex mechanisms, which would be extremely hard to
include in a partial differential equation. In fact the method allows full fre-
edom in the choice of the interactions between the nodes, which represent
the material cells. It is also possible, by splitting the nodes at the interfa-
ces between different material components, to include at least some of the
mesoscopic features and micro-damages discussed before. In fact, all kinds
of interactions may be introduced between the subnodes, in which the node
has been split, thus simulating perfect or any kind of imperfect contact at

the interfaces [6]. Preliminary results, obtained in a collaboration with the



Nonlinear Geophysics Group of the Los Alamos National Laboratory con-
firm that it is possible to include, in the framework of LISA, classical and
nonclassical nonlinear terms, such as those leading to hysteretic or plastic
behavior [17].

Text Preview

I begin with a brief introduction of ultrasonic waves, and in particular
of their application to Non-Destructive Evaluations of materials in Chapter
1. Chapter 2 describes the LISA simulation method employed to study the
wave propagation in solids. Chapter 3 treats the application of the LISA
method to the study of Lamb waves in plates. In Chapter 4 the LISA model
is modified to be applied to the treatment of NME materials.
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Chapter 1

Ultrasonic wave propagation in

solid media

1.1 General background

Ultrasonic wave techniques are increasingly used in areas ranging from non-
destructive inspection of materials to noninvasive medical diagnosis. In par-
ticular, they are widely used whenever there is the necessity of detecting ob-
stacles in materials that do not transmit light. For example, a low-frequency
ultrasonic beam can penetrate many kilometers of the ocean and be reflected
back from an obstacle there. This is the principle of sonar!, which is used
to identify submarines, map the ocean bottom, and measure the thickness of
ice packs.

Industrially, this same principle is used to detect flaws in solids. When
a short pulse of ultrasound is sent into a metal, for example, it is reflected
back from any cracks or minute defects such as blowholes. The concept
may be extended by the combined use of light and sound in what is called
acoustic holography. In this method, an ultrasound beam traveling through
water agitates the water’s surface. A light beam reflected from this surface
is modulated by the pattern of agitation, and the modulated beam can then

be used to reconstruct the original sound beam. If the sound beam is first

IThis technique was developed prior to World War II and inspired early ultrasound
investigations.



1 — Ultrasonic wave propagation in solid media

directed through an object, it is thus possible to reconstruct images of the
object’s interior.

Fine machine parts, ball bearings, surgical instruments, and many other
objects can be cleaned ultrasonically. They are placed in a liquid, e.g., a
detergent solution or a solvent, into which ultrasonic waves are introduced.
By a phenomenon called cavitation, the vibrations cause large numbers of
invisible bubbles to explode with great force on the surfaces of the objects.
Film or dirt is thus removed even from normally inaccessible holes, cracks,
and corners.

In medicine ultrasonic devices are used to examine internal organs wi-
thout surgery and are safer to genetic material than z-rays. The waves with
which the hard-to-reach body area of interest is irradiated are reflected and
refracted; these are recorded by a sonograph for use in diagnosis.

Finally, metals can be welded together by placing their surfaces in contact
with each other and irradiating the contact with ultrasound. The molecules
are stimulated into rearranged crystalline form, making a permanent bond.

Ultrasonics study the application of the energy of sound waves vibrating
at frequencies greater than 20 KHz, i.e., beyond the range of human hearing.
The application of sound energy in the audible range is limited almost enti-
rely to communications, since increasing the pressure, or intensity, of sound
waves increases loudness and therefore causes discomfort to human beings.
Ultrasonic waves, however, being inaudible, have little or no effect on the ear

even at high intensities.

1.2 Application to Quantitative NonDestruc-

tive Evaluation

NonDestructive Evaluation (NDE) methods evolved from the need to find
critical defects in components used in high-risk industries, such as aerospace,
railroad and power generation, where failure of a component could have very
serious consequences. Nondestructive testing has been practiced for many

decades, with initial rapid developments in instrumentation spurred by the
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technological advances that occurred during World War IT and the subse-
quent defense effort. During the earlier days, the primary purpose was the
detection of defects. As a part of ”safe life” design, it was intended that
a structure should not develop macroscopic defects during its life, with the
detection of such defects being a cause for removal of the component from
service. In response to this need, increasingly sophisticated techniques using
ultrasonics, eddy currents, x-rays, dye penetrants, magnetic particles, and
other forms of interrogating energy emerged.

In the early 1970’s, two events occurred which caused a major change.
The continued improvement of the technology, in particular its ability to de-
tect small flaws, led to the unsatisfactory situation that more and more parts
had to be rejected, even though the probability of failure had not changed.
However, the discipline of fracture mechanics emerged, which enabled one
to predict whether a crack of a given size would fail under a particular lo-
ad if a material property, fracture toughness, were known. Other laws were
developed to predict the rate of growth of cracks under cyclic loading (fati-
gue). With the advent of these tools, it became possible to accept structures
containing defects if the sizes of those defects were known. This formed the
basis for new philosophy of ”fail safe” or ”damage tolerant” design. Compo-
nents having known defects could continue in service as long as it could be
established that those defects would not grow to a critical, failure producing
size.

A new challenge was thus presented to the nondestructive testing com-
munity. Detection was not enough. One needed to also obtain quantitative
information about flaw size to serve as an input to fracture mechanics based
predictions of remaining life. These concerns led to the creation of a number
of research programs around the world and the emergence of quantitative
nondestructive evaluation (QNDE) as a new discipline.

In the ensuing years, many important advances have been made. Quan-
titative theories have been developed to describe the interaction of the in-
terrogating fields with flaws. Models incorporating the results have been
integrated with solid model descriptions of real-part geometries to simula-

te practical inspections. Related tools allow NDE to be considered during
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the design process on an equal footing with other failure-related enginee-
ring disciplines. Quantitative descriptions of NDE performance, such as the
probability of detection (POD), have become an integral part of statistical
risk assessment. Measurement procedures initially developed for metals have
been extended to engineered materials, such as composites, where aniso-
tropy and inhomogeneity have become important issues. The rapid advances
in digitization and computing capabilities have totally changed the faces of
many instruments and the type of algorithms that are used in processing
the resulting data. High-resolution imaging systems and multiple measure-
ment modalities for characterizing a flaw have emerged. Interest is increasing
not only in detecting, characterizing and sizing defects, but in characterizing
the materials in which they occur. Goals range from the determination of
fundamental microstructural characteristics such as grain size, porosity and
texture (preferred grain orientation) to material properties related to such
failure mechanisms as fatigue, creep, and fracture toughness—determinations
that are sometimes quite challenging to make due to the problem of compe-

ting effects.

1.2.1 Ultrasonic techniques

Ultrasonic techniques are one of the most widely used approaches to QNDE
material characterization. I resume here some important characteristics of

ultrasonic vibrations used in non-destructive testing:

1. they travel long distances in solid materials
2. they travel in well-defined sonic beams
3. their velocity is constant in homogeneous materials

4. vibrational waves are reflected at interfaces where elastic and physical

properties change

5. vibrational waves may change their mode of vibration or be subject to

mode conversion at material interfaces.
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The basic task in making mechanical wave measurements is to determine
the velocity and attenuation for the particular type of wave under conside-
ration. These measurements may then be related to structural properties of
the material. The velocity is primarily a function of the elastic constants and
density, while the attenuation is largely determined by dissipative mechani-
sms peculiar to the type of material, frequency range, grain size, presence of
external fields, etc.

Ultrasonic waves are commonly generated by sources made of specially
cut crystals of quartz, or ceramics (e.g. barium titanate or lead zirconate).
The application of an alternating electrical voltage across the opposite fa-
ces of a plate made of such a material produces an alternating expansion
and contraction of the plate at the impressed frequency?. Ceramic tran-
sducers have the advantage of being able to be cast in the form of plates,
rings, cylinders, and other special shapes that are convenient for engineering
applications. Other ultrasonic transducers are produced in ferromagnetic
materials by varying the magnetic-field intensity in the material.

Even though the typical frequency of interest in nondestructive inspec-
tion in solid materials ranges from 200 KHz to 20 MHz, there may be special
problems requiring an extension of these limits (mechanical wave measure-
ments have been made over a range of frequencies, from less than 1Hz to
approximately 10*! Hz). The detail that may be resolved by acoustical waves
often depends on the relationship between the wavelength and some relevant
structural dimension. For instance, mechanical centimeter and millimeter
waves are useful in obtaining information concerning gross structural effects,
such as those produced by the grains in a polycrystalline metal or by the
dislocations in a single crystal. On the other hand, information concerning

effects on an atomic scale requires the use of high-frequency waves.

1.3 Linear elasticity and wave propagation

Any study of the mechanical properties of solids requires at least a nodding

acquaintance with basic elastic theory. Therefore in this section I briefly

2This phenomenon in crystals, known as piezoelectricity, was first discovered in the
1880s by Paul-Jacques and Pierre Curie.
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recall the concepts of stress and strain, and introduce the main vibrational
mechanisms observed in solids.

Consider a small volume of a solid body bounded by a surface. In general,
two types of mechanical force may act on the body: a) body forces for which
the force is proportional to the volume of the body; b) surface forces for
which the force is proportional to the area of the surface.

Gravity is an example of the first type of force which involves the force
acting on each particle of the body. The stress applied to an elastic body is
an example of the second type of force in which the force experienced by the

surface particles is transmitted to particles in the interior.
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Figure 1.1. The stress components acting on each face of an elementary
parallelepiped when a uniform force acts on the body.

Stress may be defined broadly as the force divided by the area on which
the force acts. The stress is therefore not only proportional to the direction
in which the force acts but also to the orientation of the surface element.
Therefore it usual to define a second rank stress tensor o;;, where ¢ and
j have the values 1,2,3 (see Fig. 1.1). A double subscript notation is used
to identify the components, the first subscript denoting the direction of the
stress component and the second subscript denoting the direction of the
normal to the plane across which the component acts. It may be shown that

the stress tensor is symmetric and therefore there are only six independent

6
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components of stress.
A deformable body is one in which relative motions may occur between
its constituent parts giving rise to a change in shape or volume or both. In

general, the changes produced by the applied force may be:

1. longitudinal - involving a change in length of the specimen

2. tangential or shear - involving a relative displacement in parallel layers

of the materials

3. bulk compressional - involving a change in volume without change of

shape.

The deformation is said to be elastic if the body regains its original size
and shape after the force are removed. If the applied forces exceed a defined
elastic limit, the body will retain a permanent set on removal of the forces.
If the forces are large enough, the body may exhibit plastic flow or may
fracture.

Let us consider a point P within a solid body whose position coordinates
are x; with respect to a set of Cartesian axes. If P is displaced to a new

position P" with coordinates w; the displacement vector is defined as
It is usual to introduce also the tensor:

which is called the strain tensor. From eq. 1.1 it follows that e; is

symmetrical and thus, of the possible nine components of the strain tensor,
only six components are independent.

Hook’s law may be generalized to state that, for a perfectly elastic bo-
dy, each component of stress is linearly related to each component of strain.
Since there are six independent components of stress and six independent
component of strain, for the most anisotropic body with no symmetry rela-

tions there will be a set of six equations each with six terms and therefore a
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total of 36 coefficients. These equations may be written concisely with the

use of tensor notation:
055 = Sijki €kl

where S;j; is a fourth rank tensor called the elastic constant tensor or
stiffness tensor. It can be shown that - due to symmetry reasons - the
most anisotropic crystal system has only 21 independent elastic constants,
while, for an isotropic material the number of independent elastic constants
reduces to 2: they are known as Lamé constants A and p [18].

In general, acoustics may be defined as the study of time-varying defor-
mations or vibrations in materials. Within a freely vibrating medium, both
inertial and elastic restoring forces act upon each particle of the medium. It
is the interplay of these forces that produces oscillatory motions in a man-
ner analogous to the free vibration of a macroscopic system of masses and
springs. Thus, the elastic restoring forces in a medium may be described as
microscopic ”spring” forces.

In solids, the particles can:

1. oscillate along the propagation direction, generating longitudinal wa-

ves

2. oscillate perpendicularly to the propagation direction, generating she-

ar (or transverse) waves.

In addition to waves that travel through the bulk of a material, it is
also possible to send waves along the surface of a solid. These are called
Rayleigh waves and, in this case, the material particles vibrates elliptically.
Even more complex vibrations of the particles may be observed for waves
guided between two parallel surfaces of a plate. They are known as Lamb

waves and Chapter 3 will be entirely devoted to them.



Chapter 2

The LISA simulation method

2.1 Introduction

Due to the increasing availability of high performance computer facilities, the
range of applicability of simulation techniques is continuously increasing. In
fact, from one side, a numerical solution can complement a theoretical analy-
sis, when the problem appears too complex for an analytical solution. On the
other side, simulation techniques can often replace experimental measures,
being a considerably more economical tool.

There exists a very extensive body of literature [19] on computer simu-
lation techniques, and in particular on Finite Difference (FD) methods [20].
They usually yield very satisfactory solutions, except in the case of heteroge-
neous materials with a large impedance mismatch at the interfaces between
different materials. Furthermore, they are generally restricted to the treat-
ment of perfect contact interfaces.

To overcome these difficulties, a method, which is formally similar to
FD techniques has been proposed in recent years by P.P. Delsanto et al.
[1, 2, 3, 5]. This method, the Local Interaction Simulation Approach (LISA)
aims to a direct introduction of local interactions in the ultrasound propa-
gation mechanism. The Sharp Interface Model (SIM) technique, applied in
conjunction with LISA, allows the treatment of any kind of inhomogeneity.
By imposing the continuity of displacements and stresses at the interface

between different media, the iteration equations can be obtained directly for
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any kind of interface. If it is a sharp interface (media with very different pro-
perties), the resulting equations are more accurate than the ones obtained
with FD techniques, for which a smoothing of the interface is needed.

Furthermore LISA is particularly suitable for the implementation on pa-
rallel computers. Consequently, by using a proper formalism, an optimal
speed-up can be obtained (approximately equal to the number of available
processors). The most important property, in view of the applications to
material studies, is the reciprocal independence of the processors, which can
therefore be putted into a one-to-one correspondence with the cells of the
specimen, properly discretized. Such a correspondence is at the basis of the
LISA technique. The local interaction between cells can be transferred direc-
tly to the processors, bypassing the partial differential equations. Generally,
the iteration equations can be obtained, at least in the 1-D case, directly
from heuristic considerations. The properties of the cells can be introduced
in a completely arbitrary way, being possible to define different parameters
for different processors.

Finally, it is worthwhile to mention that, although LISA was originally
developed within the field of ultrasonic material characterization, it was also
successfully applied to different topics, such as the study of diffusion and
growth phenomena in biophysics.

The purpose of this chapter is to describe a Spring Model [6], which
is a spin-off of LISA, designed to extend the treatment of ultrasonic wave
propagation to specimens presenting non-contact or flawed interfaces and,
after some additional modifications, to attenuative and non linear hysteretic
media. The Spring Model, as the name implies, substitutes the problem of
ultrasonic pulse or wave propagation in a medium with the ”analog ” problem
of exciting an equivalent set of ”tensorial springs ”. The method is stable and
convergent as long as the equivalence between the two problems is justified.
It is also easily parallelizable and therefore amenable to parallel processing
[4].

In the next section the Spring Model is introduced (i.e. the equivalence
justified) for the 1-D case. The 1-D case is, of course, very elementary.
Nevertheless, it is included because it allows us to define in a very natural

way the ingredients (external and internal springs, contact quality factor),

10
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which can later be extended to 2-D in Sec. 2.3. An extension to 3-D is

straightforward, but omitted here for brevity.

2.2 The spring model: 1-dimensional case

2.2.1 Propagation along a homogeneous rod

A propagation medium may be considered as one-dimensional if it enjoys
transverse symmetry. In this treatment, for simplicity, we start assuming
as propagation medium a homogeneous rod of unit cross sectional area and
discretize it as a 1-D grid. Each grid-point (or node) represents a tiny segment
of rod, which I call a ”cell”, of length ¢ and mass m = p € centered upon the
node. Each node acts on its two neighbors i & 1 with forces F;* given by the

elastodynamic equations

FF =X =S5 = 8 (ue1 — w;) [e, (2.1)

where X" is the stress on each of the two cell interfaces, S represents the
material stiffness and 5 the deformation and u; the node displacement from
its equilibrium position.

Thus the grid may be replaced by a system of springs with rest lengths e

and elastic constants S/e. From the equation of motion

for each node 7, we easily obtain, by discretizing the time and applying the

usual FD formalism [20], the iteration equation

ult = 2ul —ulmt + C<U§+1 + iy — 2“3’ (2.32)
where
2g
c— 7'_2 (2.4)
pe

is the square of the so called Courant’s number and 7 is the unit time step.

The value of ¢ may be chosen almost at will by varying the ratio 7/e. The

11
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problem of convergence and stability of eq. 2.3a is discussed in ref. [1]. It

turns out that the best choice is ¢ = 1.

2.2.2 Heterogeneous rod. Perfect contact at junctions

Let us now assume that the rod is no longer homogeneous and that, e.g.,
an interface located at the node i separates two regions of different physical
properties S~,p~ and ST,p" at the left and at the right side of the node,
respectively. If there is perfect (or rigid) contact between the two regions, we
split the node 7 into two infinitely close subnodes i* and i~, each representing
a half cell, of length ¢~ /2 and €7 /2 and mass m~ = 1/2p ¢ and m*™ =
1/2pTe", respectively. We then assume (see Fig. 2.1) that, besides the
"external 7 forces given by eq. 2.1, two ”internal” forces fi* act on the two

subnodes in order to keep them together:

i = it = i, (2.5)

where the center of mass acceleration 4" is given by

em MU +mtut FT 4+ F
u = =

mT+m-  mT+m—

(2.6)

In eq. 2.5 and following ones I will omit the superscript ¢ and ¢ for brevity.
Also T assume, in eq. 2.6, that the internal forces are equal and opposite:

fT = —f". From the equations of motion for the two subnodes

mTiE = FE 4 f* (2.7)

and from egs. 2.5 and 2.6 it follows

(2.8)

2.2.3 Imperfect contact

Let us finally assume that the contact between the two regions at the interface
may be imperfect. Then we assume that the internal forces are still equal and

opposite, but no longer given by eq. 2.8, since the two subnodes may acquire

12
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Cell i-1 Cell i Cell 1+1
F £ F
O\ NNANNAAA AT LEOAAA AN
(i-1y i i (i+1)
e /2 5/2 &2 & /2

Figure 2.1. Discretization of a rod in a 1-D grid: splitting of the node @
into two subnodes iTand i~and representation of the external and internal
forces.

some additional degree of freedom. In this case we introduce a parameter ()
in the model, to characterize the contact quality at the interface and write
the internal forces as

fF=Q fr (2.9)
where pﬂg represent the internal forces in the case of perfect contact, as given
by the right hand side of eq. 2.8. The contact quality parameter ) may
vary from the value () = 0 (delamination or crack) to the perfect contact
value (Q = 1. The bond quality is expected to be connected, although not
necessarily in a trivial way, to the contact quality, depending on the physical
parameters of the system.

The iteration equations may then be easily obtained:

(ujt)lurl = — (ui)t_l + 2uT 4+ 2¢F (uﬂ - ui)
+QtT [—ci (uil — ui) +c' (qul — qu)} , (2.10)
where
N TQSi
=02 o
(=) p

13



2 — The LISA simulation method

2 + +
tt = L’ (2.11)
and
Usy = U (2.12)

eq.. 2.10 becomes somewhat simplified if, in order to obtain optimal con-
ditions of convergence and stability, et and €~ are chosen to yield ¢t = 1.
Then we can define the impedance (after and before the interface, respecti-

vely) as

1
7E =\ /ptSt = ;ei P (2.13)

and, as a consequence,

27+
+
- 14+ 2.14
7+ 7 " 214
where
Zt -7
=== 2.15
=L (215)
eq.. 2.10 then becomes

Wl = T 27 Q6+ (14 Q) un + (1 -7 Q) uy,

st — gt +20Q 6+ (1 _ Q)(U—H — u_1)7 (2.16)

where u are still defined through eq. 2.10 and

u = % (u+ + u_) 6= % (u+ — u_) . (2.17)

In the perfect contact case (QQ = 1), 6 =0 and eq. 2.16 becomes

u =t g g, (2.18)

in agreement with Eq.2.3 of ref. [1]. Here ¢t* and ¢~ are the transmission
coefficients for the displacement in the forward and backward directions,

respectively, and r is the reflection coefficient.

14



2 — The LISA simulation method

2.2.4 A model for the internal forces

To conclude the Section, it might be useful to attempt a physical interpreta-
tion for the internal forces f*. If we assume that, at the time ¢t = 0, u* = u~

and @ =u", from egs. 2.7, 2.8 and 2.9 it follows that after a time step 7

I N ()
where
mtm~
=— 2.20
A +m- (2.20)

We then consider the region (i7,i") as an elastic rod of unit cross section,
restlength n < € and Young’s modulus E. The tiny rod is subject to two
concurrent stresses (both in- or outward) f* and f~ and to a deformation
26/n. Then

S+ 1] 2pQn
E = = : 2.21

2l 0-QF 220

Since p, n and 7 are all infinitesimal of the same order, E has a finite value

if0<@<1. If Q — 1, E— oo and the rod is totally rigid, thus securing a

perfect contact at the node ¢, as expected.

2.3 The spring model: 2-dimensional case

2.3.1 Perfect contact

A propagation medium may be considered as two-dimensional if it enjoys
translational symmetry with respect to a given direction (e.g. the z-axis).
As an example we consider a material plate of unit thickness and discretize
it as a 2-D grid. To consider the most general heterogeneous case, we as-
sume that the physical properties may vary in the lattice from cell to cell,
being constant, however, within each cell. Let us assume, for simplicity, that
the material has cubic symmetry and call p;; the density of a generic cell
(4,7),045,Ai5 and pu,; its elastic constants, corresponding to the cell stiffness

components Sk, Skri,Skikt (k! = 1,3), respectively.
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2 — The LISA simulation method

Figure 2.2. Representation of the external and internal forces in 2D.

In order to simulate the propagation, we consider a cross-point O = (4,7)
at the intersection between two interfaces separating four different materials,
whose physical properties we shall label p, Ag,pp,00,k = 1,4: see Fig. 2.2.
Following the treatment of the 1-D case in Section 2.2, we split the cross-point
(1,5) into 4 subnodes Oy, each representing a quarter cell in the corresponding
quadrant.

For the purpose of simulating the propagation of an ultrasonic wave or
pulse, it is possible to prove that the plate is equivalent, in the limit ¢ — 0,
to a system of external and internal springs. The external springs propagate

the disturbance of the source pulse throughout the whole grid. Extending to
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2 — The LISA simulation method

2-D the procedure developed in Section 2.2 and based on the FD formalism,
it is straightforward to obtain an explicit expression for the spring forces F;k)
connecting the subnode Oy, to its "nearest neighbor” nodes n

T = MW Aw,, (2.22)
where
0
Mé’f) - s %’“ ) (n=k=1234)
2
1 _
ME) = 2Tk . Xk ) (n=5k=14n="7Tk=23) (2.23)
Xr Mk
1
M® — | 2HE Xk (n=6k=12n=8%k=234)
K —Xk %Uk
and
Awn = Wy — Wy,
Y = (=) O+ ) /4, (2.24)
X — (_)kJrl (Ak - .Uic) /4~
Finally

%:(?> (2.25)

is the displacement vector of the node n.
If there is perfect contact, the six internal ”springs ” keep the set of four
subnodes rigid, as discussed in the next subsection. Calling f,, the internal

forces connecting the subnodes Oy and O, we assume that

7kl - _7lk'

Thus, from the equation of motion applied to the set of the four subnodes,

one obtains, after a time discretization (with time unit 7)

17



2 — The LISA simulation method

2
Wit = 2w — wy 1 + # S M® Aw,, (2.26)
n,k
where
1
p= 1 Z Pk
k=1

In eq. 2.26 T have omitted for brevity the time and/or space subscripts
whenever corresponding to the ”current ” time t or to the node O under
consideration. Also note that the masses of the four subcells are }p,€* (k =
1,4), since they have the same volume ieQ. eq. 2.26 is equivalent to eq. 3.18
in ref. [2].

2.3.2 Imperfect contact

In the previous subsection the purpose of splitting the node O into four
subnodes was solely due to the need of calculating the spring forces inside
a homogeneous region. Thus the forces along the interfaces were split into
two separate forces, on either side of the corresponding interface. Following
the treatment of the 1-D case in section 2.2, we show notice that such a
splitting here has far more outreaching consequences, since it leads to a
natural treatment of imperfect contact interfaces.

In order to maintain the set of four subnodes rigid, as required in the
previous subsection, it is necessary that the acceleration of each subnode be
equal to the acceleration of their center-of-mass

L 1 G
W=Wopm= ﬁ Z FI (k=14), (2.27)

where 7' is the resultant of the three forces Fﬁf)

subnode [: see Fig. 2.2.

directly applied to the

Equation 2.27 may be easily satisfied if, by a straightforward generaliza-

tion of eq. 2.8, the internal forces are chosen to be given by

T Pkfl — Pz?k

fkl = 45 (228)
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2 — The LISA simulation method

Then, in analogy with the 1-D case (eq. 2.9), we may extend our model
to the treatment of imperfect interfaces by defining a contact quality tensor
Q@ for each node O through the relationship

7kl = Qu 71(51,)6)7 (2-29)

where 7,(50) are the internal forces for the perfect contact case, as given by
the right-hand side of eq. 2.28. Of course in such a case Qy; = 1, for each k
and .

By varying the values of the various components of the contact quality
tensor between 0 and 1, one may model a large variety of interface imper-
fections. Some of them will be considered in the next section. Furthermore,
without any increase of computer time, due to the parallel processing of the
simulation, the contact quality tensor may vary arbitrarily from node to node

and even be different for the = and y components of the internal forces.

2.3.3 The iteration equations

In the case of imperfect contact interfaces the iteration equations must be
run independently for all the subnodes, rather than for all the nodes. Their

expressions are

w® = 20® — w®) 4 _7—22 (F’“ - ZTM) (kL = 1,4), (2.30)
P e 12k
where the subscript k£ denotes the subnode being considered. It should be
mentioned, for completeness, that in the expression of the forces Filk) (see
eq. 2.22), included in the forces Fk, and f,;,Aw, must be replaced by the
difference between the displacement of the subnode of the node n, closest to
the subnode k of O, and the displacement of the latter subnode.

Extending the discussion carried on in subsection 2.2.2 to the 2-D case,
it is possible to give a more specific physical interpretation to the internal
forces. We omit the corresponding discussion for brevity. We limit ourselves
to remark here that both the external and internal forces do not represent

real springs, in which the force is proportional to the actual distance between
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2 — The LISA simulation method

subnodes, but rather ”tensorial springs ”, in which the z and y components

of the force depend on the corresponding components of their distance.

2.4 Parallel processing

The development of high performance computer machines has allowed to
overcome the two main limits present in a numerical approach to the so-
lution of many research problems: the huge CPU time request of certain
applications and the insufficient memory resources available. This has lead
to a great change in the general approach to numerical physics: computer
scientists have moved from a research focused on the mere modelization to a
thorough design dedicated to specific applications.

When is it possible to solve a physical problem in terms of parallelism?
We can think at parallelism as being a natural feature of some problems,
and one could ask him/herself if every problem present this peculiarity and
when it is possible to take advantage of it. A first requirement is to consider
physical systems which are reconducible to a multiplicity of elements, which
we call ”cells”. In some cases those systems present themselves as continuous
and, as a consequence, the subdivision in cells is merely formal, being an
unavoidable tool for the introduction of numerical procedures. In some other
cases the systems are intrinsically characterized by a discrete structure and
the portioning out in cells will reproduce this structure in a natural way. This
is e.g. the case for a consolidated material, i.e. a material constituted of many
grains (see Chapter 4): each grain may be put directly in correspondence with
a ”synthetic” cell.

However the discretization in cells is performed, it will be possible to
simulate in parallel the cell evolution only if they present a certain degree
of independence among each other. In the case of wave propagation we
assume that the disturbance can move, at each time step, from one cell to
the neighboring cells only, leaving unchanged all the other ones. In general,
we can speak of systems of interacting particles with a short-range potential,
where the interaction is intended in a geometrical sense, i.e. the interaction
of one particle do not intervene with all the other particles of the systems,

but only with the neighboring ones.

20



2 — The LISA simulation method

The independence may be exploited to introduce parallel processing in the
following way: each cell may be put into a one-by-one correspondence with a
processor and its evolution calculated by the processor itself simultaneously
with all the other ones. The reciprocal interaction among cells is transferred
to an interchange of messages among corresponding processors. Since this
operation requires additional computer time, the higher is the independence
degree among cells the more convenient is the use of parallel computers vs.
serial ones.

Although a physical problem may present a certain intrinsic degree of pa-
rallelism, one should notice that it may be very important also the parallelism
deriving from the modeling or the particular method chosen to solve the pro-
blem itself. Two alternative models can lead to completely different degrees
of computational complexity, up to the point that it may be impossible to
parallelize one of them. An example in this sense may be given considering
the use of implicit rather than explicit FD schemes. In an explicit scheme
the unknown variable depends on a combination of values of the variable
itself, all evaluated at time (¢ — 1), and its calculation may be performed in
parallel over all the grid cells. On the other hand, in an implicit scheme, the
described dependence also involves quantities that have to be evaluated at
time ¢, which requires to solve a system of linear equations, thus precluding

every possible kind of parallelism.
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Chapter 3

Linear techniques: Lamb waves

3.1 Introduction

The majority of ultrasonic NDE techniques in use today employ longitudi-
nal or shear waves for flaw detection and thickness measurement in point-
scanning applications. In sheet and tube type material, however, a more ra-
pid inspection technique has been developed utilizing guided wave. Among
them, Lamb Waves (LW), which propagate between two parallel surfaces of
a plate-like object, has long been acknowledged as a very efficient solution
for non-destructive testing in large-area, as they are able to travel relati-
vely long distances without appreciable attenuation, allowing the material
between transmitter and receiver to be interrogated.

LW testing is generally complicated by the coexistence of at least two
modes at any given frequency (see subsection 3.1.2) and by the strongly
dispersive nature of these modes at high frequency. Furthermore, a single and
pure Lamb mode may generate a variety of other modes either by interacting
with a notch, a delamination and/or whenever other kinds of geometrical
discontinuities are present in the material (e.g. thickness variations). As
a consequence the output signal becomes richer, but often very difficult to
interpret and it may be very important to perform a detailed physical analysis
of the propagation mechanism. Reliable 3-dimensional simulations of the
described phenomena may be a very valuable tool in this analysis.

Due to the fact that in a plate the thickness is much smaller than the other
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3 — Linear techniques: Lamb waves

two dimensions, extensive parallel calculations are needed, in order to ensure
a sufficient number of grid points in all the three directions. To this purpose
the LISA method (see Chapter 2) has been applied to simulate - given the
wave frequency, thickness and physical properties of the plate material - LW
propagation in complex structures with defects. In particular, in the various
cases presented in this Chapter, I have examined how the ”signature” of
the defect, i.e. the difference between the reference and the flawed signals,
depends on the damage type and location.

One of the highlights of this method is its the capability of directly follo-
wing the wave as it propagates through the specimen, recording the spatio-
temporal evolution everywhere inside (and on the surface) of the material.
Therefore, LISA simulations allow to perform ”virtual experiments” which
permit a valuable insight in the wave propagation mechanisms, as well as
the optimization of the interrogation frequency and propagating modes, the
source/sensor location, etc.

The present dissertation focuses on LW propagation in composite structu-
ral materials, which are becoming increasingly common in aerospace industry,
ground transportation, civil engineering, etc. However I exploited also more
traditional polycrystalline materials such as Aluminum.

The high degree of anisotropy of certain composite materials may con-
stitute a serious limitation for conventional simulation methods, while LISA
has already shown its capability of treating any kind of anisotropy and other
complexities of the material [7, 8]. These may give the opportunity for ex-
perimental groups to count on numerical low-cost pre-tests.

In particular, within the Brite Euram project DAMASCOS (Damage As-
sessment in Smart Composite Structures, BE#97-4213), experimental rese-
archers (in particular INSA Laboratories of Lyon, France, and University of
Valenciennes, France) supplied the composite material properties [21] that
I used as input values for simulations and, as a counterpart, the numerical
output was used as a feed-back for optimization procedures such as those
mentioned above [22].

In Section 3.2 I present a review of the results obtained applying the LISA
method to LW propagation for damage detection in various cases of interest
for NDE. In Section 3.2.1 there is a validation of the LISA method comparing
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simulations and experimental results in a simple, well defined case study (a
composite plate faulted by a passing-by hole). In Section 3.2.2 T analyze LW
detection of notches and sub-surface voids. A more realistic damage type is
considered in Section 3.2.3: an impact damage induced delamination failure
is examined. In conclusion, I introduce in Section 3.2.4 LW propagation in
geometrically complex elements, such as, e.g. T- and Y-junctions in stringer

structures.

3.1.1 Guided waves

Bulk waves travel in the bulk of the material - hence, away from the bounda-
ries. However often there is interaction with boundaries by way of reflection
and refraction, and mode conversion occurs between longitudinal and shear
waves. Although bulk and guided waves are fundamentally different, they
are actually governed by the same set of partial differential wave equations.
Mathematically, the principal difference is that, for bulk waves, there are no
boundary conditions that need to be satisfied by the proposed solution. In
contrast, the solution to a guided wave problem must satisfy the governing
equations as well as some physical boundary conditions.

It is the introduction of boundary conditions that makes the guided wa-
ve problem difficult to solve analytically; in many cases, analytical solutions
cannot even be found. Another interesting feature of guided wave propaga-
tion is that, unlike the finite number of modes (primarily longitudinal and
shear) that might be present in a bulk wave problem, there are generally
an infinite number of modes associated with a given guided wave problem.
That is, a finite body can support an infinite number of different guided wave
modes.

Some examples of guided wave problems that have been solved - and
whose solution has inherited the name of the investigator - are Rayleigh,
Lamb, and Stonley waves [11]|. Rayleigh waves are free waves on the surface
of a semi-infinite solid. Traction forces must vanish on the boundary, and
the wave must decay with depth. Lamb waves are waves of plane strain
that occur in a free plate, and the traction force must vanish on the upper

and lower surface of the plate. Stonely waves are free waves that occur at
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an interface between two media. Continuity of traction and displacement is

required at the interface, and a radiation condition must be satisfied.
Among linear ultrasonic techniques, guided waves have become a critically

important subject in NDE. In the next section I will introduce in more details

Lamb wave propagation characteristics.

3.1.2 Lamb waves

Lamb waves' are a type of ultrasonic wave propagation in which the wave
is guided between two parallel surfaces of a plate-like object, i.e. an object
which has a thickness lesser than a few wavelengths of the incident wave.
Particle displacements and stresses in the Lamb waves occur throughout the
thickness of the plate. Their propagation properties depend on the density,
the elastic properties and geometrical structure of the inspected object and
are also influenced by the thickness of the material d and the wave cyclic
frequency f. According to their displacement patterns they can be divided
into two types, symmetric Sn and anti-symmetric An with respect to the
mid-plane of the plate. At low frequency-thickness products fd only two
Lamb modes can propagate, the zero-th order Ay and Sy, which are often
referred to as the fundamental flexural and extensional modes, respectively
(see Fig. 3.1).

As the fd product increases more modes can be excited and propagate at
different velocities. This can be easily understood looking at the dispersion
curves shown in Fig. 3.2 for an Aluminum plate (figure reproduced from ref.
23)).

It is interesting to study wave structure variation as one increases the
fd product along a particular mode. A symmetric mode cannot be though
of as simply an in-plane vibration mode. As one moves along the mode,
the ratio of the in-plane to out-of-plane displacement changes. Of particular
note are the changes on the outside surface of a structure. Similarly, the
antisymmetric modes cannot be thought of as a mode with only out-of-plane

displacement values.

Lamb waves were originally studied by H. Lamb in 1917.
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Figure 3.1.  Zero-th order symmetric (Sp) and anti-symmetric (Agp) Lamb
wave modes

3.2 Lamb wave testing

In this section I demonstrate the applicability of LISA to the study of Lamb
wave propagation in complex structures, in particular for the purpose of de-
tection and quantitative evaluation of damages. I analyze several examples of
flaws, starting with the simpler case of a passing-by hole, which is considered
mostly for the purpose of validating the method (by comparing the results of
the simulations with experimental data). In subsection 3.2.2 I consider the
more interesting cases of a notch and subsurface flaw; a cone-shaped stack
of delaminations is considered in subsec. 3.2.3. Finally, geometrically more
complex structures, such as T- and Y- junction stringers are examined in
subsec. 3.2.4.
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3.2.1 Damage type: passing-by hole

Let us consider the propagation of LW’s through a Glass Fiber Reinforced

Plate (GFRP) initially intact and then damaged by a passing-by hole of dia-

meter ranging from 1 to 10 mm. This simple, well defined defect geometry
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was chosen in order to validate the simulation method and obtain a quanti-
tative comparison with experimental results in a controlled and reproducible
case. It should be noticed that, in spite of its simplicity, this problem requi-
res a 3-dimensional treatment, with a very fine space step (< 3mm). The

ultrasonic source/sensor configuration is schematized in Fig. 3.3.

T
~ Folie’
167 mm
250 mm
hole 3 mm
R
Lagge]
« 450 mm »

Figure 3.3. Schematic representation of the GFR specimen flawed by a
hole. The transmitter T, receiver R and hole location are indicated.
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Figure 3.4. Plate flawed by a hole of ¢ = 10 mm. Map of the out-of-plane
component of the displacement at the time t = 126 us.

In order to graphically visualize the wave propagation inside the faulted
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material, in Fig. 3.4 we present a snapshot of the LW out-of-plane displace-
ment component in the case of a plate damaged by a 10-mm-hole. In this
plot both the Sy and Ay modes are visible: the faster S is seen already re-
flected back from the edge of the plate, while the interference pattern of Ay
with the defect is clearly visible.

A displacement map, such as 3.4, may be quite useful to visualize and
understand the propagation mechanisms taking place inside the material,
but it is neither sufficient to evaluate the signature of the defect with respect
to the reference (unblemished) case, nor to allow a quantitative comparison
between numerical and experimental results.

For this reason I present in Fig. 3.5 the S; signal collected at the receiver
both for the unfaulted plate (upper plot) and for the plate with a 10 mm-
hole (lower plot). The latter shows, as expected, a reduced wave amplitude
due to partial scattering from the hole. In the plots the continuous line
represents the results of our simulations, while the dots refer to experimental
data obtained at the INSA Laboratoires (Lyon, France)[21]. We can observe
a good quantitative agreement between synthetic and experimental results,
although some differences may be noticed at the end of the signals. These
are due to the fact that we have not included in our simulations the different
transducer damping and material attenuation.

Two major effects originate from the interference of a Lamb wave with a
hole: a wave amplitude reduction, due to geometrical dispersion, and a delay
in the time signal, due to the fact that the wave travels a longer distance,
since it has to circumnavigate the defect.

Both effects can be better appreciated in Fig.s 3.6 and 3.7 (by courtesy
of Thomas Monnier), where the Sy amplitude and time delay are reported
as a function of the hole diameter ¢. The theoretical results (continuous
line) agree well with the results of the experiments performed both at INSA
(dotted lines) and at the University of Valenciennes, France (dashed-and-
dotted lines). It is interesting to note that the Sy amplitude for ¢ = 1 mm
is slightly higher than when no hole is present (¢ = 0 mm). This is due
to the fact that we are not considering the whole displacement, but only its

out-of-plane component, since that is the quantity measured at the receiver.
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Figure 3.5. Temporal signals at the receiver: comparison between simu-

lations (continuous line) and experimental data (dotted line) for the un-

faulted plate (upper plot) and for the plate with the 10 mm-hole (lower
plot).
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Figure 3.6. Sy amplitude maximum versus hole diameter in a GFRP.
Continuous line: simulation; dotted line: INSA experiment; dashed line:
Valenciennes experiments.

3.2.2 Damage type: notch and sub-surface flaw

In this section I analyze the LW’s behavior in a plate with a flaw perpendi-
cular to the wave propagation direction. Let us consider an Aluminum thin
plate (of thickness d) with a rectangular subsurface defect (void) of length h
and width a, located at a depth [ from the plate upper surface, as shown in
Fig. 3.8. For [ = 0 we have, as a case limit, a (surface) notch. The reflected
and transmitted signals are recorded by two receivers R; and R located on
the plate surface. They may be used -after a careful analysis of the signature
of the defect- for reconstructing the flaw position and shape.

Let us consider the propagation of a zero-th order anti-symmetric Lamb
mode A injected from the left side of the specimen containing a surface de-
fect (notch) with [ = 0,a = 0.1d,h = 0.46d. In Fig. 3.9 snapshots at four

subsequent times of the in-plane (longitudinal) component are shown (note
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Figure 3.8. Schematic representation of the propagation medium. The
darker region represents the defect, Ry and Rz represent the two receivers.
The emitter is located on the left side of R;.

the different z-ranges and scales). The uppermost plot displays the pure Ay
mode of the incoming (hanning modulated) wave packet. The second plot
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Figure 3.9. Snapshots at various times (in arbitrary units) for a low fre-
quency Lamb mode propagating in an Al plate with a surface notch. Note

the differentz-ranges and scales in the four plots.

shows the scattering effect due to the ”breaking” of the wave against the no-
tch. The presence of this discontinuity generates a partial mode conversion
from Ag to Sp. This can be observed in the last two plots, where it is repre-
sented the wave transmitted after the notch: in the third one the Ay and the
mode-converted S, are still partially overlapping, while in the bottom plot

they are well separated. The presence of a mode-converted Sy mode supplies
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additional information, which may be used, as shown later, to predict the
defect shape and size. The location of the notch may be easily deduced from
the separation (spatial at a given time or temporal at a given location) bet-
ween Ay and Sy (either in the reflected or in the transmitted component)

and from the well known phase velocity difference between the two modes.
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Figure 3.10. Propagation of a LW in an Al plate with a surface defect

at different depths: h = 0.08d (solid line), h = 0.18d (dashed line) and

h = 0.23d (dots). Longitudinal components of the reflected (upper plot)
and transmitted (lower plot) signals.

Again linear plots are needed for quantitative evaluations. In Fig. 3.10
the in-plane (longitudinal) component of the signals received in Rjand Ry
(upper and lower plots respectively) are reported vs. time for the case il-
lustrated in Fig. 3.9. The effects of three different depths of the notch are
compared. For both the reflected and transmitted pulses we observe first,
from the left, the faster mode-converted Sy pulse and later, trailing behind,
the original Ay pulse. All the pulses, with the notable exception of the trans-
mitted Ag signal, exhibit a remarkable dependence on h, which can be used
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for NDE purposes.

| r—p——— -v--'-.--;.:.._
.

0.3 i
2
. ra
= 06 |
=
—
= .
= 04 {}
= o

0.z :

| | o

0 014 027 0.4
. Ivd

Figure 3.11. Lamb wave amplitudeat a time after the scattering vs. h/d
for | = 0 (surface flaws). Modes: reflected Ag (circles), transmitted Ag
(triangles), reflected Sy (diamonds) and transmitted Sy (crosses).

In Fig. 3.11 the reflection and transmission coefficients of both the Ay and
So modes are plotted vs. h/d for a surface flaw (I = 0). Similar plots for
[ # 0 or vs. l/d for a given value of h have also been obtained (omitted
for brevity). Measuring the amplitudes of the reflected and/or transmitted
Lamb wave modes it is possible, from these plots to deduce h and [ and, with

a more detailed analysis, to recognize, up to a point, the shape of the defect.

3.2.3 Damage type: delamination
Single delamination

A very common kind of failure in composite plates may be represented as
a cone shaped stack of delaminations. I therefore use it to model impact
induced damage and proceed to analyze it by means of numerical simulations.
In Fig. 3.12 it is shown a sketch of a Carbon Fiber Reinforced Plate (CFRP),
which I have studied for this purpose.
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Figure 3.12. Schematisation of the specimen used to study a cone shaped
stack of delaminations due to an induced impact (in P). The positions of
the transmitter 7' and of the receiver R are indicated.

In order to prepare the ground for the more complex case under investi-
gation, I consider first a plate flawed by a single delamination. In a virtual
experiment we assume to inject from its left edge a hanning-windowed pulse
and follow the propagation of the Ay and Sy modes thus generated.

In Fig’s 3.13 and 3.14 snapshots at two subsequent times are represented
of both the in-plane (longitudinal) and out-of-plane (shear) components of
the displacement. We recall that in the in-plane u component the Sy mode
is symmetric, while the Ag mode is asymmetric; the opposite occurs for the
out-of-plane v component. In the first two plots of Fig. 3.14 (u component)
we notice, proceeding from left to right, first a weak Ag mode; then, in the
delamination region, both the Sy mode and the mode-converted Ay (which
in the second plot causes the wiggles on top of the smooth and much larger
So oscillations), and finally the pure much faster and stronger Sy mode. Note
that in the v component the Sy mode prevails, while it is almost negligible

in the v component. In the third and fourth plots we find first a very strong
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Figure 3.13. Snapshotsof the displacement field at time ¢ = 47 us for a

2- mm-thick CFRP sample flawed by a single delamination of length 6 mm

positioned at 0.3 mm from the bottom surface. The first plot represents

the in-plane (u) component of the displacement. The second plot shows a

section at z = 1.8 mm of the upper plot (continuous line) and the respective

unflawed case (dotted line). The last two plots represent the out-of plane
v component of the displacement.

incoming Ay mode and then, in the delamination region, a very conspicuous
mode-converted Ay mode (with a different wavelength), which is entirely due
to the delamination. In fact it is completely absent in the unblemished plate
(dotted line).
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Figure 3.14. Snapshots at time t = 73 us for the same case displayed in
Fig. 3.13.

As already mentioned, our simulations technique yields not only the spa-
tial propagation (as shown in Fig.s 3.13 and 3.14), but also the temporal
evolution, which is more useful for comparison with experimental data. In
Fig. 3.15 we plot the signal, as recorded as a function of time by the receiver,
in the case of a 6 mm thick CFRP with a single delamination. Its effect is
mostly a time shift (delay) due to the longer path caused by the splitting of
the pulse (above and below the delamination) and subsequent recombination.

The dependence on the single delamination position is analyzed in Fig.
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Figure 3.15. Signal collected at the receiver in a 6- mm-thick CFRP wi-
th a single delamination positioned at 0.9 mm from the bottom surface
(continuous line). The unflawed case is plotted for reference (dotted line).

3.16, which shows both the time delay and difference in peak amplitude (bet-
ween a flawed and an unblemished plate). Concerning the time shift the effect
is larger at mid-plate since, at that location, the pulse is completely broken
into two parts and the circumnavigation around the delamination takes the
greatest toll. On the contrary, the amplitude difference is larger close to
the surface, where the Ag mode displacement is maximal (thus leading to a

greater discontinuity), while it vanishes at mid-plate.

Cone-shaped stack of delaminations due to impact damage

Finally the effect of a cone-shaped stack of delaminations is illustrated in
Fig.s 3.17 and 3.18. Fig. 3.17 displays both the u and v components of the
displacement in a similar fashion to Fig.s 3.13 and 3.14. The effects of the
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Figure 3.16. Dependence on the z-position of the single delamination.

Time delay (upper plot) and difference in amplitude (lower plot) between

the reference and the damaged case. (We have considered the out-of-plane
v component of the displacement for the Ag mode).

stack of delaminations can be observed, particularly in the first plot.

A quantitative evaluation of the effect of the damage can be very clearly
evinced from Fig. 3.18, which displays the signal at the receiver. Here,
besides the phase shift, we notice a much stronger decrease in the amplitude,

due to the large number of delaminations in the stack.

3.2.4 Geometrically complex structures

Many of the fundamental aerospace structures include panels, sometimes

of varying thickness, and reinforcing elements. The junctions between the
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Figure 3.17. Snapshots at time ¢t = 76 us for a 6- mm-thick CFRP sample

flawed by a cone-shaped stack of delaminations. The first plot represents

the in-plane (u) component of the displacement; the second plot shows a

section of the upper plot (continuous line) and the respective unflawed case

(dotted line). The last two plots refer to the out-of plane v component of
the displacement.

reinforcing elements and the panels are very important in evaluating the
applicability of ultrasonic techniques to practical structures. Simulations
may provide an insight into the interaction between LW’s and these basic

structures.
A detailed analysis of the results of our simulations in these kinds of
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Figure 3.18. Signal collected at the receiver in a 6- mm-thick CFRP plate
with a cone-shaped stack of delaminations.

structures is beyond the scope of this dissertation. I limit myself to present
in Fig. 3.19 two examples of LW propagation in a T-junction stringer and
a Y-junction stringer, respectively. As in the previous figures there is a
wealth of propagation mechanisms, due to the discontinuous structure of the

specimens, which can be exploited for the purpose of quantitative NDE.
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Figure 3.19. Upper plot:T-junction. Lower plot: Y-junction stringer.
Snapshots of the in-plane component of the displacement.
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Chapter 4

Nonlinear mesoscopic elasticity

4.1 Introduction

In Chapter 1 I have mentioned that among the various NDE techniques, acou-
stic methods [24] are perhaps the most frequently used. Recent advances in
modern material technology require the development of NDE techniques that
quantify micro-scale damages in a variety of materials, both during their pro-
duction and life cycle. Ultrasonic waves interact with interface boundaries,
grain interstices, pores, inclusions, cracks, etc. and gather substantial in-
formation about the details of the geometry and physical properties of the
insonified medium.

In the last decade, numerous studies of a diverse class of materials such
as earth materials, cement products, concrete, composites, etc. have sho-
wn that their elastic nonlinear behavior is significantly different from the
classical nonlinear behavior found in ”ordinary” materials, such as glasses,
single crystals, numerous metals and others [16, 25, 26]. Despite their very
different structural and chemical properties, these materials share the same
nonlinear elastic behavior that can be observed in both quasi-static and dy-
namic experiments. In the following we shall say that these materials display

b

"nonclassical” nonlinearity, while the ”ordinary” materials, which obey the
traditional nonlinear theory of Landau [15, 27| shall be called ”classical”

nonlinear.
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4 — Nonlinear mesoscopic elasticity

The fundamental characteristics of nonclassical material behavior in quasi-
static experiments is the appearance of stress-strain hysteresis and discrete
memory [28]. Differences between nonclassical and classical nonlinear dyna-
mic behavior include: a downshift of the resonance frequency, proportional to
the resonance amplitude in the nonclassical case versus a quadratic amplitu-
de dependence in the classical case; nonlinear attenuation versus amplitude
independent attenuation; quadratic amplitude dependence of the third har-
monic versus cubic in the classical case, respectively. [25] Another striking
feature observed in the nonclassical nonlinear dynamic response of nonclas-
sical materials is ”"slow dynamics”, i.e., the slow recovery of the linear
material properties (wave-speed and attenuation) after a sample has been
subjected to a force[29, 30].

Nonclassical nonlinear effects are believed to be due to the presence of
soft regions in hard materials (e.g. microcracks, flat pores and soft bonding
regions between grains in a granular material). They have been successful-
ly reproduced by a model of Guyer and McCall [31], based on a Preisach-
Mayergoiz (PM) space representation, in analogy with the treatment of ma-
gnetic hysteresis. Such a model provides a simple phenomenological descrip-
tion of the complex elastic behavior of an elementary elastic unit in the
composition of an arbitrary material. Each unit is described by an elemen-
tary constitutive law that accounts for effects such as nonlinearity, hysteresis
and end-point memory. The collection of all units, each of them with their
particular constitutive relations, yields the so called "PM-space”, which
characterizes the material specimen. Guyer and McCall used the PM-space
to predict the static mechanical behavior of rocks in agreement with ma-
croscopic observations. In the case of dynamic problems, Van Den Abeele
et al. [32] used an analytical approximation of this model for homogeneous
and isotropic nonlinear media to evaluate the influence of hysteresis on the
propagation of longitudinal waves.

Analytical approaches must significantly simplify the problem and may
not succeed in reproducing a whole set of observed phenomena. Application
of numerical calculations can serve as an alternative for a more complete theo-
retical analysis, including the extension of a basic one-dimensional model to

higher dimensions. Computer models based on a microscopic approach, such
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as ab initio calculations and Molecular Dynamic techniques [33] are common-
ly used and allow, for instance, the understanding of atomic-scale details and
their behavior under applied stresses [34]. However, such methods are not
always practical because of the huge CPU time required, even for simulations
over a small number of atoms. Therefore, a bridging of microscopic details
towards a macroscopic description is extremely valuable.

In wave propagation applications, Delsanto et al. [5] proposed an appro-
ach for numerical simulations of macroscopic wave phenomena in complex
heterogeneous media by introducing localized features at the mesoscopic le-
vel. The approach is based on the Local Interaction Simulation Approach
(LISA) [2] in conjunction with a Spring Model [6]. A very important feature
of LISA is, as its name implies, the capability of implementing at the local
level even very complex mechanisms, which would be difficult to include in a
Partial Differential Equation. In fact the method allows full freedom in the
choice of interaction between the nodes which represent the boundaries of
the material cells.

It is also possible, by splitting the nodes at the interfaces between different
material components into ”subnodes”, each related to a different component,
to include all kinds of microscopic-to-mesoscopic scale features. Recently,
the PM-space micromodel suggested by Guyer and McCall was implemented
numerically in the LISA framework to simulate the influence of the local non-
linear elastic properties on the one-dimensional dynamic wave propagation
in nonclassical materials [35]. To my knowledge, this is the only study that
explicitly incorporates the phenomenological PM-model in a macroscopic si-
mulation of dynamic nonlinearity and hysteresis.

One of the drawbacks of numerical simulations is the difficulty of insu-
ring the convergence and stability of the solutions. In this work, I propose a
modification of the micromechanical properties of the individual units sug-
gested by Guyer and McCall providing both a more physical description of
the elasticity of the bond system, and a more stable numerical treatment.

In Sec. 4.2.1, T define for each unit the non-analytical constitutive law
provided by the model and to be used as input for the LISA simulation. The
main difference with the original micromodel of Guyer and McCall is that

the units, which represent the interstices between grains, are also elastic and
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therefore are not restricted to only two strain states ("open” and ”closed”).
In Sec. 4.2.2, a generalization of the spring model [6] is introduced for the
simulation of the propagation of ultrasonic waves in classical materials, with
both rigid and non rigid interfaces. The approach is then extended to the
treatment of nonclassical nonlinearities.

In order to illustrate the applicability of the model, we focus our attention
on simulations of a resonant bar experiment (Sec. 4.3) and show that our
model is capable of reproducing all of the observed ”nonclassical” nonlinear
features.

4.2 Constitutive relations

Let us consider a bar of a multigrained material, as shown in Fig. 4.1a. For
simplicity, we assume that all grains are homogeneous, aligned and that their
centers are separated by an equal length L when no pressure is applied to the
bar. Likewise we assume that, initially, all the interstices between grains
have the same length 6 < L. The bar may then be represented by the
1-D lattice sketched in Fig. 4.1b: a sequence of elastic portions separated by
interstice regions. The latter can be thought of as the bond system between
the grains, i.e. grain contact areas, microcracks, cement paste, etc. In the
following we will refer to the combination of elastic grain and interstice region
as a lattice cell.

In the P-M space model[31], the interstice regions can exist only in two
states: open or closed. In the open state the interstice has a length 6,.
When the pressure on the interstice increases, it will behaves rigidly and
remains at its length 6, up to a certain pressure P,. At this pressure level,
the interstice closes immediately (infinitely soft elasticity for an infinitesimal
short time) and takes on the length 6. (< 6,). Upon further increase of
pressure, the interstice continues to behave rigid, this time with length 6.
When decreasing the pressure, the interstice remains at its length 6, down to
a pressure level P, (< P.), where it instantaneously opens, and remains at a
length 6, upon further decrease of the pressure. The grains are considered to
be purely elastic, represented by a modulus K,. The corresponding stress-

strain relations are shown in Fig. 4.2 (we consider stain e to be positive if
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Figure 4.1. Schematic representation of: (a) a multigrained (micro-

inhomogeneous) material; (b) a one-dimensional discrete version of micro-

inhomogeneous medium; c¢) representation of the forces acting on the two
subnodes delimiting an interstice.

the length is decreasing, and pressure is considered positive in compression,
negative in tension).

It is important to note that the pairs (P,,P.) may have different values for
each interstice, thus defining the PM-space. Even though an elastic unit and
an interstice element are sequential in space, their combined elastic response
has to be considered as the result of a parallel interaction. The residual

modulus of a lattice cell K.;; must be calculated as follows:

11,1
Kcell Kg KI

where K7 is the interstice modulus, which is infinity (rigid behavior)
except at P, and P.. For completeness, we also illustrate in Fig. 4.2 the

elastic response of a single lattice cell, both for P, # P, (hysteretic jump
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Figure 4.2. The micro-model of Guyer and McCall illustrating the stress-

strain behavior of a typical lattice cell composed of an elastic unit and a
non-classical interstice. The grains are purely elastic, the interstices display

jump and hysteresis phenomena.

The total strain on a lattice

cell can

be calculated by a series interaction. A statistical ensemble of such cells
represents a micro-inhomogeneous material.
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cell) and for P, = P, (reversible jump cell). Apart from two geometric
parameters (L,0?), lattice cells in this model are thus represented by four
"elastic” parameters: Ky, F,,F., and 6, — 0.

For numerical simulations, the appearance of jumps in the state relation
may cause problems of convergence and stability. Also, from a physical point
of view, discontinuities are unrealistic. Ideally, it would be most satisfactory
to describe the elastic behavior by smooth analytic functions. As an example,

the expressions:

P P+P.—In(cosh(P—Fc — P-P.
Fg+( (2Kz( )))+€<1+tanh—x )

if P increases

P (P+P,—In(cosh(P—F,)))
i, + 9K, +

+ (54 &72) (1 + tanh £522)
if P decreases

yield the elastic stress-strain behavior of a lattice cell illustrated in Fig.
4.3.

Strain [arb. units]

v

Stress [arb. units]

Figure 4.3. A continuous micro-model illustrating the stress-strain beha-

vior of a single lattice cell characterized by a set of six ”elastic” parame-

ters: Ky, K1, Py, P, € and x. The micro-model of Guyer and McCall
corresponds to the case when x = 0 and Kj — oo.
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Here, a total of six "elastic” parameters are involved: K, K;,P,, P, E,
and x. K introduces a difference in elasticity modulus before and after the
hysteretic open-closure pressure range;  reflects the magnitude of the jump
in strain at P, and x takes into account the smoothness of the transitions at
P, and P,. The P-M space of Guyer and McCall can be reproduced in the
limit of K; — oo and y = 0, i.e. when there is no change in elasticity modulus
before and after closure, and the closing and opening are instantaneous in
pressure.

However, since we are treating the bond system as soft inclusions, it is
reasonable to assume that the modulus of a lattice cell alters when the me-
soscopic features change states. Therefore, it seems appropriate to retain the
interstice softness parameter K; at a value different from infinity. In order
to limit the number of free parameter values to four, as in the original P-M
space model, we put K; = xy = 0. In doing so, we have adjusted the micro-
mechanical properties of the bond elements as follows: Instead of opening
and closing discontinuously in pressure, the interstice element behaves line-
arly elastic, with modulus K; = %K 7, up to a certain pressure P,.. At that
pressure level, the element becomes rigid (infinite modulus), and it remains
rigid for all pressures above. When decreasing the pressure, the interstice re-
mains at a fixed length down to a pressure level P,, where it instantaneously
opens and continues afterwards to increase its length according to Hooke’s
law

5O ¢

8[2 =

P

0 T T (4.1)

The sudden decrease in strain (increase in length) of the lattice cell at
P, amounts to PCK;IPO. The corresponding stress-strain behavior of the elastic
unit, the interstice element, and the total lattice cell are shown in Fig. 4.4. As
in the case of the original PM-space model, the micromechanical behavior
can be described by piecewise linear functions. If P, = P,., we talk of a
Reversible Mesoscopic Unit (RMU). If P, differs from F., we use the term
Hysteretic Mesoscopic Unit (HMU).

Our new representation has the advantage of having eliminated one of
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Figure 4.4. The currently used micro-model illustrating the stress-strain

behavior of a typical lattice cell composed of a purely elastic unit and a non-

classical interstice displaying both elasticity, as well as jump and hysteresis

phenomena. The total strain on a lattice cell can be calculated by a series

interaction. This micro-model can be found from the general continuous
model (Fig. 4.3) by setting both & and x equal to zero.
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the discontinuities in the stress-strain behavior. This is important for the
stability and convergence of the simulations. In the following Section, we
implement this type of mesoscopic elastic behavior in the framework of the
Local Interaction Simulation Approach (LISA). First we consider the case of
”classical phase” materials with completely rigid bonds, then we introduce
linearly elastic bonds, and finally we implement the case of bonds with the
assumed nonlinear elasticity to describe the macroscopic dynamic behavior

of "nonclassical ” materials.

4.3 Application of the LISA model to NME

materials

As shown in Fig. 4.1, each lattice cell consists of an elastic portion (grain)
and an interstice element (bond). According to our model, the latter is re-
sponsible for the mesoscopic hysteretic response. In order to describe the
interstice region between two grains, each grid node point i is split into two
sub-nodes i* (see Fig. 4.1c). Since in dynamical experiments the contribu-
tion of classical nonlinearity is generally negligible, we assume that the grains
are linearly elastic. Associated with each sub-node is a length L,, = L/2 (i.e.
of half a grain) and a mass m,, = pL,,, where p is the mass density per unit
length. The interstices are considered to have zero mass (because 6 is as-
sumed to be very small). We call the combination of two sub-nodes left and
right of a grid node, with their lengths and masses, a GBG-cell (grain-bond-
grain). Depending on the elastic behavior of the grains and the bond, this
cell can be linearly elastic, classical nonlinear or nonclassical nonlinear.

For the simulation of dynamic processes, we also consider a time discreti-
zation t = 0,1,2,... with a constant time step 7. When referring to length 6,
displacement u and forces Ff the first subscript always refers to the space
discretization, whereas the second refers to the time discretization. starting
with eq. 4.4, we will usually omit one or both indices when equal to the

”current” values of ¢ and/or ¢.
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4.3.1 Classical Phase materials

Classical phase materials are elastic materials with a classical bond system,
i.e., the elastic behavior of both grains and bonds is linear or classically
nonlinear. A particular case is when all of the interstices behave rigidly, i.e.

the length of each interstice remains constant:

Oip = u;rt — u;, = const VIip <t <T; (4.2)

)

This corresponds to the case of ”perfect contact” in ref. [6]. However 6,
may also vary, provided the elastic modulus (i.e. the derivative of the stress
with respect to the strain) is a continuous function of the applied stress.

To describe the general case, we assume that the following forces are
acting on each sub-node (we use the convention that forces are positive when

pointing to the positive z-direction):

1. an "external” elastic force Ff;, due to the presence of an excitation of
the bar at the interstice ¢ at the time ¢. Neglecting, as mentioned, the

classical nonlinear terms:

F +
Pt K Uiy — Uiy
it g L

where K, is the stiffness of the grains and u;tt is the sub-node displace-

(4.3)

ment.

1. a ”dissipative” force Fyu, which is required in the simulation of dyna-

mic resonance experiments in order to obtain steady state solutions.

2. an "internal” force, which acts on the interstice to keep the two sub-
nodes together and transmit the external excitation through the bar

(see ref. [6]). Since the interstice itself has no mass: f;; = —fi; = fi.-

3. an elastic "restoring” force: %;-ft = FK; (61',1‘, — 62(»0)), where 62(0) is the

rest length of interstice ¢« when no forces are present.

The equation of motion for the two sub-nodes is then:
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pLyii;, = F Fyu~ + f* + S+ (4.4)
By subtracting and summing these equations, we ob-
tain:
pL,b=p—~v6+2f + 3t — 3~ (4.5)
and
pLnji=F — 7y (4.6)
where
b=ut —u (4.7)
p=F"—F" (4.8)
ut +u
y=—a (4.9)
Ft+ F~
F= + (4.10)

Rigid interstice case

In a time interval (¢,t+4 1) in which the interstice remains rigid, i.e. 6;y1 = 0¢,
it follows:
 Bi—bia 8i—81 ASy

~ — = 4.11
J 2T 2T 2T ( )

5~ Ot41 — 204 + 011 o Abiy
~ 5 = —

(4.12)

T 72

where we have applied the usual first order finite difference formalism

together with the definition of the forward difference operator

Ay = Yk+1 — Yk-
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Substituting eqs. 4.11, 4.12 and eq. 4.5 and from the definitions of 3%,
it follows

__b_a _ 5(0)
=5 5Ab+ Ki (6 -6) (4.13)
where
1 /2pL,
- —~). 4.14
@ 21 < T 7) ( )

Note that if 6 never changes (permanently rigid interface), Ad; 1 = 0 and

§ = 6 at all times, and we obtain:

p
f=-3 (4.15)

as in ref. [2]. In this case, u™ = u~ at each time.

Classical interstice case

When the interstice is not rigid, the arrival of an external excitation may
change its length. Then, at least locally, we must assume that the material
is undergoing a change. Accordingly, we modify eq. 4.13 by multiplying the
three terms in the r.h.s. by three bond ”quality” parameters ¢,¢’ and ¢” (less
or equal to unity), which allow us to specify the quality of the interface bond
at the time ¢:

_ LY (5 — 5O
f=—a5—q5481+¢ K (88 (4.16)

In the general case of a ”classical” interstice, ¢,¢' and ¢’ may depend on
the stress in a continuous and reversible way. The rigid interstice phase is
recovered by placing all values equal to unity.

Substituting eq. 4.16 into eq. 4.5), we obtain:

an5 =rp— 75 — ¢ aAb,_ 1 — 2r"K, (6 — 6(0)) (4.17)

where r =1 —q,7” =1 —¢”. eq.. 4.6 remains unaffected because it does
not involve the internal forces.
Following eq. 4.17, the overall elastic properties of the GBG-cells are

defined by an effective elastic constant, which is a function of the elastic
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constants of the grain and the bond, and of the (instantaneous) values of the

bond quality parameters:

Keps = (Ky,K1,9,4',4") (4.18)

Since ut =y + g we obtain from egs. 4.6 and 4.17:

2oLt = (14+7)FE+ (1 —7r)FT —2y0* (4.19)
Fq'a (Au;rq - Aut_—l)
T2r"K; (u+ —u — 6(0))

From eqgs. 4.3, 4.14, and 4.19, and by assuming that L and 7 are chosen

in order to assure optimal convergence:

2L, K,

— 4.20
ey (4.20
it follows:
Biify, = (1+r)ufy, + 1 —r)us,, —24u_ + (4.21)
+q A (uil — uil) + E(ujE —uT)
:|:2KIT//5(O)
where
2Lnp K, Y
Cc = =—9%.-B=14— 4.22
T2 2L, + Cr ( )
a B
A=2=1-2 4.23
- ) (4.23)
and DR
E=1-r—qgA-20 (4.24)
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4.3.2 Non-classical phase materials

In a classical phase material, the parameters ¢,¢’ and ¢” at each grid point are
smooth single valued functions of the stress. In a nonclassical material, the
internal structure may vary discontinuously and non-uniquely as a function of
the applied stress. The discontinuous or non-unique stress dependence may
be due to various physical mechanisms, e.g. a redistribution of dislocations,
crack activation (opening or closing) or frictional forces (jerks). In the case of
mesoscopic materials it is reasonable to assume that these changes affect only
the interstice region. The effects at the mesoscopic scale may be conveniently
modeled by introducing a more complex dependence of the bond quality
parameters ¢,¢' and ¢” on the applied pressure. As a consequence, the overall
elastic properties of the GBG-cell are defined by an effective elastic constant

which is a function of the time-average of the bond quality parameters:

Kepr = @ (Kpu,Ki, <q>t ) <q/>t ) <qll>t) (4.25)

To describe the dependence of the bond quality parameters on the exter-
nally applied driving pressure in a nonclassical phase, we apply a PM space
approach[31], which is the natural generalization of the one described in sec.
5.2. We assign a pair of pressure parameters P, and P, to each GBG-cell
(P, < P.). When the applied pressure reaches the value P., we allow the
bond-quality parameters to switch from their initial values to unity, meaning
that the bond becomes rigid for P > P.. Conversely, when P decreases below
P,, the bond-quality parameters are switched to a value less than unity. The
protocol for the bond quality parameter g as a function of the applied pres-
sure P is schematized in Fig. 4.5. Since ¢ affects only the wave attenuation,
which is not relevant in the present context, we keep for simplicity ¢’ = 1 at

" = q at all pressures. Other choices of protocol

all times. Likewise we set ¢
are, of course, possible and might be found more suitable in general or in
particular situations.

In the above described protocol, the specimen is represented as a sequen-
ce of GBG-cells, each defined by a pair of activation pressures and by an
initial bond state configuration. If P > P, or P < P,, there is only one pos-

sible state, rigid or elastic, respectively. In the pressure range P, < P < P,
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Figure 4.5. Representation of the protocol for the dependence of the bond
quality factor ¢ on the applied pressure.

two different states are possible, depending on the activation history of the
GBG. The distribution of the pair of values (F,,P.), represented by the densi-
ty pnvo (P, P.) of nonclassical GBG-cells (hysteretic and reversible mesoscopic
units), can be obtained by inversion of quasi-static stress-strain measuremen-
ts [36, 37].

The initial ¢-distribution (at ¢ = 0) is strongly affected by the previous
activation history of the specimen. In the following the specimen is assumed
to be, at the time t = 0, completely relaxed, i.e. having been kept at atmos-
pheric pressure (P = 0 after proper rescaling) and constant temperature for
a sufficiently large time interval. Therefore, we consider the following initial

conditions:

q = 1 if P, <0
q = 1—r it  P,>0 (4.26)

Once the initial configuration is set and the external forcing protocol
properly defined, the iteration equations 4.21 allow to follow the temporal

evolution of the system.
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4.4 Simulations of nonlinear resonant bar ex-

periments

In the following we focus our attention on a resonant bar experiment per-
formed on a typical material exhibiting nonclassical nonlinearity [16]. We
assume that a rod-shaped specimen is equipped with a transducer genera-
ting monochromatic waves of excitation amplitude Ay at a varying drive
frequency f; attached at one end and with an accelerometer attached to the
other end. At a given excitation level Ay, the frequency fy is swept through
the fundamental resonance mode f, of the specimen and the time averaged
acceleration amplitude A, (in stationary conditions) is recorded. This pro-
cedure of resonance curve tracking is repeated for several different levels of
excitation.

In the simulation approach, each mesoscopic unit (HMU or RMU) corre-
sponds to a point in the PM space (see Fig. 4.6a). The dark and light gray
areas in the plot correspond to initially soft and rigid interstices, respecti-
vely. In the stationary state of a resonance, the actual pressure P for each
HMU/RMU oscillates between a minimum and a maximum pressure (P,
and P4, respectively), depending on the external excitation level and on its
location in the bar (see Fig. 4.6b). If the HMU/RMU is situated within the
activation triangle (the PM-space area bounded by the diagonal P, = P, and
the lines P, = P, and P. = P,,;), the nonlinear properties are activated
by the forcing (white area in the plot). As a consequence, the bond will
change during the excitation process between rigid and soft. If we assume
that the density pyco(FP,,P:) in PM-space is locally uniform and we increa-
se the forcing by a factor two, we expect the number of activated units to
increase by a factor of four. This implies that the strain is affected in a qua-
dratic manner and, as a consequence, the dynamic modulus of the specimen
changes approximately proportionally to the resonance amplitude. Likewise,
we expect that the hysteretic contribution from the activated HMU’s to the
relative energy loss per cycle

X=5=F (4.27)

induces an increase in the effective modal damping ratio £ that is, to a good
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0.1

(a)

-0.1

Figure 4.6. PM-space representation. Fach dot represent one HMU or

RMU. (a) specimen in the initial condition at zero pressure.Units in the

dark gray, and light gray areas are initially soft or rigid, respectively.; (b)

specimen under an external sinusoidal driving between pp,in and ppqz-Units

in the dark gray, light gray and white areas are permanently soft, perma-
nently rigid and active, respectively.

approximation, proportional to the resonance amplitude. In eq. 4.27, AFE is
the energy loss per strain cycle, and E the average energy during a cycle.
Figure 4.7 illustrates a typical numerical simulation of the resonant bar
experiment. The time averaged acceleration amplitude on the free edge is
plotted vs. frequency for several driving amplitudes in Fig. 4.7a. From
the plot (using polynomial interpolation), one can determine the resonance
frequency and its amplitude. The width of the resonance curve is a measure
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Figure 4.7. Result of a resonant dynamic experiment. (a) time averaged

acceleration vs. frequency for different driving amplitudes. (b) norma-

lized frequency shift and attenuation vs. the output wave amplitude at
resonance.

of the attenuation. In the case of skewed resonance curves the attenuation
can be obtained by means of the RIT'MF method proposed by Smith et al.
[38]. The relative changes of frequency and attenuation vs. the resonance
amplitude are shown in Figure 4.7b. They both display a linear dependence

on the amplitude of the output acceleration in resonance.
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The temporal signal in resonance is reported in Fig. 4.8a for a given dri-

ving amplitude. The signal (perfectly sinusoidal in the linear case or at very
low driving amplitudes) is distorted due to the nonlinearity. The triangular
shape is typical of hysteretic behavior in the system. The Fast Fourier Trans-
form (FF'T) of the signal is reported in Fig. 4.8b. As expected, higher order
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harmonics (both even and odd) are generated. Note that the third harmonic
is larger than the second, since both classical and nonclassical nonlinearities
are responsible for its formation, while only classical nonlinearity contributes
to the second harmonic. Finally, in Fig. 4.8c we analyze the dependence of
the second and third order harmonics on the amplitude of the fundamental
one in a log-log plot. Both curves have slope two, in agreement with expe-
rimental data. We recall that the expected slopes in the classical nonlinear

case are two and three for the second and third harmonics, respectively.
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