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Fast MAP Despeckling Based on Laplacian-
Gaussian Modeling of Wavelet Coefficients

Fabrizio Argenti, Senior Member, IEEE, Tiziano Bianchi, Alessandro Lapini, and Luciano Alparone

Abstract—The undecimated wavelet transform and the maxi-
mum a posteriori (MAP) criterion have been applied to the prob-
lem of SAR image despeckling. The MAP solution is based on the
assumption that wavelet coefficients have a known distribution.
In previous works, the generalized Gaussian (GG) function has
been successfully employed. Furthermore, despeckling methods
can be improved by using a classification of wavelet coefficients
according to their texture energy. A major drawback of using
the GG distribution is the high computational cost, since the
MAP solution can be found only numerically. In this work, a
new modeling of the statistics of wavelet coefficients is proposed.
Observations of the estimated GG shape parameters relative
to the reflectivity and to the speckle noise suggest that their
distributions can be approximated as a Laplacian and a Gaussian
function, respectively. Under these hypotheses, a closed form so-
lution of the MAP estimation problem can be achieved. As for the
GG case, classification of wavelet coefficients according to their
texture content may be exploited also in the proposed method.
Experimental results show that the fast MAP estimator based
on the Laplacian-Gaussian assumption and on classification of
coefficients reaches almost the same performances as the GG
version in terms of speckle removal, with a gain in computational
cost of about one order of magnitude.

Index Terms—Despeckling, synthetic aperture radar (SAR)
images, undecimated wavelet transform (UDWT), maximum a-
posteriori probability (MAP) estimation.

I. INTRODUCTION

SPECKLE removal is a major concern in the analysis of
synthetic aperture radar (SAR) images. Speckle noise is

a granular disturbance that affects the observed reflectivity.
Usually, it is modeled as a multiplicative noise: this nonlinear
behavior makes the process of original information retrieval
a nontrivial task [1]. In recent years, multiresolution analysis
tools have been successfully applied to despeckling [2]–[5].
Several solutions were proposed based on the maximum a-
posteriori probability (MAP) criterium and different distribu-
tions: the Γ-distribution [4], the α-stable distribution [2], the
Pearson system of distributions [3], the generalized Gaussian
(GG) [6] [7], just to mention some examples.

In [6], it has been shown that the MAP criterion in the
undecimated wavelet domain, associated with the GG dis-
tribution, leads to the following procedure: 1) estimation of
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the spatially varying parameters of the GG distribution of the
wavelet coefficients associated to the speckle-free reflectivity
and to the speckle noise; 2) solution of the MAP equation. The
method in [6] has been refined in [7], where a model to classify
wavelet coefficients according to their texture energy was
introduced. Wavelet coefficients are partitioned into classes
having different degrees of heterogeneity, so that different GG
parameters can be used for different sets of coefficients. The
experimental results in [7] demonstrated that the proposed
filtering approach outperformed previously proposed filters.

One of the major drawbacks of GG-based MAP solutions,
either with or without classification of wavelet coefficients, is
that they can be achieved only numerically, thereby leading
to a high computational cost. In this letter, we propose a fast
MAP despeckling based on an alternative modeling of wavelet
coefficients. Experimental results suggest that the estimated
distributions of the wavelet coefficients relative to the speckle-
free reflectivity and to the speckle noise approximately follow
a Laplacian and a Gaussian distribution, respectively. Under
these assumptions, it is shown that the MAP equation can
be solved in a closed form. Even if the Laplacian-Gaussian
(LG) assumption has been already used to derive MAP and
MMSE estimators [8], previous approaches were based on
homomorphic filtering, which may induce a biased estimation.
To the best of our knowledge, a clear assessment of the merits
of the LG model in the case of non-homomorphic filtering of
SAR images is not available in the literature.

As in the case of the GG-based MAP solution, also for
the LG based method an improvement in performances can
be achieved by using a classification of wavelet coefficients
according to their texture content. The main idea is that
segmentation can be used, at a very little additional cost, to
select classes of wavelet coefficients to which apply different
fast filters, or even no filtering at all. The computational cost
can be reduced of one order of magnitude or more with respect
to the solution obtained numerically with the GG assumption,
without significantly affecting the performance in terms of
speckle reduction.

This letter is organized as follows. In Section II, the MAP
solution for despeckling SAR images is reviewed and the
observations at the basis of the new proposed LG modeling of
wavelet coefficients are described. In Section III, the closed
form solution relative to the LG model is proposed; a refined
version of the filter, based on the segmentation of wavelet co-
efficients, is illustrated as well. In Section IV, the experimental
results, carried out both on synthetically degraded images and
on real SAR acquisitions are presented. In Section V, some
conclusions are drawn.
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II. MAP DESPECKLING IN THE UNDECIMATED WAVELET
DOMAIN

In this section, some results from [6] are reviewed and
the experimental observations that lead us to a new wavelet
coefficients modeling are presented.

A. Signal model and undecimated wavelet transform

It is assumed that the observed signal follows the model

g[n] = f [n]·u[n] = f [n]+f [n]·(u[n]−1) = f [n]+v[n], (1)

where g[n] is the observed signal; f [n] is the speckle-free
reflectivity we would like to estimate; u[n] is the speckle
noise; v[n] accounts for speckle disturbance in the equivalent
additive model. The speckle u[n] is assumed as white and
independent from f [n], whereas v[n] is signal-dependent.
For the simplicity’s sake, the model is formulated in one
dimension.

Let W [j]
x be the undecimated wavelet operator applied to the

signal x. It performs a multiresolution decomposition, where
j is the level of the decomposition. Thanks to the linearity of
the operator, we have

W [j]
g [n] = W

[j]
f [n] +W [j]

v [n]. (2)

To simplify the notation, the level j and the index n (when
not strictly necessary) are omitted in the following.

Despeckling in the multiresolution domain means estimat-
ing the speckle-free wavelet coefficients Ŵf [n] and applying
the inverse undecimated wavelet transform.

B. MAP estimation

The MAP estimator of the speckle-free wavelet coefficients
is given by

Ŵf = arg max
Wf

p(Wf |Wg), (3)

or, after applying the Bayes rule and the log function, by the
equation

Ŵf = arg max
Wf

[log p(Wg|Wf ) + log p(Wf )] (4)

C. Analysis of the GG Shape Parameter

In [6], a GG function is proposed to model the wavelet co-
efficients pdf’s involved in (4). The zero-mean GG distribution
is given by

pGG (θ) =
νη

2Γ (1/ν)
e−(η|θ|)

ν

, (5)

where η = σ−1[Γ (3/ν) /Γ (1/ν)]
1/2 is a scale parameter

and ν is a shape parameter. It is well-known that the GG
distribution coincides with the Laplacian distribution for ν = 1
and with the Gaussian distribution for ν = 2. In [6], it is
shown that the shape parameter can be estimated by solving
the following equation

E
[
X2
]√

E [X4]
=

Γ(3/ν)√
Γ(1/ν)Γ(5/ν)

, (6)
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Fig. 1. Examples of the histogram of the estimated shape parameters: (a)
wavelet coefficients of the speckle-free signal; (b) wavelet coefficients of the
signal-dependent noise.

where E
[
X2
]

and E
[
X4
]

are the second and the fourth-order
moments of the GG-distributed random variable X . In the
actual implementation, such moments are “locally” evaluated
from the observed signal and from the knowledge of the model
(1) (see [6] for the details).

Some experimental observations of the shape parameters
suggest us that the GG assumption for the distributions of the
wavelet coefficients can be simplified. As to the pdf’s of the
wavelet coefficients of the speckle-free signal, i.e., p(Wf ), an
example of the histogram of the estimated shape parameters,
obtained from the test image Lena degraded with 4-look syn-
thetic speckle, is shown in Figure 1-(a): as can be seen, we may
assume that they roughly approach the value 1. An analogous
example, relative to the pdf’s of the wavelet coefficients of the
signal-dependent noise, i.e., p(Wg|Wf ) = pWv

(Wg −Wf ), is
shown in Figure 1-(b): in this case, we may assume that the
shape parameters approach the value 2. A similar behavior
has been also encountered for different subbands and different
decomposition levels.

In the remainder of this paper, we will show that if we
assume that the wavelet coefficients related to the speckle-
free signal and to the signal-dependent noise are distributed
as a Laplacian and as a Gaussian function, respectively (LG
assumption), then the solution of the MAP equation can
be found in a closed form and, therefore, with a limited
computational burden.

III. LG DESPECKLING FILTERS

A. LG-MAP despeckling

The proposed method is based on equation (4) that, by using
a simplified notation and the model in (2), can be rewritten as

θ̂ = arg max
θ

[log pυ(x− θ) + log pθ(θ)], (7)

where θ = Wf [n], x = Wg[n], and υ = Wv[n].
According to the experimental results mentioned in Section

II-C, we will assume that the distribution of θ is a Laplacian
and that of υ is a Gaussian function; specifically, they are
distributed as follows:

pθ(θ) =
1√
2σθ

e
−
√

2|θ−µθ|
σθ , pυ(υ) =

1√
2πσυ

e
− (υ−µυ)2

2συ2 (8)

In [5], it has been demonstrated that, for the noise compo-
nent υ, we have

µυ = E [υ] = 0, (9)
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σ2
υ = E

[
υ2
]

=
σ2
u′

1 + σ2
u′

∑
i

h2[i]E[g2[n− i]], (10)

where h[n] is the “equivalent” filter [5] that yields the wavelet
coefficients of a given subband and σ2

u′ is the variance of the
variable u′ = u− 1. For the signal component θ, instead, we
have

µθ = E [θ] = E [x] , (11)

σ2
θ = σ2

x − E
[
υ2
]
. (12)

From the above expressions, we can conclude that the mo-
ments of the variables υ and θ can be written as a function
of the moments of the observed signal and of the observed
wavelet coefficients (these quantities are estimated as local
averages).

The MAP equation can be written as

θ̂ = arg max
θ

[
log

1√
2πσυ

e
− (x−θ)2

2συ2 + log
1√
2σθ

e
−
√

2|θ−µθ|
σθ

]
= arg min

θ

[
(x− θ)2

2σ2
υ

+

√
2|θ − µθ|
σθ

]
.

(13)

The solution to this optimization problem is given by [8]

θ̂ =


x−

√
2σ2
υ

σθ
if x > µθ +

√
2σ2
υ

σθ

x+
√
2σ2
υ

σθ
if x < µθ −

√
2σ2
υ

σθ

µθ elsewhere.

(14)

B. LG-MAP with Segmentation

In [7], it was demonstrated that the performance of the GG-
MAP filter can be noticeably improved using a segmented
approach, where each wavelet subband is divided into different
classes of heterogeneity according to the texture energy of the
wavelet coefficients of noise–free reflectivity. The key point is
to assume that the wavelet coefficients within a particular class
follow the same GG distribution, so that the parameters of the
GG model can be accurately estimated within each class.

A similar approach can be applied in the case of the
LG-MAP filter. Here, the key observation is that the LG
model may be well suited only for a particular class of
heterogeneity, whereas for other classes it may be better to
use alternative models. According to the class each wavelet
coefficient belongs to, we propose to apply the following three
processing strategies.
• Wavelet coefficients belonging to the lower energy class

are processed by means of the LG-MAP filter we propose
in this paper. This class represents the set of coefficients
of weakly textured areas, or homogeneous areas, which
are better modeled by the assumption of Laplacian dis-
tribution.

• Wavelet coefficients belonging to the middle energy class
are processed by means of the LMMSE filter proposed in
[5]. The LMMSE filter is a general–purpose first–order
approximation filter and it represents the optimal MAP
filter when both the coefficients of noise–free reflectivity
and the coefficients of speckle noise follow a normal

TABLE I
PSNR OBTAINED BY USING Lena DEGRADED BY SYNTHETICALLY

GENERATED SPECKLE.

1-look 2-look 4-look 16-look

LMMSE 24.59 26.62 28.57 32.61
GG-MAP-S 26.40 28.04 29.77 33.24
LG-MAP 26.21 27.77 29.41 32.95

LG-MAP-S 26.21 27.82 29.55 33.27

TABLE II
ORDER OF MAGNITUDE OF THE COMPUTATIONAL TIMES (IN SECONDS) OF
THE ANALYZED ALGORITHMS FOR 512× 512 IMAGES. TESTS HAVE BEEN

PERFORMED ON A 2.40 GHZ CPU WITH 4GB RAM.

computational cost (s)

LMMSE 101

GG-MAP-S 102

LG-MAP 101

LG-MAP-S 101

distribution. We assume that this hypothesis is sufficiently
valid for coefficients belonging to heterogeneous areas.

• Wavelet coefficients belonging to the last class are sup-
posed to represent strongly heterogeneous areas or point
targets. Because these areas do not follow any longer the
fully–developed speckle model, the wavelet coefficients
of the last class are left unchanged.

In the following, the above filtering strategy will be referred
to as LG-MAP-S filter.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results obtained with the
algorithms previously described are compared in terms of
speckle removal efficiency and computational burden. In order
to ascertain the performance loss/gain of the LG versus the GG
assumption, a first set of quantitative results obtained by using
a 8 bit 512×512 test image (Lena), degraded by synthetically
generated speckle noise according to the model in [6], are
shown. Then, some results derived from true SAR images are
also presented.

In the case of synthetically generated speckle degrada-
tion, the quality of the filtered image can be measured
by means of the peak SNR (PSNR), given by PSNR =
10 log10 2552/MSE, where MSE is the mean square error
between the original and the filtered image.

A more general method to assess the effectiveness of the
different filters, which can be used also when the noise-free
reference image is not available, is based on the statistics
of the ratio image, defined as û = g/f̂ , where f̂ represents
the estimated noise–free reflectivity. When a fully–developed
speckle model can be assumed, the above image represents
the filtered out speckle noise. Hence, for a good despeckling
filter û should satisfy E[û] = 1 and V ar[û] = 1/L, where
L is the number of look [1]. The mean and the variance of
the ratio image are estimated by using a scatter plot method
similar to that proposed in [9]. The method consists of the
following steps. First, a scatter plot is obtained by plotting the
occurrences of each pair of local mean and standard deviation,
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TABLE III
MEAN AND VARIANCE OF EXTRACTED NOISE û, MEASURED ON SYNTHETICALLY CORRUPTED Lena THROUGH SCATTER-PLOT METHOD.

1-look 2-look 4-look 16-look

µû σ2
û µû σ2

û µû σ2
û µû σ2

û

LMMSE 0.9278 0.6978 0.9568 0.3602 0.9752 0.1863 0.9919 0.0465
GG-MAP-S 0.9854 0.9359 0.9883 0.4755 0.9919 0.2385 0.9966 0.0597

LG-MAP 0.9787 0.8974 0.9849 0.4553 0.9892 0.2304 0.9941 0.0576
LG-MAP-S 0.9787 0.8974 0.9848 0.4553 0.9891 0.2303 0.9945 0.0573

calculated on a moving local window over the image û. Hence,
the bivariate probability density function (pdf) is estimated
from the scatter plot, and the mean and standard deviation
of û are estimated as the coordinates of the maximum of the
bivariate pdf. The rationale of this method is based on the
assumption that each local window would give a contribution
centered on such a maximum if the size of the window is
sufficiently large. Thanks to using statistics computed on local
windows, the above method is accurate also in the case of real
SAR images, for which the assumption of fully–developed
speckle is not valid everywhere and global statistics would be
biased due to the presence of outliers.

The despeckling filters that are compared in the following
are: 1) the LMMSE filter [5]; the GG-MAP-S filter [7]; the
LG-MAP filter proposed in section III-A; the LG-MAP-S filter
proposed in section III-B. All filters use a 9/7 biorthogonal
wavelet with four multiresolution levels.

In Table I, the performance of the despeckling filters are
compared in terms of PSNR. The order of magnitude of the
computational times, expressed in seconds and related to our
Matlab implementation, are shown in Table II. As can be
seen, the complexity of the LG filters is the same as the
LMMSE one. However, especially for multilook images, the
performance of the LG-MAP-S filter is very close to that of the
GG-MAP-S filter, showing that a valuable computational gain
is achieved at the price of almost unaltered performances in
terms of PSNR. These results are confirmed by the observation
of Table III, where the mean and the variance of û, estimated
by using the scatter plot method on the test image Lena for
the different algorithms, are shown.

As to the results on true SAR data, they have been assessed
by using a 8 bit 512×512 4-look X-HH image representing an
airport in Ontario, and a 16 bit 1024×1024 COSMO-SkyMed
1-look X-HH image representing an area in Veneto, Italy. The
original “Airport” and “COSMO-SkyMed” images are shown
in Figure 2. Two portions of the above images, together with
the despeckled versions obtained with the LMMSE, GG-MAP-
S, LG-MAP, and LG-MAP-S filters, are shown in Figure 3.
In Table IV, the mean and the variance of û, estimated on the
“Airport” and “COSMO-SkyMed” images using the scatter
plot method, are shown. From Table IV, we observe that
the LG methods have similar performances as the GG-MAP-
S method and outperform the LMMSE one. It can be also
observed that the performances of the LG-MAP and of the
LG-MAP-S are almost identical, highlighting that they behave
in the same way in homogeneous areas. However, comparing
Figures 3-(d) and 3-(e), we observe that the LG-MAP-S yields

TABLE IV
MEAN AND VARIANCE OF EXTRACTED NOISE û, MEASURED ON NOMINAL

4-LOOK SAR IMAGE Airport AND NOMINAL 1-LOOK SAR IMAGE
COSMO-SkyMed THROUGH SCATTER-PLOT METHOD.

Airport COSMO-SkyMed

µû σ2
û µû σ2

û

LMMSE 0.9298 0.1584 0.8592 0.4044
GG-MAP-S 0.9722 0.2878 0.9237 0.5916

LG-MAP 0.9606 0.2540 0.8916 0.5463
LG-MAP-S 0.9583 0.2515 0.8905 0.5348

Fig. 2. SAR images “Airport” (left) and “COSMO-SkyMed” (right). The
scene coefficient of variation Cf has been estimated in the highlighted areas.

a better preservation of texture details. As to the “COSMO-
SkyMed” image, we notice that σ2

û is underestimated with
respect to the nominal value 1. This is probably due to the fact
that “COSMO-SkyMed” images present correlated speckle.

The effectiveness of despeckling filters on textured areas can
be better evaluated by using the scene coefficient of variation
[1], defined as Cf =

√
(C2

g − σ2
u)/(1 + σ2

u),where Cg =

σg/µg is the coefficient of variation of the original image,
σg and µg are, respectively, the estimated standard deviation
and the estimated mean of the observed signal, and σu is

TABLE V
SCENE COEFFICIENTS OF VARIATION (Cf ) OBTAINED ON THREE 64× 64

AREAS OF Airport AND THREE 96× 96 AREAS OF COSMO-SkyMed.

Airport COSMO-SkyMed

A B C A B C

Cf 0.426 1.245 0.770 0.791 3.108 0.442

LMMSE 0.367 1.002 0.606 1.048 4.118 0.502
GG-MAP-S 0.325 1.223 0.733 1.040 4.123 0.479

LG-MAP 0.312 0.937 0.530 1.016 4.100 0.437
LG-MAP-S 0.317 1.158 0.646 1.027 4.127 0.446
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the estimated standard deviation of the speckle noise. Under
the fully developed speckle model, an image processed by a
good despeckling filter should yield a coefficient of variation
Cf̂ = σf̂/µf̂ as close as possible to the corresponding Cf .
The scene coefficient of variation has been evaluated on three
64×64 areas of “Airport” and three 96×96 areas of “COSMO-
SkyMed”, characterized by different features of the underlying
scene, as shown in Figure 2, and compared to the Cf̂ obtained
with the different filters. The results are presented in Table V.
The LG-MAP-S filter shows a behavior very close to the GG-
MAP-S in each analyzed area. Interestingly, all filters tend to
overestimate the Cf for the “COSMO-SkyMed” image. This
is in accordance with the estimated σ2

û, and can be explained
by the presence of spatially correlated speckle.

V. CONCLUSIONS

The MAP estimator, operating in the undecimated wavelet
domain, with coefficients of reflectivity and noise both mod-
eled as generalized Gaussian densities, has been demon-
strated to be successful for removing speckle noise in SAR
images. However, only a numerical solution, affected by a
high computational burden, has been achieved. In this paper,
based on the observation of the experimental histograms of
the shape factors, the assumption of Laplacian reflectivity
and Gaussian noise is made and a closed form solution is
found. The Laplacian-Gaussian modeling is also combined
with a segmentation-based approach, in which different fil-
tering strategies are applied according to the heterogeneity of
wavelet coefficients. The experimental results show that the
performance of the fast algorithms, assessed on both simulated
speckled images and on high-resolution SAR images, are
comparable with those of the GG-based solutions, with a
computational complexity more than ten times lower.
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[3] S. Foucher, G. B. Bénié, and J.-M. Boucher, “Multiscale MAP filtering of
SAR images,” IEEE Trans. on Image Proc., vol. 10, no. 1, pp. 1019–1036,
Jan. 2001.

[4] S. Solbø and T. Eltoft, “Γ-WMAP: a statistical speckle filter operating in
the wavelet domain,” International Journal of Remote Sensing, vol. 25,
no. 5, pp. 1019–1036, Mar. 2004.

[5] F. Argenti and L. Alparone, “Speckle removal from SAR images in the
undecimated wavelet domain,” IEEE Trans. on Geosci. and Remote Sens.,
vol. 40, no. 11, pp. 2363–2374, Nov. 2002.

[6] F. Argenti, T. Bianchi, and L. Alparone, “Multiresolution MAP despeck-
ling of SAR images based on locally adaptive generalized Gaussian pdf
modeling,” IEEE Trans. on Image Proc., vol. 15, no. 11, pp. 3385–3399,
Nov. 2006.

[7] T. Bianchi, F. Argenti, and L. Alparone, “Segmentation-based MAP
despeckling of SAR images in the undecimated wavelet domain,” IEEE
Trans. on Geosci. and Remote Sens., vol. 46, no. 9, pp. 2728–2742, Sep.
2008.

[8] H. Rabbani, M. Vafadust, P. Abolmaesumi, and S. Gazor, “Speckle noise
reduction of medical ultrasound images in complex wavelet domain using
mixture priors,” IEEE Trans. on Biomedical Engineering, vol. 55, no. 9,
pp. 2152–2160, Sept. 2008.

[9] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Coherence esti-
mation from incoherent multilook SAR imagery,” IEEE Trans. Geosci.
Remote Sensing, vol. 41, no. 11, pp. 2531–2539, Nov. 2003.



GEOSCIENCE REMOTE SENSING LETTERS, VOL. XX, NO. XX, YEAR 6

(a)

(b)

(c)

(d)

(e)

Fig. 3. Results obtained by filtering 4-look Airport image (left) and 1-look
COSMO-SkyMed image (right): (a) original SAR images; (b) LMMSE; (c)
GG-MAP-S; (d) LG-MAP; (e) LG-MAP-S.


