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Abstract

Multiscale problems are ubiquitous in all biological phenomena, which emerge from

the complex interaction between processes happening at various levels. A number of

mathematical approaches have been developed to address such an intricate network of

organization. Among others, the cellular Potts model is particularly well-known and

widespread. The CPM is a discrete, lattice-based, flexible technique able to accurately

identify and describe the phenomenological mechanisms responsible for innumerable bio-

logical phenomena. This work discusses some innovative extensions of the method, whose

aim is to increase its accuracy and to create a multilevel framework able to deal with

the multiscale organization typical of biological development. Such CPM extensions are

finally tested with sample applications, that show their potential and biological realism.

Keywords: cellular Potts model, multiscale model, hybrid model.

AMS Subject Classification: 92B05, 92C05, 92C17

1. Introduction.

All biological phenomena emerge from the intricate interaction between
multiple levels of organization: the molecular scale, the cell and the tissue.
These natural levels can be approximately connected with, respectively, a
microscopic, a mesoscopic and a macroscopic scale. In particular, the mi-
croscopic scale refers to those processes that occur at the subcellular level,
such as DNA synthesis and duplication, activation of receptors, transduc-
tion of chemical signals and protein networks. The mesoscopic scale, on the
other hand, can be referred to cell-level phenomena, such as cell duplica-
tion, death or motion. Finally, the macroscopic scale corresponds to those
processes typical of the multicellular level, such as population reorganiza-
tion, growth and dynamics. Such a multilevel flux of information is often
too complex to be studied with only experimental techniques, which there-
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fore need an increasing collaboration with applied mathematics. In fact,
even though no hypothetically perfect single model can incorporate each
and every process involved in the considered phenomenon, a computational
approach is able to simplify the biological problem, offering both a con-
cise description of its essential features, and to have a predictive power,
determining the consequences of experimental manipulations.

Of the wide range of mathematical approaches, the class of discrete
models represents one of the most suited for biological problems. Also called
Individual Cell-Based Models (IBMs, for comprehensive reviews see [1,2]),
they are typically focused on the cell-level of abstraction. Indeed, they rep-
resent biological cell-scale individuals as one or a set of discrete units, with
rules describing their movements and interactions. In particular, the mor-
phology of the elements is restricted according to some underlying dis-
cretization of the simulation domain, which can be either regular (such as
square or cubic grids) or irregular (Voronoi tassellation). These approaches
can be further classified into two categories: those for which each individ-
ual is correlated to a single spatial unit of the domain, and those for which
each element can be formed by a collection of spatial units. IBMs can there-
fore naturally capture the biophysical properties of each individual, such as
shape, movement or adhesion, and handle their interactions. In cell-based
methods, the cell-scale elements behave according to a relatively small set
of prescribed rules, which they execute depending on their type and on
the signals they receive from the neighbors and from the environment. In
particular, these techniques are able to analyze the mechanisms by which
relatively simple behaviors and interactions of individuals collectively di-
rect macroscopic pattern formation and development, and, vice versa, to
infer how phenomena occurring at the macroscopic level feed back to the
phenomenology of single elements.

In the last decades, purely discrete methods have been increasingly in-
tegrated with continuous approaches suited to describe the evolution of
microscopic variables (i.e., ion or molecules). The aim is to create hybrid
environments able to span both the mesoscopic and the microscopic scale
with a sufficient level of accuracy, see as an example [3,4]. One of these
computational environments is the Cellular Potts Model (CPM, also called
Glazier-Graner-Hogeweg model developed in [5,6] and reviewed in [7,8]). As
a generalization of the Ising model, the CPM is a grid-based, Monte Carlo
method, whose core is an energy minimization philosophy, which drives the
evolution of the simulated system.

In this paper, we present some important developments of the method,
detailed in Sections 2 and 3. Test applications are then illustrated to show
how the proposed model extensions can be applied to specific biological
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problems with a significative accuracy and experimental usefulness. Finally,
in the last part of the work, cf. Section 4, the conclusions are drawn.

2. Uncompartmentalized CPM.

All CPMs include a list of objects, a description of their interactions
and rules for their dynamics. The CPM domains are d-dimensional lattices
Ω ⊆ Rd, where d = 1, 2, 3. The term lattice defines a regular repeated
graph, formed by identical d-dimensional closed grid sites x ∈ Rd, which
therefore represent the basic unit of length of the system. Each site x ∈ Ω
is labeled by an integer number, σ(x) ∈ N, which can be interpreted as a
degenerate spin coming from the original Ising approach [9,10]. The bor-
der of x is denoted by ∂x, one of its neighbors by x′, while its overall
neighborhood by Ω

′
x = {x′ ∈ Ω : x′ is a neighbor of x}. Objects in the

CPM are either discrete or continuous: this coexistence provides to the
method its hybrid characteristic. Discrete objects Σσ are finite, spatially-
extended lattice subdomains of contiguous sites denoted with the same
spin σ, i.e. Σσ = {x ∈ Ω : σ(x) = σ}. They are therefore undifferentiated
functional units which, in basic CPMs, represent individual cell-scale el-
ements (e.g., bacteria, unicellular organisms, single cells or ECM fibers).
A collection of N discrete individuals Σσ is defined by N integer spins
σ = 1, 2, . . . , N , see Fig. 1. The borders between sites with different spins,
that are thus shared between a couple of objects, define their membranes,
i.e. ∂Σσ =

⋃
x∈Σσ ,x′∈Ω′x:x′ /∈Σσ

(∂x ∩ ∂x′). Each unit Σσ has a set of at-
tributes (both geometrical, such as volume and surface, and biophysical,
such as velocity and elasticity), and an associated type τ(Σσ) (e.g. en-
dothelial cell, fibroblast, or ECM fiber). Mesoscopic, cell-level objects rear-
range their boundaries to realistically reproduce shape changes and motion.
Moreover, they can grow, die, duplicate and carry a set of possible rules for
transitions between types.

Continuous objects, or fields, represent the spatio-temporal evolution
of microscopic entities, that may reside within the discrete objects (e.g.,
DNA, RNA, cytosolic ions, or proteins), or in the external environment
(e.g., growth factors, matrix proteins or matrix metallo-proteinases). They
are described as variable concentrations with standard reaction-diffusion
(RD) equations, which are numerically solved using finite element schemes
on grids that exactly match the CPM domain and that are discretized at the
same resolution. Specific interactions between discrete cell-level objects and
continuous molecular-level objects can be characterized either by reaction
terms in diffusion equations, as in the case of cell absorption and secretion
of chemical diffusants, or, as we will explain hereafter, by constitutive laws
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Figure 1. Typical 2D rectangular CPM lattice. The integer numbers (σ) identify single
discrete objects. Individuals Σσ=2 and Σσ=5, identified by the same color, are of the

same type τ . The zoom view shows a lattice site x and its overall neighborhood Ω
′
x.

relating the mesoscopic properties of discrete individuals to the evolution
of specific microscopic variables.

The CPM core principle consists of an iterative stochastic minimization
of a system free energy, which is described by the Hamiltonian functional
H, that will be defined in detail below. Simulated objects in fact rearrange
to gradually reduce such a pattern energy. The minimization philosophy is
implemented by modified version of the classical Metropolis algorithm for
Monte Carlo-Boltzmann thermodynamics [6,11], evolving through repeated
probabilistic updates of the site identification spins. Procedurally, at each
time step, t, a lattice site x, belonging to object Σσ, is randomly selected
(source voxel), and proposed to copy its spin σ(x) into an arbitrary un-
like neighbor x′ /∈ Σσ (target voxel). The proposed change in the lattice
configuration (also called spin flip) is accepted with a modified family of
Boltzmann transitional probabilities
(1)

P (σ(x) → σ(x′))(t) =


p(TΣσ(x)

(t))e−∆H|σ(x)→σ(x′)/TΣσ(x)
(t)

∆H|σ(x)→σ(x′) > 0 ;
p(TΣσ(x)

(t)) ∆H|σ(x)→σ(x′) ≤ 0 ,

where ∆H|σ(x)→σ(x′) is the net variation in the total energy of the sys-
tem as a consequence of the spin update and TΣσ(x)

∈ R+ is a Boltzmann
temperature, which does not reflect any conventional thermal temperature
nor correlates to an overall system motility, but characterizes each sin-
gle individual, assuming therefore the role of its specific intrinsic motility.
p(TΣσ(t)) : R+ 7→ [0, 1], a sort of maximum transition probability, is a con-
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tinuous and increasing function of TΣσ , and is characterized by

(2)

{
p(0) = 0;

lim
TΣσ→+∞

p(TΣσ) = 1.

W.r.t. the classical Boltzmann functions used in literature [5,6,10], (1) takes
into account of the object motility also in the case of energetically favorable
displacement attempts: this allows to consider and realistically reproduce
the cases of ”frozen” elements, which do not move even if they sense external
forces (i.e., resulting in ∆H � 0), as commented in [12]. After the discrete
object Σσ has evolved through a spin flip, both equations that describe
the variation of continuous fields, and the attributes of all the objects are
rederived, on the basis of new lattice configuration. The basic step of the
Metropolis algorithm, called Monte Carlo Step (MCS), is then iterated
until the end of the simulation time or until the whole system reaches an
energetic global minimum, if it exists. A direct correspondence between a
MCS and the actual time scale may be therefore not straightforward, giving
rise to one of the main criticisms of the method. A realistic correspondence
is usually set by fitting a posteriori the temporal dynamics of the simulated
phenomenon with the relative experimental counterparts.

The effective energy of the system, given by the Hamiltonian H, con-
tains a variable number of terms, which can be grouped as:

(3) H(t) = Hadhesion(t) + Hconstraint(t) + Hforce(t).

Hadhesion describes the adhesive/repulsive interfacial energy between all
the couples of discrete objects that interact across their common mem-
brane. Hadhesion is based on Steinberg’s Differential Adhesion Hypothesis
(DAH) [6,13]. The DAH proposes that individuals in the same aggregate
adhere to each other with different strengths, according to their type. Such a
hierarchy of contact forces is one of the main driving mechanisms behind of
the evolution of biological systems, whose final organization maximizes the
overall strength of interface interactions (or, in other words, minimizes the
overall adhesion energy). The typical formulation of DAH-derived Hadhesion

is:

(4) Hadhesion(t) =
∑

x,x′∈Ω′x:(∂x∈∂Σσ)∩(∂x′∈∂Σσ′ ) 6=∅

Jτ(Σσ(x)),τ(Σσ′(x′))
(t),

where, as seen, x and x′ are two neighboring sites and Σσ and Σσ′ the
relative two neighboring objects. The coefficients Jτ(Σσ),τ(Σσ′ )

∈ R are the
binding forces per unit area, the first type of the so-called Potts parameters,
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and are obviously symmetric w.r.t. the indices. In the case of cells, such con-
tact strengths give a qualitative measure of the expression of the different
types of adhesion molecules (e.g., integrins or cadherins) characterizing a
specific cell line.

The term Hconstraint, whose use also comes from the physics of clas-
sical mechanics, sums the energetic components that describe the object
attributes. They are written as energetic penalties that increase as the ob-
jects deviate from a designed state:

(5) Hconstraint(t) =
∑
Σσ

∑
i−constraint

λi
Σσ

(t)U(ai
Σσ

(t), Ai
Σσ

(t)),

where ai
Σσ

(t) is the actual and Ai
Σσ

(t) the target value of the i-attribute of
individual Σσ, that can vary in time, and U(ai

Σσ
, Ai

Σσ
) ≥ 0 is a potential

with the property that

U(Ai
η,Σσ

, Ai
η,Σσ

) = 0.

The Potts parameters λi
Σσ
∈ R+ take the role of elastic moduli, which de-

termine the weight of the relative energetic constraint, and thus the impor-
tance of the relative attribute. Low values of λi

Σσ
, in fact, allow the discrete

unit Σσ to deviate more from the configuration that satisfies the constraint.
Indeed, since the energetic contributions given in Eq. (5) smoothly decrease
to a minimum when the attributes are satisfied, the modified Metropolis
algorithm automatically drives any configuration towards one that satisfies
the constraints. Among others, the energetic components relative to geo-
metrical attributes of discrete objects, such as their volume and surface, are
of particular relevance. In most published CPMs, the author use a simple
quadratic potential

(6) U(ai
Σσ

(t), Ai
Σσ

(t)) =
[
ai

Σσ
(t)−Ai

Σσ
(t)

]2
.

However, the form of (6) has the disadvantage that a finite energy is suffi-
cient by a discrete unit to achieve a vanishing value of one of its constraints,
for example to shrink a cell to a point, a situation that should be avoided
and that would in principle require an infinite energy. For this reason we
propose the use of potentials that blow up in the case of ai

η,Σσ
→ 0 as

(7) U(ai
Σσ

(t), Ai
Σσ

(t)) =

∣∣∣∣∣ai
η,Σσ

(t)−Ai
η,Σσ

(t)

ai
η,Σσ

(t)

∣∣∣∣∣
p

,

with p ∈ R+. In this way, in addition to the just stated advantages, all
the components of Hconstraint are non-dimensional, and thus all the relative
Potts coefficients are coherently scaled to units of energy.
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The last term in Eq. (3) includes the energetic counterparts of the forces
(both effective and generalized) that act on the simulated individuals and
are described in the following form:

(8) Hforce(t) = −
∑
x∈Σσ

∑
k−force

µk
Σσ(x)

(t) Fk(t) · rx,

where rx = (ix, jx, kx)T is the position vector of lattice site x, which is
the application point of force Fk, and µk

Σσ
is the relative Potts parameter,

which measures the effective strength of the force on object Σσ. The most
diffused examples in CPM applications are the forces that are exerted by
extracellular chemical substances (which are described as continuous CPM
objects) on a population of cells (which are typical discrete objects):

(9) Hchemical
force (t) = −

∑
Σσ

∑
x∈Σσ

µchem
Σσ(x)

(t)c(x, t),

where c(x, t) is the concentration of the chemical sensed by cell site x, whose
evolution is usually described by a RD equation and the Potts coefficient
µchem

Σσ
is, in this case, an effective chemical potential of cell Σσ. The net

energy difference caused by such a chemical force is:

(10) ∆Hchemical
force

∣∣
σ(x)→σ(x′)

= µchem
Σσ(x)

[c(x, t)− c(x′, t)],

where x ∈ Σσ and x′ /∈ Σσ are the two neighboring lattice sites randomly
selected during the trial update at time t. In particular, µchem

Σσ
> 0 yields

to a motion up the gradient of c (which is thus a chemoattractant), while
µchem

Σσ
< 0 yields to a motion in the opposite direction (and c is a chemore-

pellent). Moreover, if c is a non-diffusive fixed substrate, Eq. (9) is a repre-
sentation of a haptotactic force, as in [14].

The importance of each term in the Hamiltonian (i.e., of each included
biological mechanism) is defined by the magnitude of the relative Potts pa-
rameter, which acts as a sort of penalty coefficient. It is indeed possible to
easily comprehend the importance of each mechanism involved in the simu-
lated phenomenon by only altering the relative Potts parameter, so that the
other terms in the Hamiltonian scale accordingly. In particular, by equat-
ing all the other terms to zero, it is possible to understand whether such a
mechanism is individually capable of producing the process of interest, or
whether it requires cooperative processes. In this respect, a crucial role in
determining the evolution of the system is therefore played by the hierarchy
of the Potts coefficients, and not by their exact values. This consideration
allows to overcome one of the main limitations of the CPM: given its ener-
getic nature, a direct one-to-one correspondence between Potts parameters
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and experimental quantities is not straightforward, being only possible to
infer empirical relationships.

2.1. Nested approach.

In most CPMs, the Potts parameters are generally static over the whole
simulations, or have unrealistic variations. Furthermore, they are usually
common for all the objects of the same type, despite their individuality.
In order to overcome this issue, we propose the use of a nested approach,
based on the assumption that the internal state of a biological individual
(i.e., the microscopic level) regulates its biophysical properties (described
by mesoscopic Potts coefficients) which, as seen, in turn direct its dynamics
(described by the relative term in the Hamiltonian).

Procedurally, let Σσ denote a certain discrete object: we define its in-
ternal state vector sΣσ ∈ Rn. The length n of sΣσ , defined by the number
of internal factors considered in the microscopic model, represents a sort of
internal degree of freedom of Σσ. Each component sΣσ ,l, where l = 1, ..., n,
is typically represented as a continuous object and can be local (i.e., per
site) and/or time-dependent (i.e., linked to a specific regulatory pathway,
which needs to be modeled, as it will be explained hereafter). Hence, in
general, sΣσ = sΣσ(x, t), where x ∈ Σσ. The spatial localization of sΣσ is
mandatory to accurately represent internal inhomogeneities of Σσ, while its
time-dependence to reproduce its microscopic evolution. For any Σσ, let us
consider a generic Potts coefficient α ∈ {λi

Σσ
;TΣσ ;µk

Σσ
, ...}. We now define

sα
Σσ

∈ Rm, where m ≤ n, the subvector of sΣσ whose components influ-
ence the biophysical property of Σσ described by α. Therefore the spatio-
temporal evolution of α can be expressed as

(11) α(x ∈ Σσ, t) = f(sα
Σσ

(x, t)),

where f : Rm 7→ R is a continuous function, which obviously needs to
be appropriately defined in relation to the case of interest. According to
the same notation, if γ ∈ {Jτ(Σσ),τ(Σσ′ )

}, for each local interface between
neighboring objects (i.e., ∂x ∈ ∂Σσ ∩ ∂x′ ∈ ∂Σσ′ or ∂x ∈ ∂η ∩ ∂x′ ∈ ∂η′ in
the case of compartmentalized individuals), we have:

(12) γ((∂x ∩ ∂x′), t) = γ(sγ
Σσ

(x, t), sγ
Σσ′

(x′, t)) = g(sγ
Σσ

(x, t), sγ
Σσ′

(x′, t)),

where g : Rm×Rm 7→ R. The local adhesive strengths are indeed determined
by the local internal state of both elements, as they are not only a property
of each single individual.

Indeed, the Potts parameters which can locally vary (such as the ad-
hesive interactions or the effective strengths of specific forces) require that
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the relative functions of the internal state vector s are local (i.e., they need
to take into account of the local concentration of the internal factors of
interest), whereas the Potts parameters characterizing an entire individual
(such as the motility or the elasticity) require that the relative functions of
s are global (i.e., they need to take into account of the overall level of the
internal factor of interest). Summing up, Eqs. (11) and (12) state that the
variation of the Potts coefficients of an element (either an entire individual
or one of its compartments) is due to the evolution of its internal state: in
this way its mesoscopic biophysical properties are no longer given a priori
(or varied with prescribed rules) but are autonomously and continuously
inherited from the flow of information coming from its microscopic level.

The application of the new approach to biological cells is of particular
interest. In this context, each component of the internal state vector rep-
resents the spatio-temporal variation of the concentration of intracellular
ions and molecules, which can be represented as continuous objects and
whose quantity regulates the cell phenomenology. In particular, for any
component sΣσ ,l of sΣσ , given a well-characterized (although simplified)
biochemical pathway, it is always possible to set a suitable model (such
as a reaction-diffusion (RD) system, which specializes in several coupled
differential equations, whose outcome is sΣσ ,l itself.

2.2. Motility of individuals.

The description of the motility of individuals is one of the most at-
tractive features of the CPM. The Metropolis algorithm is in fact able to
represent the exploratory behavior of biological organisms through biased
extensions and retractions of their boundaries. It also allows to differenti-
ate the isotropic intrinsic motility of each element, which is described by
its Boltzmann temperature T (which can be approximately compared to a
diffusion coefficient with a continuous point of view), and the directional,
force-based component of its motion. Indeed, since a difference in a poten-
tial energy is the work done by a force, for each object Σσ we can write

(13)
∆H

∆t
= −

∏
= −

∑
x∈Σσ

Fx∈Σσ ·
∆x
∆t

= −Fx∈Σσ · vx∈Σσ ,

where
∏

is the power of force Fx∈Σσ and vx∈Σσ the local velocity. In ex-
tremely viscous regimes, such as biological environments, the local force is
proportional to the local velocity, and not to the acceleration. This leads
to the so-called overdamped force-velocity response which is characteristic
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of other IBMs [4] and writes

(14) Fx∈Σσ = αx∈Σσvx∈Σσ =
1

kx∈Σσ

vx∈Σσ ∝
1

p(TΣσ)TΣσ

vx∈Σσ .

As analytically demonstrated in [8,12], the coefficient kx∈Σσ is the net rate
of transition of site x (i.e., the difference between its probability of moving
and staying still, P (σ(x) → σ(x′))− P (σ(x) 9 σ(x′))) and is proportional
to the Boltzmann temperature of the element TΣσ scaled by the value of
p(TΣσ). However, w.r.t. those published results, we here prefer to use a pro-
portional dependence and not an equation, since the exact relation between
the Monte Carlo spin copy attempts and the continuous time, as well as
the kinetics application of the Metropolis-like algorithm, are still debated
and a persistent sources of criticism. Putting (14) in (13), we obtain

(15)
∆H

∆t
∝ −

∑
x∈Σσ

1
p(TΣσ)TΣσ

v2
x∈Σσ

= − 1
p(TΣσ)TΣσ

∑
x∈Σσ

v2
x∈Σσ

,

given that TΣσ is a global property of the entire object. Let us now decom-
pose the velocity vx∈Σσ as

(16) vx∈Σσ = vCM
Σσ

+ wx∈Σσ ,

where vCM
Σσ

is the velocity of the object center of mass and wx∈Σσ a local
fluctuation. Simple calculations lead to

(17)
∑
x∈Σσ

vx∈Σσ =
∑
x∈Σσ

vCM
Σσ

+
∑
x∈Σσ

wx∈Σσ = vCM
Σσ

avolume
Σσ

+
∑
x∈Σσ

wx∈Σσ ,

where the second term of the sum vanishes. Therefore, substituting in (13),
we obtain

(18)
∆H

∆t
∝ − 1

p(TΣσ)TΣσ

[
(vCM

Σσ
)2avolume

Σσ
+

∑
x∈Σσ

w2
x∈Σσ

]
.

Given that ∆H
∆t = ∆H

∆xCM
Σσ

vCM
Σσ

, we can finally conclude that

(19)
∆H

∆xCM
Σσ

∝ − 1
p(TΣσ)TΣσ

[
vCM

Σσ
avolume

Σσ
+

1
vCM

Σσ

∑
x∈Σσ

w2
x∈Σσ

]
,

or, with another view point,

(20) avolume
Σσ

vCM
Σσ

∝ −p(TΣσ)TΣσ

∆H

∆xCM
Σσ

− 1
vCM

Σσ

∑
x∈Σσ

w2
x∈Σσ

.

Some comments on the consequences of relations (19) and (20):
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• they are a definitive confirmation that discrete objects move in order
to minimize the total energy;

• the modulus of the velocity of the center of mass of Σσ depends
on the magnitude of the energy difference due to the proposed spin
flip, as well as on its intrinsic motility TΣσ , which, in our extended
approach, is coherently a variable property of each unit Σσ and is
determined by its microscopic state: different individuals therefore
have different velocities even if they experience the same energy
difference;

• it is straightforward to evaluate the contribution to the velocity of
unit Σσ of each term of the Hamiltonian. In fact, for any mechanism
i, by equating all the other terms to zero, we obtain:

(21) avolume
Σσ

vCM
Σσ

∣∣
i−mechanism

∝ −p(TΣσ)TΣσ

∆H i−mechanism

∆xCM
Σσ

.

2.3. Test simulation: in vitro tubulogenesis.

In order to show how the extended CPM can be applied, and to clar-
ify the complex notation, we here present a model reproducing a classical
tubulogenic assay. It consists in the autonomous organization of a dispersed
population of endothelial cells (ECs) in a bidimensional network, which re-
sembles a primitive in vivo capillary-like plexus, see Fig. 2(A). The overall
process is mediated by the activity of an autocrine chemical morphogen
(such as the VEGF [15]), which not only acts as a chemoattractant but
also initiates a series of downstream pathways involving intracellular mes-
sengers nitric oxide (NO) and arachidonic acid (AA) and culminating in
calcium signals [16,17], Fig. 2(B). The subsequent accumulation of the ion
regulates selected biophysical properties of the ECs, such as their motility,
adhesive capability, chemotactic strength and elasticity [18].

In the nested environment, we use a CPM to represent the phenomenol-
ogy of ECs and a continuous method to approach the VEGF-induced
calcium-dependent cascades. These levels are interfaced by a set of con-
stitutive relations for the evolution of the Potts coefficients. The ECs are
modeled as discrete objects Σσ=1,...,200 of type τ = C. They reside in an
experimental medium, which is represented as a generalized substrate Σσ=0

of type τ = M . The internal state vector of each cell is

• sΣ1,...,200(x, t) = (a(x, t), n(x, t), c(x, t)) ∈ R3,

where a(x, t) corresponds to the local concentration of AA, n(x, t) of NO
and c(x, t) of Ca2+. The system Hamiltonian is given by:

(22) H(t) = Hadhesion(t) + Hconstraint(t) + Hchemotaxis(t).

11
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Hadhesion considers the intercellular adhesive interactions. In particular,
JC,C gives a measure of the formation of local intercellular VE-cadherin-
VE-cadherin complexes, which depends on the quantity of active exposed
molecules on either sides of the interface. Indeed, since VE-cadherin activity
is enhanced by calcium ions, for any cell Σσ=1,...,200:

• sJ
Σσ

(x, t) = (c(x, t)) and JC,C((∂x ∈ ∂Σσ(x)) ∩ (∂x′ ∈ ∂Σσ(x′)), t) =
g(c(x, t), c(x′, t)) = J0 exp (−p c(x, t)c(x′, t)).

Hconstraint takes into account of cell shape changes (i.e., of area and perime-
ter, since we are in 2D), using potentials of type (7). The target values
Asurface,perimeter

Σσ=1,...,200
are EC initial dimensions. Cell volume fluctuations are in-

deed kept negligible by high constant values for λsurface
Σσ=1,...,200

= 20, whereas
the deformability is a characteristic of each cell, being regulated by its in-
tracellular level of calcium. Therefore for each σ = 1, ..., 200, we set:

• sλperimeter

Σσ
(x, t) = (c(x, t)) and

λperimeter
Σσ

(t) = f(c(x, t)) = λper
0 exp

(
−k

∑
x∈Σσ

c(x, t)
)
.

Finally, the movement of ECs along gradients of VEGF concentration is
implemented by a linear-type chemotaxis term of the form (9):

(23) ∆Hchemotaxis = µch
Σσ

(x, t)
[
v(x, t)− v(x′, t)

]
,

where the chemical strength is also calcium-dependent. Indeed, for each cell
Σσ=1,...,200, we assume:

• sµchem

Σσ
(x, t) = (c(x, t)) and µchem

Σσ
(x, t) = f(c(x, t)) = µch

0 c(x, t).

The cell culture evolves following the Boltzmann probability function (1),
with p = tanh. In particular, each cell is characterized by its own variable
motility, function of its overall calcium level, as for σ = 1, ..., 200:

• sT
Σσ

(x, t) = (c(x, t)) and TΣσ(t) = f(c(x, t)) = T0
∑

x∈Σσ
c(x, t).

The evolution of the microscopic variables is regulated by a set of standard

12
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reaction-diffusion equations:

(24)

∂v

∂t
= Dv∆v︸ ︷︷ ︸

diffusion

−λvvδτ(Σσ(x)),M︸ ︷︷ ︸
decay

+( εv︸︷︷︸
prod.

−χvv(x, t)︸ ︷︷ ︸
uptake

)δτ(Σσ(x)),C in x ∈ Ω;

∂a

∂t
= Da∆a︸ ︷︷ ︸

diffusion

− λaa︸︷︷︸
decay

+ εav︸︷︷︸
V EGF−ind. prod.

+ εac︸︷︷︸
Ca−ind. prod.

in x ∈ Σ1,...,200;

∂n

∂t
= Dn∆n︸ ︷︷ ︸

diffusion

− λnn︸︷︷︸
decay

+ εnv︸︷︷︸
V EGF−ind. prod.

+ εnca︸︷︷︸
AA− and Ca−ind. prod.

in x ∈ Σ1,...,200.

Notice that the equation of the intracellular messengers AA and NO work
only within the ECs. All the coefficients of diffusivity, degradation or de-
cay, and production of the chemicals are constant in time, homogeneous
in space and derived from previous experimental determinations [19]. The
local concentration of calcium is determined by a balance between the AA-
and NO-activated fluxes, its extrusion from the cell cytosol and its buffered
diffusion. Its evolution therefore satisfies:
(25)

∂c

∂t
= Kbuff Dc∆c︸ ︷︷ ︸

diffusion

in x ∈ Σ1,...,200;

n∂x∈∂Σσ · ∇c = faa + fnn︸ ︷︷ ︸
influxes

− foc︸︷︷︸
efflux

at ∂x ∈ ∂Σ1,...,200;

∂c

∂t
= Dc∇2c︸ ︷︷ ︸

diffusion

in x ∈ Σ0,

where n∂x is the unit outward normal to the external boundary of site x ∈
Σσ=1,...,200. The coefficient of diffusion, Dc, is assumed to be homogeneous,
while the scaling factor Kbuff < 1 models the activity of endogenous buffers
(proteins and mitochondria), which bind the ion [20].

The proposed multilevel environment is able to reproduce in close com-
parison with in vitro observations the kinetics of the patterning, as well
as its final configuration, see Fig. 2(C). In particular, the ECs organize
into a structured network, where cords of cells enclose lacunae. Vascular
branches typically are 1-2 cells wide, while lacunae are almost uniform in
size (i.e., they range from 120 µm to 150 µm). In particular, such natural
length scales are functional and instrumental for an optimal metabolic ex-
change: a coarser capillary pattern would be in fact unable to differentiate
to form the lumen, while an immature and finer structure would be ob-
viously useless [21]. The geometrical description of the emerging structure
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Figure 2. In vitro tubulogesis. (A) Experimental image of the final configuration of
a HUVEC network. (B) Schematic representation of VEGF-induced calcium-dependent
pathways. VEGF activates a series of intracellular events inducing the intracellular pro-
duction of arachidonic acid (AA) and nitric oxide (NO). Both intracellular messengers
are able to activate the entry of extracellular calcium, which, with a feedback mechanism,
enhances their biosyntesis. The increment in calcium level triggers cell motility, adhesion,
chemical responses and cytoskeletal reorganization. (C) Representative images showing
different stages of tubule organization at time intervals of 3 hours.

is in good agreement with experimental analysis provided on cultures of
human breast carcinoma-derived ECs (B-TECs, [16]) and human umbili-
cal vein ECs, (HUVECs, [19]). The pattern formation is realistically driven
by the complex and coordinated interplay of multiscale mechanisms, i.e.
the calcium-dependent increase in cell motility, adhesion and cytoskeletal
remodeling and the VEGF-mediated chemotactic migration.

3. Compartmentalization approach.

Most CPM models, as the one presented above, represent discrete object
as isotropic objects, formed by equivalent and undifferentiated sites. This
representation provides a useful level of abstraction, but also hides relevant
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inhomogeneous properties that characterize all biological individuals and
are important to keep in several applications. For example, in the case of
cells, the cytoskeleton, the plasmamembrane, the nucleus and other internal
organelles are not distinguished.

The simplest and most realistic way of reproducing such complex mor-
phologies is to introduce a compartmentalization technique. According to
this approach, a collection of standard CPM objects can be clustered to
form a compartmentalized element, which can more accurately reproduce
a real individual. In other words, if in the basic CPM a single discrete
object represented an entire individual, it now represents one of its com-
partments. Technically, with the new procedure, the discrete units Σσ share
an additional attribute, a cluster id η(Σσ) ∈ N, which defines the compart-
mentalized individual they belong to. Obviously, discrete units without η
are not part of a compartmentalized entity, but represent, on their own, an
entire element (as in the basic CPM). Apart from the type already defined
for the discrete units, τ(Σσ), we can now introduce a type for the entire
clusters, θ(η). The borders between subunits belonging to the same individ-
ual represent internal membranes, while its external membrane is defined
as ∂η =

⋃
x∈Σσ⊆η,x′∈Ω′x:x′∈Σσ′*η(∂x ∩ ∂x′). Here and in the following, we

will use the simplified notations x ∈ η to identify a site x belonging to
a compartmentalized individual η (i.e., it would write x ∈ Σσ ⊆ η) and
∂x ∈ ∂η to identify that ∂x belongs to the external membrane of η.

The new representation of individuals requires a redefinition of the char-
acteristic terms of the CPM. First, it is necessary to differentiate the con-
tributions of Hadhesion due either to the contact between couples of discrete
units belonging to the same element, namely H int

adhesion, or to the contact
between the membranes of couples of units belonging to different elements,
namely Hext

adhesion:

(26) Hadhesion(t) = H int
adhesion(t) + Hext

adhesion(t).

H int
adhesion, which indeed models contact forces within the same individual

(e.g. between the nucleus and the cytosol in a cell), writes as
(27)
H int

adhesion(t) =
∑

x,x′∈Ω
′
x:

(∂x∈∂Σσ)∩(∂x′∈∂Σσ′ ) 6=∅

J int
τ(Σσ(x)),τ(Σσ′(x′))

(t)δη(Σσ(x)),η(Σσ′(x′))
(t).

The form of Eq. (27) is analogous to that of Eq. (4) and δ is the Kronecker
delta. J int

τ(Σσ),τ(Σσ′ )
∈ R− account for high contact tensions, which prevent

single individuals from splitting, as commented in [22].
Hext

adhesion is formed instead by the effective adhesion energies between
different compartmentalized individuals, that interact with their external
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membranes:

(28) Hext
adhesion(t) =

∑
x,x′∈Ω′x:(∂x∈∂η)∩(∂x′∈∂η′) 6=∅

Jext
θ(η),θ(η′)(t).

The strengths Jext
θ(η),θ(η′) ∈ R+ depend, as a simple extension of the basic

CPM, on the types of the respective interacting clusters. It is worth to notice
that, if the objects in contact represent standard non-compartmentalized
individuals, the relative energetic contributions are in the classical form of
Eq. (4).

The compartmentalized approach requires then to specify both the at-
tributes and the experienced forces (i.e., and the relative energetic contri-
butions) for each and every subunit that formed the compartmentalized
individuals. Although a simulated element can in principle be compart-
mentalized in a variety of ways (for example, along symmetry planes, or
in a fixed number of equivalent and undifferentiated subunits), a biolog-
ically plausible compartmentalization is obviously preferable. Indeed, the
compartmentalized approach is clearly flexible, since it allows the level of
details to be tuned by only increasing or decreasing the number of units
that form a clustered individual, or the number of lattice sites per functional
unit.

Finally, the specific microscopic models of intracellular dynamics can
be used together with the compartmentalized approach described in the
previous section (if Σσ represents a subregion of a compartmentalized in-
dividual η, the internal state vector is sη,Σσ). The biochemical processes
can in fact be localized within a well-defined subcellular compartment, as
occurs in reality, allowing to handle several biological mechanisms, which
are difficult to reproduce with the basic CPM.

3.1. Test simulation: cell movement in a fibrous matrix.

In order to provide the usefulness of the compartmentalization ap-
proach, we model the migration of an individual cell within a dense fi-
brous scaffold. The cell, initially a sphere, is differentiated in two com-
partments: the central nucleus (Σσ=1, τ(Σσ=1) = N) and the surrounding
cytosol (Σσ=2, τ(Σσ=2) = C), see Fig. 3(A, right panel). The cell cluster id
is η = 1, of type θ(η) = E. The extracellular environment is composed of a
network of 125 collagenous fibers, which are standard, non compartmental-
ized, CPM objects Σσ=3,...,125, of type τ(σ) = F , and of a special general-
ized object (Σσ=0, τ(σ) = M), which represents the extracellular medium,
homogenously distributed throughout the simulation domain. The matrix
threads form a regular cubic mesh characterized by pores of subnuclear
dimensions, see again Fig. 3(A, left panel).
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The Hamiltonian H is formed by two terms. Hadhesion is differentiated
as in Eq. (26) in the contribution due to either the generalized contact ten-
sion between the nucleus and the cytoplasm within the cell, or the effective
adhesion between a cell and a matrix component. J int

N,C � 0 implicitly mod-
els the forces exerted by intermediate actin filaments and microtubules to
anchor the nucleus to the cell cytoskeleton. Jext

E,F and Jext
E,M are instead a

measure of the affinity between cell surface adhesion complexes (i.e. sugar-
binding receptors or integrins) to either non-solid (i.e. glycosaminoglycans
in medium) or solid (i.e. fibrillar collagen) extracellular ligands, respec-
tively: indeed, we assume Jext

E,F < Jext
E,M since most cell lines in standard

conditions adhere more strongly with the fibrous part of the extracellular
matrix rather than with its soluble component.

Hconstraint models the geometrical attributes of the simulated objects
(both the cell subunits and the matrix threads) where the target values
Avolume

Σ1,...,125
and Asurface

Σ1,...,125
are their initial dimensions. Indeed, assuming that

the cell does not significantly grow during migration, the fluctuations of
their volumes are kept negligible with high constant values of λvolume

1,Σ1,2
.

Moreover, cells moving in matrix environments are typically deformable,
but their nuclei show a higher rigidity w.r.t. the cytoplasm region: there-
fore, we set λsurface

1,Σ2
< 1 and λsurface

1,Σ1
� 1. The matrix fibers are instead

assumed inelastic by high λvolume
Σ3,...,125

= λsurface
Σ3,...,125

� 1.
Given the Hamiltonian, the evolution of the system is driven by the

Boltzmann probability function (1), with p = tanh. In particular, the tem-
perature T is assumed to characterize each single object: indeed, T1,Σ1 is
a low value reproducing the passive motion of the nucleus, which, unable
to have an autonomous movement, is dragged by the surrounding cytosol,
characterized instead by a high T1,Σ2 � 1 (that gives a measure of the
”real” cell intrinsic motility, i.e. the frequency of cell PM ruffles). Finally,
the collagenous threads are fixed by TΣ3,...,125 = 0.

The analysis of cell movement (captured in a time span of 9 hours)
shows that any cell migration over long distances is prohibited. An even
complete stretch of cell cytosol is in fact not sufficient to pass through the
steric hindrances, as the nucleus can not significantly deform, causing the
overall individual to be confined in a small area, see Fig. 3(B, left panel).
Interestingly, an enhancement in the elasticity of the nuclear cluster, with
a low value of λsurface

1,Σ1
, results in an appreciable cell movement in such

a dense matrix, as the cell is allowed to completely squeeze and stretch
through the existing mesh, as captured in Fig. 3(B, right panel) and in the
inset therein. It is straightforward to notice that these considerations would
have not been pointed out by the basic, non-compartmentalized CPM.
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Figure 3. Migration of a single compartmentalized cell within a fibrous matrix. (A, left
panel) Domain Ω, a 20 × 20 × 20 lattice (1 lattice site ≈ 4 µm3). The cell is initially a
16.5 µm-diameter sphere, with a nucleus with a diameter of 7.5 µ. The fibers are standard
objects, 28 µm long and 1.5 µm width, which form a network with subnuclear dimensions
(7 µm). (A, right panel) xy section of the compartmentalized cell. It is possible to see the
different subunits: the nucleus (Σ1, τ(Σ1) = N) and the cytosol (Σ2, τ(Σ2) = C). (B)
Wind-rose graphs show 10 cell tracks over 9 h. Cell movement is only permitted by an
enhancement in nucleus elasticity. In the inset, the nucleus deforms to allow the entire
individual to pass though the dense fiber network. The nucleus is encircled manually.
Values of the parameters: J int

N,C = −20, Jext
E,F = 4, Jext

E,M = 8 λvol
1,Σ1

= λvol
1,Σ2

= λvol
Σ3,...125

=

λsurf
Σ3,...,125

= 20, λsurf
1,Σ2

= 0.5; T1,Σ1 = 0.5, T1,Σ2 = 15, TΣ3,...,125 = 0. λsurf
1,Σ1

is varied from

20 to 1 to model the enhanced nucleus elasticity.

4. Conclusions.

Over the last decade, the CPM method has become a standard tech-
nique for cell-to-tissue level in silico biology, first replicating, then guiding
in vitro experiments, and eventually leading to new experimental discov-
eries [8,23,24]. We have here discussed some improvements of the method,
which aim at overcoming its main limitations. Along the text, we have also
illustrated some sample simulations, i.e. of a typical tubulogenic assay and
of the migration of an individual cell within a dense fibrous scaffold. In
both cases, the results obtained by the model have agreed with the pub-
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lished experimental observations, thus showing the consistency of our CPM
extensions.
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