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Abstract
Iron micro- and nanoparticles used for groundwater remediation and medical applications are prone to fast aggregation and 

sedimentation. Diluted single biopolymer water solutions of guar gum (GG) or xanthan gum (XG) can stabilize these particles for  

few hours providing steric repulsion and by increasing the viscosity of the suspension. 

The goal of the study is to demonstrate that amending GG solutions with small amounts of XG (XG/GG weight ratio 1:19; 3 

g/L of total biopolymer concentration) can significantly improve the capability of the biopolymer to stabilize highly concentrated 

iron micro-  and  nanoparticle  suspensions.  The synergistic  effect  between GG and XG generates  a  viscoelastic  gel  that  can  

maintain 20 g/l iron particles suspended for over 24 h. This is attributed to (i) an increase in the static viscosity, (ii) a combined 

polymer structure whose yield stress  contrasts the downward stress exerted by the iron particles,  (iii)  the adsorption of  the  

polymers to the iron surface having an anchoring effect on the particles. 

The XG/GG viscoelastic  gel  is  characterized  by a  marked  shear  thinning behavior.  This  property,  coupled  to  the  low  

biopolymer concentration used, determines small viscosity values at high shear rates, facilitating the injection in porous media.

 Furthermore, the thermosensitivity of the soft elastic polymeric network promotes higher stability and longer storage times  

at low temperatures, and rapid decrease of viscosity at higher temperatures. This feature can be exploited in order to improve the  

flowability and the delivery of the suspensions to the target, as well as to effectively tune and control the release of the iron 

particles.
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Abbreviations

ZVI Zerovalent iron

NZVI Nanoscale zero-valent iron

MZVI Microscale zero-valent iron

GG Guar gum

XG Xanthan gum

SBS Single biopolymer solution

BMS Biopolymer mixture solution

WLF Williams-Landel-Ferry theory

Introduction
Nanoscale and microscale zero-valent iron (NZVI and MZVI, respectively) are object of great interest in the fields of groundwater 

remediation and biomedicine . In the former field of application, the effectivity of  zero-valent iron (ZVI) particles has been 

proven in the degradation or immobilization of a wide variety of contaminants . On the other hand, in medical applications ZVI 

offers potential advantages over other particles due to their high magnetic moment and can maintain superparamagnetism at larger 

sizes than their oxides . This mechanism allows for an effective use of ZVI for enhancing magnetic separation, drug delivery and  

magnetic resonance imaging; in addition, in hyperthermia treatments, these particles have the potential to minimize the amount of  

injected material in patients and therefore to use safer AC magnetic fields .

Despite  the appealing properties  of  ZVI particles,  their  employment  is  often  hindered  by poor  colloidal  stability.  This 

limitation can be overcome by suspending the particles in biopolymer solutions, such as guar or xanthan gum (GG and XG,  

respectively)  . GG is a galactomannan obtained from the endosperm of the seeds of Cyamopsis tetragonolobus, while XG is an 

extracellular  polysaccharide  excreted  by  the  bacterium  Xanthomonas  campestris  .  These  two  biopolymers  are  non-toxic, 

inexpensive, hydrophilic, stable but biodegradable. Previous studies showed that GG and XG enhance the stability of MZVI and 

NZVI by adsorbing to the surface of iron and providing steric repulsion among the particles, and by increasing the viscosity of the 

suspension,  therefore  slowing  the  aggregation  processes  .  Furthermore,  the  shear  thinning  rheological  behavior  of  ZVI 

suspensions in biopolymer is advantageous in environmental applications during both the storage and the injection in porous 

media. During storage, the high static viscosity of the suspension can delay particle sedimentation, while during injection the  

viscosity decreases at high shear rates, requiring lower pumping pressures . 



However, in order to stabilize the significant iron load required for field applications (usually greater than 10 kg/m 3), high 

biopolymer  concentrations are necessary,  potentially hindering the degradation in  the subsurface.  The current  study aims at  

improving the long-term stabilization of ZVI particles dispersion by exploiting the synergistic effect deriving from the mixing of 

GG and XG . When used separately, the water solutions of each polymer are dominated by viscous behavior . Conversely, when  

mixed together,  they form a  viscoelastic  gel  ,  which  can  maintain  small  particles  in  suspension  even  at  very low polymer  

concentrations. The specific objectives of this work are (i) to understand the rheological properties of XG and GG mixtures (at  

different concentrations, mixing ratios and temperatures) and (ii) to investigate their effectiveness in stabilizing MZVI and NZVI 

over long periods.

Materials and methods

Zero-valent iron particles
Commercial reactive NZVI (NANOFER 25S or N25S) (Fig. 1a) was supplied as liquid slurries by NANO IRON s.r.o (Rajhrad, 

Czech Republic). N25S has an average particle size of 50 nm and average surface area of 20 – 25 m2/g. NZVI was separated from 

the liquid phase, containing a mixture of organic and inorganic stabilizers, by a series of washing cycles with deionized water  

followed by centrifugation and sedimentation. After washing, NZVI aggregation and sedimentation were prevented by continuous 

ultrasonication before mixing with the biopolymer mixtures. 

Carbonyl iron powder (B200) was provided by BASF SE (Ludwigshafen, Germany, Fig. 1b) and water atomized iron powder 

(H4) was supplied by Höganäs AB (Höganäs, Sweden, Fig. 1c). The average particle sizes of B200 and H4 are 4.7 μm and 41μm,  

respectively.

  



 

Fig. 1 Representative STEM images of (a) nano iron cluster of N25S, (b) micro iron particles of BASF 200 and (c) micro iron 
particles of H4

Preparation of biopolymer solutions and ZVI suspensions
Deionized water solutions of XG, GG and their mixtures were stirred firstly with a magnetic stirrer and then homogenized by  

using the T25 digital Ultra Turrax (IKA, Staufen, Germany) high shear rotor-stator processor. Finally, the biopolymer solutions  

were degassed under vacuum to remove air bubbles and held for 12 hours at room temperature to facilitate complete dissolution 

and hydration. ZVI particles were sonicated for 10 mins in deionized water in order to break up the aggregates formed during  

storage before mixing with biopolymer solutions. The preparation process of ZVI-biopolymer suspensions is schematized in Fig.  

2. When preparing ZVI suspensions with biopolymer mixture solution (BMS), as shown by the red arrows, ZVI particles were  

dispersed firstly in GG solution and then XG solution was added. Suspensions were homogenized by Ultra Turrax homogenizer  

for 15 mins at 10,000 rpm. The suspensions were ZVI particles (at a concentration of 20 g/L) dispersed in solutions of different  

polymers (at the concentrations of 6, 3, 2, 1.5 and 0.75 g/L).

Fig. 2 ZVI-biopolymer suspensions preparation process



Rheology measurements of biopolymer solutions
Dynamic rheological measurements were performed with an Anton Paar MCR-301 rheometer fitted with a concentric cylinder  

system.  The  biopolymer  microstructure  was  probed  by  measuring  the  shear  viscosity,  the  storage  modulus  G’ (or  elastic  

component), which is a measure of the deformation energy stored by the sample during the shear process, and the loss modulus 

G” (or viscous component,), a measure of dissipated energy . Dynamic frequency sweeps tests were performed at constant strain  

amplitude of 1% set within the linear viscoelastic region, which was identified through strain sweep tests. Viscosity was measured  

as a function of temperature, from 10  to 40 . Angular frequency sweep tests were conducted between 10  and 70  in℃ ℃ ℃ ℃  

order to apply the Williams-Landel-Ferry (WLF) theory known as the “time-temperature superposition”  which is used to explore  

fluid rheology in frequency ranges that are otherwise not possible to achieve, neither technically nor practically .

Solutions of XG, GG and their mixture, with concentration values of 6 g/L, 3 g/L and 1.5 g/L and XG/GG weight ratios of  

1:4, 2:3, 1:1, 3:2, 4:1 and 1:19, were used in the rheological tests. 

The yield stress of the different solutions was determined by measuring the strain while increasing the shear stress in the range  

from 0.001 to 1 Pa. On a bi-logarithmic stress-strain plot, the yield stress is the point where the relationship between strain and  

stress deviates from unitary slope. A linear relation with a slope approximately equal to unity implies a Hookean solid-like  

behavior  .  In  terms of  biopolymer  structure,  this  represents  the  elastic  deformation of  the structure bonds.  When the stress  

increases over a certain level, some weaker bonds start to break. When the stress exceeds the yield stress, the slope increases 

significantly and the strain is no longer a function of stress alone, but also depends on the rate of stress increase and duration time.  

The yield  stress  represents  the  transition  from elastic  solid-like  behavior  to  viscous  liquid-like  behavior  of  the  biopolymer 

solutions.

Adsorption of biopolymer molecules
Low-shear viscosity is very sensitive to biopolymer concentration in water, which is decreased by the adsorption to the particle  

surface.. Differential low-shear viscosity was calculated to estimate the degree of adsorption of XG and GG to the iron  

surface.  Viscosity measurements of XG (at initial concentrations of 3 and 1.5 g/L) or GG (at an initial concentration of 3 g/L) 

solutions were carried out after  the removal by centrifugation of the dispersed ZVI particles (20 g/L),  and compared to the  

viscosity of the same polymer solutions before the addition of ZVI particles. 



Sedimentation analysis
Sedimentation  tests  were  used  to  evaluate  the  stabilities  of  N25S,  B200  and  H4  in  XG,  GG  and  their  mixture  solutions.  

Sedimentation curves were plotted by exploiting the linear relationship between concentration and magnetic susceptibility, which  

was logged by a Bartington MS2G susceptivimeter . Susceptibility is an intrinsic property of the material, by measuring the mass  

susceptibility, the variation of the ZVI’s mass over time can be deduced.

Results and discussion

Rheological properties of xanthan gum and guar gum
XG solutions are characterized by a shear thinning behavior, as reported in Fig. 3a. The figure shows the shear rate dependence of 

viscosity at different polymer concentrations (i.e., 1.5, 3 and 6 g/L) and at different temperatures (i.e., 10, 25 and 40 ). The℃  

viscosity curve is characterized by a Newtonian region at low shear rates and by a shear thinning behavior at higher shear rates. In  

this region, the intermolecular interactions are reduced by the micro-structural anisotropy resulting from the shear deformation. As  

the shear rate increases,  the orientation of the polymer chains is forced along the flow direction and produces a drop in the  

viscosity . Low shear rate viscosity of XG solution is affected markedly by temperature.  The structure of the XG molecules  

changes  from  a  stiff,  ordered  helical  conformation  at  lower  temperatures,  to  a  flexible,  disordered  structure  at  higher  

temperatures . This thermo-rheological behavior is fully reversible between 10 and 70 . The tests also demonstrate that low-℃

shear viscosity increases in a geometric progression when the concentration is doubled (Table 1). 

Also GG solutions exhibit a shear-thinning behavior (Fig. 3b). The low-shear viscosity is much lower for GG than for XG  

solutions; conversely, at high shear rates the viscosity is higher for GG than for XG solutions, at equal concentrations. This is due 

to the higher molecular weight of XG and to the weaker molecular interactions compared to GG .

Table 1 Low-shear and high-shear viscosities for different biopolymer solutions at 25℃

Shear 
rate  
(1/s)

Viscosity  (Pa•s)
XG
 (3 

g/L)

GG
 (3 

g/L)

XG
(6 

g/L)

GG
(6 

g/L)

XG/GG
=1:19
(1.5 
g/L)

XG/GG
=1:1
(1.5 
g/L)

XG/GG
=1:19
(3 g/L)

XG/GG
=1:1

(3 g/L)

XG/GG
=1:4

(3 g/L)

XG/GG
=2:3

(3 g/L)

XG/GG
=3:2

(3 g/L)

XG/GG
=4:1

 (3 g/L)

0.001 5.3 0.16 94 6.1 1 180 28 380 87 87 65 29
1000 0.0097 0.012 0.017 0.041 0.0068 0.0088 0.019 0.018 0.018 0.013 0.012 0.012



Fig. 3 Viscosity as a function of shear rate at different concentrations and different temperatures for (a) xanthan gum solutions and 
(b) guar gum solutions

Fig. 4 shows the master curves obtained by sweep tests over a range of angular frequencies for XG and GG solutions at 25 .℃  

By applying the WLF theory, the frequency sweep curves of 10, 25, 40 50 60 and 70  between 0.1 and 100 rad/s were converted℃  

into one curve at 25 . The short-term behavior of samples is represented by high frequencies and is dominated by an elastic℃  

response  when  deformation  energy  is  larger  than  dissipated  energy  (G’>G”).  On  the  contrary,  the  long-term  behavior  is  

represented by low frequencies and is dominated by a viscous response (G’<G”).  The crossover frequency (where G’ = G”)  

identifies  the transition between solid-like and liquid-like behaviors.  The time for  a  material  to adapt  to  applied stresses or 

deformations is defined as relaxation time, and is the inverse of the crossover frequency.  The curves are influenced by both 

concentration and temperature. When the concentration increases, both G’ and G” increase, and the crossover point shifts to lower 

frequencies, which means that the elastic behavior is prevailing over the viscous behavior (Table 2). 

Fig. 4 shows that a 3 g/L XG solution exhibits an elastic behavior above 0.3 rad/s at 25 , while for a GG solution at the℃  

same concentration G” is larger than G’ throughout the frequency range tested. At 6 g/l XG displays a more pronounced elastic  

behavior than GG. Therefore, frequency sweep tests demonstrate that the structure of XG solutions is more suitable to suspend 

MZVI and NZVI for longer times than GG solutions at the same concentration. 



Fig. 4 Master curves of angular frequency sweep measurements determined by the WLF theory at 25  for ℃ (a) xanthan gum 
solutions (1.5, 3 and 6 g/L) and (b) guar gum solutions (3 and 6 g/L)

Rheology of BMS
Fig. 5 shows the viscosity curves of BMS with a XG/GG weight ratio of 1:1 at concentration values of 1.5 g/L and 3 g/L at  

different temperatures.  The BMS exhibits a pseudoplastic (shear thinning) behavior affected by temperature,  similarly to the 

parent SBS. Due to the synergistic contribution of the two polymers, the low-shear viscosity of 1.5 g/L BMS with a XG/GG ratio  

of 1:1 is higher than that of a 6 g/L XG solution (Table 1), while the opposite is true at high shear rates. The extent of the  

improvement of the rheological properties depends on the mixing ratio between XG and GG. The low-shear (0.001 s-1) and high-

shear (1000 s-1) viscosities of BMS (3 g/L) with different mixing weight ratios (i.e., XG/GG ratios of 1:4, 2:3, 3:2, 4:1 and 1:1) 

and viscosities of single XG and GG solutions at different temperatures are plotted in Fig. 6. At a concentration of 3 g/L, the low-

shear viscosities (at a shear rate of 0.001 s-1) of BMS are one to two orders of magnitudes higher than a pure XG solution. As 

temperature  increases  from 10  to  40 ,  these  differences  decrease.  Comparatively speaking,  the  difference  in  high-shear℃ ℃  

viscosity (at a shear rate of 1000 s-1) between BMS and SBS is significantly smaller, which demonstrates that the BMS still  

possesses favorable flowability.  It  was also observed that, at relatively low temperatures (i.e., 25  and 10 ), the low-shear℃ ℃  

viscosity is extremely high when the weight ratio of XG/GG is close to 1:1.



Fig. 5 Viscosity as a function of shear rate for a BMS with a XG/GG weight ratio of 1:1

    

Fig. 6 (a) Low-shear (0.001 s-1) and (b) high-shear (1000 s-1) viscosities of BMS (3 g/L) with different XG/GG weight ratios at 
different temperatures

Fig. 7 shows the G’ and G’’ of BMS in frequency sweep tests. Although the G’ of a 1.5 g/L BMS with a XG/GG weight ratio 

of  1:1 is  substantially lower than that  of  a  6  g/L XG solution throughout  the frequency range,  it  is  higher than G” at  low 

frequencies (Table 2). The marked elastic behavior of the BMS proves that the interaction between XG and GG generates a much  

more stable structure than either parent SBS.

Decreasing the XG concentration in the BMS is essential for environmental applications since this polymer is more resilient  

to biodegradation in aquifer systems and can hinder reactivity of ZVI particles . Fig. 8 and 9 show the rheological properties of a  

BMS with a XG/GG ratio of 1:19. Although the properties of other mixing ratios (i.e., 1:4, 2:3, 1:1, 3:2 and 4:1) are superior 

(Table 1), the characteristics of this BMS are still preferable to SBS. For the BMS, the temperature/frequency analogy is not valid  

and the WLF theory cannot be applied (Fig. 9). The values of the measured moduli are summarized in Table 2. At an angular 

frequency of 0.1 rad/s (the lowest frequency that can be tested), as the concentration of the SBS decreases, the G’/G” ratio drops 



from above to below unity as  a  result  of the weakening of  the structure of  the fluid.  On the contrary,  although decreasing 

concentration reduces both G’ and G”, the structures of BMS are still characterized by a G’/G” ratio above unity at an angular  

frequency of 0.1 rad/s, thus are sufficiently stable.

     

Fig. 7 G’ and G’’ as a function of angular frequency for BMS with a XG/GG weight ratio of 1:1 at a polymer concentration of (a) 
1.5 g/L and (b) 3 g/L

Fig. 8 Viscosity as a function of shear rate for polymer concentrations of 1.5, 3 and 6 g/L with a XG/GG weight ratio of 1:19 at 25℃

Fig. 9 G’ and G” as a function of angular frequency for polymer concentrations of (a)1.5 and (b)3 g/L, with a XG/GG weight ratio 
of 1:19 at 25  ℃



Table 2 G’ values and its comparison to G’’ for different biopolymer solutions at an angular frequency of 0.1 rad/s, at 25℃

XG
(3g/L)

XG
(6g/L)

GG
(3g/L)

GG
(6g/L)

XG/GG=1:19
(1.5 g/L)

XG/GG=1:19
(3 g/L)

XG/GG=1:1
(1.5 g/L)

XG/GG=1:1
(3 g/L)

G’ (Pa) 0.189 1.69 0.00358 0.0489 0.0453 0.315 0.166 0.477
G” (Pa) 0.242 1.20 0.00778 0.305 0.0188 0.131 0.103 0.366

 Elastic if G’>G” G’ < G” G’ > G” G’ < G” G’ < G” G’ > G” G’ > G” G’ > G” G’ > G”

Temperature dependence of viscosity 
Temperature can affect  the viscosity of  biopolymer solutions due to the change in thermal  motion and conformation of the  

molecules . The temperature dependence of viscosity is reversible  and is shown for XG, GG and XG/GG solutions in Fig.10 for 

different mixing ratios and concentrations. When BMS is characterized by a XG/GG weight ratio of 1:19, or when XG solutions, 

are heated, viscosity decreases slowly as temperature increases from 10 to 40 . Instead, when the XG/GG weight ratio ranges℃  

from 1:4 to 4:1, and in particular at a ratio of 1:1, low shear viscosity drops sharply in a narrow temperature interval (from 20  to℃  

30 , Fig. 10℃ ).  This behavior is probably due to the extensive interaction between XG and GG molecules, and to the order-

disorder transition of XG molecules from helix to random coil conformation during heating . So the mixture of XG and GG form a 

thermoreversible soft elastic network structure, which explains why the BMS is gel at low temperatures. This behavior can be  

exploited to stabilize and store ZVI suspensions at low temperatures and, vice versa, to improve their flowability by heating. A 

similar strategy can be used to speed up the sedimentation and the release of the particles from the polymer network. Fig. 11 

shows how 20 g/L suspensions of  H4 and of  B200 MZVI dispersed  in  1.5 g/L and 0.75 g/L of  BMS (XG/GG ratio  1:1),  

respectively, behave at different temperatures. At 20  both the suspensions can be stored without sedimentation for more than 48℃  

h. Nevertheless, when heated to 35  and 40 , respectively, the MZVI settles down within 0.5 h. ℃ ℃

 

Fig. 10 Viscosity as a function of temperature at a shear rate of 0.001 1/s for different biopolymer solutions



Fig. 11 Thermal effect on sedimentation of 20 g/L MZVI in BMS (XG/GG = 1:1): (a) and (b) H4 in 1.5 g/L BMS at 20  after 48℃  
h and at 35  after 0.5 h, respectively; (c) and (d) B200 in 0.75 g/L BMS at 20  after 48 h and at 40  after 0.5 hour,℃ ℃ ℃  
respectively.

Adsorption effect
When ZVI particles are dispersed in XG or GG, they tend to adsorb part of the polymer to their surface, determining a decrease in  

the viscosity of the suspension thus causing a reduction in its stability. Fig. 12a displays the low shear viscosities of XG or GG 

solutions before the dispersion of particles and after its removal. It can be clearly seen that the decrease in viscosity of the remnant  

solution is more significant for smaller particles (N25S and B200) due to their higher specific surface area. High adsorption would 

lead to an increase of the steric stabilization (especially for NZVI); on the other hand, it would also decrease the solution viscosity 

and therefore promote sedimentation (particularly of MZVI).

       

Fig. 12 Viscosity reduction of pure XG and GG solution (3g/L) after adsorption to particles of different sizes at 0.001 1/s shear 
rate



1. Stability of ZVI particles in polymer solutions
A series of sedimentation experiments proved that ZVI dispersions with diluted SBS (XG or GG) are not stable over long periods  

of  time  (Fig.  13).  Despite  the  high  static  viscosity,  XG solutions  are  not  able  to  stabilize  MZVI,  which  aggregate  during 

sedimentation. The aggregation of MZVI is shown in Fig. 13a-b as an increase of susceptibility normalized to the initial value.  

During sedimentation, compaction of the iron particles can occur leading to an instantaneous increase of concentration 

(and susceptibility) when the iron passes by the sensor. Thus, although SBS possesses high low-shear viscosity, the interaction 

between free biopolymer molecules in solution and those adsorbed to the particle surface is not sufficiently strong to prevent long-

term sedimentation as a decrease of susceptibility ratio.

Similarly, Fig. 13c shows that diluted SBS (except XG at 3 g/L) is not able to suspend NZVI for long times. Usually, finer 

particles are characterized by smaller sedimentation velocity, however, in the 3 g/L GG solution, the NZVI (N25S) settles more  

rapidly than micro-particles (B200). This is due to the larger specific surface area of NZVI that leads to a higher adsorption of  

biopolymer with a consequent decrease of the viscosity (Fig. 12a), and to the stronger magnetic interactions occurring among 

NZVI . 

 



 

Fig. 13 Sedimentation tests of (a) H4, (b) B200 and (c) N25S dispersed in different biopolymer solutions

The tests performed on SBS proved that the structure of single biopolymers in solution is unable to prevent the sedimentation 

of ZVI particles due to the unfavorable alignment, and weak interaction among molecules . On the contrary, BMS performs much  

better than SBS at equal polymer concentration (e.g. 3 g/L), even with a very low XG content (i.e., XG/GG = 1:19, Fig. 13a, b).  

By comparing the viscosities (Table 1) and the corresponding dispersion stabilities (Fig. 13) of BMS and SBS, the stability of 

BMS-based ZVI dispersions cannot be attributed solely to the increase of the low-shear viscosity. Despite the smaller low-shear  

viscosities (0.001 s-1) of BMS with a XG/GG weight ratio of 1:19 at concentrations of 3 g/L, 1.5 g/L and 1 g/L, compared to single 

XG solutions at 6 g/L, 3 g/L and 1.5 g/L, respectively, their ZVI suspensions are more stable. The structure arising from the  

mixture of XG and GG can be held responsible for this phenomenon. When XG is dissolved at low temperatures (<40℃), its 

molecules are present as single, double or triple helices arranged in an ordered conformation that promotes their interaction with  

the GG molecules . GG consists of a backbone chain of mannose units linked to a monomolecular unit of galactose. Galactose  

residues are not uniformly distributed: there are regions without galactose (smooth regions) and others with multiple galactose 

residues (hairy regions). Smooth regions are the ones that favor the interaction with the XG . The interaction between molecules 

of these gums forms a continuous network structure in BMS, as simply depicted in Fig. 14. Moreover, previous studies showed 

that GG molecules are able to adsorb to the ZVI surface  and that the molecules of both XG and GG have a nanoscale size, with a  

height of 1.12 nm and a calibrated width of 1.22 nm ; thus, as shown in the schematic representation in Fig. 15 , the GG molecules  

can be adsorbed to the surface of ZVI particle to form “anchors”, while the xanthan present in the solution provides stability to the 

biopolymer structure. The presence of a continuous biopolymer gel structure and the adsorption of GG confer a great stability to  

ZVI dispersed in BMS.



Fig. 14 Schematic representation of the structure formed by the interaction between XG and GG molecules

 

Fig. 15 Schematic representation of interaction among XG, GG and a ZVI particle

The synergetic effect of mixing XG and GG that arises from the formation of a polymeric network structure was verified by  

yield stress tests. In Table 3 the yield stress of solutions of GG (3 g/L), XG (3 g/L) and BMS (XG/GG = 1:19, 3 g/L) is reported.  

XG and GG solutions are characterized by a yield stress of 0.12 Pa and 6.58×10-3 Pa, respectively; however, when a GG solution 

is amended with a small amount of XG , the yield stress increases by 2 orders of magnitude. When the yield stress of the polymer  

solution exceeds the downward stress exerted by the particle, the suspension is stable over long period. Thus, comparing these two  

stresses can provide a direct evaluation of the effectiveness of polymer solutions in stabilizing suspended particles. The downward  

stress exerted by an iron particle (Table 3) can be calculated according to the expression:



where d is the particle diameter,  is the density of the particles (7900 kg/m3),  is the density of the fluid (1000 kg/m3), g is the 

acceleration of gravity. The yield and downward stress values are reported in Table 3 and prove quantitatively the efficacy of low-

concentration BMS in stabilizing both MZVI and NZVI.

Table 3 Comparison of biopolymer yield stress and particle downward stress and estimation of suspension stability 

Downward stress of iron particle (Pa)
H4 B200 N25S

0.46 5.27×10-2 5.61×10-4

Gel Yield stress of polymer solutions (Pa) Yield stress of polymer solutions after partial 
adsorption on iron (Pa)

GG
(3g/L)

6.58×10-3 2.37×10-3

very unstable
5.11×10-4

very unstable
1.51×10-4

very unstable
XG

(3g/L)
0.123 3.2×10-2

very unstable
1.69×10-2

Unstable
5.78×10-3

stable

XG/GG=1:19 
(3g/L)

0.478 0.470
stable

0.443
very stable

0.389
very stable

Conclusions
Previous studies have demonstrated that both GG and XG can improve the stability of concentrated micro- and nanoscale  

iron  particles  (e.g.,  20  g/l).  These  polymers  can  adsorb  to  the  surface  of  ZVI particle  preventing  particle  aggregation  and  

sedimentation, thanks to an increase in the viscosity of the suspension. 

Here, we proposed a strategy to increase the static viscosity of ZVI suspensions while lowering their dynamic viscosity, thus  

facilitating the injection and flow in porous media, without increasing the polymer concentration. Using low-concentration XG 

and GG mixtures (XG/GG = 1:19, at 3 g/l) we found that, due to the synergistic interaction of these two gums, a viscoelastic gel is  

formed,  which  results  in  long-term  (more  than  24  h)  stabilization  of  both  the  micro-  and  the  nanoscale  iron  particles  at  

concentrations as high as 20 g/l. . The stabilization effectiveness of this gel was attributed to: (i) the greater static viscosity of the 

mixture; (ii) the presence of a polymeric structure whose yield stress contrasts the downward stress exerted by the iron particles;  

(iii) the adsorption of GG molecules to the surface of ZVI particle, which has an anchoring effect on the particles, coupled to the  

stability  provided  by the  XG to  the  biopolymeric  structure.  The  marked  shear  thinning  behavior  of  the  BMS and  its  low  

biopolymer concentration guarantee low viscosity at high shear rates, facilitating the injection in the subsurface. In addition, the  

biopolymer mixtures are characterized by a thermoreversible soft elastic network structure, such that the viscosity of the solutions 

increases at low temperatures and drops suddenly at higher temperatures. This interesting property can be exploited for particles  

storage at low temperatures, and to improve injection and flowability in porous media at higher temperatures.
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Appendix

G’ storage modulus (Pa)

G” loss modulus (Pa)

downward stress of particle (Pa)

d average diameter of the particles (m)

density of the particles (kg/m3)

density of the fluid (kg/m3)

g acceleration of gravity (m/s2)

initial mass magnetic susceptibility (m3/kg)

mass magnetic susceptibility (m3/kg)
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