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An efficient discontinuous Galerkin method for
aeroacoustic propagation

R. Della Ratta Rinaldi, A. Iob and R. Arina*,†

Dipartimento di Ingegneria Aeronautica e Spaziale - Politecnico di Torino, 10129 Torino, Italy

1. INTRODUCTION

Numerical simulation of the acoustic radiation associated to fluid flow requires highly accurate
and efficient algorithms able to mimic the nondispersive and nondiffusive nature of the acoustic
waves propagating over long distances. One of the most popular numerical scheme in computa-
tional aeroacoustics (CAA) is the dispersion relation preserving algorithm originally proposed by
Tam and Webb [1]. It is designed for Cartesian or highly regular curvilinear coordinates. However,
in many practical applications, complex geometries must be considered and unstructured grids may
be necessary. One of the most promising numerical schemes able to fulfill all the above requirements
is the discontinuous Galerkin method (DGM).

The DGM was first proposed in the early 1970s by Reed and Hill in the frame of the neutron
transport [2]. Since then, the method has found its use in many different computational models.
More recently, in the context of CFD, DGM has gained an increasing popularity because of its
superior properties with respect to more traditional schemes in terms of accuracy and intrinsic sta-
bility for convection [3]. An exhaustive survey of the most important applications of the DGM for
convection-dominated problems can be found in the book of Cockburn et al. [4].

Nevertheless, it is in the context of the wave propagation phenomena in complex geometries,
governed by the Maxwell equations or the linearized Euler equations, that the DGM has proved
its superiority the most. The increasing number of papers published on the subject indicates that
the development of efficient DGMs is an active research topic. Many studies deal with the DGM
accuracy properties, such as dissipation and dispersive properties. Hu and Atkins analyzed the DGM
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in one dimension on nonuniform grids for wave propagation using the linearized Euler equations [5].
They found superaccuracy in wavenumber space of 2p C 2, which is twice the order of accuracy
of the basis functions of degree p. They also showed similar results for unstructured grids in two
dimensions [6]. Later, Ainsworth proved the conjectures of Hu and Atkins about the dispersion
and dissipation properties of the DGM in one dimension [7]. Similar analysis can be found in [8].
Examples of applications of the DGM for the solution of aeroacoustic problems are reported, among
others, in [9].

The DGM displays many interesting properties. It is compact: regardless of the order of the
element, data are only exchanged between neighboring elements. It is well suited for complex
geometries because it can be applied to an unstructured grid, even nonconformal. The expected
dispersion and dissipation properties are retained also on unstructured grids. Another advantage
of the DGM is the straightforward implementation of boundary conditions, because only the flux
needs to be specified at the boundary. One of the disadvantages of the DGM is its computational
cost. Because of the discontinuous character, there are extra DOFs at cell boundaries in compari-
son to the continuous finite elements, demanding more computational resources. This drawback can
be partially reduced with a parallel implementation of the algorithm, an operation that is not too
difficult because of the compactness property of the scheme [10, 11].

Another disadvantage of the original formulation is the need for quadrature for the weighted
residual formulation, but it can be eliminated by adopting the quadrature-free approach proposed by
Atkins and Shu [12]. Considering only elements with constant Jacobian, that is, with a linear map-
ping to the reference element, all integrals can be evaluated during the initialization step. Because
of the assumption of linear reference-element mapping, with the quadrature-free approach only
triangles and quadrangles with straight edges can be used.

In the present work, the DGM is applied to the solution of the linearized Euler equations (LEEs)
and of the acoustic perturbation equations (APE) [13], for the numerical simulation of aeroacous-
tic propagation in two-dimensional and axisymmetric geometries, with triangular and quadrilateral
elements. To improve computational efficiency, it is possible to adopt a variable interpolation order
strategy, as proposed by Chevaugeon et al. [14]. Here, a novel approach based on local error estima-
tion is proposed. The element degree is relaxed near geometrical singularities. In this way a strong
reduction in computational time is achieved, still keeping an accurate solution with respect to the
constant order case. In addition, the DGM is implemented with the quadrature-free approach. The
time discretization is based on a low dissipation formulation of a fourth-order accurate Runge–Kutta
scheme [15]. Explicit time integration, the more appropriate for acoustic wave propagation, avoids
inversion of a large algebraic system, and it is well suited for parallel computation. Along the far-
field boundaries, to avoid incoming spurious reflections, a perfectly matched layer (PML) boundary
condition is used [16]. The LEE or APE governs acoustic wave propagation in regions where the
mean flow is nonuniform. However, in the far-field the mean flow field is essentially uniform. There-
fore, to reduce the computational effort, it is possible to switch to a less computationally demanding
mathematical model. This is done by coupling the DGM with the three-dimensional integral formu-
lation of the wave equation proposed by Ffowcs Williams and Hawkings (FW-H) [17] to evaluate
directivity patterns at very long distances.

The DGM formulation and the time integration scheme are presented in Sections 2 and 3 respec-
tively. The application of the proposed DGM to the numerical solution of the LEE is presented in
Section 4, and of the APE in Section 5. The properties of the DGM, including the new variable
element degree formulation, are presented in Section 6. The coupling with the Ffowcs Williams and
Hawkings formulation is described in Section 7. Calculations of test cases are discussed in Section 8
and conclusions are drawn in Section 9.

2. QUADRATURE FREE DISCONTINUOUS GALERKIN METHOD

Considering a hyperbolic conservation equation of the form

@u

@t
Cr �F .u/D 0 , (1)
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where u is a vector of dimension Nvar and F .u/ is the flux vector. Partitioning the domain into
nonoverlapping elements �i , where i is the element index, the DGM can be obtained applying
a traditional Galerkin projection method to each element. Inside each element, the solution is
approximated by a linear combination of basis functions

u�i � vi �

NX
lD1

vi , l bl , (2)

where v is the test function, bl is the l-th basis andN is the number of DOFs on each element. Here,
according to the semidiscrete approach, the basis set contains only spatial functions and the solution
expansion coefficients vi , l are a function of time only. Then, using expansion (2) and projecting the
governing Equation (1) onto each member of the basis set, the weak form of the problem can be
written, for the �i element, as

Z
�i

bk

�
@v

@t
Cr �F

�
i

d� D
Z
�i

bk

NX
lD1

dvl
dt

bl Cr �F

!
i

d� D 0 , (3)

with 1 6 k 6 N , 1 6 i 6 I , and I being the total number of elements. To obtain an expression
that explicitly contains the flux at the element interfaces, the divergence term in Equation (3) is
integrated by parts

Z
�i

bk

NX
lD1

dvi ,l
dt

bl

!
d� C

Z
@�i

bkF i � nd� �
Z
�i

rbkF id� D 0 , (4)

where n is the outward-pointing normal versor referred to each element edge. Flux vectors F i are
approximated in terms of the basis set as [12]

F i D

NX
lD1

f i , l bl I F i � nD

NedgeX
lD1

.f i � n/l
Nbl , (5)

where f i ,l are the flux expansion coefficients, Nbl is the edge basis set and Nedge is the number of
DOFs on the element edge. Using expressions (5), the final form of the weak formulation can be
written as

Z
�i

bk

NX
lD1

dvi ,l
dt

bl

!
d� C

Z
@�i

bk

0
@NedgeX
lD1

f i � n

1
A
l

Nbl d� �
Z
�i

rbk

NX
lD1

f i ,lbl

!
d� D 0 , (6)

with k D 1, : : : ,N . In principle the integrals of Equation (6) should be evaluated for every ele-
ment of the mesh. However, it is convenient to map every element to a reference one, O�, and to
perform integrations only on this master element defined in the .� , �/-coordinate system. For trian-
gular elements, the reference element O�T is the unit right triangle with vertices .�1, �1/ D .0, 0/,
.�2, �2/ D .1, 0/, and .�3, �3/ D .0, 1/. For quadrangles the master element is the square centered
in .� , �/ D .0, 0/ with a side length lside D 2. If the mapping to the reference element is linear, the
Jacobian of the transformation J is constant and therefore it can be taken out of the integrals. In
this way the functions to be integrated are independent of the specific element and can be evalu-
ated analytically at the initialization step. This approach is called quadrature-free [12] because no
numerical integration has to be performed during the time integration. Only triangles and rectangles
with straight edges will be used in the discretization to adopt the quadrature-free formulation. The
integrals of Equation (6) can be evaluated on the reference elements and grouped to form the mass
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�!
K

 

matrix M of size N � N , the matrix Bedge of size N � Nedge, and the stiffness tensor of size 

N � N � Nvar , Z
�i

bkbld� D
Z
O�

bkbl kJik d�DM kJik ,

Z
�i

rbkbld� D
Z
O�

rbkblJ
�1 kJik d�D kJik

�!
KJ�1 , (7)

Z
@�i

edge
bk Nbld� D

Z
@ O�edge

bk Nbl k@Jlk d˙ D k@JlkBedge .

The bases ¹blº are also evaluated over the master elements: they are the Lagrangian polynomi-
als defined on the node set Tp D ¹xl I l D 1, : : : ,N º, where N is the number of nodes in the
node set. For rectangular elements, the bases are obtained as the tensor product of the corre-
sponding one-dimensional Lagrangian polynomials defined on the Gauss–Lobatto nodes. Given
the one-dimensional polynomials �l .�/ with l D 1, : : : ,N� and �r .�/ with r D 1, : : : ,N� , the
two-dimensional ones are defined as

ˆi .� , �/D �l .�/ � �r .�/ , i D 1, : : : ,N�N� . (8)

For triangular elements, the Lagrangian polynomials are constructed on a set of nodes, which is
defined in such a way that the internal-node positions are the solutions of a steady state, minimum
energy electrostatics problem, whereas the nodes along the edges are specified as one-dimensional
Gauss–Lobatto quadrature points [18].

2.1. Extension to axisymmetric problems

For axisymmetric problems, rewriting the governing equations in a cylindrical coordinate system
defined as

r D
p
x2C y2 , � D arctan

�y
x

�
, ´D ´ , (9)

the DGM in cylindrical coordinates is obtained by evaluating the integrals asZ
�

g d� D
Z
�

gr drd´ . (10)

Expanding the functions gr of each integral of Equation (4) in terms of the basis set, that is

viri �

NX
lD1

.viri /l bl , F iri D

NX
lD1

.f iri /l bl , F i � n ri D

NedgeX
lD1

.f i � n ri /l
Nbl , (11)

the final form of the weak formulation in axisymmetric coordinates can be written as

Z
�i

bk

"
NX
lD1

d .viri /l
dt

bl

#
d�C

Z
@�i

bk

2
4NedgeX
lD1

.f i � n ri /l
Nbl

3
5 d��

Z
�i

rbk

"
NX
lD1

.f iri /l bl

#
d� D 0.

(12)

Using the quadrature-free approach, the integrals of Equation (12) can be evaluated on the reference
elements and grouped to form the matrices, similarly to the two-dimensional formulation (7).

2.2. Interface flux

Because of the discontinuous function approximation, flux terms are not uniquely defined at ele-
ment interfaces. Therefore, to evaluate the flux at element interfaces, a technique traditionally used
in finite volume schemes is borrowed by the discontinuous finite element formulation.
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After the values of the numerical solution V i have been computed on every element, the flux
through an interface can be computed regardless of the type of elements or the orientation of the
coordinate system of the elements bordering the interface. The flux function F .u/ � n appearing
in Equation (4) is replaced by a numerical flux function F R .ul ,ur/, which depends on the inter-
nal interface state, on the neighboring element interface state, and on the direction n normal to the
interface. At the interface, one element is arbitrarily designated to be on the left, l , and the other
to be on the right, r . To guarantee the formal consistency of the scheme, F R is required to satisfy
the relations

F R .ul ,ur/D F .u/ � n , F R .ul ,ur/D�F
R .ur ,ul/ , (13)

which are the consistency and the conservative conditions respectively. In the present work, the
Riemann flux F R is approximated by the local Lax–Friedrichs flux of the form

F R .ul ,ur/D
1

2
ŒF .ul/CF .ur/� #kakmax .ul � ur/	 , # > 0 , (14)

where kakmax is the maximum (absolute value) of the eigenvalues of the Jacobian matrix associated
to the normal flux F .u/ � n and # is an upwind parameter. The numerical solution of the weak for-
mulation may correspond to either a physical mode or a spurious mode depending on the value of
# , as demonstrated by Ainsworth [7].

The local Lax–Friedrichs formula, with # D 1, one of the simplest Riemann flux formulations,
is commonly used in many DGM implementations because of its low operational cost [12]. In this
case the spurious mode is damped so quickly that it seldom has an influence in practical simulations.

3. TIME INTEGRATION

Time integration is performed using a fourth-order, six-stage Runge–Kutta scheme that has low
dispersion and dissipation errors [15].

Classical third-order and fourth-order Runge–Kutta schemes provide relatively large stability lim-
its [19] but, for acoustic calculations, the stability consideration alone is not sufficient, because the
Runge–Kutta schemes retain both dissipation and dispersion errors. Hu et al. [20] have shown that
to get time-accurate solutions in wave propagation problems, time steps much smaller than those
allowed by the stability limit of the classical Runge-Kutta schemes must be used. This constraint
certainly undermines the efficiency of the classical integration schemes.

Instead of choosing the coefficients of the Runge–Kutta scheme to optimize the maximum order
of accuracy, it is possible to select coefficients to minimize the dissipation and the dispersion errors.
Moreover, this optimization does not introduce additional stability constraints and sufficiently large
time steps can be used, which therefore increase the efficiency of the computation.

The Runge–Kutta scheme is implemented using the low-storage Willamson’s formulation, which
only requires two storage locations per variable [21]. The low storage requirement is important for
computational acoustic applications where a large memory use is expected.

4. LINEARIZED EULER EQUATIONS

The propagation of sound waves in a medium with nonuniform mean velocity U0, neglecting
fluid viscosity and heat conduction, is governed by the LEE [22]. Depending on the case under
consideration, a two-dimensional or an axisymmetric formulation is used.

4.1. Two-dimensional formulation

Considering a steady two-dimensional mean flow, LEE is formulated as

@u

@t
C
@F x

@x
C
@F y

@y
CG D S , (15)
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where u D Œ
0, u0, v0, p0	T is the unknown vector and the superscript ../0 denotes the acoustic
fluctuations. 
0 and p0 are the density and pressure fluctuations, respectively, and .u0, v0/ are the
components of the velocity fluctuations in .x, y/ directions. F x and F y are the fluxes along x
and y directions, respectively, G contains the mean flow derivatives and S represents the acoustic
sources. The fluxes, F x and F y , and the term G have the following expressions:

F x D

0
BBBB@


0u0C 
0u
0

u0
0u
0C p0

u0
0v
0

u0p
0C �p0u

0

1
CCCCA , F y D

0
BBBB@


0v0C 
0v
0

v0
0u
0

v0
0v
0C p0

v0p
0C �p0v

0

1
CCCCA ,

G D

0
BBBBBB@

0

.
0u
0C 
0u0/

@u0
@x
C .
0v

0C 
0v0/
@u0
@y

.
0u
0C 
0u0/

@v0
@x
C .
0v

0C 
0v0/
@v0
@y

.� � 1/
�
p0r � u0 � u

0 @p0
@x
� v0 @p0

@y

�

1
CCCCCCA

. (16)

In the above expressions subscript ../0 denotes mean flow quantities and � is the specific heat ratio
of air in standard conditions. It is evident from Equation (16) that, in order to solve the LEE, the
mean flow field must be known in advance.

4.2. Axisymmetric formulation

Considering axisymmetric geometries, the LEE can be written in cylindrical coordinates as

@u

@t
C
@F ´

@´
C
@F r

@r
CG axyCG D S , (17)

where uD Œ
0, u,0 v0, w0, p0	T is the acoustic perturbation vector. Here, .u,0 v0, w0/ are the velocity
components in .´, r , �/ direction, respectively. F ´ and F r are the fluxes along ´ and r directions
respectively, G axy contains terms of the mean flow because of axisymmetry, G contains the mean
flow derivatives and S represents the acoustic sources. Assuming that the azimuthal component of
the mean flow velocity is zero, w0 D 0, the fluxes, F ´ and F r , the terms G axy and G have the
following expressions:

F ´ D

0
BBBBBBB@


0u0C 
0u
0

u0
0u
0C p0

u0
0v
0

u0
0w
0

u0p
0C �p0u

0

1
CCCCCCCA

, F r D

0
BBBBBBB@


0v0C 
0v
0

v0
0u
0

v0
0v
0C p0

v0
0w
0

v0p
0C �p0v

0

1
CCCCCCCA

, G axy D
1

r

0
BBBBBBBB@

�
0v0

�u0v0

�v0v0 �
p0

�0

0

.� � 1/ p0v0

1
CCCCCCCCA

,

G D

0
BBBBBBBBBB@

0

.
0u
0C 
0u0/

@u0
@´
C .
0v

0C 
0v0/
@u0
@r

.
0u
0C 
0u0/

@v0
@´
C .
0v

0C 
0v0/
@v0
@r

�w0
�
@u0
@´
C @v0

@r

�
.� � 1/

h
p0
�
@u0
@´
C @v0

@r

�i
� u0 @p0

@´
� v0 @p0

@r

1
CCCCCCCCCCA

. (18)
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4.3. Wall boundary conditions

Walls are assumed impermeable and acoustically rigid; this means that no flow passes through the
boundary and that acoustic waves are totally reflected. The flux normal to a wall is evaluated using
the relation

F n D F xnx CF yny , (19)

where F x and F y are evaluated with Equation (16) imposing wall conditions for pressure and
velocity fluctuations. Assuming that the mean flow satisfies the slip flow boundary condition, an
analogous slip flow condition must be imposed on the velocity fluctuations

u0w D 0 , (20)

where u0w D u
0
w � n is the acoustic velocity normal to the wall and n is the normal versor.

A vector V can be modified to have zero normal component, with respect to the normal n, by
replacing it with a vectorW defined as

W D V � .V � n/n , so that W � nD 0 . (21)

Therefore, on a wall boundary, the acoustic velocity at the time j C 1 is evaluated as�
u0w
�jC1

D
�
u0w
�j
�
h�
u0w
�j
� n
i
n . (22)

The pressure fluctuations at the wall are evaluated linearizing the exact solution of the Riemann
problem for a reflective wall [23]. This solution, in two dimensions, can be written as�

p0w
�jC1

D
�
p0w
�j
C p0

�

c0

�
u0w
�j

, (23)

where the mean flow velocity is assumed tangent to the wall.
To show the accuracy of the wall boundary formulation the case of a monopole near a wall is

considered. The normal velocity component in a point on the wall is plotted as a function of time
(Figure 1). It is evident that using Equations (22) and (23) the solution is more accurate than taking
the value of the pressure from neighbor cells, as usually done in DGM.

4.4. Nonreflecting boundary conditions

One of the major issues in CAA is to truncate the far-field domain preserving a physically meaning
solution. This leads to the necessity of having accurate and robust nonreflecting far-field boundary
conditions. A large number of families of nonreflecting boundary conditions has been proposed in
the literature. The most widely used for the Euler equations are the characteristic-based boundary

-3e-05

-2e-05

-1e-05

0

1e-05

2e-05

3e-05

100 120 140 160 180 200 220 240 260

u’
w

[-
]

t [-]

Figure 1. Normal velocity at wall as a function of time. Pressure wall boundary condition : ı based on
linearized solution of the Riemann problem;� value from neighbor cells.
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conditions [24, 25]. These methods are derived applying the one-dimensional characteristic vari-
able splitting along the boundary normal direction. These techniques have proved to be efficient
and robust. The main drawback is that reflections are prevented only for waves that are traveling
in the boundary-normal direction. Non-negligible reflections can be seen for waves impinging the
boundary with other angles.

Another family of nonreflective boundary conditions is composed by the buffer zone tech-
nique [26]. In this case, an extra zone is added to damp the reflected waves. The damping can be
introduced as a low-pass filter, grid stretching or accelerating the mean flow to supersonic speeds.
The main drawback of these techniques is represented by the increase of the computational cost,
because the thickness of the buffer zone could be important to achieve a good level of accuracy.

Recently, the PML technique has been developed as a new class of nonreflective boundary con-
ditions. The basic idea of the PML approach is to modify the governing equations to absorb the
outgoing waves in the layer. The advantage of this technique is that the absorbing layer is the-
oretically capable of damping waves independently from the impinging direction and frequency,
employing thinner layers with respect to the other buffer zone approaches, with benefits on the
efficiency and the accuracy of the solution.

The PML technique was extended to CAA applying the split physical-variable formulation to the
LEE with uniform mean flow [27]. It was shown that the PML absorbing zone is theoretically reflec-
tionless to the acoustic, vorticity and entropy waves. Nonetheless, a numerical instability arises in
this formulation, and the presence of instability waves has been analyzed by Tam et al. [28]. It was
shown [29] that the instability of the split formulation is due to an inconsistency of the phase and
group velocity of the acoustic waves in the presence of a mean flow, and a stable PML for the LEE
was proposed on the basis of an unsplit physical-variable formulation. This approach, which has
been also extended to nonuniform mean flows [16], is employed in the present work.

The PML formulation is also used to impose incoming waves at acoustic inlet boundaries. On
those boundaries incoming waves should be specified, but at the same time outgoing waves should
leave the computational domain without reflections. This can be achieved by applying the PML
equations to the reflected wave, ure [30], which can be expressed as the total acoustic field, u, minus
the incoming prescribed acoustic wave, uin.

5. ACOUSTIC PERTURBATION EQUATIONS

Linearized Euler equations support hydrodynamic instability waves, such as the Kelvin–Helmholtz
ones; therefore, when the mean flow is nonuniform, instabilities may occur. To overcome this prob-
lem a variant of these equations, called APEs, has been derived [13]. In contrast to the LEE, in
the APE the nonacoustic modes of vorticity and entropy are neglected. Thus, they are stable for
arbitrary mean flow fields, that is, no instability waves, as in the LEE, can occur. Furthermore, the
source term of the APE fully controls the perturbation vorticity in the solution, that is, no vorticity
can exist beyond the source regions. On the other hand, the wave operator in the left-hand side of
the APE, is exact only in the case of irrotational mean flow fields; consequently, the presence of
mean vorticity may cause errors in the computed sound propagation. These errors are assumed to be
small for low mean vorticity levels [13]. There are several formulations for the APE; in this work the
APE-4 system [13] is used. Assuming two-dimensional Cartesian coordinates and constant sound
speed c0, APEs are expressed as

@q

@t
C
@F x

@x
C
@F y

@y
D QS , (24)

where q D Œp0,u0, v0	T , and the expressions for the fluxes are the following:

F x D

0
B@

u0p
0C 
0c

2
0u
0

p0=
0C u0u
0C v0v

0

0

1
CA , F y D

0
B@

v0p
0C 
0c

2
0v
0

0

p0=
0C u0u
0C v0v

0

1
CA . (25)

The boundary conditions associated with the APE are the same as used for the LEE.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 69:1473–1495
DOI: 10.1002/fld
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6. PROPERTIES OF THE DGM

6.1. Dispersion and dissipation errors

To test the dissipative and dispersive properties of the high-order DGM, following Ainsworth [7], a
plane wave with a real wave number k D �=2 propagating along the x-axis of a duct in a medium
at rest is considered. Different structured regular grids are taken into account with 1.026 h6 4.36,
where h is the average cell size. As will be seen later, because of the local nature of the DGM,
the type of the grid used has no impact on the accuracy of the solution. Because of the numerical
discretization, the exact wave number k is replaced by a discrete one, identified as Qk. The relative
error between the analytical and the numerical solutions can be defined as


D
eihk � eih

Qk

eihk
� ih

�
k � Qk

�
, (26)

The error 
 is a complex number whose real part represents the dispersive error and the imagi-
nary part the dissipative error. It is demonstrated that as the degree of the Lagrangian basis p is
increased, the dissipation and dispersion errors pass through three different phases depending on
the value of kh. In the unresolved regime where 2p C 1 < kh � o.kh/1=3, the error oscillates
without decay as the order is increased. At the opposite extreme, if the order is sufficiently large,
2pC1 > kh�o.kh/1=3, then the error reduces at a super-exponential rate. In the limit of kh << 1,
the relative error converges as

dispersion error W O.kh/2pC3 ,

dissipation error W O.kh/2pC2 .

Although most analysis of dispersive behavior are performed under the assumption that kh << 1,
in many practical applications the value of kh is imposed by the smallest mesh size h that can be
resolved by the available computational resources, rather than the highest frequency of physical
interest. Therefore, the computations are often performed with kh > 1. In Figure 2, dissipation and
dispersion errors are reported for some values of kh D O.1/ and p D 4. It can be shown that
as kh decreases towards kh << 1 both errors converge to the predicted super-exponential rate of
decay. Choosing the arbitrary criteria of having both the dispersion and dissipation errors less than
Emax D 5 � 10

�4, the accuracy limit of the method is equal to =h� 2. This means that, for p D 4,
two elements per wavelength are sufficient to discretize the wave with the chosen accuracy.

1e-07

1e-06
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1e-03
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1e+00

1e+01
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L
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or

)

L
1(e

rr
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)

kh kh

1e-07
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1e-03
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1e-01

1e+00

(a) (b)

Figure 2. Dispersion (a) and dissipation (b) errors. (—) Super-exponential rate of decay, (� � � ) numerical
results, p D 4.
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6.2. Accuracy

To asses the accuracy of the numerical method for different grids, the propagation of a Gaussian
acoustic pulse in a medium at rest is studied. In this case the LEE and APE models coincide, being
the wave propagation governed by the homogeneous wave equation. The acoustic pulse is generated
at t D 0, at the origin of the axis as an initial disturbance of equation p0D �ace

�˛acr
2
, with �ac D 0.01

and ˛ac D 0.0752. The pressure distribution is reported in Figure 3(b)). Several computations were
performed on the fixed domain Œ�90, 90	� Œ�90, 90	 increasing the number of mesh elements. The
results are obtained using both structured and unstructured grids (see Figure 3(a)). Being interested
only in the spatial accuracy, the time step was chosen to be sufficiently small such that the error
would be dominated by the spatial operator. The L1-norm of the error for the acoustic pressure is
evaluated as

L1 D

DOFX
iD1

jpi � pi exactj

DOF
, (27)

where DOF are the the degrees of freedom, that is the number of elements I times the number of
nodes per element Nn. In Figure 4 the L1-norm is plotted as a function of the square root of the

(a) (b)

Figure 3. Accuracy test case: (a) unstructured example-mesh and (b) fluctuating pressure field of a Gaussian
pulse at t D 60.
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Figure 4. Accuracy for the pulse test case, using Lagrangian basis of degree p D 3 (ı) and p D 7 (�). (� � � )
Structured grids, (– �� –) unstructured grids, (—) theoretical rates of decay (pC 1).
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DOFs, for Lagrangian basis of degree p D 3 and p D 7. One of the major motivations for employ-
ing a DGM is its ability to maintain accuracy in the case of complex geometries. The numerical
tests show that in both cases, structured and unstructured grids, DGM converges at the designed rate
of pC 1.

6.3. Variable element degree

One of the main advantages of the DGM is the compactness of the stencil allowing an easy imple-
mentation of a variable element degree algorithm. The approach is useful in the presence of very
small cells, necessary for correctly resolving geometrical details. Curved boundaries can also be
resolved using geometrically high-order elements. However, the generation of high-order curved
meshes is not trivial and the quadrature-free approach does not apply to elements with varying
Jacobian [3, 31]. On the other side, a high-order discretization with many small straight-edge
elements implies extremely small time steps to satisfy the CFL stability condition. Relaxing the
discretization order reduces the stability constraint, leading to a strong reduction in computational
time keeping an accurate solution with respect to the constant order case.

The interface flux evaluation has to be modified when considering elements with variable degree.
Because the interpolation order may vary from one element to the next, variables on interfaces have
to be projected on the neighboring functional spaces. On the interface between two neighboring
elements, a generic variable u can be expanded either in terms of the left-side basis set,

°
bLj

±
, or in

terms of the right-side one
°
bRj

±

uD

NX
jD1

uRj b
R
j D

MX
iD1

uLi b
L
i . (28)

To project the left-side basis set onto the right-side one, the weak form of Equation (28) reads

Z
�

bRk

NX
jD1

uRj b
R
j d� D

Z
�

bRk

MX
iD1

uLi b
L
i d� , 16 k 6N , (29)

where the test functions are the basis of the right side of the interface. Integrals (29) can be grouped
to form mapping matrices C as

CRR D

Z
�

bRk b
R
j d� , CRL D

Z
�

bRk b
L
i d� , (30)

obtaining

uR D
�
CRR

��1
CRLuL . (31)

Similarly, mapping R onto L leads to

uL D
�
CLL

��1
CLRuR . (32)

The element degree is distributed according to the law suggested by Ainsworth [7]

2pC 1� adhk , (33)

where p is the local polynomial order, h is the local element size and k is the highest wave number
of the signal to be resolved. One can choose the lowest degree to use so that the desired accuracy is
achieved. The constant ad is then calculated applying Equation (33) to the element with the smallest
size. The advantages of using this approach are clearly shown in Section 8.2.
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6.4. Parallelization

To parallelize the computation, the domain must be subdivided into a number of polygonal parti-
tions. The partitioning is achieved using the open-source package METIS [32], which attempts to
balance the load and minimize the communication among the processors. Once the domain has been
partitioned, the computation in each partition is assigned to a separate processor. Every processor
resolves its own subdomain and, during the calculation, the only communications among the pro-
cessors take place when evaluating the interface fluxes. Therefore, the parallelization of the scheme
is rather simple: the data that need to be exchanged are the left and right values of the field on each
interface element of the partition boundary, prior to the computation of the fluxes on those interface
elements. This limited intercommunication between partitions is one of the positive features of the
explicit DGM, leading to an efficient parallelization. At the end of the computation the global solu-
tion is gathered on the master processor which does the output. All the communications between the
partitions were implemented using the Message-Passage-Interface (MPI) (University of Tennessee,
Knoxville, Tennessee) interface.

The parallel performance of the present method is shown in Figure 5, where the speed up is plot-
ted versus the number of processors. The numerical curve follows an interpolation line of slope 0.97,
which is very close to the theoretical linear scaling. The results of Figure 5 are obtained solving the
acoustic pulse test case presented in Section 6.2, with a structured grid of approximately 22, 000
triangular elements and Lagrangian basis of degree p D 7, that is, with approximately 800, 000
nodes. At the boundaries, wall condition is imposed. The scalability calculations were performed
on the cluster of Hepia, Genève, composed of 14 twin boards, each with a double CPU quad core
Intel Xeon E5530 (©Intel Corporation, 2200 Mission College Blvd. Santa Clara, CA 95054-1549
USA) at 2.40 GHz for a total of 224 cores with InfiniBand connection.

7. FFOWCS WILLIAMS AND HAWKINGS FORMULATION COUPLING

Because in the far-field the mean flow is essentially uniform, it is possible to switch in this part of
the domain to a less computationally demanding mathematical model such as the wave equation to
reduce the computational effort. This can be done by coupling the DGM with the three-dimensional
integral formulation of the wave equation proposed by Ffowcs Williams and Hawkings [17]. Know-
ing the acoustic field on a control surface, it is possible to calculate the acoustic pressure at very
long distances evaluating only two integrals over the surface itself, and the computational cost does
not depend upon the position of the listener. Far-field directivities can be computed very efficiently.
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Figure 5. Scalability of the DGM. (—) Linear scaling, (� � � ) numerical speed up.
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The control surface must be located in a region where the mean flow field is almost uniform and
the LEE or APE solution is known. In this way it is ensured that the control surface, treated as a
permeable closed surface, contains in its interior all the noise sources. For a uniform mean flow of
Mach number M and aligned with the ´ axis, the FW-H integral can be written, in the frequency
domain, for a Cartesian coordinate system as [33, 34]

H .f / c02 O
 .y,!/D�
Z
�

I! OQ.�,!/G .yI �/ d� �
Z
�

OFi .�,!/
@G .yI �/
@yi

d� , (34)

where � defines the integration surface, � are the surface coordinates and y are the listener coordi-
nates. Moreover, considering that the present FW-H formulation will be applied only to problems
where there is no noise contribution because of turbulence, the quadrupole term in Equation (34) is
omitted.

The Green’s function G is defined as

G D�
1

4�Rˇ
e�Ik.R=ˇ�M´=ˇ2/ , (35)

with k D !=c0, R D
q
.x � �/2C .y � �/2C .´� �/2 =ˇ2, M D w0=c0 and ˇ D

p
1�M 2.

The source terms OQ and OFi are obtained by evaluating the functions Q and Fi defined in the time
domain as

Fi D
�
ıij
�
p0C p

0
�
C
�

0C 


0
� �
u0i �w0ı3i

� �
u0j Cw0ı3j

�
C 
0w02ı3iı3j

	
Onj , (36)

QD
��

0C 


0
� �
u0i Cw0ı3i

�
� 
0w0ı3i

	
Oni , (37)

and then applying the Fourier transform. Oni is the outward directed unit normal vector to the surface
� . A prime denotes the acoustic perturbations from free stream conditions ../0. The quantities neces-
sary to computeQ and Fi are extracted from the acoustic field solved with the DGM. When dealing
with axisymmetric problems, near-field calculations are performed only in the .x, ´/ plane; how-
ever, because the FW-H model is fully three-dimensional, the acoustic field must be reconstructed
over the whole three-dimensional integration surface. The points of the integration surface on the
plane � D 0, with y=x D tan� , are localized inside the near-field mesh and then the corresponding
acoustic values are interpolated from the nodal values of the element containing the surface point.
The acoustic values are then extended on the whole three-dimensional integration surface using the
axisymmetric condition.

8. NUMERICAL RESULTS

To demonstrate the accuracy of the method, several numerical tests have been performed. For all
the reported test cases, if not explicitly indicated, the variables are made nondimensional by the
reference mean-flow values, that is, c0, 
0, p0 and by a reference length, chosen accordingly to the
considered case. Moreover, the mean flow is computed analytically in the initialization step.

8.1. Multigeometry scattering problem

The scattering of sound generated by a spatially distributed monopole source from three rigid circu-
lar cylinders is considered, as defined in the Fourth Computational Aeroacoustics (CAA) Workshop
on Benchmark Problems [35]. This case provides a severe test of the ability of the DGM to resolve
complex geometries. The acoustic-scattering problem is governed by the LEE, where the time-
dependent acoustic-source term on the right-hand side is different from zero only for the energy
equation. In this case, LEE and APE coincide because no mean flow is present. The forcing term
Senergy is a Gaussian function and can be written in a source-centered coordinate system as

Senergy D �exp



� ln.2/ �

�
x2S C y

2
S

b2

��
sin .!t/ , (38)
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where � D 1, ! D 8� and b D 0.2. The cylinders have unequal diameters (D1 D 1.0, D2 D 0.75,
D3 D 0.75), with the source located on the x-axis in .0, 0/. In the .xS ,yS /-coordinate system
centered on the source, the locations of the cylinders are given by L1 D .�3, 0/, L2 D .3, 4/
and L3 D .3,�4/. Considering the symmetry of the problem, only the y > 0 half-domain can
be considered, treating the x-axis as an acoustically rigid wall. The physical domain extends for
x 2 Œ�8, 8	, y 2 Œ0, 7.5	 and is surrounded by a PML region with a thickness equal to 1.5. This
domain is discretized with approximately 50, 000 elements (Figure 6(a)). To optimize the com-
putational time, the variable interpolation order approach is used. The distribution of the degree
of elements can be seen in Figure 6(b). On the x-axis and on the surface of the cylinders the
mesh is refined and the lowest order p D 3 is used. Moving towards the far-field boundaries the
mesh becomes coarser and the polynomial degree increases up to p D 7, following distribution in
Equation (33). In this test case, the grid and the monopole frequency considered give ˛d � 25 in
Equation (33).

Figure 7 shows the isocontours of the computed mean-square fluctuating-pressure field over the
entire resolved portion of the computational domain, including the PML. In Figures 8 and 9, the
RMS of the fluctuating pressure is plotted along the center line and on the surface of the cylinders.
Figure 9 shows a very good agreement between the numerical and the analytical solution [35].

8.2. Sound propagation around a high-lift airfoil

The scattering of a monopole source, in a medium at rest, from a high-lift airfoil geometry is con-
sidered here to assess the efficiency of the variable-element degree approach. Also in this case,

(a)

(b)

Figure 6. Multigeometry scattering problem: (a) mesh of internal and PML domains and (b) element degree
distribution.
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Figure 7. Root-mean-square (RMS) of the fluctuating pressure field.

Figure 8. RMS of the fluctuating pressure along the x axis.
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Figure 9. RMS of the fluctuating pressure on the surface of the cylinders: (ı) numerical, (—) analytical;
(a) left cylinder and (b) top cylinder.

LEE and APE coincide because no mean flow is present. The geometry is a three-element air-
foil based on the RA16SC1 profile, with the slat and flap deflected by 30ı and 20ı, respectively.
The chord in fully retracted configuration is 0.480 m and the computational domain extends for
.x,y/ 2 Œ�0.9 mI 0.9 m	 and it is surrounded by vertical and horizontal PML layers with a thick-
ness of 0.1 m. The domain is discretized using an unstructured grid with about 6700 elements, as
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(a) (b)

Figure 10. High-lift airfoil case: (a) mesh of internal and PML domains and (b) element degree distribution.
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Figure 11. Mesh refinement of the (a) slat and (b) flap.

shown in Figure 10(a). The grid is refined in proximity of the slat and of the flap (see Figures 11(a)
and (b)), whereas it is coarse in the outer region where there is free space propagation.

The only acoustic source is a monopole placed near the trailing edge of the slat, forcing the energy
equation as

Senergy D � exp



� ln.2/ �

�
x2S C y

2
S

b2

��
sin .!t/ , (39)

with ! D 2�f , f D 5000 Hz, � D 1 Pa, b D 0.01 m and .xS ,yS / D .0.02 m, 0.02 m/. Different
computations are performed with a constant element degree, from p D 3 to p D 7 and with the
variable element degree approach. In the latter case the element degree is relaxed in proximity of
the airfoil from p D 7 to p D 3 following Equation (33), with ˛d � 43. The distribution of the
element degree is shown in Figure 10(b). The solution obtained with a constant element degree of
p D 7 is taken as reference solution. Figure 12 shows the pressure distribution for the reference
solution when a periodic regime is reached.

To compare the solutions obtained using constant and variable element degree, the RMS of the
acoustic pressure distribution is extracted on a circle centered in .0, 0/ with a radius of 0.7 m. From
Figure 13 it is evident that the variable order solution is in excellent agreement with the reference
one, whereas the other cases suffer from the error because of under-resolution in the coarse region.
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Figure 12. Instantaneous pressure field after 30 periods, Pa.
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Figure 13. Directivity of acoustic pressure RMS at 0.7 m. Comparison of constant and variable element
degree.

The advantage of using a variable element degree approach is noticeable comparing both the error
with respect to the reference solution and the computational time (see Table I). With the variable
element degree distribution the simulation is three times faster than the reference solution and the
error is limited to 4.12 � 10�4. Whereas a constant distribution with p D 6 is only 1.35 times faster
than the reference solution but has an L1-error of 1.17 � 10�2.

8.3. Munt and extended Munt problems

To further validate the numerical model and to verify the effectiveness of the coupling with the FW-
H formulation, the acoustic diffraction of a plane wave propagating out of a semi-infinite cylindrical
duct is studied. The duct wall has no thickness with acoustically rigid inner and outer surfaces. Two
configurations are studied: in the first one, termed ‘Munt problem’, the geometry consists of a single
cylindrical duct, whereas in the second one, termed ‘Extended Munt problem’, inside the duct there
is a rigid infinite hub. The two configurations are depicted in Figures 14(a) and (b). For the ‘Munt
problem’ the analytical solution has been found in [36] and it has been subsequently generalized
for annular ducts and lined walls [37–39]. Results for these test cases are presented in dimensional
variables. In both cases presented here LEEs are used.
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Table I. L1 norm of error and normalized computational time with respect
to the reference solution (constant element degree of p D 7). The evalua-
tion of the error is achieved on the RMS of the acoustic pressure extracted

on a circle centered in .0, 0/ with a radius of 0.7 m.

L1 (Error) Normalized time

Constant element degree
p D 3 8.72 � 10�2 0.10
p D 4 6.43 � 10�2 0.29
p D 5 3.46 � 10�2 0.54
p D 6 1.17 � 10�2 0.74
p D 7 - 1
Variable .p D 3! p D 7/ 4.12 � 10�4 0.34

For the ‘Munt Problem’ the mean flow is assumed to be at rest both inside and outside of the duct,
with a speed of sound equal to c0 D 340.17 m/s and a density equal to 
0 D 1.225 kg/m3. Because
the analytical solution is available only for points at great distance from the cylinder exit, it is not
possible to compare directly the solution of LEE obtained using the DGM with the analytical one.
Instead, LEEs are solved only in a small computational domain, the near-field domain, and then
the far-field solution is evaluated from the near-field one using the Ffowcs Williams and Hawkings
equation. The far-field results are then compared with the analytical solution.

Assuming a duct radius of r1 D 1.212 m, the near-field computational domain extends for
´ 2 Œ�2.5 mI 5.5 m	 and for r 2 Œ0.0 mI 3.9 m	, and is surrounded by vertical and horizontal PML
layers with a thickness of 0.5 m. This domain is discretized using a uniform structured grid with
about 35, 000 triangular elements and the computation is performed using Lagrangian polynomials
of degree p D 3. For the far-field computation the integration surface is a cylinder with radius 1.24
m closed in the fore region by a semisphere centered at the duct exit plane. The surface is discretized
with a grid, uniform in both ´ and � directions. The number of points per wavelength on the inte-
gration surface is chosen to be larger than the corresponding value for the near-field acoustic mesh.

(a) (b)

Figure 14. (a) Munt problem geometry and (b) extended Munt problem geometry.
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Figure 15. Munt problem: plane wave f D 956 Hz, M1 DM2 D 0; (a) near-field pressure distribution, Pa;
(b) far-field Sound-Pressure-Level (SPL) directivity at r D 46m.
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A plane wave with unitary incident intensity and frequency equal to 956 Hz is studied. In
Figure 15(a) the near-field instantaneous pressure field is shown, whereas in Figure 15(b) the corre-
sponding far-field SPL directivity pattern is presented. The directivity is evaluated on an arc having
the center defined at the center of the duct exit section and radius equal to r D 46 m. The agreement
between the numerical and the analytical solution is very good.

For the ‘Extended Munt Problem’, there is a mean flow velocity inside the duct, with Mach num-
ber equal to 0.447, whereas the fluid outside the duct is at rest. There is no shear layer between
the two flows, instead they are separated by a vortex sheet. Assuming a duct radius r1 D 1.212 m
and a hub radius r2 D 0.947 m, the computational domain extends for ´ 2 Œ�2.5 mI 6.5 m	 and
for r 2 Œ0.0 mI 5.8 m	, and it is surrounded by vertical and horizontal PML layers with a thickness
of 0.5 m. This domain is discretized using a uniform structured grid with about 5000 quadrangular
elements and the computation is performed using Lagrangian polynomials of degree p D 6.

The incoming wave is planar varying harmonically in time with frequency 866 Hz and its
amplitude is such that the incident intensity is unitary. In Figure 16(a), the instantaneous pres-
sure distribution is reported, whereas Figure 16(b) shows the comparison of the computed SPL with
the analytical solution [39]. The directivity in the near field is evaluated on an arc having the center
defined at the center of the duct exit section and radius equal to r D 4.848 m. The agreement with the
analytical results is good, with a correct representation of the lobes in the directivity pattern, except
for a small discrepancy at � � 40ı, because in the numerical computation the Kutta condition is not
explicitly imposed as in the analytical solution.

8.4. Kelvin–Helmholtz instability

The problem considers the propagation of the sound generated by a monopole placed in a bounded
mean shear flow aligned with the x axis. The mean flow is analytically provided. In this case the
LEE and APE solutions differ. The APE solution does not give rise to Kelvin–Helmholtz instability
as in the case of the solution of the LEE.

0

20

40

60

80

100

120

140

40 20 0 20 40 60 80 100 120 140

SP
L

 · 
si

n(
α)

, d
B

SPL · cos(α), dB

Analytical Results
Numerical Results

(a) (b)

Figure 16. Extended munt problem: plane wave f D 866 Hz ,M1 D 0.447,M2 D 0; (a) near-field pressure
distribution, Pa; (b) near-field SPL directivity at r D 4.848 m.

Figure 17. Kelvin–Helmholtz Instability: mesh of the internal and PML domain.
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The monopole is placed at the center of a two-dimensional duct with hard walls. The duct extends
in the x-direction from�1 to 7 and in the y-direction from�1 to 1. At the two sides of the duct, PML
layers of thickness 0.8 are added, enabling the acoustic waves to leave without spurious reflections.
The computational domain is discretized with about 15, 000 elements (Figure 17) and polynomials
of constant order p D 3 are used.

The mean velocity profile of the mixing layer is given by the expression

u0.y/D
1

2



.U1CU2/C .U1 �U2/ tanh

�
2y

ı

��
, (40)

and the mean density profile is


0.y/D
1

T0.y/
. (41)

The mean temperature T0.y/ is determined by the Crocco relation for compressible flows with
� D 1.4, and reads

T0.y/D T1
u0 �U2

U1 �U2
C T2

U1 � u0

U1 �U2
C
� � 1

2
.U1 � u0/ .u0 �U2/ . (42)

The flow parameters are [16]:

U1 D 0.8, U2 D 0.2, ı D 0.4, T1 D 1, T2 D 0.8 . (43)

Mean velocity along the x axis and density profiles in y direction are reported in Figure (18). Adding
the following monopole source term to the energy equation

Senergy D sin.1.5t/e� ln.2/.x2Cy2/=0.052 , (44)

it follows that the forcing frequency is of the same order of magnitude of the momentum thickness
of the mean shear flow. Under these conditions it can be shown [40] that the vortical mode is excited
and hydrodynamic flow oscillations, induced by the associated Kelvin–Helmholtz instability, occur.
Figures 19(a) and (b) show the instantaneous LEE and APE solutions at t D 16, respectively. It
is noticeable that in the LEE solution the oscillating vortical mode is overwhelming the acoustical
mode, which can hardly be identified. On the contrary, in the APE solution vorticity modes are not
present and the acoustic field of a monopole in a duct is fully recognizable.
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Figure 18. (a) Mean velocity along the x axis and (b) density profile.
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(a)

(b)

Figure 19. Instantaneous pressure and x component velocity fields at t D 16: (a) Linearized Euler equations
and (b) acoustic perturbation equations.

9. CONCLUSIONS

A high-order, parallel DGM with a PML nonreflecting boundary condition treatment has been pre-
sented. The DGM has been applied to both the LEE and the APE for the numerical simulation
of aeroacoustic propagation in two-dimensional and axisymmetric problems, with triangular and
quadrilateral elements. To improve computational efficiency and accuracy a new strategy of variable
interpolation order is proposed. Moreover, the DGM has been implemented with the quadrature-
free approach and computations are parallelized. In addition, a new wall boundary condition, based
on the solution of the Riemann problem, is proposed. It is shown that it is more accurate than
extrapolating the wall values from neighbor cells, with no additional computational cost. The time
discretization is based on a low dissipation formulation of a fourth-order accurate Runge–Kutta
scheme. Coupling the DGM with the three-dimensional FW-H integral formulation of the wave
equation, it has been possible to efficiently evaluate far-field directivity patterns.

Accuracy tests have proven that, using a Lagrangian basis of degree p, the method converges
to the analytical solution with the theoretical rate of p C 1. This behavior is conserved also on
unstructured grids. Moreover, the parallel implementation achieves a near-linear speed up.

Good agreement with analytical solutions has been shown for a scattering benchmark problem
on multiple cylinders, solving the LEE in Cartesian coordinates. The accuracy and efficiency of
the variable interpolation order algorithm is assessed for a realistic high-lift airfoil. Comparing the
results with the constant order approach the accuracy is retained while reducing sensibly the com-
putational time. The ‘Munt problem’, treating the acoustic diffraction by a plane wave propagating
out of a semi-infinite cylindrical duct, with and without a uniform mean flow inside the duct, has
been computed solving the LEE in axisymmetric coordinates. The numerical far-field directivities,
obtained with the FW-H formulation, were successfully compared with the analytical solutions.

As a last case, the acoustic propagation inside a two-dimensional duct with a nonuniform mean
flow has been studied. Both the LEE and APE equations are solved, showing that the DGM is able
to correctly reproduce the hydrodynamic instabilities in the case of the LEE, and to resolve the
acoustic field in the case of the APE.

All the numerical results show that the implemented DGM is accurate and efficient, and there-
fore well-suited for solving large-scale aeroacoustic problems in complex geometries. Further
investigations will extend the present DGM to three-dimensional problems.
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