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Modeling of open quantum devices within the closed-system paradigm

Remo Proietti Zaccari&,Emanuele Ciancib,Rita C. lotti* and Fausto Ros%i
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
(Received 27 January 2004; published 10 November p004

We present an alternative simulation strategy for the study of nonequilibrium carrier dynamics in quantum
devices with open boundaries. We propose to replace the usual modeling of open quantum systems based on
phenomenological injection/loss rates with a kinetic description of the system-reservoir thermalization process.
In this simulation scheme the partial carrier thermalization induced by the device spatial boundaries is treated
within the standard Boltzmann-transport approach via an effective scattering mechanism between the highly
nonthermal device electrons and the thermal carrier distribution of the reservoir. Applications to state-of-the-art
semiconductor nanostructures are discussed. Finally, the proposed approach is extended to the quantum-
transport regime; to this end, we introduce an effective Liouville superoperator, able to describe the effect of
the device spatial boundaries on the time evolution of the single-particle density matrix.

DOI: 10.1103/PhysRevB.70.195311 PACS nuni®er73.40—c, 85.30—z, 72.10.Bg

I. INTRODUCTION replace the usual modeling of open quantum systems, based

The never-ending scaling-down of typical space and timén Phenomenological injection/loss rates, with a kinetic de-
scales in quantum optoelectronic devices leads to physic&Cription of the system-reservoir thermalization process.
conditions where the traditional Boltzmann transport th&ory Within this simulation scheme the partial carrier thermaliza-
can no longer be employed, thus demanding for reliabldion induced by the device spatial boundaries can be treated
quantum-transport approachesn spite of the quantum- Via a conventional Monte CarldMC) sampling of the Bolt-
mechanical nature of carrier dynamics in the core region ogzmann equation: this is done in terms of an effective scatter-
typical nanostructured devicgkke, e.g., semiconductor su- ing mechanism between the highly nonthermal device elec-
perlattices and double-barrier structyrésowever, the over- trons and the thermal carrier distribution of the reservoir. As
all behavior of such quantum systems often results from ave shall see, in this approach the total number of simulated
nontrivial interplay between phase coherence ancelectrons is conserveglosed picturg this is a distinguished
dissipation? the latter being primarily due to the presence ofadvantage of the proposed strategy, contrary to hybrid—
spatial boundarieA rigorous theoretical modeling of such direct numerical-integration plus MC-sampling—methods,
new-generation nanoscale devices should therefore simultavhere the total number of particles is not constéwpen
neously account for both coherent and incoherent—i.e.picture).
phase-breaking—processes on equal footing. In this context, As a second step, we shall extend the proposed particle-
a generalization to open systergtsat is, systems with open conserving kinetic approach to the quantum-transport re-
boundaries coupling them to external charge reseryoifs  gime. More specifically, similar to the semiclassical case, we
the well known semiconductor Bloch equatiai®8E9°® has  shall introduce a Liouville superoperator able to properly
been recently proposéd.Such fully microscopic treatments, describe carrier thermalization/dephasing due to the coupling
which are essential for the basic understanding of the quarwith the external reservoirs.
tum phenomena involved, are often extremely computer-time The paper is organized as follows. In Sec. Il we shall
consuming. Therefore they cannot be employed in standartgcall the standard approach and introduce the simulation
optoelectronic-device modeling and optimization where, instrategy; to show the power and flexibility of the proposed
contrast, partially phenomenologicénd computationally theoretical scheme, the latter is applied to the study of hot-
affordable model§° are usually considered. Among such carrier transport phenomena in bulk systems as well as in
simulation strategies it is worth mentioning the approachsemiconductor nanostructures, like resonant-tunneling diodes
proposed by Fischetti and co-workéfsThis is grounded on and quantum-dot devices. Section Il is devoted to the gen-
a Master Equation description derived from a rigorouseralization of the proposed simulation strategy to the
density-matrix formulation of the problem, and can be re-quantum-transport regime. Finally, in Sec. IV we shall sum-
garded as the diagonéle., semiclassicalimit of the theo- marize and draw some conclusions.
retical scheme proposed in Ref. 6. Within such partially phe-
nomenological treatments, however, the coupling of the
guantum device with external reservoirs is typically de-
scribed in terms of extremely simplified injection/loss We start by recalling the main features of the typical ap-
models®-10 proach employed in the simulation of state-of-the-art

In this paper we present an alternative simulation strateggemiconductor-based quantum devices. fLgbe the carrier
for the study of nonequilibrium carrier dynamics in quantumdistribution over the electronic statesof the device! The
devices with open boundaries. In particular, we propose t@quation governing hot-carrier transport/relaxation phenom-

II. PROPOSED SIMULATION STRATEGY
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ena in open systems may be schematically writtéfi as PP, ¢
= (5)
9= de |+ S, (1) Poa o
dt dt scat dt res I P
t follows that our transition rates should be of the form
The first term describes scattering dynamics within the
device active region and is usually treated at a kinetic level F’[m/ :Paa’fgﬂ (6)
via a Boltzmann-like collision operator of the form . , . i
whereP can be any positive and symmetric transition matrix
Ef =SS . —PS, 1) @) (Puar =P, o>0). What is important in steady-state condi-
dt “lecar % aa’’a’ Talalals tions is the ratio of the scattering rates(®) and not their

absolute values which are, in contrast, crucial in determining
hereme, is the total(i.e., summed over all relevant interac- the transient nonequilibrium response of the system. Since
tion mechanismsscattering rate from state’ to statea. our aim is to replace the injection/loss term() with the

The last term in1) accounts for the open character of the Boltzmann-like term in(4), as second requirement we ask
system and describes injection/loss contributions from/to théhat the relaxation dynamics induced by the new collision
(at least twg external carrier reservoirs. These processes arterm corresponds to the phenomenological relaxation times

usually modeled by a relaxation-time-like term of the fém in (3). This corresponds to imposing that the total out-
scattering rate—summed over all possible final states—

=y (f, - f?,) =G, - y,f., 3) coincides with the relaxation rates,:

_fa
dt res r
La=2 Py Yar (7)

herey;l may be interpreted as the ballistic transit time for an
electron in statey,’3 while f° is the carrier distribution in the
external reservoirs. The latter may correspond to the distind8y assuming—as simplest form of the symmetric transition
quasiequilibrium distributions in the left and right chemical matrix in (6)—P,, =p,P./, EQ.(7) reduces to the following
potentials, or may describe a generic nonequilibrium distri-system of equations for the unknown quantites
bution within the external reservoirs.

In spite of the kinetic nature of the scattering dynamics in > pa,le = ﬁ, (8)
(2), the contribution in3) describes carrier injection and loss o
processes on a partially phenomenological level; this, in turn, o _ )
requires hybrid simulation strateglégombining a MC sam-  Since the sum on the left is-independent, we immediately
pling of the scattering dynamics with a direct numerical in-9t: Pa™ .- Starting from this result, we finally obtain
tegration of injection/loss terms.

a

In what follows we propose to replace the conventional Pow = PaPur = M_ 9)
relaxation-time term iri3) with a Boltzmann-like operator of > Va,/fz,
the form o

d r ; The explicit form of the desired system-reservoir scatter-
d_tfa reS:2 (Paafar = Porofal, (4) ing rates entering the Boltzmann-like collision term (#)

@ may be derived by combining Eqé&) and (9). As stated
this contribution has indeed the same structure of the scattegarlier, the proposed kinetic formulation in terms of
ing operator in(2); however, the new scattering rate§,, Boltzmann-like collision operators only, is particularly suited
describe electronic transitions within the simulated regior©" & Standard ensemble-MC simulation approach, where one

induced by the coupling to the external carrier reservoirs. €8IS with & fixed number of particles. In this respect, con-

is worthwhile to stress that, contrary to the conventionalfa”y o the phenomenological model in E(), in the
injection/loss term in(3), in this case there is no particle present closed-system formulation the total carrier density is

exchange between device active region and thermal reseffot fixed by the external reservoirs and the resulting trans-
ort equation is homogeneous.

voirs. The total number of simulated particles is thereforeP ) .
To test the proposed simulation strategy, we have devel-

conserved. s : . .

Let us now discuss the explicit form of the rat§§ oped a fully three-dimension&BD) MC simulator, using as

tering Ea.(@. In the ab f tteri o basis states the product of scattering states along the field/
?Sse”_ng) tc:w(z )éte:\d -(seta?esesr(])ﬁiioon 2(;atfe”ngor?\:gggzizfgrowth direction, and two-dimensional plane waves account-
Waal T y-sSte o e ing for the in-plane dynamics. In order to properly describe
injection/loss model in3) is f,=f,, i.e., the carrier distribu-  phonon-induced energy and momentum relaxation within the
tion inside th_e device c_0|nC|des wlth the Q|str|but|on in the device active region, carrier-phonon scattering in a fully 3D
external carrier reservoirs. As a first requirement, we therefashion has been includéfl, in addition to the new

fore impose the same steady-state solutibp=f3) to the  scattering-like thermalization mechanism(#).

new collision operator ig4). This, in turn, will impose con- We start considering an extremely simple transport prob-
ditions on the explicit form of the scattering ra's,,. More  |em: a GaAs mesoscopic bulk system of lengt200 nm
specifically, from the detailed-balance principlee get® sandwiched between two reservoirs with different chemical
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0.0 04 02 0.0 0.2 0.4 ing to the two simulated experiments in Figga)l(dashed curve
k, (nm') and 1b) (solid curve. The scattering-free or ballistic resittotted

curve) is also reportedsee text
FIG. 1. Room-temperature transport properties of a GaAs me-
soscopic bulk system of lengtk 200 nm sandwiched between two @ fixed number of particles which at tinte 0 are arbitrarily
reservoirs with different chemical ~potential( e~ tignt chosen to be equally d|s_tr|buted_|n the _3D momentum space.
=50 me\). Transient dynamics of the carrier distribution in mo- Moreover, the total carrier density, which is now a free pa-
mentum space—from 1 pgdashed curveto 9 ps (thick solid rameter, has been set equal to the steady-state val@.in
curve at intervals of 1 psthin solid curves—as obtaineda) from  Contrary to the time evolution i(e), here at very short times
the conventional injection/loss model {8) and (b) from the pro-  the device region is already occupied and its charge distribu-
posed simulation strategy. tion in momentum space is almost symmetric. Only at later
times, due to the effective scattering mechanisnié we

potentials (iier— tign=50 MeV. We have applied to this Eeu(;\c:éer the asymmetric distribution of Fig(al (see solid

problem the simulation strategy previously descriljede Figure 2 shows the charge current density as a function of
Eq. (4)] and have compared the results with those of thgjme corresponding to the two simulated experiments in Fig.
conventional simulation approagsee Eq(3)]. 1(a) (dashed curveand Fig. 1b) (solid curve. At time t
Figure Xa) presents the transient carrier dynamics result=q the current is in both cases equal to zero; this is, however,
ing from the conventional injection/loss model (@). Here,  ascribed to different reasons: in Figalat t=0 the carrier
we show the time evolution of the carrier distribution in density is equal to zero while the mean velocity is different
momentum space at steps of 1 ps. Since in this model wiom zero; in Fig. 1b) the mean velocity is equal to zero
start at timet=0 with an empty-device configuration, the while the carrier density is different from zero. In spite of a
simulated experiment shows a progressive increase of thdightly different transient, both curves reach almost the
carrier distribution, which from the very beginning exhibits a same steady-state value, confirming the validity of the pro-
strong left-right asymmetry in momentum space due to thgposed simulation stratedy.
chemical-potential misalignment. This scenario manifests the The steady-state regime results from a strong interplay
open nature of the conventional approach, which does ndietween the thermalization induced by the external reser-
allow the direct use of a standard MC procedure. It is worth~oirs and the phonon-induced momentum relaxation within
while to stress that the driving force responsible for chargeghe device active region. Indeed, in the phonon-free case
transport is the difference of quasiequilibrium chemical po-(dotted curve in Fig. Pthe steady-state current—which is
tentials describing the left and right carrier distributieas  fully ballistic—reaches significantly higher values. The
tering the device active region and not the difference of car-momentum-relaxation dynamics previously mentioned is
rier concentrations within the two electrical contacts. Indeedglearly visible in Fig. 1a), where the peaks of the injected
the total(entering plus exitingcarrier density is rigorously carrier distribution are progressively shifted to lower wave
homogeneous through the whole structure since we are dealectors.
ing with a simple bulk model whose single-particle states are As a second testbed, we have considered a prototypical
plane waves. The situation is different in momentum spacesemiconductor quantum device: a GaAs/AlGaAs resonant-
where momentum-relaxation effects are observed due to theinneling diode with a barrier height of 0.24 eV and a barrier
fact that we are dealing with a quasiballistic regifhe., the  width and separation of 2.8 and 4.4 nm, respectively. Figure
ballistic motion of the injected electrons is disturbed by3 shows the current-voltage characteristics obtained from the
phonon-induced scatteringn the present simulated experi- proposed MC simulation scheme wittsolid curvg and
ment we have a total carrier concentratigvhich has been without (dashed curvecarrier-phonon scattering. The results
directly evaluated from the thermal distributiofﬁg of about  demonstrate that we are able to properly describe the typical
7x 10 cmi 3, while the left and right injected carrier con- resonance scenario. More specifically, as expected, in the
centrations are, respectively, of about 8.20 cmi3 and  presence of phase-breaking processes, like carrier-phonon
8x10% cm 3, scattering, the resonance peak is significantly reduced. Also
Figure Xb) shows again the transient evolution of thein this more realistic case the proposed simulation strategy
carrier distribution in momentum space, but obtained fromcomes out to properly describe the key phenomena under
the proposed simulation approach. In this case we deal witlnvestigation.
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iight (Se€ inset in Fig. ¥ the population ratigk may differ
significantly from the thermal-equilibrium value ifll).
More specifically, in the absence of phonon-induced inter-
level scattering\Ws=0) the population ratidR is fully dic-
tated by the carrier distributions within the reservoirs, and
may be greater than one, i.e., a population-inversion regime
may be established.
T T FoIIowmg again the proposed simulation strategy, we
voltage (mV) shall describe the effect of the system-reservoir coupling in
terms of the effective Boltzmann collision term (#). More

FIG. 3. Room-temperature current-voltage characteristics of &pecifically, for the case of our two-level system we have
GaAs/AlGaAs resonant-tunneling diodéwith barrier height

0.24 eV and barrier width and separation of 2.8 and 4.4 nm, respec-
tively) as obtained from our MC simulation scheme witolid
curve) and without(dashed curvecarrier-phonon scattering.

current density (A/cm?)
8

Ro VY,

Pr :W—y - ]
T Re+1 T T Ry +1

(12

_ _ _ whereW denotes a suitable system-reservoir coupling con-
_ As afinal example, we have considered a typical nonequistant. Analogous to Eqi11), it is easy to see that, in the
librium situation, an electrlca”y-drlven quantum'dot System.absence of Carrier-phonon scattering, such effective rates

To this end, we have adopted an extremely simplified modelyrovide as steady-state solution the desired population ratio
an electronic two-level system coupled to the phonon modeg e .

of the host materials as well as to two extertiajecting and
extracting charge reservoirgsee inset in Fig. fo P,
According to the general prescription previously intro- E:_r:RO- 13

duced[see Eq(2)], by denoting witha andb the ground and a ‘ab

excited states of our two-level system, the phonon-induced In the presence of carrier-phonon scattering as well as

scattering dynamics will be described in terms of two inter-coupling to the external reservoirs, the actual value of the

level rates corresponding to phonon absorption and emissiggopulation ratioR is the result of a nontrivial interplay be-
PS.=WAN, PS,=WA(N+1), (10) tween _carrier-_phonon interlevel scatterir)g and system-

reservoir coupling. To better understand this nonequilibrium

whereN=(e*“eT-1)"! is the Bose occupation number cor- hehavior, we have performed a few simulated experiments

responding to the interlevel energy splittidge=€,-€,. IN' based on the electrically-driven quantum-dot model pre-

the absence of coupling to the external reservoirs, regardlesgnted so far, varying the ratip=W/W® between carrier-

of the value of the carrier-phonon coupling constéfit the  reservoir and phonon-scattering coupling constants. Figure 4

steady-state solution is the thermal equilibrium one shows(a) the excited- and ground-state carrier populatifins
fed  ps N and f, and (b) their ratio’R as a function of the coupling-
Red=-L —_ba_ __B __ oAdkgT (11)  constant ratioy, for an interlevel energy splittingAe

- fed S Na + 1 L. -
a ab VB =25 meV and for a reservoir-induced population raig

In contrast, in the presence of external reservoirs character-3 at room temperature. As we can see, #6+0 (closed-

ized by different values of their chemical potentialg; and ~ System limiy the thermal-equilibrium valu&®i=1/e is re-
covered. For increasing values @gf we see a progressive

1.8 @ " " " " increase of the population ratio, which becomes greater than
g o8r /) . one (population-inversion regime For »=25 the resulting
2 o6 C ] population ratio is very close to the scattering-free value
g 04 /, ] Ro=3, which tells us that in such regime the effect of inter-
o2r ] level phonon scattering is negligible.
0.0 t | } .
3 ) ] lll. GENERALIZATION TO THE
2 o QUANTUM-MECHANICAL CASE
& “°-—$—fz
1 Aim of the present section is to extend the theoretical
X <la i framework previously introduced to the quantum-mechanical
05 s m T % 25 case. To th_ls end, th_e basic mgredlen_t to be introduced is the
n so-called single-particle density maftix
FIG. 4. Electrically driven nonequilibrium carrier distribution in Pap= <E;Tﬁéa>, (14

a quantum-dot systenga) excited- and ground-state populatiofiys At ) .

andf, and(b) their ratioR as a function of the coupling-constant Wherec, (C,) denote creatior{destruction operators for a
ratio 7, for an interlevel energy splittinde=25 meV and for a  carrier in statex. This is defined as the average value of two
reservoir-induced population rati8,=3 at room temperaturesee ~ creation and destruction operators: Its diagonal elements cor-
text). A schematics of the electrically driven two-level system is respond to the usual distribution functiép of the semiclas-
also reported in the inset. sical Boltzmann theory previously considered, while the off-
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diagonal terms(a# B) describe the degree of quantum- d

mechanical phase coherence between stat@sd 8. Within qtPer~ > LapapParp + Sup™ > AlLaparprParp's
the usual mean-field and Markov approximations, the time o'p' a'p'
evolution of the single-particle density matrixis dictated (18)

by the so-called semiconductor Bloch equatfohs

g where the presence of spatial boundaries results in a source

—005= D Lopo g P (15) term S as well as in a renormalizatioAL of the Liouville
dt"“# e apafla B superoperator ir(16). Equation(18) can be schematically
written as
where the effective Liouville operator
d d d
1 ~Pap= Pa ~Pa (19
Laﬁ,a’ﬁ’ :E(Ea_éﬁ)ﬁaﬁ,a’ﬁ’ +F2ﬁ’arﬁr (16) dt B dt B L dt b res

is the sum of two terms: coherenti.e., scattering/ with
decoherence-frge single-particle evolution plus energy-
relaxation/dephasing dynamics. The latter is described in d =S - S AL, ypuy (20)
terms of the scattering tensbf, whose explicit form, given dtPs p ap.a’f'Pa’ -

res 1 gt
in Ref. 5, involves the microscopic in- and out-scattering “h

superoperators for the various interaction mechanisms co

sidered, i.e., 'Ks for the semiclassical cagsee Eq(1)] the global system

dynamics is the sum of the dynamics induced by the Liou-
(17) ville superoperatot inside the device active region plus the

_ in out
=T r one induced by the presence of the external reservoirs. While

S
F aB.a’ B’ - aBa' B

aﬂ,a’/}’

Equation(15) is therefore the desired quantum-mechanicalthe former is trace preserving, the latter leads, in general, to

generalization of the Boltzmann transport equation(2n a variation of the total number of carriers within the spatial

Indeed, by neglecting all nondiagonal terms of the single-reg'on of interest, exactly as for the semiclassical model in

particle density matriXp,z=f,d,5), the latter is easily re- Egs.(1)3). Moreover, Eq(20) exhlblt_s the_ same injection-
. b . : 01— o . minus-loss structure of the relaxation-time-approximation
covered: The “semiclassical elementad’=B3’, of the in-

and out-scattering matrices in EL7) correspond to the model in(3): the quantum-mechanical source tegworre-
. ) gm . pona sponds to the semiclassical generat@®nwhile the superop-
semiclassical scattering rat@%a, in EQ. (2). In addition to

) - eratorAL is a nondiagonal generalization of the loss rate
these so-called semiclassical terms—often referred ©,as  \ynat we propose here is a completely different approach:
terms—we have also the so-callglcontributions; the latter  fq|lowing the very same strategy introduced in Sec. I, the
corresspond to the diagonal part of the scattering superopergey idea is again to replace the particle-nonconserving term
tor I'* (¢p=a’p') and describe dephasing processes induceg}, (20) with anad hocscattering superoperatbf describing
by the various interaction mechanisms considered. The resn g kinetic level the system-reservoir thermalization pro-

maining terms inl** describe a nontrivial coupling between cess. More specifically, similar to E¢4), for the quantum-
diagonal and nondiagonal density-matrix elements. In thenechanical case we may write

presence ofT; and T, terms only—the so-calledl;T,
model—Eq.(15) has a diagonal, i.e., semiclassical, steady- d
state solutionp;z=15°6,. In contrast, as recently pointed
out in Ref. 3, the presence of these nontrivial coupling terms
between diagonal and nondiagonal density-matrix elements
maintains, also in steady-state conditions, a well define%
guantum-mechanical phase coherence among different sin ) . L - .
particle states, which results in a nondiagonal density matri%fe semlclgssmal_ limitpa=fadep) EQ. (21) will reduce to

The formulation in terms of the effective Liouville super- g.(4). This requires that
operator in(16) recalled so far is typical of a so-called closed
system, i.e., a system defined over the whole coordinate e = Pl = Baar 2 Pl (22)
space. This is confirmed by the trace-preserving character of o'
the Liouville superoperatdr, which corresponds to say that
the total number of carriers is preserved. In addition to these semiclassical oy terms, the scattering

In order to describe open systems, i.e., systems with opesuperoperatol" should also contain dephasing By contri-
boundaries, a generalization of the conventional SBELfH  butions. The latter describe, in general, decoherence effects
has been recently propos&dWithin this approach, the spa- induced by the external reservoir on the carrier subsystem,
tial boundaries of the systems are incorporated via a geneand will produce a damping of the nondiagonal density-
alized Weyl-Wigner treatment of the problerithe resulting — matrix elements; for a given nondiagonal tepg. 5, the cor-
equation of motion for the single-particle density matrix is of responding dephasing rate is given by the average of the total
the form out-scattering rates for statesand g, i.e.,

apaﬁ o

S

= E Fraﬁ,a’ﬁ’pa'ﬁ" (21)
a!ﬁl

Let us now discuss the explicit form of this new scattering
peroperatol”. As a first requirement, we shall ask that in
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p= (paa pab) _ (fa p* )
Poa Pbb p fy

. . . . Here, the diagonal elementg, and py,,, coincide with the
As anticipated, in addition td, and T, terms, a generic  semjclassical ground- and excited-state level populatfgns
scattering superoperator may also contain additional contriang f, previously considerefisee Eq.(11)], while the non-
butions describing nontrivial couplings between diagonaljiagonal elemenp=p,, (together with its complex conjugate
and nondiagonal density-matrix elements. Such extra termg*=_) describes the degree of quantum-mechanical phase
may lead to a nondiagonal steady-state solution. Howevegoherence between statesandb. Let us introduce the fol-
since in the absence of scattering mechanisms inside thewing (arbitrary) i={«, 8} mapping: 1<%a,a}, 2={b,b}, 3
simulated region we require a quasithermal, i.e., diagonak{b,a}, 4={a,b}. Within such representation, the two-by-
steady-state solution, these extra terms in the scattering stwo density matrix in28) is mapped into a four-dimensional
peroperatord™ are set equal to zero. Combining E¢g2) vector, and the Liouville superoperatgrin (26) will corre-
and(23), we finally obtain spond to a four-by-four matrix.
More specifically, within the four-dimensional mapping

1
I 5(2 Pl + > P, B) . (29) (28)
a/ ﬁf

T =8, gp[ P =8 2 P, given before the transport E(R5) in steady-state conditions

apa’p = Caal Y| Taal - Taa o reduces to the following homogeneous linear problem

_ }5 2 P+ E =y (24) Laaaa Laabb Laapa Laaab fa
e Conaa Lonbd Lobba £
o 8 bbaa Lbbbb Lbbba Lbbab || fo =0, (29
L L L L '

We stress that the only ingredients entering the proposed baaa “babb “baba “baab p*
effective scattering superoperator are the device-reservoir ef- Labaa Labbb Labba Labapb/ \P

fective scattering rates i(6).
By combining Egs(15) and (21), in steady-state condi-
tions, the proposed quantum-transport equatior(1i9) is

where £ is the sum of a closed-system operatorand a
corresponding system-reservoir scattering superopefdtor
[see Eq(26)].

given by The explicit form ofL for our simplified two-level model
is given by
d
apaﬁ: E 'Ca,B,a’,B'pa",B’ =0 (25 Laaaa Laa,bb Laaba I-aa,ab
o« Lbbaa Lbbbb Lbbpa Lbbab
with Lbaaa Lbabb Lbaba Lbaab
; Lab,aa Lab,bb Lab,ba Lab,ab
‘CCI,B,O(’B' = Laﬁ,a’ﬁ' + Faﬁ,a/ﬁ/' (26) O 0 O 0
By denoting withi=ap the generic density-matrix element, - 100 0 O
the above transport equation can be easily translated into the ih{0 0 Ae O
following homogeneous linear problem: 00 0 -Ae
Lijrpir=0. (27) Taaaa Taabb Taaba aaab
In order to show a concrete application of the quantum- . Iebaa TBoob Boba Lbban 30
mechanical generalization presented so far, let us consider baaa Lbapb Ibaba Lbaab
again the electrically driven quantum-dot system previously s s rs s
investigatedsee inset in Fig. ¥ In this case we deal with a abaa “abbb “abba ©abab
two-by-two density matrix of the form with
|
-N N+1 0 0
I‘aia,aa za,bb 2a,ba Za,ab N -(N+1) 0 0
b b b b i [ 1 1
Phaa bbb bbba - BBAD f sl AN - ZA(N+1) -Z(2N+1) Z(2N+1) |, (31)
2 2 2 2
ba,aa ba,bb baba ba,ab
S S S S | | 1 1
abaa ab,bb ab,ba ab,ab _ E)\N E)\(N + 1) E(ZN + 1) _ E(ZN + 1)
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where the dimensionless parameikrdepends on the ex- 1.0 y

plicit form of the carrier wave functions associated withour [ .- 7
two-level systent® As already stressed, by neglectihg p b SRRy -
terms(which corresponds to sat=0), populations and po- 06k Ja j

larizations are totally decoupled. In contrast, in the presence
of theseT; terms our steady-state solution exhibit a residual
single-particle coherence, i.e., a polarizatpdifferent from
zero.

Let us now come to the system-reservoir effective scatter-
ing superoperator i24). Its explicit form for our two-level
system is

; r ; ; FIG. 5. Phonon-induced single-particle phase coherence for an
1ﬂaataa aabb *aaba *aaab isolated quantum-dot system: modulus of the interlevel polarization

Lb,aa vabb Lb,ba [)b,ab Ip| (solid curve and dressed-state populatio?1§r:1ndf_a (dashed
curves as a function of the coupling-constant ratig for an inter-

r r r Fr
Ea*aa f’a*bb :)a’ba ?a'ab level energy splitting\e=25 meV at room temperatu(see text
ab,aa l_‘ab,bb ab,ba I‘ab,ab

from the imaginary parts of the non-zero eigenvalues of the

_ effective Liouville operator i30). We stress that such bidi-
Ro 1 0 0 ! . ;
mensional dressed basis, as well as the corresponding energy
Ro -1 0 0 shift, can be regarded as the simplest example of polaronic
W 1 1 phase-coherence and state renormalization.
“r+1l O 9 - §(R°+ 1) §(R°+ 1 |- Let us now discuss the quantum-mechanical generaliza-
0

tion of the open-system scenario described in Fig. 4. Figure 6
shows the ground- and excited-level populatiqdsshed
curveg as well as the modulus of the interlevel polarization
(solid curveg as a function of the coupling-parameter ratio
(32) n=W'/W? at room temperature for a fixed value of the scat-
tering coupling constantiWW=25 meV. As we can see, ex-
Let us now present a few simulated experiments for theactly as in the semiclassical ca@ee Fig. 4, for increasing
electrically driven gquantum-dot system previously consid-values of7 we enter a pronounced nonequilibrium regime,
ered(see inset in Fig. #based on the quantum-mechanical leading eventually to a reservoir-induced population inver-
generalization proposed in this section. To this end, let usion.
start by investigating the closed-system limit, i.e., no system- More important, the present quantum-mechanical treat-
reservoir couplingW =0). ment allows us to study the effect of the external reservoirs
Figure 5 shows the modulus of the interlevel polarizationon the phonon-induced single-particle phase coherésee
p as a function of the dimensionless coupling paramdter Fig. 5). Indeed, for increasing values of the system-reservoir
=AWP/Ae. In this numerical example we have chosée  coupling W' we experience a progressive decrease of the
=25 meV,T=300 K, and\=0.4. As we can segp| comes interlevel polarizationp, which is a clear fingerprint of a
out to be proportional to the coupling parameteras can be  decoherence/dephasing effect induced by the external reser-
readily verified by a closer inspection of our four-by-four voir.
superoperatok in (30). It follows that for any finite value of

1 1
0 0 Z(Ro+D -Z(Ro+1
>Rot1D) =S(Rot+1)

the coupling parameter, we deal with a nondiagonal 10

steady-state solutiop [see Eq.(28)]. More specifically, its o8l £, _
diagonal elements, and f, are A-independent and corre- | e
spond to the semiclassical equilibrium distributiofy/f, 06R 1
=N/N+1; the nondiagonal elemenpsand p* will increase X

linearly with the coupling parameteé. It is possible to show 04 f 7
that for small/moderate values &f our two-by-two density ool T B ]
matrix is positive-definite, which suggests the introduction of bl

a dressed-state basis in which the latter is diagonal. The new 0.0; - = = = 2
populationsf, and f, (dashed curves in Fig.)xan be re- n

garded as the average occupation of such dressed states. As . . . .
- L . . . FIG. 6. Quantum-mechanical simulation of the electrically
we can see, fo\=0 they coincide with the noninteracting . o ) :
driven nonequilibrium carrier dynamics for the quantum-dot system

thermal ones; for increasing values of the carrier-phonory, Fig. 4: excited- and ground-state populatidigsand f, (dashed
coupling the population ratif,/ f, decreases. Such a behav- curveg and modulus of the interlevel polarizatigp| as a function
ior can be physically described in terms of a phonon-inducedf the coupling-constant ratig, for an interlevel energy splitting
renormalization of the interlevel energy splittidg. Indeed,  Ae=25 meV and for a reservoir-induced population rafig=3 at

such renormalized transition energy can also be obtaineom temperaturésee text
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IV. SUMMARY AND CONCLUSIONS have introduced a Liouville superoperator able to properly
describe carrier thermalization/dephasing induced by the de-
In summary, we have proposed an alternative simulatiorvice spatial boundaries.
strategy for the study of nonequilibrium carrier dynamics in ~ Within the semiclassical scenario, by replacing the con-
quantum devices with open boundaries: the key idea is toentional injection/loss model with a Boltzmann-like effec-
replace the usual modeling of open quantum systems basdide scattering operator, we are able to move from an open to
on phenomenological injection/loss rates with a kinetic de-a closed scheme, prerequisite for the application of the well-
scription of the system-reservoir thermalization process. Irestablished ensemble MC method. Following this spirit, we
particular, within this simulation scheme the partial carrierhave presented a few simulated experiments of hot-carrier
thermalization induced by the device spatial boundaries islynamics in semiconductor-based quantum devices, namely
treated via a conventional Boltzmann-theory approach irdouble-barrier structures and electrically driven quantum-dot
terms of an effective collision operator between the highlysystems. These simulated experiments have fully confirmed
nonthermal device electrons and the thermal carrier distribuits validity as well as its power and flexibility.
tion of the reservoir. In this approach the total number of Finally, the proposed quantum-mechanical generalization
simulated electrons is preservédosed schemethis is a  of the theory has been successfully applied to the study of
distinguished advantage of the proposed strategy, compareshvironment-induced dephasing in electrically-driven
to hybrid—direct numerical-integration plus MC-sampling— quantum-dot systems. We stress that the proposed trace-
schemes, where the total number of particles is not preservaateserving Liouville superoperator—contrary to other formu-
(open scheme lations of the problerh—ensures the positive-definite char-
Finally, we have extended the proposed particle-acter of the steady-state density matfxthus allowing for

conserving kinetic approach to the quantum-transport rethe usual probabilistic interpretation of our simulated experi-
gime. More specifically, as for the semiclassical case, wenents.
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