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Modeling of open quantum devices within the closed-system paradigm

Remo Proietti Zaccaria,* Emanuele Ciancio,† Rita C. Iotti,‡ and Fausto Rossi§

Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Politecnico di Torino,
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We present an alternative simulation strategy for the study of nonequilibrium carrier dynamics in quantum
devices with open boundaries. We propose to replace the usual modeling of open quantum systems based on
phenomenological injection/loss rates with a kinetic description of the system-reservoir thermalization process.
In this simulation scheme the partial carrier thermalization induced by the device spatial boundaries is treated
within the standard Boltzmann-transport approach via an effective scattering mechanism between the highly
nonthermal device electrons and the thermal carrier distribution of the reservoir. Applications to state-of-the-art
semiconductor nanostructures are discussed. Finally, the proposed approach is extended to the quantum-
transport regime; to this end, we introduce an effective Liouville superoperator, able to describe the effect of
the device spatial boundaries on the time evolution of the single-particle density matrix.

DOI: 10.1103/PhysRevB.70.195311 PACS number(s): 73.40.2c, 85.30.2z, 72.10.Bg

I. INTRODUCTION

The never-ending scaling-down of typical space and time
scales in quantum optoelectronic devices leads to physical
conditions where the traditional Boltzmann transport theory1

can no longer be employed, thus demanding for reliable
quantum-transport approaches.2 In spite of the quantum-
mechanical nature of carrier dynamics in the core region of
typical nanostructured devices(like, e.g., semiconductor su-
perlattices and double-barrier structures), however, the over-
all behavior of such quantum systems often results from a
nontrivial interplay between phase coherence and
dissipation,3 the latter being primarily due to the presence of
spatial boundaries.4 A rigorous theoretical modeling of such
new-generation nanoscale devices should therefore simulta-
neously account for both coherent and incoherent—i.e.,
phase-breaking—processes on equal footing. In this context,
a generalization to open systems(that is, systems with open
boundaries coupling them to external charge reservoirs), of
the well known semiconductor Bloch equations(SBEs)5 has
been recently proposed.6,7 Such fully microscopic treatments,
which are essential for the basic understanding of the quan-
tum phenomena involved, are often extremely computer-time
consuming. Therefore they cannot be employed in standard
optoelectronic-device modeling and optimization where, in
contrast, partially phenomenological(and computationally
affordable) models8,9 are usually considered. Among such
simulation strategies it is worth mentioning the approach
proposed by Fischetti and co-workers.10 This is grounded on
a Master Equation description derived from a rigorous
density-matrix formulation of the problem, and can be re-
garded as the diagonal(i.e., semiclassical) limit of the theo-
retical scheme proposed in Ref. 6. Within such partially phe-
nomenological treatments, however, the coupling of the
quantum device with external reservoirs is typically de-
scribed in terms of extremely simplified injection/loss
models.8–10

In this paper we present an alternative simulation strategy
for the study of nonequilibrium carrier dynamics in quantum
devices with open boundaries. In particular, we propose to

replace the usual modeling of open quantum systems, based
on phenomenological injection/loss rates, with a kinetic de-
scription of the system-reservoir thermalization process.
Within this simulation scheme the partial carrier thermaliza-
tion induced by the device spatial boundaries can be treated
via a conventional Monte Carlo(MC) sampling of the Bolt-
zmann equation: this is done in terms of an effective scatter-
ing mechanism between the highly nonthermal device elec-
trons and the thermal carrier distribution of the reservoir. As
we shall see, in this approach the total number of simulated
electrons is conserved(closed picture); this is a distinguished
advantage of the proposed strategy, contrary to hybrid—
direct numerical-integration plus MC-sampling—methods,
where the total number of particles is not constant(open
picture).

As a second step, we shall extend the proposed particle-
conserving kinetic approach to the quantum-transport re-
gime. More specifically, similar to the semiclassical case, we
shall introduce a Liouville superoperator able to properly
describe carrier thermalization/dephasing due to the coupling
with the external reservoirs.

The paper is organized as follows. In Sec. II we shall
recall the standard approach and introduce the simulation
strategy; to show the power and flexibility of the proposed
theoretical scheme, the latter is applied to the study of hot-
carrier transport phenomena in bulk systems as well as in
semiconductor nanostructures, like resonant-tunneling diodes
and quantum-dot devices. Section III is devoted to the gen-
eralization of the proposed simulation strategy to the
quantum-transport regime. Finally, in Sec. IV we shall sum-
marize and draw some conclusions.

II. PROPOSED SIMULATION STRATEGY

We start by recalling the main features of the typical ap-
proach employed in the simulation of state-of-the-art
semiconductor-based quantum devices. Letfa be the carrier
distribution over the electronic statesa of the device.11 The
equation governing hot-carrier transport/relaxation phenom-
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ena in open systems may be schematically written as12

d

dt
fa = U d

dt
faU

scat
+ U d

dt
faU

res
. s1d

The first term describes scattering dynamics within the
device active region and is usually treated at a kinetic level
via a Boltzmann-like collision operator of the form

U d

dt
faU

scat
= o

a8

sPaa8
s fa8 − Pa8a

s fad, s2d

herePaa8
s is the total(i.e., summed over all relevant interac-

tion mechanisms) scattering rate from statea8 to statea.
The last term in(1) accounts for the open character of the

system and describes injection/loss contributions from/to the
(at least two) external carrier reservoirs. These processes are
usually modeled by a relaxation-time-like term of the form10

U d

dt
faU

res
= − gasfa − fa

0d = Ga − gafa, s3d

herega
−1 may be interpreted as the ballistic transit time for an

electron in statea,13 while fa
0 is the carrier distribution in the

external reservoirs. The latter may correspond to the distinct
quasiequilibrium distributions in the left and right chemical
potentials, or may describe a generic nonequilibrium distri-
bution within the external reservoirs.

In spite of the kinetic nature of the scattering dynamics in
(2), the contribution in(3) describes carrier injection and loss
processes on a partially phenomenological level; this, in turn,
requires hybrid simulation strategies14 combining a MC sam-
pling of the scattering dynamics with a direct numerical in-
tegration of injection/loss terms.

In what follows we propose to replace the conventional
relaxation-time term in(3) with a Boltzmann-like operator of
the form

U d

dt
faU

res
= o

a8

sPaa8
r fa8 − Pa8a

r fad, s4d

this contribution has indeed the same structure of the scatter-
ing operator in(2); however, the new scattering ratesPaa8

r

describe electronic transitions within the simulated region
induced by the coupling to the external carrier reservoirs. It
is worthwhile to stress that, contrary to the conventional
injection/loss term in(3), in this case there is no particle
exchange between device active region and thermal reser-
voirs. The total number of simulated particles is therefore
conserved.

Let us now discuss the explicit form of the ratesPaa8
r

entering Eq. (4). In the absence of scattering processes
sPaa8

s =0d, the steady-state solution of the conventional
injection/loss model in(3) is fa= fa

0, i.e., the carrier distribu-
tion inside the device coincides with the distribution in the
external carrier reservoirs. As a first requirement, we there-
fore impose the same steady-state solutionsfa= fa

0d to the
new collision operator in(4). This, in turn, will impose con-
ditions on the explicit form of the scattering ratesPaa8

r . More
specifically, from the detailed-balance principle1 we get15

Paa8
r

Pa8a
r =

fa
0

fa8
0 . s5d

It follows that our transition rates should be of the form

Paa8
r = Paa8fa

0 , s6d

whereP can be any positive and symmetric transition matrix
sPaa8=Pa8a.0d. What is important in steady-state condi-
tions is the ratio of the scattering rates in(5) and not their
absolute values which are, in contrast, crucial in determining
the transient nonequilibrium response of the system. Since
our aim is to replace the injection/loss term in(3) with the
Boltzmann-like term in(4), as second requirement we ask
that the relaxation dynamics induced by the new collision
term corresponds to the phenomenological relaxation times
in (3). This corresponds to imposing that the total out-
scattering rate—summed over all possible final states—
coincides with the relaxation ratesga:

Ga ; o
a8

Pa8a
r = ga. s7d

By assuming—as simplest form of the symmetric transition
matrix in (6)—Paa8=papa8, Eq. (7) reduces to the following
system of equations for the unknown quantitiespa:

o
a8

pa8fa8
0 =

ga

pa

. s8d

Since the sum on the left isa-independent, we immediately
get: pa~ga. Starting from this result, we finally obtain

Paa8 = papa8 =
gaga8

o
a9

ga9fa8
0

. s9d

The explicit form of the desired system-reservoir scatter-
ing rates entering the Boltzmann-like collision term in(4)
may be derived by combining Eqs.(6) and (9). As stated
earlier, the proposed kinetic formulation in terms of
Boltzmann-like collision operators only, is particularly suited
for a standard ensemble-MC simulation approach, where one
deals with a fixed number of particles. In this respect, con-
trary to the phenomenological model in Eq.(3), in the
present closed-system formulation the total carrier density is
not fixed by the external reservoirs and the resulting trans-
port equation is homogeneous.

To test the proposed simulation strategy, we have devel-
oped a fully three-dimensional(3D) MC simulator, using as
basis statesa the product of scattering states along the field/
growth direction, and two-dimensional plane waves account-
ing for the in-plane dynamics. In order to properly describe
phonon-induced energy and momentum relaxation within the
device active region, carrier-phonon scattering in a fully 3D
fashion has been included,16 in addition to the new
scattering-like thermalization mechanism in(4).

We start considering an extremely simple transport prob-
lem: a GaAs mesoscopic bulk system of lengthl =200 nm
sandwiched between two reservoirs with different chemical
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potentials smleft−mright=50 meVd. We have applied to this
problem the simulation strategy previously described[see
Eq. (4)] and have compared the results with those of the
conventional simulation approach[see Eq.(3)].

Figure 1(a) presents the transient carrier dynamics result-
ing from the conventional injection/loss model in(3). Here,
we show the time evolution of the carrier distribution in
momentum space at steps of 1 ps. Since in this model we
start at timet=0 with an empty-device configuration, the
simulated experiment shows a progressive increase of the
carrier distribution, which from the very beginning exhibits a
strong left-right asymmetry in momentum space due to the
chemical-potential misalignment. This scenario manifests the
open nature of the conventional approach, which does not
allow the direct use of a standard MC procedure. It is worth-
while to stress that the driving force responsible for charge
transport is the difference of quasiequilibrium chemical po-
tentials describing the left and right carrier distributionsen-
tering the device active region and not the difference of car-
rier concentrations within the two electrical contacts. Indeed,
the total(entering plus exiting) carrier density is rigorously
homogeneous through the whole structure since we are deal-
ing with a simple bulk model whose single-particle states are
plane waves. The situation is different in momentum space,
where momentum-relaxation effects are observed due to the
fact that we are dealing with a quasiballistic regime(i.e., the
ballistic motion of the injected electrons is disturbed by
phonon-induced scattering). In the present simulated experi-
ment we have a total carrier concentration(which has been
directly evaluated from the thermal distributionsfa

0) of about
731017 cm−3, while the left and right injected carrier con-
centrations are, respectively, of about 6.231017 cm−3 and
831016 cm−3.

Figure 1(b) shows again the transient evolution of the
carrier distribution in momentum space, but obtained from
the proposed simulation approach. In this case we deal with

a fixed number of particles which at timet=0 are arbitrarily
chosen to be equally distributed in the 3D momentum space.
Moreover, the total carrier density, which is now a free pa-
rameter, has been set equal to the steady-state value in(a).
Contrary to the time evolution in(a), here at very short times
the device region is already occupied and its charge distribu-
tion in momentum space is almost symmetric. Only at later
times, due to the effective scattering mechanism in(6), we
recover the asymmetric distribution of Fig. 1(a) (see solid
curve).

Figure 2 shows the charge current density as a function of
time corresponding to the two simulated experiments in Fig.
1(a) (dashed curve) and Fig. 1(b) (solid curve). At time t
=0 the current is in both cases equal to zero; this is, however,
ascribed to different reasons: in Fig. 1(a) at t=0 the carrier
density is equal to zero while the mean velocity is different
from zero; in Fig. 1(b) the mean velocity is equal to zero
while the carrier density is different from zero. In spite of a
slightly different transient, both curves reach almost the
same steady-state value, confirming the validity of the pro-
posed simulation strategy.17

The steady-state regime results from a strong interplay
between the thermalization induced by the external reser-
voirs and the phonon-induced momentum relaxation within
the device active region. Indeed, in the phonon-free case
(dotted curve in Fig. 2) the steady-state current—which is
fully ballistic—reaches significantly higher values. The
momentum-relaxation dynamics previously mentioned is
clearly visible in Fig. 1(a), where the peaks of the injected
carrier distribution are progressively shifted to lower wave
vectors.

As a second testbed, we have considered a prototypical
semiconductor quantum device: a GaAs/AlGaAs resonant-
tunneling diode with a barrier height of 0.24 eV and a barrier
width and separation of 2.8 and 4.4 nm, respectively. Figure
3 shows the current-voltage characteristics obtained from the
proposed MC simulation scheme with(solid curve) and
without (dashed curve) carrier-phonon scattering. The results
demonstrate that we are able to properly describe the typical
resonance scenario. More specifically, as expected, in the
presence of phase-breaking processes, like carrier-phonon
scattering, the resonance peak is significantly reduced. Also
in this more realistic case the proposed simulation strategy
comes out to properly describe the key phenomena under
investigation.

FIG. 1. Room-temperature transport properties of a GaAs me-
soscopic bulk system of lengthl =200 nm sandwiched between two
reservoirs with different chemical potentialssmleft−mright

=50 meVd. Transient dynamics of the carrier distribution in mo-
mentum space—from 1 ps(dashed curve) to 9 ps (thick solid
curve) at intervals of 1 ps(thin solid curves)—as obtained(a) from
the conventional injection/loss model in(3) and (b) from the pro-
posed simulation strategy.

FIG. 2. Charge current density as a function of time correspond-
ing to the two simulated experiments in Figs. 1(a) (dashed curve)
and 1(b) (solid curve). The scattering-free or ballistic result(dotted
curve) is also reported(see text).

MODELING OF OPEN QUANTUM DEVICES WITHIN THE… PHYSICAL REVIEW B 70, 195311(2004)

195311-3



As a final example, we have considered a typical nonequi-
librium situation, an electrically-driven quantum-dot system.
To this end, we have adopted an extremely simplified model:
an electronic two-level system coupled to the phonon modes
of the host materials as well as to two external(injecting and
extracting) charge reservoirs(see inset in Fig. 4).

According to the general prescription previously intro-
duced[see Eq.(2)], by denoting witha andb the ground and
excited states of our two-level system, the phonon-induced
scattering dynamics will be described in terms of two inter-
level rates corresponding to phonon absorption and emission

Pba
s = WsN, Pab

s = WssN + 1d, s10d

whereN=seDe/kBT−1d−1 is the Bose occupation number cor-
responding to the interlevel energy splittingDe=eb−ea. In
the absence of coupling to the external reservoirs, regardless
of the value of the carrier-phonon coupling constantWs, the
steady-state solution is the thermal equilibrium one

Req=
fb
eq

fa
eq =

Pba
s

Pab
s =

NB

NB + 1
= e−De/kBT. s11d

In contrast, in the presence of external reservoirs character-
ized by different values of their chemical potentials,mleft and

mright (see inset in Fig. 4), the population ratioR may differ
significantly from the thermal-equilibrium value in(11).
More specifically, in the absence of phonon-induced inter-
level scatteringsWs=0d the population ratioR0 is fully dic-
tated by the carrier distributions within the reservoirs, and
may be greater than one, i.e., a population-inversion regime
may be established.

Following again the proposed simulation strategy, we
shall describe the effect of the system-reservoir coupling in
terms of the effective Boltzmann collision term in(4). More
specifically, for the case of our two-level system we have

Pba
r = Wr

R0

R0 + 1
, Pab

r = Wr 1

R0 + 1
, s12d

whereWr denotes a suitable system-reservoir coupling con-
stant. Analogous to Eq.(11), it is easy to see that, in the
absence of carrier-phonon scattering, such effective rates
provide as steady-state solution the desired population ratio
R0, i.e.,

fb
0

fa
0 =

Pba
r

Pab
r = R0. s13d

In the presence of carrier-phonon scattering as well as
coupling to the external reservoirs, the actual value of the
population ratioR is the result of a nontrivial interplay be-
tween carrier-phonon interlevel scattering and system-
reservoir coupling. To better understand this nonequilibrium
behavior, we have performed a few simulated experiments
based on the electrically-driven quantum-dot model pre-
sented so far, varying the ratioh=Wr /Ws between carrier-
reservoir and phonon-scattering coupling constants. Figure 4
shows(a) the excited- and ground-state carrier populationsfb
and fa and (b) their ratio R as a function of the coupling-
constant ratioh, for an interlevel energy splittingDe
=25 meV and for a reservoir-induced population ratioR0
=3 at room temperature. As we can see, forh=0 (closed-
system limit) the thermal-equilibrium valueReq=1/e is re-
covered. For increasing values ofh we see a progressive
increase of the population ratio, which becomes greater than
one (population-inversion regime). For h=25 the resulting
population ratio is very close to the scattering-free value
R0=3, which tells us that in such regime the effect of inter-
level phonon scattering is negligible.

III. GENERALIZATION TO THE
QUANTUM-MECHANICAL CASE

Aim of the present section is to extend the theoretical
framework previously introduced to the quantum-mechanical
case. To this end, the basic ingredient to be introduced is the
so-called single-particle density matrix5

rab = kĉb
†ĉal, s14d

where ĉa
† sĉad denote creation(destruction) operators for a

carrier in statea. This is defined as the average value of two
creation and destruction operators: Its diagonal elements cor-
respond to the usual distribution functionfa of the semiclas-
sical Boltzmann theory previously considered, while the off-

FIG. 3. Room-temperature current-voltage characteristics of a
GaAs/AlGaAs resonant-tunneling diode(with barrier height
0.24 eV and barrier width and separation of 2.8 and 4.4 nm, respec-
tively) as obtained from our MC simulation scheme with(solid
curve) and without(dashed curve) carrier-phonon scattering.

FIG. 4. Electrically driven nonequilibrium carrier distribution in
a quantum-dot system:(a) excited- and ground-state populationsfb

and fa and (b) their ratioR as a function of the coupling-constant
ratio h, for an interlevel energy splittingDe=25 meV and for a
reservoir-induced population ratioR0=3 at room temperature(see
text). A schematics of the electrically driven two-level system is
also reported in the inset.
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diagonal termssaÞbd describe the degree of quantum-
mechanical phase coherence between statesa andb. Within
the usual mean-field and Markov approximations, the time
evolution of the single-particle density matrixr is dictated
by the so-called semiconductor Bloch equations5–7

d

dt
rab = o

a8b8

Lab,a8b8ra8b8, s15d

where the effective Liouville operator

Lab,a8b8 =
1

i"
sea − ebddab,a8b8 + Gab,a8b8

s s16d

is the sum of two terms: coherent(i.e., scattering/
decoherence-free) single-particle evolution plus energy-
relaxation/dephasing dynamics. The latter is described in
terms of the scattering tensorGs, whose explicit form, given
in Ref. 5, involves the microscopic in- and out-scattering
superoperators for the various interaction mechanisms con-
sidered, i.e.,

Gab,a8b8
s = Gab,a8b8

in − Gab,a8b8
out . s17d

Equation(15) is therefore the desired quantum-mechanical
generalization of the Boltzmann transport equation in(2).
Indeed, by neglecting all nondiagonal terms of the single-
particle density matrixsrab= fadabd, the latter is easily re-
covered: The “semiclassical elements,”aa8=bb8, of the in-
and out-scattering matrices in Eq.(17) correspond to the
semiclassical scattering ratesPaa8

s in Eq. (2). In addition to
these so-called semiclassical terms—often referred to asT1
terms—we have also the so-calledT2 contributions; the latter
correspond to the diagonal part of the scattering superopera-
tor Gs sab=a8b8d and describe dephasing processes induced
by the various interaction mechanisms considered. The re-
maining terms inGs describe a nontrivial coupling between
diagonal and nondiagonal density-matrix elements. In the
presence ofT1 and T2 terms only—the so-calledT1T2
model—Eq.(15) has a diagonal, i.e., semiclassical, steady-
state solution:rab

s.s.= fa
s.s.dab. In contrast, as recently pointed

out in Ref. 3, the presence of these nontrivial coupling terms
between diagonal and nondiagonal density-matrix elements
maintains, also in steady-state conditions, a well defined
quantum-mechanical phase coherence among different single
particle states, which results in a nondiagonal density matrix.

The formulation in terms of the effective Liouville super-
operator in(16) recalled so far is typical of a so-called closed
system, i.e., a system defined over the whole coordinate
space. This is confirmed by the trace-preserving character of
the Liouville superoperatorL, which corresponds to say that
the total number of carriers is preserved.

In order to describe open systems, i.e., systems with open
boundaries, a generalization of the conventional SBE in(15)
has been recently proposed.6,7 Within this approach, the spa-
tial boundaries of the systems are incorporated via a gener-
alized Weyl-Wigner treatment of the problem.7 The resulting
equation of motion for the single-particle density matrix is of
the form

d

dt
rab = o

a8b8

Lab,a8b8ra8b8 + Sab − o
a8b8

DLab,a8b8ra8b8,

s18d

where the presence of spatial boundaries results in a source
term S as well as in a renormalizationDL of the Liouville
superoperator in(16). Equation (18) can be schematically
written as

d

dt
rab = U d

dt
rabU

L
+ U d

dt
rabU

res
s19d

with

U d

dt
rabU

res
= Sab − o

a8b8

DLab,a8b8ra8b8. s20d

As for the semiclassical case[see Eq.(1)] the global system
dynamics is the sum of the dynamics induced by the Liou-
ville superoperatorL inside the device active region plus the
one induced by the presence of the external reservoirs. While
the former is trace preserving, the latter leads, in general, to
a variation of the total number of carriers within the spatial
region of interest, exactly as for the semiclassical model in
Eqs.(1)–(3). Moreover, Eq.(20) exhibits the same injection-
minus-loss structure of the relaxation-time-approximation
model in (3): the quantum-mechanical source termS corre-
sponds to the semiclassical generationG, while the superop-
eratorDL is a nondiagonal generalization of the loss rateg.

What we propose here is a completely different approach:
following the very same strategy introduced in Sec. II, the
key idea is again to replace the particle-nonconserving term
in (20) with anad hocscattering superoperatorGr describing
on a kinetic level the system-reservoir thermalization pro-
cess. More specifically, similar to Eq.(4), for the quantum-
mechanical case we may write

U d

dt
rabU

res
= o

a8b8

Gab,a8b8
r

ra8b8. s21d

Let us now discuss the explicit form of this new scattering
superoperatorGr. As a first requirement, we shall ask that in
the semiclassical limitsrab= fadabd Eq. (21) will reduce to
Eq. (4). This requires that

Gaa,a8a8
r = Paa8

r − daa8o
a9

Pa9a8
r . s22d

In addition to these semiclassical orT1 terms, the scattering
superoperatorGr should also contain dephasing orT2 contri-
butions. The latter describe, in general, decoherence effects
induced by the external reservoir on the carrier subsystem,
and will produce a damping of the nondiagonal density-
matrix elements; for a given nondiagonal termraÞb, the cor-
responding dephasing rate is given by the average of the total
out-scattering rates for statesa andb, i.e.,

MODELING OF OPEN QUANTUM DEVICES WITHIN THE… PHYSICAL REVIEW B 70, 195311(2004)

195311-5



Gab,ab
r = −

1

2So
a8

Pa8a
r + o

b8

Pb8b
r D . s23d

As anticipated, in addition toT1 and T2 terms, a generic
scattering superoperator may also contain additional contri-
butions describing nontrivial couplings between diagonal
and nondiagonal density-matrix elements. Such extra terms
may lead to a nondiagonal steady-state solution. However,
since in the absence of scattering mechanisms inside the
simulated region we require a quasithermal, i.e., diagonal,
steady-state solution, these extra terms in the scattering su-
peroperatorGr are set equal to zero. Combining Eqs.(22)
and (23), we finally obtain

Gab,a8b8
r = daa8,bb8SPaa8

r − daa8o
a9

Pa9a8
r D

−
1

2
dab,a8b8So

a8

Pa8a
r + o

b8

Pb8b
r D . s24d

We stress that the only ingredients entering the proposed
effective scattering superoperator are the device-reservoir ef-
fective scattering rates in(6).

By combining Eqs.(15) and (21), in steady-state condi-
tions, the proposed quantum-transport equation in(19) is
given by

d

dt
rab = o

a8b8

Lab,a8b8ra8b8 = 0 s25d

with

Lab,a8b8 = Lab,a8b8 + Gab,a8b8
r . s26d

By denoting withi =ab the generic density-matrix element,
the above transport equation can be easily translated into the
following homogeneous linear problem:

Lii8ri8 = 0. s27d

In order to show a concrete application of the quantum-
mechanical generalization presented so far, let us consider
again the electrically driven quantum-dot system previously
investigated(see inset in Fig. 4). In this case we deal with a
two-by-two density matrix of the form

r = Sraa rab

rba rbb
D = S fa p*

p fb
D . s28d

Here, the diagonal elementsraa and rbb coincide with the
semiclassical ground- and excited-state level populationsfa
and fb previously considered[see Eq.(11)], while the non-
diagonal elementp=rba (together with its complex conjugate
p* = rab) describes the degree of quantum-mechanical phase
coherence between statesa andb. Let us introduce the fol-
lowing (arbitrary) i =ha ,bj mapping: 1=ha,aj, 2=hb,bj, 3
=hb,aj, 4=ha,bj. Within such representation, the two-by-
two density matrix in(28) is mapped into a four-dimensional
vector, and the Liouville superoperatorL in (26) will corre-
spond to a four-by-four matrix.

More specifically, within the four-dimensional mapping
given before the transport Eq.(25) in steady-state conditions
reduces to the following homogeneous linear problem

1
Laa,aa Laa,bb Laa,ba Laa,ab

Lbb,aa Lbb,bb Lbb,ba Lbb,ab

Lba,aa Lba,bb Lba,ba Lba,ab

Lab,aa Lab,bb Lab,ba Lab,ab

21
fa

fb

p

p*
2 = 0, s29d

where L is the sum of a closed-system operatorL and a
corresponding system-reservoir scattering superoperatorGr

[see Eq.(26)].
The explicit form ofL for our simplified two-level model

is given by

1
Laa,aa Laa,bb Laa,ba Laa,ab

Lbb,aa Lbb,bb Lbb,ba Lbb,ab

Lba,aa Lba,bb Lba,ba Lba,ab

Lab,aa Lab,bb Lab,ba Lab,ab

2
=

1

i"1
0 0 0 0

0 0 0 0

0 0 De 0

0 0 0 − De
2

+1
Gaa,aa

s Gaa,bb
s Gaa,ba

s Gaa,ab
s

Gbb,aa
s Gbb,bb

s Gbb,ba
s Gbb,ab

s

Gba,aa
s Gba,bb

s Gba,ba
s Gba,ab

s

Gab,aa
s Gab,bb

s Gab,ba
s Gab,ab

s
2 s30d

with

1
Gaa,aa

s Gaa,bb
s Gaa,ba

s Gaa,ab
s

Gbb,aa
s Gbb,bb

s Gbb,ba
s Gbb,ab

s

Gba,aa
s Gba,bb

s Gba,ba
s Gba,ab

s

Gab,aa
s Gab,bb

s Gab,ba
s Gab,ab

s
2 = Ws1

− N N+ 1 0 0

N − sN + 1d 0 0

i

2
lN −

i

2
lsN + 1d −

1

2
s2N + 1d

1

2
s2N + 1d

−
i

2
lN

i

2
lsN + 1d

1

2
s2N + 1d −

1

2
s2N + 1d

2 , s31d
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where the dimensionless parameteril depends on the ex-
plicit form of the carrier wave functions associated with our
two-level system.18 As already stressed, by neglectingf →p
terms(which corresponds to setl=0), populations and po-
larizations are totally decoupled. In contrast, in the presence
of theseT3 terms our steady-state solution exhibit a residual
single-particle coherence, i.e., a polarizationp different from
zero.

Let us now come to the system-reservoir effective scatter-
ing superoperator in(24). Its explicit form for our two-level
system is

1
Gaa,aa

r Gaa,bb
r Gaa,ba

r Gaa,ab
r

Gbb,aa
r Gbb,bb

r Gbb,ba
r Gbb,ab

r

Gba,aa
r Gba,bb

r Gba,ba
r Gba,ab

r

Gab,aa
r Gab,bb

r Gab,ba
r Gab,ab

r
2

=
Wr

R0 + 11
− R0 1 0 0

R0 − 1 0 0

0 0 −
1

2
sR0 + 1d

1

2
sR0 + 1d

0 0
1

2
sR0 + 1d −

1

2
sR0 + 1d

2 .

s32d

Let us now present a few simulated experiments for the
electrically driven quantum-dot system previously consid-
ered(see inset in Fig. 4) based on the quantum-mechanical
generalization proposed in this section. To this end, let us
start by investigating the closed-system limit, i.e., no system-
reservoir couplingsWr =0d.

Figure 5 shows the modulus of the interlevel polarization
p as a function of the dimensionless coupling parameterL
="Ws/De. In this numerical example we have chosenDe
=25 meV,T=300 K, andl=0.4. As we can see,upu comes
out to be proportional to the coupling parameterL, as can be
readily verified by a closer inspection of our four-by-four
superoperatorL in (30). It follows that for any finite value of
the coupling parameterL, we deal with a nondiagonal
steady-state solutionr [see Eq.(28)]. More specifically, its
diagonal elementsfa and fb are L-independent and corre-
spond to the semiclassical equilibrium distribution:fb/ fa
=N/N+1; the nondiagonal elementsp and p* will increase
linearly with the coupling parameterL. It is possible to show
that for small/moderate values ofL our two-by-two density
matrix is positive-definite, which suggests the introduction of
a dressed-state basis in which the latter is diagonal. The new

populationsf̄ a and f̄ b (dashed curves in Fig. 5) can be re-
garded as the average occupation of such dressed states. As
we can see, forL=0 they coincide with the noninteracting
thermal ones; for increasing values of the carrier-phonon

coupling the population ratiof̄ b/ f̄ a decreases. Such a behav-
ior can be physically described in terms of a phonon-induced
renormalization of the interlevel energy splittingDe. Indeed,
such renormalized transition energy can also be obtained

from the imaginary parts of the non-zero eigenvalues of the
effective Liouville operator in(30). We stress that such bidi-
mensional dressed basis, as well as the corresponding energy
shift, can be regarded as the simplest example of polaronic
phase-coherence and state renormalization.

Let us now discuss the quantum-mechanical generaliza-
tion of the open-system scenario described in Fig. 4. Figure 6
shows the ground- and excited-level populations(dashed
curves) as well as the modulus of the interlevel polarization
(solid curve) as a function of the coupling-parameter ratio
h=Wr /Ws at room temperature for a fixed value of the scat-
tering coupling constant:"Ws=25 meV. As we can see, ex-
actly as in the semiclassical case(see Fig. 4), for increasing
values ofh we enter a pronounced nonequilibrium regime,
leading eventually to a reservoir-induced population inver-
sion.

More important, the present quantum-mechanical treat-
ment allows us to study the effect of the external reservoirs
on the phonon-induced single-particle phase coherence(see
Fig. 5). Indeed, for increasing values of the system-reservoir
coupling Wr we experience a progressive decrease of the
interlevel polarizationp, which is a clear fingerprint of a
decoherence/dephasing effect induced by the external reser-
voir.

FIG. 5. Phonon-induced single-particle phase coherence for an
isolated quantum-dot system: modulus of the interlevel polarization

upu (solid curve) and dressed-state populationsf̄b and f̄a (dashed
curves) as a function of the coupling-constant ratioL, for an inter-
level energy splittingDe=25 meV at room temperature(see text).

FIG. 6. Quantum-mechanical simulation of the electrically
driven nonequilibrium carrier dynamics for the quantum-dot system
of Fig. 4: excited- and ground-state populationsfb and fa (dashed
curves) and modulus of the interlevel polarizationupu as a function
of the coupling-constant ratioh, for an interlevel energy splitting
De=25 meV and for a reservoir-induced population ratioR0=3 at
room temperature(see text).
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IV. SUMMARY AND CONCLUSIONS

In summary, we have proposed an alternative simulation
strategy for the study of nonequilibrium carrier dynamics in
quantum devices with open boundaries: the key idea is to
replace the usual modeling of open quantum systems based
on phenomenological injection/loss rates with a kinetic de-
scription of the system-reservoir thermalization process. In
particular, within this simulation scheme the partial carrier
thermalization induced by the device spatial boundaries is
treated via a conventional Boltzmann-theory approach in
terms of an effective collision operator between the highly
nonthermal device electrons and the thermal carrier distribu-
tion of the reservoir. In this approach the total number of
simulated electrons is preserved(closed scheme); this is a
distinguished advantage of the proposed strategy, compared
to hybrid—direct numerical-integration plus MC-sampling—
schemes, where the total number of particles is not preserved
(open scheme).

Finally, we have extended the proposed particle-
conserving kinetic approach to the quantum-transport re-
gime. More specifically, as for the semiclassical case, we

have introduced a Liouville superoperator able to properly
describe carrier thermalization/dephasing induced by the de-
vice spatial boundaries.

Within the semiclassical scenario, by replacing the con-
ventional injection/loss model with a Boltzmann-like effec-
tive scattering operator, we are able to move from an open to
a closed scheme, prerequisite for the application of the well-
established ensemble MC method. Following this spirit, we
have presented a few simulated experiments of hot-carrier
dynamics in semiconductor-based quantum devices, namely
double-barrier structures and electrically driven quantum-dot
systems. These simulated experiments have fully confirmed
its validity as well as its power and flexibility.

Finally, the proposed quantum-mechanical generalization
of the theory has been successfully applied to the study of
environment-induced dephasing in electrically-driven
quantum-dot systems. We stress that the proposed trace-
preserving Liouville superoperator—contrary to other formu-
lations of the problem7—ensures the positive-definite char-
acter of the steady-state density matrix,19 thus allowing for
the usual probabilistic interpretation of our simulated experi-
ments.
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