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Abstract – Permanent magnets are frequently adopted in 

small brushless machines for automotive applications. Normally 
anisotropic ferrites, but some research on bonded magnets is 
being carried on. Several types of magnetization can be 
proposed, involving different levels of complexity in the 
magnetization process. In the paper a comparison between 
parallel and radial magnetization is described, taking into 
account on one side the major complexity of the radial process 
and on the other the small power derating of the parallel. 
 

Index Terms – Fractional PM machines, magnetization 
patterns, magnetization process, parallel and radial 
magnetization, performance 

I. INTRODUCTION 

Among the applications of the automotive world where 
electric motors are required [1], [2], [3], the cooling systems 
with fans driven by small brushless motors are widely used. 

Normally they are small machines with internal stator, 
dummy slots and outrunner rotor with Permanent Magnets; an 
example that has been considered for the present work is 
shown in Fig. 1 [4]. 
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Fig. 1 – Brushless motor under exam 

 

In the past activity a deep interest of the Authors has been 
addressed to new molding solutions for the realization of PM 
for such motor type [5]. A subject which constitutes object of 
technical debate concerns the type of the adopted 
magnetization methodology [6], [4], [7], [8]; in this work a 
comparison about the motor performances related to the two 
main types of magnet magnetization will be carried out: 
parallel and radial [9], [10], [11], [12], [4]. 

The comparison is here performed under the point of view 
of the effect of the selected magnetization technique [6], [13], 
on the potential transformed electromechanical power and to 
related energetic aspects [14], [15]. The justification of the 
attention for the argument is related to the strong differences 
in the magnetization process between the two solutions, under 
both technical and economic point of view. That is especially 
important for the case of low cost and mass production 
motors [1], [16] as the one that is here considered. 

If the parallel magnetization should allow satisfactory 
energetic performances, such solution has to be carefully 
considered, especially in the case of small fan drives. The 
original samples of motor obtained by the manufacturer 
provides anisotropic ferrite magnets with radial 
magnetization; for the present work also prototypes with 
parallel magnetization have been realized in our laboratories, 
for a better results reliability [5], [9]. 

II. MATERIALS AND MAGNETIZATION PROCESSES 

The motor considered the present activity is equipped with 
anisotropic ferrite magnets, whose magnetic data are 
reported; in the following Table I: 

 

Type of magnet 
Anisotropic 

ferrite 
Remanence Br [T] 0.420 
Coercivity Hc [kA/m] -260 

Intrinsic Coercivity Hcj [kA/m] -272 

Max energy product (BH)m [kJ/m3] 36.70 
Temperature coefficient 

up to 100 °C 
dBr/dT [%/°C] -0,20 
dHcj/dT [%/°C] +0,32 

Table I - Magnetic characteristic of the anisotropic ferrite 
 

The aim of the present activity involves the evaluation of 
the magnetization direction impact on the machine 
performance [17], [18]. The magnetizations here considered 
are the parallel and the radial one [9], which present different 
levels of complexity and required devices. 

Parallel magnetization is easy to be obtained inside the 
magnetizer coil directly in air, without the need of any 
particular adaptation; on the other hand radial magnetization 
requires the adoption of a dedicated magnetic circuit (Fig. 2) 
realized by the authors in their electromechanical laboratory 
with a high permeability material (Fig. 3) [9]. 

To get equal results in terms of final magnetization, the 
discharge level of the magnetizer if working in air or with the 
magnetic circuit is different. 
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Fig. 2 – Adopted magnetic circuit for the radial magnetization 
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Fig. 3 – Polar shoes around the magnet 

 

III. COMPARISON METHODOLOGY 

The brushless motor object of the present analysis is 
belonging to the family the so called “trapezoidal” types [16], 
[19] and it is driven through a three phase transistor full 
bridge providing a basic six-step commutation (Fig. 4). The 
equivalent converter system is the one reported in Fig. 4: a 
PWM chopper stage providing the DC voltage regulation for 
the speed control and a six-step inverter realizing the motor 
phases commutation. 
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Fig. 4 – Ideal Drive structure 

 

At a given speed, the situation is equivalent to consider the 
motor supplied by a DC bus having voltage value equal to the 
average value of the three e.m.f.. The PWM modulation will 
compensate the instantaneous, small difference between the 
rectified motor e.m.f. reflecting the motor voltage ripple and 
the constant DC supply voltage. 

Such a DC voltage value may be utilized for a motor 
performance analysis: the analysis, concerning the handable 
electromechanical power of two motors providing different 
magnetization types, may be performed by comparing the 
average value of the mentioned obtainable rectified motor 
voltages Vdc. 

The comparison between the obtained average voltages 
gives the possibility to deduce the comparison between the 
possible input electric power, which is given by the product 
of Vdc and the motor rated current which is not modified, 
being related to the windings characteristics. A higher 
average rectified voltage means a higher input electric motor 
power and viceversa. The knowledge of the different loss 
contributions makes possible to analyse also the effect on the 
usable power. 

It has to be remembered that in the practical application 
the modulation system, with the six-steps commutation, also 

provides to the cancellation of the possible voltage ripple 
present in every conduction phase; for all this, a system of LC 
filters, interposed between drive and battery is normally 
adopted. 

From what above reported, the comparison can be referred 
to constant voltage values, equal to the average value of the 
rectified voltage, Vdc. 

The system “motor and drive” can be considered, for each 
speed and load, as a direct current load, with constant voltage 
and current. 

At the aim of a basic comparison, as proposed in this 
work, it is enough to refer to the input power, obtainable as 
the product of the rectified ideal voltage induced in the motor 
phases and the rated current (on the dc side) specified by the 
manufacturer. 

 
It must be underlined that the main goal of the work is the 

evaluation of the possible negative effects related to the 
adoption of an easier magnetization process (the parallel 
one); even a small allowable input power reduction, for those 
applications that don’t require particular specifications typical 
of the automation systems, could be considered positive. 

At the aim of comparing the useful power, the equivalent 
voltage drop due to the motor phase resistance must be taken 
into account; such voltage drop can be deduced from the 
manufacturer data, and it is equal to 0,42 V for the rated 
current Ir = 4,6 A; that brings to a rated joule losses value of 
1,9 W. 

 
In the real case of a power supply with constant voltage 

value (DC battery), for utilizing the eventual power 
advantages it should be necessary to provide a suitable 
modification of the motor windings. 

On the basis of the above reported remarks we will 
proceed to evaluate the rectified e.m.f. value for motors 
presenting both parallel and radial magnetization, through 
finite element simulation [19], [9], [20], [21] and through 
bench measurements [5], [9], [22]. 

The first step is to take under consideration the use of 
ferrite magnets, as they are effectively adopted in the present 
production. The exam will be then extended to other types of 
magnets [23], [9] [24]. 

For each case some energetic considerations will be 
carried out [25], [26], [22]. 

IV. INVESTIGATION STEPS 

The present analysis will be conducted with the following 
steps: 
 determination of the simulated voltage waveforms at no 

load, in the case of motor adopting ferrites with radial and 
parallel magnetization; this will allow to evaluate possible 
differences of the voltage values due to the different kind 
of magnetization [27], and consequent different 
performances in terms of power; 

 comparison of such voltages with those experimentally 
measured with the machine in rotation at no load. 
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As regards the power, for the case under exam, it is 
necessary to consider the DC voltage available before the 
structure of phases commutation; the no load voltage 
produced by the machine will be detected with a three phase 
rectifier bridge, simulating the phases commutation of the 
brushless six-steps drive. 

For a proper comparison with the simulation results, the 
experimental voltages must also consider the voltage drops 
on the adopted diodes. 

A.    Flux and e.m.f. simulation 

In the following the evaluation of the flux machines will 
be described for the case of ferrite magnets both for radial 
and parallel magnetization; on these basis, with the adoption 
of a derivative procedure the corresponding e.m.f. waveform 
and value has been deduced. 

The theoretical value of the rectified e.m. forces seen 
through an ideal rectifying bridge is calculated; that is 
obtained through the evaluation of the average value of a 
single e.m.f. phase waveform during one of the six 
conduction intervals of 60 electrical degrees. 

 

A.1 Ferrite magnets with parallel magnetization 
The simulated flux density of the machine adopting ferrite 

magnets with parallel magnetization is reported in Fig. 5, 
while the stator pole flux over a complete electrical period is 
shown in Fig. 6. 
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Fig. 5 – Simulated flux density for parallel ferrite motor 
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Fig. 6 – Simulated flux for parallel ferrite motor 

 

In Fig. 7 the e.m.f. at the terminals of the machine 
obtained through the simulation process is reported: 
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Fig. 7 – Simulated e.m.f. for parallel ferrite motor 

 

In Fig. 8 the e.m.f. waveform during the conduction period 
and the related average value of the rectified ideal voltage are 
reported: 
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Fig. 8 – Simulated e.m.f. for parallel ferrite motor: 

waveform and average value Vdc during the conduction 
interval (rectified voltage value) 

 

A.2 Ferrite magnets with radial magnetization 
The simulated flux density of the machine adopting ferrite 

magnets with radial magnetization is reported in Fig. 9, while 
the stator pole flux over a complete electrical period is shown 
in Fig. 10. 
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Fig. 9 – Simulated flux density for radial ferrite motor 
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Fig. 10 – Simulated stator pole flux for radial ferrite motor 

 

In Fig. 11 the e.m.f. at the terminals of the machine 
obtained from the simulation is reported: 
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Fig. 11 – Simulated e.m.f. for radial ferrite motor 

 

In Fig. 12 the waveform during the conduction period and 
the related average value of the rectified ideal voltage are 
reported: 
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Fig. 12 – Simulated e.m.f. for radial ferrite motor: 

waveform and average value Vdc during the conduction 
interval (rectified voltage value) 

 

B.   Experimental verification 

The simulation process has been followed and validated 
with an experimental activity conducted on a properly 
realized test bench (Fig. 13). 

 

  
Fig. 13 – Experimental test bench 

 
In Fig. 14 and Fig. 15 the comparison between the 

simulated and the experimentally measured values of the 
e.m.f. is proposed, with a good matching of the results. 
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Fig. 14 – Experimental and simulated voltage for parallel 
ferrite motor 
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Fig. 15 – Experimental and simulated voltage for radial ferrite 
motor 

 

It can be observed that a very small difference between the 
measurements and the simulations is present; the average 
values of the voltages (Vdc = Vavg 60°) evaluated in the 
conduction period of 60 electrical degrees is hereafter 
reported in Table II: 

 

 Parallel Radial  
parallel/ radial 

FEM simulation 10,1 V 10,54 -4,35% 

Experimental measurements 10 V 10,41 -3,9% 

 simulation/experimental 1% 1,3%  

Table II - Simulated and the experimental average voltages 
Vdc for anisotropic ferrite magnets with parallel and radial 

magnetization 
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V. RESULTS ANALYSIS 

The experimental activity conducted on the different 
machines that have been assembled to perform the 
comparison between the effects of the different kinds of 
magnetization allowed to verify the values of the rectified 
voltages. 

It can also be observed from Fig. 14 and Fig. 15 that the 
simulation process considers a perfect magnetic symmetry of 
the flux density distribution in the machine; such a fact is not 
perfectly verified in the practical realization, mainly when a 
radial magnetization has to be obtained. 

All that may also justify the major difference, even if very 
small, between the calculated and measured values reported 
in Table II concerning the radial case. 

That imply also a non perfect symmetry in the voltage 
waveform, especially just for the radial magnetization motor, 
which is belonging to the normal production series. 

To underline such phenomenon, in any case having side 
importance, in Fig. 16 and Fig. 17 the rectified voltage 
waveforms are reported for qualitative observations: the 
voltage drops concerning two diodes should have to be added 
to the measured average values. 
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Fig. 16 – Experimental rectified voltage for parallel ferrite 

motor 
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Fig. 17 – Experimental rectified voltage for radial ferrite 

motor 
 

From all the above results it is possible to deduce: 
 a major regularity in the time development for the motor 

providing parallel magnetization 
 a confirmation of a limited major average voltage in the 

case of radial magnetization. 
 
It must be again underlined the basic character of the 

research, that aims to consider the eventual tendency effect of 
the chosen magnetization methodology on the 
electromechanical transformation. Under this point of view it 
has been considered enough to perform the further 
evaluations on the basis of the results obtained through the 
simulation approach. 

 
Power evaluation 
As it is described in the Section II and taking into account 

the results of Table II, the following considerations can be 
obtained: 
 input power PiR allowable for the case of radial 

magnetization: 
 PiR = Vdc × Ir = 10,54×4,6 = 48,48 W 
 
 input power PiP allowable for the case of parallel 

magnetization: 
 PiP = Vdc × Ir = 10,1×4,6 = 46,46 W 

 
For an evaluation of the allowable output power PoR and 

PoP the different loss contributions at the speed of 4000 rpm 
have to be considered. 

 
The following values are valid for both cases: 
 

Bearing losses 3,4 W 
Fluidic friction losses 2,0 W 
Joule losses 1,9 W 
Total basic losses 7,3 W 
 

As regards the iron losses, the Authors, in a parallel 
activity deduced the following data: 

 

radial magnetization: 
hysteresis losses 1,53 W 
eddy current losses 4,39 W 
Total Radial iron losses 5,92 W 
 

parallel magnetization: 
hysteresis losses 1,45 W 
Eddy current losses 4,91 W 
Total Parallel iron losses 6,36 W 
 

From the above elements, the following results are 
obtained: 

 
PoR = PiR - losses = 48,48 – 7,3 – 5,92 = 35,26 W 
 
PoP = PiP - losses = 46,46 – 7,3 – 6,36 = 32,80 W 
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VI. FINAL CONSIDERATIONS 

Even if the present analysis has to be considered of a 
general information character, it provides some univocal 
results: the adoption of the parallel magnetization magnets 
brings to a derating of the obtainable output power from the 
same electromechanical structure with respect to the one 
adopting magnets providing a radial magnetization. The 
obtained derating value of a few percent has to be considered 
representative enough. 

Apart from this, all the performed activity and the reported 
analysis allow to establish that the power reduction is limited 
to a percentage which may be often considered small enough 
to adopt the easier parallel magnetization process when the 
magnets are subjected to the magnetization action before the 
introduction in the motor, as it is verified in a large number of 
applications. 

All that, of course, when other performances aspects don’t 
make necessary other analysis typologies [28], [29], [30]. 
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