
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ADAGE: An Automated Synthesis tool for Adaptive BCH-based ECC IP-Cores / DI CARLO, Stefano; Fabiano, Michele;
Indaco, Marco; Prinetto, Paolo Ernesto. - ELETTRONICO. - (2012), pp. 15-15. (Intervento presentato al convegno ITC -
IEEE International Test Conference tenutosi a Anaheim nel 4-9 November, 2012).

Original

ADAGE: An Automated Synthesis tool for Adaptive BCH-based ECC IP-Cores

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2505019 since:

IEEE COMPUTER SOCIETY

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works." - This paper appears in the Proceedings of the IEEE International Test Conference, 4-9 November, 2012
Anaheim (USA), pp. 15.

ADAGE: An Automated Synthesis tool for Adaptive BCH-based ECC IP-Cores

Stefano DI CARLO, Michele FABIANO, Marco INDACO, Paolo PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {name.familyname}@polito.it

Abstract
Bose-Chaudhuri-Hocquenghem (BCH) codes are a family
of Error Correction Codes (ECCs) largely applied in mod-
ern Flash-based Hard Disks to significantly improve their
endurance and reliability. ADAGE is an advanced ESL
tool for the automatic generation of BCH-based ECC IP-
Cores with adaptable correction capability. End-users can
freely and dynamically change it on-the-fly. In addition,
ADAGE supports architectural exploration of both decod-
ers and encoders.

1. Introduction
NAND flash memories are a widespread technology for
the development of low-power, low-cost and high data
throughput mass storage systems. Manufacturers are push-
ing flash technologies to further reduce the cost per unit of
storage. This includes moving from traditional single-level
cell (SLC) technologies, able to store a single bit of infor-
mation, to multi-level cell (MLC) technologies, thus stor-
ing more than one bit per cell. The strong transistor minia-
turization and the adoption of an increasing number of
levels per cell introduce serious issues related to reliability
and endurance [1]
Error correction codes (ECCs) must therefore be systemat-
ically applied. The Binary Bose and Ray-Chaudhuri
(BCH) codes are, in particular, a well-known correcting
code used for NAND flash-memories [2]. BCH codes are a
family of ECC constructed over the Galois Fields (GFs).
Flash memories support ECCs by providing spare storage
cells dedicated to system management and parity bit stor-
age. Choosing the correction capability of an ECC is a
trade-off between reliability and design complexity. It is
therefore a strategic decision in the design of a flash-based
storage system.

2. ADAGE
In this poster we present ADAGE, an advanced ESL tool
for the automatic generation of BCH-based ECC IP-Cores
with adaptable correction capability. ADAGE supports a
systematic analysis and exploration of different architec-
ture alternatives. This environment is strongly intended to
be: user-driven, automatic, parametric. The availability of
an adaptable correction capability proved to be very im-
portant. Since the reliability of a NAND flash memory

continuously decreases over time, it’s in fact highly desir-
able that the required correction capability could be dy-
namically adapted during the device lifecycle. Tuning the
correction capability on-the-fly results both in saving pow-
er consumption and in a reduced decoding latency.
The overall explanation of the adaptable and optimized
BCH-based ECC IP-Core architecture is detailed in [3].

Three main functional steps compose the design flow pro-
vided by ADAGE: 1) Design Requirements, 2) Code
Characterization 3) BCH IP-Core generation.
1) Design Requirements: the user provides the length of
the message to be encoded, the HW parallelism (e.g., 32-
bit), and two values of BER. The former is the raw bit er-
ror rate (RBER), i.e., the BER before applying the error
correction, that is technology dependent. The latter is the
uncorrectable bit error rate (UBER), i.e., the BER after the
application of the ECC, which is application dependent.
The two BER values are needed to calculate the proper
error correction capability. Several architectural options
are provided to trade-off area and decoding latency.
2) Code Characterization: the second step choices the
proper error correction capability and the actual GF. Given
the GF, all the mathematical parameters (e.g., polynomi-
als) are computed. The HW complexity of the BCH IP-
Core is strictly dependent on these parameters.
3) BCH IP-Core generation: the VHDL description of the
encoder and decoder modules is generated. A complete
framework for validating the correctness of the BCH
code’s HW architecture is automatically generated, as
well.

The whole framework combines Matlab software modules
with custom C programs.
The full framework code can be freely downloaded
from http://www.testgroup.polito.it in the Tools section
of the website.

3. References
[1] D. Ielmini, “Reliability issues and modeling of flash and post-flash
memory,” Microelectronic Engineering, vol. 86, pp. 1870–1875, 2009
[2] R. Micheloni, A. Marelli, and R. Ravasio, Error Correction Codes for
Non-Volatile Memories. Springer Publishing Company, 2008.
[3] S. Di Carlo, M. Fabiano, M. Indaco, P. Prinetto, “Generation of
Adaptable BCH Codecs for NAND Flash”, submitted to Transactions On
Computer-Aided Design of Integrated Circuits and Systems, 2012

