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where ρ = 1,225 kg/m3 air density; 퐶  = 0,3 drag coefficient or longitudinal aerodynamic 

force coefficient; 퐴  = 2 m2 transversal section of vehicle including wheels and parts 

under floor; vr is vehicle speed in m/s. Constant data used in (1) are for typical sedan car. 

Then aerodynamic torque at wheels 푇  is evaluated with equation (2): 

 

(2)                       푇 = 휌퐶 퐴 푣 푟  

 

where 푟  = 0,28 m radius of rolling defined as radius of rigid wheel that translate and 

rotate at same speed of pneumatic wheel. And in the end, aerodynamic power at wheels 

푃  is evaluated through equation (3) and plotted in Figure 62: 

 

(3)                       푃 = 휌퐶 퐴 푣  

 

 

Fig. 62: aerodynamic power versus vehicle speed 
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Figure 62 shows aerodynamic power and highlights growth trend at power of three of 

vehicle speed. Moreover, under 50 % of vehicle speed range, aerodynamic power 

contribution is less than 20 % of the maximum power. 

About slope resistance, it could evaluate in the same way of aerodynamic resistance, 

through force, torque and then power. Slope force at wheels 퐹  is calculated with 

equation (4): 

 

(4)                       퐹 = 푚 푔 sin훼 

 

where m = 1400 kg is full load vehicle mass in test condition or in according with SAE 

guide lines, vehicle mass in Standard C that means vehicle mass with all liquids with 

maximum load for vehicle, maximum number of passengers plus load per each 

passengers; g = 9,81 m/s2, α is related to percentage slope i  in according to (5) and (6): 

 

(5)                       푖 = 100 tan훼 

 

(6)                       훼 = tan  

 

In this example, road slope is set at 4 % that means every 100 meters along road steps 4 

meters. Slope torque at wheels 푇  is evaluated through equation (7): 

 

(7)                       푇 = 푚 푔 sin훼 푟  

 

And in the end, slope power at wheels 푃  is calculated by equation (8) and plotted in 

Figure 63: 

 

(8)                       푃 = 푚 푔 sin훼  푣   
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Figure 63 shows slope power versus vehicle speed and highlights linear relation between 

power and speed at constant slope. 

Flat rolling resistance is mainly related to rolling coefficient f as well as slope rolling 

resistance. f increases with  vehicle speed increase, in the beginning very slowly and then 

faster and faster, see Figure 64. 

 

 

 

 

 

 

 

 

 

 

Fig. 63: slope power versus vehicle speed 

Fig. 64: rolling coefficient f trend versus vehicle speed. a) measure on radial and 
conventional tire; b) experimental curve – radial tire 5,20-14 inflated at 190kPa with 

340 kN load – compared with equation (11) 
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Relationship f (V) could be approximate with polynomial expression in form of (9): 

 

(9)                       푓 = ∑ 푓푣  

 

In general, one considers two terms of equation (9) are enough to approximate in proper 

way experimental trend of f (V), at last up to vehicle speed which rolling coefficient f 

starts to rocket as highlighted in Figure 64. It could use follow equation: 

 

(10)                     푓 = 푓 + 푓 푣  

 

or 

 

(11)                     푓 = 푓 + 푓 푣  

 

Equation (11) is usually preferred to (10) but in industrial application in case of 

unavailable data, one could use equation (12): 

 

(12)                     푓 = 푘  

 

Equations (11) and (12) are plotted in Figure 65. 
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Figure 65 highlights rolling coefficient trend evaluated through (11) is strongly related 

with velocity at power of two. f0 and f2 values are evaluated experimentally tire per tire; 

for example in case of Figure 64b and in that test conditions, values are respectively 

0,013 and 6,5 · 10-6 s2/m2. Velocity where f (V) has knee, is tire critical velocity. 

Existence of tire critical velocity could easily explain through vibration phenomena 

happen at high speed. Flat rolling force at wheels 퐹  according with equations (12) and 

(11) is evaluated respectively in equations (13) and (14): 

 

(13)                     퐹 = 푚 푔 푘  

 

(14)                     퐹 = 푚 푔 (푓 + 푓 푣 ) 

 

where 푘  = 10-2 [-], 푓 = 9,5 ∙  10  [−], 푓 = 5,6 ∙  10  . In this case m is vehicle 

mass in Standard E that mean vehicle mass with all liquids plus two passengers and load 

Fig. 65: constant and speed related rolling coefficient comparison 
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for each passenger. Flat rolling torque at wheels 푇  is calculated trough equations (15) 

and (16): 

 

(15)                     푇 = 푚 푔 푘  푟  

 

(16)                     푇 = 푚 푔 (푓 + 푓 푣 ) 푟  

 

And in the end, flat rolling power at wheels 푃  is computed by equations (17) and (18) 

and plotted in Figure 66: 

 

(17)                     푃 = 푚 푔 푘  푣  

 

(18)                     푃 = 푚 푔 (푓 + 푓 푣 ) 푣  

 

 

Fig. 66: flat rolling power resistance comparison with constant and speed related rolling coefficient 
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Under 40 km/h, constant rolling coefficient follow better experimental data respect to 

speed related one. But, as shown in Figure 66, flat rolling power resistance evaluated in 

both way gives pretty same result and for this reason equation (12) is preferred one. 

Otherwise, equation (12) is usable up to 70 km/h, or in others words up to error between 

equations (17) and (18) is acceptable. 

In case of slope road, slope rolling resistance is evaluate as usual through force, torque 

and power. Slope rolling force at wheels 퐹  is evaluated by equations (19) and (20): 

 

(19)                     퐹 = 푚 푔 푘  cos훼 

 

(20)                     퐹 = 푚 푔 (푓 + 푓 푣 )  cos훼 

 

α is computed in the same way as before and in particular with equations (5) and (6). 

While slope rolling torque at wheels 푇  is calculated through equations (21) and (22): 

 

(21)                     푇 = 푚 푔 푘  cos훼  푟  

 

(22)                     푇 = 푚 푔 (푓 + 푓 푣 ) cos훼  푟  

 

And finally, slope rolling power resistance 푃  is evaluated through equations (23) and 

(24) and plotted in Figure 67: 

 

(24)                     푃 = 푚 푔 푘  cos훼  푣  

 

(25)                     푃 = 푚 푔 (푓 + 푓 푣 ) cos훼  푣  
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Total power resistance 푃  is sum of different contributions and in particular depends on 

flat, (26) or slope (27) road: 

 

(26)                     푃 = 푃 + 푃  

 

(27)                     푃 = 푃 + 푃 + 푃  

 

Figure 68 shows total power resistance for slope road at 4 %. 

 

 

 

 

 

 

 

Fig. 67: slope rolling power resistance comparison with constant and speed related rolling coefficient 
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Usually for flat road, it is very important determine characteristic speed of vehicle 

defined as vehicle velocity where aerodynamic resistance power equals rolling resistance 

power. Now, if power curve of IC engine is plotted in Figure 68, it intercepts total 

resistance power curve at certain point that show maximum vehicle speed. Distance 

between total resistance curve and IC engine power curve is exuberant power and vehicle 

uses it to accelerate. At this point, one could verify acceleration that exuberant power can 

get to vehicle. In this way, target power curve of IC engine could verify and modified to 

achieve target SAE performance index of vehicle as defined through equation (28): 

 

(28)   푃. 퐼. = 푎푐푐. 0 − 100 + 푎푐푐. 60− 100 푖푛 퐼푉 + 푎푐푐. 80− 120 푖푛 푉 + 1000 푎푡 푉  

 

where: acc. 0-100 is time in seconds to accelerate vehicle from 0 to 100 km/h; acc. 60-

100 in IV is time in seconds to accelerate vehicle from 60 to 100 km/h in IV gear; acc. 

80-120 in V is time in seconds to accelerate vehicle from 80 to 120 km/h in V gear; 1000 

Fig. 68: total power resistance using constant rolling resistance 
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at Vmax is time in seconds to travel 1000 m at maximum vehicle speed. In particular 

vehicle performance index is used to link Customer Car Profile with Quality Profile in 

term of vehicle brilliancy. 

First step to understand if IC engine has enough exuberant power or, in the other side, 

one could evaluate vehicle acceleration with present exuberant power, is calculate mass 

apparent sliding of vehicle mas  in test conditions.  

 

(29)                     푚 = 푚 +  +  +  

 

where m is vehicle mass in test conditions in Standard C for slope cases and Standard E 

for flat cases measured in [kg]; 퐽  is IC engine inertia in [kg m2];  휏  

transmission ratio between IC engine and wheels defined through equation (30); 퐽  is 

transmission inertia in [kg m2]; 휏  is transmission ratio between transmission and 

wheels in [-] defined by equation (31); 퐽  is wheels inertia [kg m2]. 

 

(30)                     휏 =  

 

(31)                     휏 =  

 

where 휔  is angular engine speed; 휔  is angular speed of transmission; 휔  is 

angular speed of wheels. Now, with apparent mass sliding 푚  could evaluate dynamic 

force at wheels 퐹  through equation (32): 

 

(32)                     퐹 = 푚  푎 

 

where a is vehicle acceleration in [m/s2]. Then, dynamic torque at wheels 푇  is 

evaluated through equation (33): 
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(33)                     푇 = 푚  푎 푟  

 

And in the end, dynamic power at wheels is evaluated with equation (34): 

 

(34)                     푃 = 푚  푎 푣  

 

Usually, this kind of analysis are carried on with commercial software as GT-Drive [87] 

that allow to study vehicle performance and vehicle – propulsion system matching. 

Basically, GT-Drive works in three different mode: static, kinematic and dynamic. In 

static mode, the solver creates a wide  group of main performance index – power and 

torque, vehicle acceleration, … - on the whole engine speed range for every transmission 

rate; the engine load that the solver uses to calculate these index is defined by ‘static 

mode load factor’. In kinematic mode it is possible calculate the performance 

requirements and the emissions for cycles as NEDC; the vehicle speed is imposed and the 

solver calculates the engine performances. In dynamic mode is possible evaluate the 

transient performances – e.g. 0 – 100 km/h test –; the engine load is specified and the 

solver calculates the vehicle answer. 
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