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Information densities for block-fading

MIMO channels

G. Alfano∗ C.-F.Chiasserini† A. Nordio‡ S. Zhou§

Abstract — This paper provides a characterization
of the output and of the transition probability den-
sity function (pdf) of a MIMO block-fading channel,
paving the way to its information-theoretic analysis.
The information density, whose average in ergodic
conditions gives the mutual information conveyed
over the channel, is needed to characterize the chan-
nels with arbitrary behavior, as one in this case can
neither resort to ergodicity nor to consequences of
any law of large numbers. The information density
expression is then provided under several assump-
tions on the channel model and also in the presence
of multiple-antenna equipped interferers.

1 INTRODUCTION

Information density methods allow for the study of
arbitrary channels, as they do not take recourse to
ergodic results like, e.g. the Asymptotic Equiparti-
tion Property (AEP). Relying on the survey in [1],
in this work we aim at characterizing the informa-
tion density for some MIMO channel of interest,
characterized by block-independent fading. The
crucial steps toward the derivation of a formula for
the information density are the characterization of
the probability density function (pdf) of the chan-
nel output, as well as of the transition probability,
i.e. the conditional law of the channel output given
the input. A recent analysis in [2], whose authors
were mainly interested in proposing a computation-
ally efficient way for evaluating the mutual infor-
mation conveyed on a MIMO block fading channel
with no Channel State Information (CSI) at either
ends of the link, paved the way to our derivation.
Indeed, the strategy in [2] for evaluating the output
pdf can be extended from block-Rayleigh MIMO
channels to channels with different fading laws, ex-
ploiting some results of finite-dimensional random
matrix theory. The transition probability follows
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in many cases from simple observations on the fad-
ing law. Our focus is on MIMO channel fed by
i.i.d. Gaussian inputs, which exhibit the nice fea-
ture of being invariant (in law) with respect to left
and/or right multiplication times a unitary matrix,
and serve as a reference with respect to otherwise
optimized inputs.

The paper is organized as follows: next Section
describes the System Model, while in Section 3 the
analytical derivation of the information density for
each channel model of interest is reported.

Throughout the paper, matrices are denoted by
uppercase boldface letters, vectors by lowercase
boldface. The pdf of a random matrix Z, pZ(Z),
is simply denoted by p(Z). The complex, matrix-
variate Gaussian law with mean matrix ∆ and co-
variance matrix Ξ is denoted by CN (∆,Ξ). The
complex matrix-variate F law with p and n degrees
of freedom is denoted by Fm(p, n), with m the size
of the matrix and, in order to avoid rank deficien-
cies, p ≥ m and n ≥ m. (·)† indicates the con-
jugate transpose operator, | · | and Tr(·) denote,
respectively, the determinant and the trace of a
square matrix, and || · || stands for the Euclidean
norm1. Γp(q), with p ≤ q, is the complex multi-
variate Gamma function [3]

Γp(q) = π
p(p−1)

2

p∏
`=1

(q − `)!

We denote by Im the m ×m identity matrix and,
letting A be an n × n Hermitian matrix with or-
dered eigenvalues2 λ1, . . . , λn, we denote by V(A)
the Vandermonde determinant of A [4], i.e.,

V(A) =
∏

1≤i<`≤n

(λi − λ`).

2 SYSTEM MODEL

We consider a single-user multiple-antenna commu-
nication, with nr and nt denoting the number of
receive and, respectively, of transmit antennas. As-
suming block-fading with block length nb, the chan-
nel output can be described by the following linear

1As applied to a matrix, we mean ||A||2 = Tr(A†A)
2In the following, all the joint eigenvalue distributions

assume the eigenvalues to be ordered.



relationship:

Y =
√
γH X + N . (1)

In (1), Y is the nr×nb output, X is the i.i.d. zero-
mean, unit variance complex Gaussian nt × nb in-
put matrix, and N is the nr×nb matrix of additive
complex circularly symmetric Gaussian noise. H is
the nr × nt complex channel matrix, whose entries
represent the fading coefficients between each trans-
mit and each receive antenna, and whose singular
value decomposition reads as3 H = UΣ1/2V†. Fi-
nally, γ = SNR/nt represents the normalized per-
transmit antenna signal-to-noise ratio (SNR).

We apply the well known definition of the infor-
mation density to the channel in (1), and write

iX,Y(X,Y) = log
p(Y|X)

p(Y)
. (2)

As largely discussed in [5, and references therein],
this quantity plays an essential role in the in-
formation theoretic analysis of finite block-length
communications. Moreover, information density
methods are crucial in the characterization of non-
ergodic channels at large. In the remaining of the
paper, we will then provide analytical results for
the output and the transition pdf of a block-fading
channel, since they constitute the building blocks
of (2).

3 ANALYTICAL RESULTS

The characterization we propose works for arbi-
trary number of transmit and receive antennas and
arbitrary fading duration, however the analytical
details of the derivation depend on the relative val-
ues of nt and nr (as in [2, and references therein]).
Due to the lack of space, we focus on the case of
nt ≥ nr.

Given a channel as in (1), with i.i.d. Gaussian X,
the output pdf when nt ≥ nr can be conveniently
written [2, Formulae (40) and (41)] as

p(Y) = T

∫
Σ>0

p(Σ)

V(Σ)
|E|

nr∏
`=1

(1 + γσ`)
nr−nb−1 dΣ ,

(3)

with

T =

∏nr
`=1(`− 1)!

γnr(nr−1)/2πnrnb
e−||Y||

2

V(Y†Y)
,

3Herein, U and V are unitary matrices of size nr, and,
respectively, nt, and Σ1/2 has non-negative entries. In the
following, by Σ we’ll mean the square matrix of size s =
min{nr, nt} of the non-zero squared singular values of H.
Due to the further assumptions of next Section, s = nr

necessarily.

σi the i-th eigenvalue of Σ, y2
j the j-th non-zero

eigenvalue of YY† and (E)i,j = ey
2
i γσj/(1+γσj). By

particularizing this integral to the channel model
in force, in the following we will evaluate and list
the output pdf in closed form for some scenarios of
interest.

3.1 Ricean channel

In this case, the channel is traditionally modeled as
a superposition of a scattered plus a Line-Of-Sight
(LOS) component, i.e.

H =

√
κ

κ+ 1
H̄ +

√
1

κ+ 1
Hw (4)

where κ is the Ricean factor, representing the ra-
tio between the average power of the unfaded and
faded channel components, H̄ is deterministic in-
dependent zero-mean unit-variance complex Gaus-
sian. The joint density of the unordered squared
singular values of the channel matrix reads in this
case as [6, Formula (34)]

p(Σ) = (1+κ)nr(nt−nr+1)e−nrntκ

nr!V(H̄H̄†)

·
∏nr−1
`=1 (nr − `)`(nt − `)`∏nr
`=1(nr − `)!(nt − `)!

·e−(1+κ)Tr(Σ)|F||Σ|nt−nrV(Σ) , (5)

with (F)i,j = 0F 1(nt − nr + 1, (1 + κ)2µiσj), µi
being the i-th squared singular value of H̄. As an-
ticipated earlier in this section, the output pdf can
be evaluated by replacing (5) in (3) and performing
the average over Σ, by exploiting [7, Corollary I].
This way, we obtain for a MIMO channel affected
by block-Ricean fading:

p(Y) =

∏nr
`=1(`− 1)!

γnr(nr−1)/2πnrnb
e−||Y||

2

V(Y†Y)
·

· (1 + κ)nr(nt−nr+1)e−nrntκ

nr!V(H̄H̄†)

·
∏nr−1
`=1 (nr − `)`(nt − `)`∏nr
`=1(nr − `)!(nt − `)!

|Z| , (6)

where

(Z)i,j =

∫ +∞

0

ey
2
i

σγ
1+σγ−(1+κ)σ

·σ
nt−nr

0F 1(nt − nr + 1, (1 + κ)2µjσ)

(1 + γσ)nb−nr+1
dσ ,

and 0F 1(·, ·) is the Bessel hypergeometric function
[8]. Notice that, as already stressed in [9], the
LOS matrix H̄H̄† is assumed to be full-rank in
this derivation. If this assumption is broken, then



one needs to resort to the limiting procedure in [9,
Corollary I, and references therein].

As for the transition probability of the channel,

in this case Y|X ∼ CN
(√

γκ
κ+1 H̄X, I + γ

κ+1XX†
)

.

Gathering together this pdf and (6), (2) can be con-
veniently evaluated by taking the logarithm.

3.2 Interference-limited

In this case the AWGN is neglected, and the actual
impairment is generated by the co-channel interfer-
ers, each seen from the direct link receiver under
its own random channel, which we assume to be af-
fected by Rayleigh fading with block-length nb, the
same as for the useful signal. Assuming to have L
active interferers in the network, following [10, Sec.
IV], it turns out that channel matrix Gramian can
be modeled as an Fnr (nt, Lnt)

4-distributed matrix
variate, whose unordered joint eigenvalues law can
be written as [3, Formula (98)]

p(Σ) =
|Ω|−nt

V(−Ω−1)

nr∏
`=1

((L+ 1)n− `)!
(Lnt − `)!(nt − `)!(nr − `)!

·
nr−1∏
`=1

`nr−`

(nt(L+ 1) + `)nr−`
|Σ|nt−nrV(Σ)|F̃| ,

(7)

with Ω the compound receive spatial correlation
matrix5. By replacing (7) into (3), it turns out
that the output is distributed according to

p(Y) =T
|Ω|−nt

V(−Ω−1)

nr∏
`=1

((L+ 1)nt − `)!
(Lnt − `)!(nt − `)!(nr − `)!

·
nr−1∏
`=1

`nr−`

(nt(L+ 1) + `)nr−`
|Z| ,

where

(Z)i,j =

∫ +∞

0

exp

(
y2
i

σγ

1 + σγ

)
· σnt−nr

(1 + γσ)nb−nr+1(1 + σ/ωj)nt+nb−nr+1
dσ.

4The parameters here exploited for the definition of the
F matrix descend from our assumption nr < nt, and refer
to a scenario where the number of transmit antennas nt is
the same at each transmitter.

5comprehensive of both the correlation among the receive
antennas as well as of the correlation arising from interferer’s
transmission, for a detailed explanation on how this correla-
tion structure arises the interested reader is referred to [10,
and refs. teherein].

If Ω = I, then p(Σ) strongly simplifies, namely

p(Σ) =

nr∏
`=1

((L+ 1)nt − `)!
(Lnt − `)!(nt − `)!(nr − `)!

· |Σ|nt−nr
|I + Σ|(L+1)nt

V2(Σ) ,

so that in this case

p(Y) = T

nr∏
`=1

((L+ 1)nt − `)!
(Lnt − `)!(nt − `)!(nr − `)!

|Z| ,

where

(Z)i,j =

∫ +∞

0

ey
2
i

σγ
1+σγ

σnt−nr+j−1

(1 + γσ)nb−nr+1
dσ .

Notice that, as we are neglecting the thermal noise,
the law of Y|X can be characterized through its
characteristic function, exploiting tools in [11, and
references therein].

3.3 Land Mobile Satellite communication

The Land Mobile Satellite (LMS) MIMO channel
can be viewed as a non-central channel with ran-
dom mean, so that the channel matrix model is
akin to that in (4), but with random H̄. Then
the Gramian H̄†H̄ follows a matrix-variate Γ(α,Φ)
distribution [13, 12]. Here, α plays the role of a
shape parameter (indeed, for integer values α coin-
cides with the number of degrees of freedom of the
Γ-distributed matrix-variate), while Φ is a scale pa-
rameter. From a physical point of view, they both
refer to the average power of the random LOS com-
ponent, as shown in detail in [12]. For this scenario,
the channel eigenvalues law reads as

p(Σ) =

∏nr−1
`=1

[
(α−nr+`)
`(nt−nr+`)

]`−nr
V
(

(I + Φ)
−1
) |F|V(Σ)

·e−Tr(Σ)|Σ|nt−nr
nr∏
`=1

φα` (1 + φ`)
−α

(nt − `)!(nr − `)!

with (F)i,j = 1F 1

(
α− nr + 1;nt − nr + 1;

σj
1+φi

)
,

and φi the i-th ordered eigenvalue of Φ. Recall
here that 1F1 (a; b;x) is the confluent hypergeomet-
ric function of scalar argument [8, Ch. 13].

Following the lines of the previous Subsections,
it turns out that

p(Y) = T

∏nr−1
`=1

[
α−nr+`

`(nt−nr+`)

]`−nr
V
(

(I + Φ)
−1
)

·|Z|
nr∏
`=1

φα` (1 + φ`)
−α

(nt − `)!(nr − `)!
,



where

(Z)i,j =

∫ +∞

0

ey
2
i

σγ
1+σγ−σ σnt−nr

(1 + γσ)nb−nr+1

·1F 1

(
α− nr + 1;nt − nr + 1;

σ

1 + φj

)
dσ.

Also in this case, when6 Φ = I the channel eigen-
values pdf simplifies, and reduces indeed to

p(Σ) =
e−Tr(Σ)|Σ|nt−nr
Γnr (nt)Γnr (nr)

|F̃|V(Σ) ,

with (F̃)i,j = σnr−ji 1F 1 (α− j + 1;nt − j + 1;σi),
so that the final result is

p(Y) = T
|Z̃|

Γnr (nt)Γnr (nr)
,

where

(Z)i,j =

∫ +∞

0

ey
2
i

σγ
1+σγ−σ σnt−nr

(1 + γσ)nb−nr+1

·1F 1 (α− j + 1;nt − j + 1;σ) dσ.

In the LMS MIMO case, the conditional law of
Y|X can be evaluated at high-SNR resorting to
the Cholesky decomposition of the channel matrix
Gramian, instance of which is reported in [12, Sec.
II].

4 Conclusion

The output pdf and the conditional law of the out-
put given the i.i.d. Gaussian input has been eval-
uated for block-fading channels. The results are
exploited to characterize the information density of
the analyzed channel models, which is needed in the
information-theoretic characterization of arbitrary
non-ergodic channels. Extensions of the results to
other input/channel structures are currently under
investigation.
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