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DirectData-DrivenPortfolioOptimization

withGuaranteedShortfall Probability ?

Giuseppe Carlo Calafiore a

aDipartimento di Automatica e Informatica, Politecnico di Torino, Italy

Abstract

This paper proposes a novel methodology for optimal allocation of a portfolio of risky financial assets. Most existing methods
that aim at compromising between portfolio performance (e.g., expected return) and its risk (e.g., volatility or shortfall
probability) need some statistical model of the asset returns. This means that: (i) one needs to make rather strong assumptions
on the market for eliciting a return distribution, and (ii) the parameters of this distribution need be somehow estimated, which
is quite a critical aspect, since optimal portfolios will then depend on the way parameters are estimated. Here we propose
instead a direct, data-driven, route to portfolio optimization that avoids both of the mentioned issues: the optimal portfolios
are computed directly from historical data, by solving a sequence of convex optimization problems (typically, linear programs).
Much more importantly, the resulting portfolios are theoretically backed by a guarantee that their expected shortfall is no
larger than an a-priori assigned level. This result is here obtained assuming efficiency of the market, under no hypotheses on
the shape of the joint distribution of the asset returns, which can remain unknown and need not be estimated.

Key words: Scenario design, Portfolio optimization, Asset allocation, Data-driven methods, Random convex programs,
Value-at-Risk.

1 Preliminaries

Consider a collection of assets a1, . . . , an, and let pi(k)
be the market price of ai at time kT , where T is a fixed
period of time, e.g., say, one minute, one day, one month,
or one year. The simple return of an investment in asset
i over the k-th period from (k − 1)T to kT is

ri(k) =
pi(k)− pi(k − 1)

pi(k − 1)
, i = 1, . . . , n; k = 1, 2, . . .

We denote with r(k)
.
= [r1(k) · · · rn(k)]

>
the vector of

assets’ returns over the k-th period, and we make the
following standard working assumption.

Assumption 1 The returns {r(k)}k=1,2,... form an iid
(independent, identically distributed) random sequence.
In particular, each r(k) is distributed according to the
same and possibly unknown probability distribution P
having support ∆ ⊆ Rn. ?

? This work is supported by PRIN grant 20087W5P2K from
Italian Ministry of University and Research.

Email address: giuseppe.calafiore@polito.it
(Giuseppe Carlo Calafiore).

Besides assuming that {r(k)} is an iid sequence, we shall
make no further assumption on the probability distri-
bution P, and all subsequent results do not require P to
be known. Assumption 1 is compatible with the classi-
cal Efficient Markets Hypothesis (EMH), see Chapter 2
of [8]. Although this hypothesis is debated (for example,
in Behavioral Finance, see, e.g., [21]), it still remains,
in practice, the foundation of modern portfolio theory
(MPT). Entering in such a discussion, however, is far
beyond the scope of the present paper: here we take a
pragmatic position and accept the iid hypothesis since it
is widely assumed in most of the existing computational
models for portfolio optimization.

A portfolio of assets a1, . . . , an is defined by a vector
x ∈ Rn whose entry xi, i = 1, . . . , n, describes the
(signed) fraction of an investor’s wealth invested in asset
ai, where xi ≥ 0 denotes a “long” position, and xi < 0
denotes a “short” position. We assume the portfolio to
be self-financing, hence

∑n
i=1 xi = 1, a condition that we

shall write more compactly as 1>x = 1, where 1 is an n-
vector of ones. The portfolio vector may have additional
constraints. For example, if short-selling is not allowed
then it must be x ≥ 0 (element-wise inequality). Other
common constraints on x include minimum and maxi-
mum exposure in an individual asset, or limits in the ex-
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posure over classes of assets, etc. In this paper, we shall
treat the problem in reasonable generality by assuming
that the portfolio vector is constrained in a polytope (a
bounded polyhedron) X . The classical Markowitz case
is given by the conditions 1>x = 1, x ≥ 0 (no short-
selling), in which case X is the standard simplex.

Assumption 2 Portfolio composition constraints are
expressed by the condition x ∈ X , where X is a given
nonempty polytope. ?

Under Assumption 1, the portfolio return over any pe-
riod of duration ∆ is described by a random variable
%(x) = r>x, where r is distributed according to P. Much
of portfolio optimization literature is concerned with de-
termining x so that the probability distribution of %(x)
has some desirable shape. This is an “easy” problem, if
the distribution of r (or some relevant characteristic of
it) is known. In reality, however, this is actually a very
hard problem, since the distribution of r is not known.
For example, classical portfolio theory assumes that one
knows the expected value and the covariance matrix of
r. Under this hypothesis, a sensible optimization prob-
lem can be defined and easily solved, seeking an opti-
mal tradeoff between expected return (the more the bet-
ter) and risk quantified by the variance of %(x) (the less
the better). However, the expected value and the covari-
ance of r are not known in practice. Of course, they can
be estimated by using both prior knowledge and histor-
ical data, but then the use of the estimated quantities
in place of the true (unknown) ones in the optimization
problem rises a wealth of theoretical (and practical) is-
sues, since the result of optimization will be sensitive to
errors in the estimation and thus potentially unreliable,
see, e.g., [1,12]. Interestingly, a new wave of literature re-
cently emerged, trying to cope with the problem of unre-
liable data via the technology of robust optimization. In
robust portfolio optimization uncertainties in the data
are taken into account on a worst-case basis, see, e.g.,
[2,3,14,15] and the references therein. While effective in
some cases, the robust optimization approach to port-
folio allocation suffers from two drawbacks: first, being
a worst-case approach, it tends to be conservative and
to yield overly pessimistic results that may be useless in
practice (this issue may be mitigated to some extent by
flexibly adjusting the level of conservatism of the robust
solutions in terms of probabilistic bounds of constraint
violations, as proposed in [3], or by incorporating sev-
eral layers of robustness corresponding to uncertainty
sets of different sizes, as done in [22]). Second, the ro-
bust approach is an indirect approach: observed data is
first used to compute nominal estimates of the distribu-
tion parameters, along with some regions of confidence
around them, then a suitable robust optimization pro-
gram is solved by taking into account this information.
Each of these steps may involve restrictive assumptions
and various degrees of conservatism. In the same direc-
tion, a learning-theoretic approach is used in [13] to pre-
cisely quantify the uncertainty set in estimation of mean

and covariance from finite data, and hence to derive a
robust portfolio optimization model, see sections 3 and
4 in [13].

In this work, we take a radically different route to reli-
able portfolio optimization. Our route is direct in that it
does not rely on a two phases (estimation/optimization)
approach. Rather, we use directly the observed data to
construct the optimal allocation. Then, we leverage on
the theory of random convex programs (RCP), see [5–
7,10], to attach to the computed portfolio a precisely
guaranteed level of shortfall probability, under no addi-
tional hypotheses beyond Assumption 1. Among other
benefits, the proposed approach makes fully transparent
the fundamental link between the depth of the histori-
cal data upon which the optimal allocation is computed
(look-back period), and the resulting reliability of the
computed portfolio. A similar direct approach has been
recently proposed in [16] in the context of Conditional
Value-at-Risk (CVaR) portfolio optimization. The key
point, however, is that the approach of [16] does not
guarantee theoretically the out-of-sample (i.e., future)
behavior of the computed portfolio, which is instead the
main feature of the methodology developed here.

Consider now a sequence of returns of finite length N :
r(1), r(2), . . . , r(N), and collect these return vectors by
rows in a matrix RN :

R>N = [r(1) r(2) · · · r(N)] ∈ Rn,N .

Notice that RN is a random matrix, with each column
independently distributed according to the unknown dis-
tribution P; events related to RN are thus measured
by the product probability measure PN , having support
∆N . If x ∈ X is a given portfolio vector, then such a
portfolio would produce the following random sequence
of returns over the time interval k = 1, . . . , N :

ρN (x) = RNx = [%1(x) %2(x) · · · %N (x)]
> ∈ RN ,

where %i(x)
.
= r>(i)x, i = 1, . . . , N .

2 Portfolio allocation as a random optimization
problem

2.1 The observation selection rule

Let q ≤ N − n − 1 be a given nonnegative integer. We
introduce a rule Sq for selecting a subset of cardinality
N − q of the returns in RN . Rule Sq takes as input the
matrix RN and returns a partition Iq, IN−q of the set of
indices I = {1, . . . , N}, such that, with probability one,
the following properties are satisfied:

(a) |Iq| = q, |IN−q| = N − q, and Iq ∪ IN−q = I, Iq ∩
IN−q = ∅;
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(b) the partition is independent of the order of the
columns in RN ;

(c) Let γ∗, x∗ denote the optimal solutions of the following
optimization problem:

max
x∈X ,γ

γ subject to: %i(x) ≥ γ, i ∈ IN−q (1)

Then, it must be %i(x
∗) < γ∗, for all i ∈ Iq.

The rationale behind the introduction of such a selection
rule is explained next. Suppose first that q = 0, then the
optimization problem in (1) would determine an optimal
portfolio x∗ and an optimal return level γ∗ which is the
largest possible lower bound for all the returns %i(x

∗),
i = 1, . . . , N . Such a return level γ∗ would however be
typically low and uninteresting from an investment point
of view, since it is the minimum return in the sequence
{%i(x∗)}. Indeed, for q = 0, γ∗ is the optimal level of the
following min/max game:

γ∗ = max
x∈X

min
i=1,...,N

%i(x).

It seems then reasonable to look for a return level γ such
that %i(x) ≥ γ for many, albeit not all, of the %i(x), while
allowing the requirement %i(x) ≥ γ to be violated on q
of the returns in the sequence. This is precisely what the
selection rule does: it selects q returns in the sequence
{%i(x)} such that γ∗ is the largest lower bound over a
(suitably selected, see Remark 1) subset ofN−q returns,
while q of the returns fall below γ∗. Obviously, the ad-
vantage of doing so is to obtain a return level γ∗ which
is generally larger than the level obtained for q = 0. Fig-
ure 1 illustrates this idea on a simplified situation where
portfolio x∗ is held fixed, i.e., where the maximization
in (1) is performed only on γ, with x fixed.
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Fig. 1. Illustration of γ∗ levels for q = 0, q = 4, q = 9, for a
fixed portfolio x∗.

As it will be made rigorously clear in the next section, we
are in the presence of a fundamental tradeoff here: while

level γ∗ increases by increasing q, intuitively this level
also becomes less and less reliable that is, informally,
the probability of the actual portfolio return %(x∗) being
larger than γ∗ decreases. This fact should not come too
much as a surprise, since level γ∗ can also be interpreted
as the empirical (q/N)-quantile of the return sequence
{%i(x∗)}i=1,...,N .

Remark 1 (On the implementation of the selection
rule) Our subsequent results hold for any selection rule
that fulfills the requirements (a), (b), (c) above. There
are indeed several ways to define a suitable selection
rule; some of these possibilities are briefly described
next.

(i) Optimal selection rule. One possibility is to re-
move those q returns that provide the best possible im-
provement of the γ∗ level in problem (1). We call this
rule the optimal selection rule. From a computational
point of view, implementing the optimal selection rule
may be hard numerically, since it corresponds in prin-
ciple to a combinatorial problem: among all subsets of
{1, . . . , N} of cardinality q, select the one subset that
provides the largest value in γ∗. Finding the optimal
portfolio x∗ and the corresponding level γ∗ under the
optimal selection rule may be cast in the form of a
mixed-integer linear program as follows:

max
x∈X ,γ,si∈{0,1}

γ (2)

subject to: Msi + %i(x) ≥ γ, i = 1, . . . , N
N∑
i=1

si = q,

where M is some “large” positive number (e.g., one
may take M = 1, if all %i(x) are known to be all
smaller than one), and si, i = 1, . . . , N , are additional
0/1 variables. Such problems can usually be solved
quite effectively, for moderate sizes, using numerical
packages for mixed-integer linear optimization, such
as IBM CPLEX.

(ii) m-at-a-time rule. An alternative, suboptimal,
rule for return removal can be implemented as de-
scribed next. The idea is that although problem (2) is
theoretically hard, it turns out in practice that it can
be solved quite rapidly, if the number of suppressed
constraints is small. Therefore, while it can be pro-
hibitive to remove all q constraints at once (as it is
prescribed by the optimal rule), it is usually doable
to remove m � q of them iteratively. The “m-at-
a-time rule” rule thus simply prescribes to suppress
iteratively 1 ≤ m � q returns at a time, by solving
repeatedly a problem of the form (2) with m instead
of q, until all q constraints have been removed. In
principle, this approach is suboptimal, and may not
yield the same result as the optimal rule. However, it
usually gives good results in practice.
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(iii) Lagrange multiplier-based rule. Another pos-
sibility (useful if one does not have a mixed-integer
solver available) is to prune the returns sequentially
(one by one, or m ≥ 1 at a time) according to their
impact on objective sensitivity. With this approach,
one first solves the LP with all returns in place, then
removes the 1 ≤ m ≤ min(n, q) returns that yield the
best local improvement in the objective, then solves
again the LP, and so on, until all q returns are removed.
Suitable implementation of such a technique provides
a valid selection rule. At each iteration, the returns
to be removed can be determined by looking at the
values λi of the Lagrange multipliers (dual variables)
associated to the surviving constraints %i(x) ≥ γ. It
is indeed well known (see, e.g., [4]) that a positive La-
grange multiplier λi represents the sensitivity of the
optimal objective value to variations in the i-th con-
straint, hence the locally-best choice is to remove the
m constraints corresponding to the m largest λi, since
this would induce (to first order approximation) the
largest improvement in objective value. A distinctive
advantage of this selection rule is that the optimal
portfolio allocation problem in (1) is solved efficiently
by solving a sequence of standard linear programming
problems.

Other constraint removal heuristics may be devised, be-
sides the described ones. It is important, however, to
stress again the fact that the theory that is presented in
this paper does not depend on the specific selection rule
and, in particular, does not need implementation of the
optimal rule (which can be hard to compute). The re-
sults in this paper hold for any selection rule that satis-
fies the requirements (a), (b), (c) specified at the begin-
ning of Section 2.1. ?

2.2 The short-fall probability

Given a selection rule Sq, the optimal portfolio allocation
strategy x∗ that we propose is a solution of the following
LP

γ∗ = max
x∈X ,γ

γ (3)

subject to: r>(i)x ≥ γ, i ∈ IN−q,

where, by the definition of the selection rule, it holds that
%i(x

∗) = r>(i)x∗ < γ∗, for all i ∈ Iq. It is important to
underline that we here take an a-priori point of view that
is, a priori, the return vectors r(i), i = 1, . . . , N , are ran-
dom variables, hence also the optimal solutions γ∗, x∗

of (3) are random variables, which are functions of the
random data of the problem (i.e., of r(i), i = 1, . . . , N ,
which are collected in the random matrix RN ). Events
involving γ∗, x∗ are thus measured by the product prob-
ability PN . The problem under study belongs to the
class of so-called random convex programs (RCP), or
scenario-based optimization, see [5,7,10]. In particular,

we here build upon the technique of random programs
with violated constraints described in [5] (see also [9] for
an earlier application of this idea) in order to derive the
desired probabilistic bounds.

If we observe an actual realization of the returns (for ex-
ample, by looking at a stream of N historical data for
the returns), then the observed return sequence becomes
deterministic, and (3) would return a deterministic vec-
tor x∗ and a deterministic level γ∗. However, before we
look at the actual realization, these two variables remain
uncertain and random. We are interested in providing
an a-priori probabilistic characterization on the optimal
solution of (3). To this end, we introduce a further as-
sumption and a definition.

Assumption 3 (Uniqueness) Assumption 2 is veri-
fied and, with probability one, the optimal solution x∗, γ∗

of (3) is unique. ?

Remark 2 Assumption 2 guarantees that the set X is
compact and nonempty, which implies that problem (3)
is feasible and it attains an optimal solution; this as-
sumption is generally fulfilled in portfolio optimization
problems, hence it is not restrictive in practice. Assump-
tion 3 further postulates that the optimal solution is
uniquely identified, i.e., that the optimum of the LP is
attained at a vertex. This is usually the case for LP con-
strains in “general position” (e.g., excluding cases of two
or more identical returns, which happen with zero prob-
ability under continuous distributions). Moreover, an in-
finitesimal perturbation of the constraints, or introduc-
tion of a strictly convex regularization term in the ob-
jective would always make the optimal solution unique.
Assumption 3 is thus made for technical reasons, and it
is not restrictive from a practical point of view in the
present context. ?

For a fixed portfolio x ∈ X and return level γ ∈ R, we
define the short-fall probability as

V (x, γ) = P{r : r>x < γ}.

Such a probability is a number in [0, 1]. However, if we
now ask about the short-fall probability relative to the
optimal solution of (3), we have

V ∗
.
= V (x∗, γ∗) = P{r : r>x∗ < γ∗}, (4)

and this is, a priori, a random variable, since x∗, γ∗ are
so. Indeed, for each different realization of the random
returns RN we will get different x∗, γ∗, hence a differ-
ent V ∗. Therefore, V ∗ is a random variable with sup-
port [0, 1], and events related to V ∗ are measured by the
product probability PN . It is then natural to consider as
a measure of “riskiness” of the optimal portfolio the ex-
pected value (with respect to PN ) of the short-fall prob-
ability V ∗. This leads to the following definition.
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Definition 1 (Expected short-fall probability)
The expected short-fall probability of the optimal portfo-
lio resulting from (3) is defined as

EPN {V ∗} = EPN {P{r : r>x∗ < γ∗}}. (5)

Our key result concerns a quantification of an upper
bound on the expected short-fall probability of the op-
timal portfolio. This is developed in the next section.

3 Short-fall probability of the optimal data-
driven portfolio

The first result we report concerns an upper bound on
the upper tail of the distribution of V ∗. This results fol-
lows directly from Theorem 4.1 and Corollary 4.2 in [5],
considering that the problem (3) we are dealing with is
precisely a random convex program with Helly’s dimen-
sion upper bounded by n+1, which is the number of de-
cision variables in problem (3); see [5] for further details
and definitions.

Lemma 1 (Upper-tail bound on V ∗) Let Assump-
tions 1–3 hold, and let x∗, γ∗ be the optimal solution of
problem (3), under any given selection rule satisfying
properties (a), (b), (c) specified in Section 2.1. Let V ∗

be defined as in (4). Then it holds that

PN{V ∗ > z} ≤

(
q + n

q

)
Φ̄(z; q + n,N), (6)

where

Φ̄(z; q + n,N)
.
=

q+n∑
j=0

(
N

j

)
zj(1− z)N−j , (7)

and(
q + n

q

)
=

(q + n)!

q!n!
=

q∏
i=1

n+ i

i
.

?

Note that Φ̄ in (7) can be expressed in terms of the reg-
ularized incomplete beta function I(z; a, b) (in Matlab:
betacdf(z,a,b)) as follows

Φ̄(z; a, b) = I(1− z; b− a, a+ 1)

= 1− I(z; a+ 1, b− a). (8)

An important consequence of Lemma 1 is that, for given
level z and a suitable choice of the time window N and
of the removal cardinality q, we can make the upper tail
bound (6) as small as desired, so that with practical

certainty 1 the optimization will provide a V ∗ such that
V ∗ ≤ z.

We next state a new result which provides an explicit and
efficient upper bound on the expected short-fall proba-
bility.

Lemma 2 (Upper bound on the expected short-
fall probability) Let Assumptions 1–3 hold, and let
x∗, γ∗ be the optimal solution of problem (3), under any
given selection rule satisfying properties (a), (b), (c) spec-
ified in Section 2.1. Let V ∗ be defined as in (4). Then it
holds that

EPN {V ∗} ≤ q

N
+

(
n

N
+
ω(n, q)

2
√
N

)
, (9)

where ω(n, q) = O(
√

2n ln(q + n)) and, more precisely,

ω(n, q) =
2n(1 + ln(q + n)− lnn)− 2 ln 2 + 1√

2n(1 + ln(q + n)− lnn)− 2 ln 2
.

?

Remark 3 Equation (9) has the following interpreta-
tion: η

.
= q/N is the empirical short-fall probability,

i.e. the short-fall probability of the optimal data-driven
portfolio on the data RN that are used for the optimiza-
tion. In other words, η is the in-sample short-fall empir-
ical probability. The extra term in (9)

ε(N, q, n) =
n

N
+
ω(n, q)

2
√
N

(10)

represents the excess short-fall probability due to the
fact that the data upon which the optimal portfolio is
built (the RN ) are themselves random. Notice that (9)
is an over-bounding of EPN {V ∗}: there is room for im-
provement of the bound. First we outline a proof for
Lemma 2, then we provide in Lemma 3 a tighter, albeit
somewhat less explicit, bound on EPN {V ∗}.

Proof of Lemma 2: see Appendix A.1.

A tighter bound on EPN {V ∗} is given in the next lemma.

Lemma 3 Under the hypotheses and notation in
Lemma 2, we have that

EPN {V ∗}≤z1+
C

N + 1

q+n∑
j=0

I(1− z1;N − j + 1, j + 1),(11)

1 We informally define as “practically certain,” in this fi-
nancial context, an event that occurs with probability larger
than, say, 1− 10−6.
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where I(x; a, b) is the regularized incomplete beta func-

tion, C =

(
n+ q

n

)
, and

z1 =
q

N
+

1

N

(
n+ lnC +

√
ln2 C + 2(q + n) lnC

)
.

?

Proof of Lemma 3: see Appendix A.2.

Lemma 2 and Lemma 3 provide us with explicit upper
bounds on the expected short-fall probability, for given
data lengthN and removal cardinality q. The formulas in
(9), (11), as well as the formula in (6), can be “inverted,”
at least numerically, in order to find suitable N and q,
given assigned levels of tolerable short-fall probability
or of expected short-fall probability. These fundamental
tradeoffs are highlighted in the following corollary.

Corollary 1 (Explicit conditions on N and q) Let
β ∈ (0, 1) be a very small probability level chosen by the
user (e.g., set β = 10−6, or lower, for “practical cer-
tainty”). Let ztol ∈ (0, 1) be a desired tolerable short-fall
probability level, let zexp ∈ (0, 1) be a desired expected
short-fall probability level, and let q ≤ N − n− 1. Then,
the following statements are true:

(1) If

N ≥ 2

ztol
lnβ−1 +

4

ztol
(q + n), (12)

then {V ∗ ≤ ztol} holds with probability larger than
1− β (i.e., with practical certainty).

(2) If

N ≥ 4
q + n

zexp
+

(c+ 1/c)2

4zexp2
, (13)

with c
.
=
√

2n+ 2n ln n+q
q − 2 ln 2, then it holds that

EPN {V ∗} ≤ zexp. For “large” q, bound (13) simplifies
approximately to

N ≥ 4
q + n

zexp
+

2n+ 2n ln n+q
q − 2 ln 2

4zexp2
.

?

Proof of Corollary 1: see Appendix A.3.

Remark 4 (Practical use of conditions (12), (13))

A long-standing issue in classical portfolio optimization
concerns the choice of the depth N of the time interval
used to estimate the parameters (typically, the expected

returns and covariance) to be then employed for port-
folio optimization. It is well known that changing the
estimation window N may change considerably the es-
timated parameters and hence the optimal allocations.
Partial remedies to reduce the estimation sensitivity in-
clude the use of shrinkage estimators (see, e.g., [11] and
the references therein) or exponential discounting of the
observations (exponential forgetting implies an “equiv-
alent” look-back window length N , hence the choice of
the forgetting factor is essentially equivalent to the the
choice of the length of N). On the other hand, to the
best of these authors’ knowledge, there is no rigorous
recipe to help the user choose the right estimation win-
dow (or the right forgetting factor). This choice thus
remains a kind of an “art,” which is left to case-by-case
judgement and empirical experimentation.

One contribution of Corollary 1 goes in the direction of
filling this gap. Indeed, albeit relying on iid and station-
arity hypotheses on the return process, equations (12),
(13) do provide a rigorous quantification of the tradeoff
between acceptable risk and the length of the data win-
dow used for optimization. The practical use of these
equations is illustrated next; to fix ideas we concentrate
on design based on the expected short-fall probability
(eq. (13)), the discussion on (12) being analogous. We
make four observations.

(i) For fixed N and for a given desired level of expected
short-fall probability zexp, it is the investor’s interest to
make γ∗ as large as possible. On a given realization of the
returns, level γ∗ increases if we increase the number q of
suppressed returns, hence we want to make q as large as
possible. However, if one increases q too much, then the
resulting portfolio will fail to satisfy the expected short-
fall probability requirement. The right-hand-side of (13)
is increasing in q, hence this term tells us precisely how
large q can be made, while satisfying the requirement
EPN {V ∗} ≤ zexp: we choose q such that the right-hand-
side of (13) is the largest integer that does not exceed
N . Actually, since (13) is only a bound (which can in-
troduce some conservatism), we can also use the more
accurate estimation given by equation (11): the maxi-
mal allowable q is the largest integer that maintains the
right-hand side of (11) no larger than zexp.

(ii) If N is not fixed (e.g., we are free to decide what
the historical data length to be used for optimization
should be), then eq. (13) (or, better, the tighter bound
in (11)) can be used to plot a tradeoff set on an (N, q)
plane, for the given desired level zexp. Any pair N, q in
the admissible set is a valid pair guaranteeing that the
result of the optimization will satisfy EPN {V ∗} ≤ zexp.
To this end, one sweeps over a range of values for N and,
for each fixed N , numerically evaluates (11) to find the
largest q such that the right-hand side of (11) is below
the assigned threshold zexp, see Figure 2.
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Fig. 2. The shaded region represents pairs (N, q) such that
EPN {V ∗} ≤ zexp. This example is plotted for n = 3 and
zexp = 0.5, using numerical evaluation of the formula in (11).

(iii) An interesting feature that is captured by the
present theory (see, e.g., eq. (11)) is that, all the other
parameters being the same, the expected short-fall
probability bound increases as n (the number of securi-
ties in the portfolio) increases. The reason for this lies
at the fundamental tradeoff between the complexity of
the random optimization model (here, the number of
variables, n+ 1) and the out-of-sample reliability of the
model: the more complex the model is (i.e., the larger
n is), the more training data we need for achieving a
given reliability level (i.e., the larger N needs to be,
see eq. (13)). A financial interpretation of this phe-
nomenon is that high diversification of a portfolio (large
n) needs a large number N of data in order to provide
meaningful portfolios. This fact is often overlooked in
standard portfolio optimization, where one may be lead
to think that more diversification leads to less risk: not
necessarily so, since the larger n the more accurate the
parameter estimation must be, for otherwise the actual
decrease in risk level may just be illusory. ?

4 Numerical tests

In this section we illustrate the results obtained on two
series of numerical experiments. The first test is con-
ducted on a simple three assets allocation model, us-
ing synthetic iid data generated according to realistic
fat-tailed distributions. The second test is conducted on
real market data, and concerns allocation over six asset
classes.

4.1 A three assets model

We consider n = 3 synthetic assets having increasing re-
turn and risk. The return data of the three assets are gen-
erated independently, according to t-distributions with

low degrees of freedom. Fat-tailed distributions, like the
Pareto or the t-distribution, generally provide more re-
alistic models of asset returns than the classical Normal
distribution, see, e.g., [19,20]. The parameters of these
distributions are shown in Table 4.1, where µ is the lo-
cation parameter of the distribution, s is the scale pa-
rameter, ν is the degrees of freedom parameter, and ξ
is the skewness. Incidentally, these three distributions
do fit historical daily returns of (1) the XTXE tracking
IBOXX global inflation-linked total return index, (2) the
XGIN tracking ITRAXX crossover 5-year total return
index, and (3) the DAX stock index, from January 28,
2003 to July 29, 2011.

Table 1
t−distribution parameters for asset returns

Asset µ s ν ξ

1 (XTXE) 0.0000798 0.00233 4 1

2 (XGIN) 0.0003416 0.00620 4 1

3 (DAX) 0.0004699 0.01538 3 0.9421

4.1.0.1 Testing a-posteriori statistics. The nu-
merical test is conducted as follows: we first fix a value
of N (e.g., N = 200, N = 400, N = 800, N = 1000)
and a desired value of zexp. Next, we determine q as the
largest integer such that the right-hand-side of (11) does
not exceed zexp (notice that this computation can be
easily performed numerically via bisection on q). Then,
we generateN iid samples of returns for the three assets,
and we use this data for computing an optimal data-
driven portfolio x∗ with q suppressed constraints, using
the suboptimal technique based on Lagrange multipliers
described in Remark 1. Finally, the resulting portfolio
is tested a posteriori on N test newly generated random
returns. The feasible portfolio set X , in all the follow-
ing simulations, is assumed to be the standard simplex
X = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1}, hence the opti-

mization problems involved are simple linear programs.

Table 4.1.0.1 reports the results of such a simulation, for
zexp = 0.5, N test = 3000, and for various values of N .
Each column in the table corresponds to a (N, q) pair
for which EPN {V ∗} ≤ zexp is satisfied. For each of such
pairs, we computed the optimal data-driven portfolio x∗

and corresponding level γ∗, based on N generated ran-
dom returns. Then, we tested this solution a-posteriori
on an out-of-sample batch of N test random returns, and
we evaluated the following a-posteriori statistics: γ̂ is the
empirical zexp-quantile of the optimal portfolio returns,
that is the portfolio return level that is underperformed
with at most zexp empirical frequency; V̂ ∗ is the empir-
ical out-of-sample shortfall probability, that is the em-
pirical frequency of the event r>x∗ < γ∗. Table 4.1.0.1
shows analogous results for the case zexp = 0.05. We

observe that the out-of-sample empirical shortfall V̂ ∗

sometimes gets above the in-sample shortfall q/N , but
always remains below the zexp threshold.
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Table 2
Statistics for zexp = 0.5

N = 200

q = 51

q/N% = 25.5%

N = 400

q = 125

q/N% = 31.25%

N = 800

q = 286

q/N% = 35.75%

N = 1000

q = 370

q/N% = 37%

γ∗ -0.13% -0.07% -0.05% -0.04%

γ̂ 0.01% 0.01% 0.01% 0.01%

V̂ ∗ 21.5% 32.5% 37.0% 37.9%

Table 3
Statistics for zexp = 0.05

N = 200

q = 1

q/N% = 0.5%

N = 400

q = 4

q/N% = 1%

N = 800

q = 14

q/N% = 1.75%

N = 1000

q = 19

q/N% = 1.9%

γ∗ -0.88% -1.06% -0.52% -0.50%

γ̂ -0.57% -0.54% -0.36% -0.34%

V̂ ∗ 1.43% 0.70% 1.50% 1.47%

4.1.0.2 Sliding-horizon implementation. Next,
we simulated the application of the proposed portfolio
optimization technique in a sliding horizon fashion: at
each time instant a history batch of N observations is
used to compute the optimal data-driven portfolio, then
this portfolio is tested on a new next-day return datum.
The history window is next moved one day forward, and
the process is repeated. Figure 3 shows the averaged
portfolio weights obtained in this way. Figure 4 plots
the portfolio weights over time. It is apparent that the
weights become smoother as N increases.

zexp=0.05, N=200 zexp=0.05, N=600 zexp=0.05, N=1000 zexp=0.5, N=200 zexp=0.5, N=600 zexp=0.5, N=1000

XTXE
XGIN
DAX
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0.
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0.
6

0.
8

Fig. 3. Average portfolio weights for data-driven method.

4.1.0.3 Comparison with VaR-optimal port-
folios. The proposed data-driven portfolio selection
method has a close relation with Value-at-Risk (VaR)
portfolio optimization, see [17]. Assuming a continuous
return distribution, the α-VaR of a given portfolio x
can be defined as

γα(x) = sup γ : P{r>x < γ} ≤ α, α ∈ (0, 1).

Portofolio weights, N=200, zexp=0.50
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Portofolio weights, N=600, zexp=0.50
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Portofolio weights, N=1000, zexp=0.50

Time

A
ss

et
s 

w
ei

gh
ts

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

Fig. 4. Time plots of portfolio weights. XTXE (black, top),
XGIN (red, middle), DAX (green, bottom). zexp = 0.50,
N = 200; 600; 1000.

That is, the VaR γα(x) is the largest return level guar-
anteeing that the probability of the portfolio return be
lower than this level is at most α. For given α, one can
look for the portfolio x that maximizes γα(x), which is
obtained by solving

γ∗α = max
x,γ

γα(x) = max
x,γ

γ : P{r>x < γ} ≤ α. (14)

To solve the optimization problem (14) it is of course
necessary to elicit some distribution for r. The classical
and most well-known approach assumes that r is Nor-
mal with covariance Σ and expected value µ. Under such
an assumption, for α < 0.5, the above problem can be
rewritten explicitly as a convex second-order cone pro-
gram, [18]

γ∗α = max
x

Φ−1(α)
√
x>Σx+ µ>x,
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where Φ−1 is the inverse of the standard Normal cumu-
lative distribution function. It can then be observed that
the data-driven method proposed in this paper is a kind
of empirical version of the VaR optimization problem in
(14), with α = zexp. The key problem in applying the
classical VaR method is that one has to assume Normal-
ity of the returns (in this example, for instance, returns
are actually non-Normal), which is often a very strong
and unrealistic assumption (see, e.g., [19]) and, more-
over, one has to estimate the parameters Σ and µ, which
is a delicate problem in his own right. Robust approaches
exist that allow for consideration of uncertainty in the
Σ and µ parameters, as well as in the return distribu-
tion, see, e.g., [14]. However, these approaches require
correct estimation of the uncertainty bounds on the dis-
tribution parameters, which is a further critical issue,
hence they are not further discussed in the present ex-
periments. The data-driven method, however, bypasses
both issues, since it does not need a probabilistic model
of the returns.

We thus compared the performances of the data-driven
method with those of a traditional VaR system, in a
sliding-horizon simulation. For given look-back period
N , the covariance Σ and expected returns µ are esti-
mated empirically from data, then a VaR-optimal port-
folio is computed and next it is tested against a new ran-
dom datum, simulating the next-day return. The pro-
cess is iterated in a sliding-window fashion. The average
weights for the VaR portfolios are reported in Figure 5,
for α = 0.05. Comparing these data with those in Fig-
ure 3 one may observe that the VaR weights are more
“cautious” (that is, they put less weight on equity) than
the data-driven ones.

N=200 N=600 N=1000
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0.
4

0.
6

0.
8 XTXE

XGIN
DAX

Fig. 5. Average portfolio weights for VaR-optimal method,
α = 0.05.

Table 4.1.0.3 shows the out-of-sample shortfall frequency
V̂ ∗ and average level of γ∗ (or γ∗α, for VaR), obtained
by implementing the two strategies repeatedly in time.
Table 4.1.0.3 shows the gross cumulative return at the
end of the simulation period, for the two strategies.

We remark that the out-of-sample empirically-observed
shortfall probability of the data-driven portfolios is lower
than the one of the VaR-optimal portfolios. This might

suggest that the data driven method entails some con-
servatism. However, it should be underlined that the
data-driven bound is distribution independent, that is
it would hold no matter what the return distribution is.
Hence, it is natural that the observed results, obtained
from simulations with one fixed return distribution, dis-
play some gap between the desired bound and the em-
pirical one. Moreover, at the α = zexp = 0.01 level,
the shortfall probability bound remains satisfied by the
data-driven portfolios, while it is violated by the VaR-
optimal portfolios; see the last two rows in Table 4.1.0.3.
Furthermore, it is worth to notice that although the
data-driven portfolios are apparently “safer” than the
VaR-optimal portfolios, the gross return performance of
the formers is consistently better than that of the lat-
ters, see Table 4.1.0.3.

Table 4
Comparison of average γ∗ or γ∗

α level and of out-of-sample

probability V̂ ∗, for VaR and data-driven portfolios. Table

reports (V̂ ∗, γ∗) for data-driven, or (V̂ ∗, γ∗
α) for VaR

α, zexp N = 1000 N = 1400

VaR-optimal 5% (4.3; -0.34)% (3.7; -0.34)%

data-driven 5% (1.7; -0.52)% (1.8; -0.49)%

VaR-optimal 1% (1.7; -0.49)% (1.4; -0.49)%

data-driven 1% (0.4; -0.94)% (0.3; -1.01)%

Table 5
Gross returns of VaR and data-driven portfolios, for α =
zexp = 0.05

N = 200

q = 1

N = 600

q = 8

N = 1000

q = 19

N = 1400

q = 31

VaR-opt. 1.47 1.36 1.30 1.30

data-dr. 1.73 1.64 1.45 1.44

4.2 Allocation with real securities

We next performed some experiments using real market
data. We considered six assets: three bond indexes, one
stock index, one cross currency and one commodity in-
dex. The assets are:

(1) the IBOXX Euro Germany 1-3 Total Return Index;
(2) the IBOXX Euro Germany 7-10 Total Return In-

dex;
(3) the IBOXX Liquid High Yield bonds index;
(4) the cross currency Euro - Japanese Yen, JPYEUR;
(5) the DAX stock index;
(6) the S&P GSCI commodity index, GSG.

The IBOXX 1-3, represents the 1-3 years maturity
Euro sovereign debt issued by the German government.
Within the index, each bond is weighted according to its
outstanding amount. Identical rules apply to the 7-10
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Fig. 6. Time plots of indexes daily close quotes, from 9/1/06 to 4/06/12.

years index. The IBOXX Liquid High Yield bonds in-
dex consists of liquid Euro sub-investment grade rated
bonds.

All indices are calculated on a total return basis, which
means that the payments from coupons and dividends
(when applicable) are reinvested in the index. For all
the securities the prices are in Euro. Figure 6 shows the
daily close prices of the indices, from September 1, 2006
to April 6, 2012.

Figure 7 shows a plot of the sample autocorrelation func-
tion for three of the considered assets. Serial correlations
at nonzero lags are obviously non null. However, correla-
tions are essentially below the two standard error limit,
hence they do not necessarily invalidate the use of the iid
hypothesis as a reasonable working assumption in prac-
tice.

We then proceeded with a sliding-horizon implementa-
tion of the data-driven optimization technique, as illus-
trated in the previous section, also using VaR-optimal
portfolios for comparison. The data-driven and VaR op-
timal average portfolio compositions are very similar (see
Figure 8), with a very slight bias of the data-driven port-
folios towards more volatile but profitable assets.

We further compared the actual (empirical, out-of-
sample) shortfall frequency and average levels γ∗, γ∗α of
the data-driven and VaR-optimal methods, see Table
4.2. It may be remarked that the shortfall frequency
of the VaR-optimal method is greater than expected

for both α = 0.1 and α = 0.05, while the data-driven
bound is always satisfied out of sample.

5 Conclusions

In this paper, we presented a novel data-driven approach
for computing optimal portfolio compositions directly
from historical data. The proposed approach is based on
iid and stationarity hypotheses on the returns process,
but avoids assumptions on the cross-sectional distribu-
tion model of the returns, and does not need estima-
tion of distribution parameters. The key feature of the
method is that the optimal portfolios come with a rig-
orously established probability tag, guaranteeing that
their out-of-sample expected short-fall probability is no
larger than an a-priori assigned level. Computationally,
the method is effective, in that it typically requires the
solution of a sequence of linear programming problems.
Numerical tests with both synthetic and real financial
data seem to support the practical effectiveness of the
proposed methodology.
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Table 6
Empirical out-of-sample shortfall frequency and average γ∗ levels for the data-driven and the VaR-optimal method

α, zexp N = 400 N = 600 N = 800 N = 1000

VaR-optimal 25% (22.7; -0.03)% (20.7; -0.03)% (19.9; -0.04)% (20.6; -0.04)%

data-driven 25% (10.2; -0.08)% (10.2; -0.07)% (10.4; -0.06)% (13.1; -0.06)%

VaR-optimal 10% (10.1; -0.08)% (8.1; -0.08)% (7.3; -0.08)% (10.8; -0.08)%

data-driven 10% (2.2; -0.17)% (2.0; -0.16)% (1.2; -0.15)% (1.8; -0.14)%

VaR-optimal 5% (7.3; -0.11)% (4.6; -0.11)% (2.7; -0.11)% (3.6; -0.11)%

data-driven 5% (1.5; -0.24)% (0.9; -0.27)% (0.2; -0.21)% (0.3; -0.19)%
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Fig. 7. Sample autocorrelation function for daily returns from
September 1, 2006 to April 6, 2012. The horizontal dashed
lines indicate two standard error limits (95% confidence in-
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A Appendix: proofs

A.1 Proof of Lemma 2

Since V ∗ is a nonnegative random variable (it has sup-
port on the interval [0, 1]), we have that

EPN {V ∗} =

1∫
0

(1− F (z)) dz, (A.1)

IBOXX1−3 IBOXX7−10 IBOXXHY JPYEUR DAX GSG

0.
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4

0.
6

0.
8

1

Fig. 8. Average portfolio weights for the data-driven (gray
bars on the left) and the VaR (empty bars) methods. Port-
folios computed for zexp = 0.1, N = 1000.

where F (z) denotes the cumulative distribution of V ∗,
that is

F (z) = PN{V ∗ ≤ z}, z ≥ 0.

Define

F̄ (z) = 1− F (z) = PN{V ∗ > z}.

Then, from Lemma 1 we have that

F̄ (z) ≤ CΦ̄(z; a,N), (A.2)

where a
.
= q + n, C

.
=

(
a

q

)
, and

Φ̄(z; a,N) =

a∑
j=0

(
N

j

)
zj(1− z)N−j .

Our objective is to find an upper bound for F̄ (z) that
can be used in (A.1) to obtain an upper bound for the
expected short-fall probability. To this end, we notice
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that (A.2) is meaningful only when its right-hand-side is
smaller than one. Our strategy is hence the following: we
determine a point z1 ∈ (0, 1) such that CΦ̄(z; a,N) ≤ 1
for all z ≥ z1, and then bound F̄ (z) as follows

F̄ (z) ≤

{
1 for z ∈ [0, z1]

CΦ̄(z; a,N) for z ∈ (z1, 1].
(A.3)

In order to find a suitable abscissa z1 we use the Hoeffd-
ing bound on the Binomial tail, valid for Nz ≥ a:

Φ̄(z; a,N) =

a∑
j=0

(
N

j

)
zj(1− z)N−j

≤ 1

2
exp

(
−2

(Nz − a)2

N

)
(A.4)

=

√
2π

4
√
N
N (z;µ, σ),

whereN (z;µ, σ) denotes the Normal probability density
function with mean µ and variance σ2:

N (z;µ, σ) =
1

σ
√

2π
exp

(
− (z − µ)2

2σ2

)
, (A.5)

where µ
.
= a/N and σ

.
= 1/2

√
N . We thus look for z

such that

CΦ̄(z; a,N) ≤ C 1

2
exp

(
−2

(Nz − a)2

N

)
= 1.

Taking logarithms we obtain the second-order equation
(Nz− a)2 = N

2 ln(C/2), which has a root for Nz ≥ a at

z1 =
a

N
+

√
2 ln(C/2)

2
√
N

= µ+ σ
√

2 ln(C/2). (A.6)

Now, substituting (A.3) in (A.1) we obtain

EPN {V ∗}=

1∫
0

F̄ (z)dz ≤
z1∫
0

dz + C

1∫
z1

Φ̄(z; a,N)dz

≤ z1 + C

√
2π

4
√
N

1∫
z1

N (z;µ, σ)dz,

≤ z1 + C

√
2π

4
√
N

∞∫
z1

N (z;µ, σ)dz, (A.7)

where the last inequality is obtained by extending the
upper limit of integration form one to infinity. Next, we
bound the integral in (A.7) as follows: note that z −

µ ≥ z1 − µ, for z in the domain of integration, hence
(z − µ)/(z1 − µ) ≥ 1, and therefore

∞∫
z1

N (z;µ, σ)dz ≤
∞∫
z1

z − µ
z1 − µ

N (z;µ, σ)dz

=
1

σ(z1 − µ)
√

2π

∞∫
z1

(z − µ) exp

(
− (z − µ)2

2σ2

)
dz

=
1

σ(z1 − µ)
√

2π

∞∫
z1−µ

ξ exp

(
− ξ2

2σ2

)
dξ

=
1

σ(z1 − µ)
√

2π
· σ2 exp

(
− (z1 − µ)2

2σ2

)
.

Thus, continuing the chain of inequalities in (A.7), we
obtain

EPN {V ∗} ≤ z1 + C

√
2π

4
√
N

σ

(z1 − µ)
√

2π
exp

(
− (z1 − µ)2

2σ2

)
[using (A.6)] = µ+ σ

√
2 ln(C/2) +

1

2
√
N
√

2 ln(C/2)

[using (A.5)] =
a

N
+

1

2
√
N

(ζ + 1/ζ), (A.8)

where ζ
.
=
√

2 ln(C/2). Further, recalling a binomial
identity and inequality

C =

(
n+ q

q

)
=

(
n+ q

n

)
≤
(

e(n+ q)

n

)n
, (A.9)

we have that ζ ≤
√

2n(1 + ln(q + n)− lnn)− 2 ln 2,
and, since ζ + 1/ζ is increasing for ζ ≥ 1, we continue
and conclude the proof with

EPN {V ∗} ≤ q

N
+

(
n

N
+
ω(n, q)

2
√
N

)
,

ω(n, q)
.
=

2n(1 + ln(q + n)− lnn)− 2 ln 2 + 1√
2n(1 + ln(q + n)− lnn)− 2 ln 2

.

Notice finally that, for “large” n, q, the “+1” term
in the numerator of ω(n, q) becomes negligible, hence

ω(n, q) '
√

2n(1 + ln(q + n)− lnn)− 2 ln 2, which

grows as O(
√

2n ln(q + n)) for large n, q. 2

A.2 Proof of Lemma 3

Consider the Chernoff bound on the Binomial tail:

Φ̄(z; a,N) =

a∑
j=0

(
N

j

)
zj(1− z)N−j
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≤ exp

(
− (Nz − a)2

2Nz

)
, Nz ≥ a

= exp

(
−N

2

(z − µ)2

z

)
, µ =

a

N
.

Similar to what we did in the proof of Lemma 2, we use
the Chernoff bound (instead of the Hoeffding bound, as
we did in the proof of Lemma 2) for finding a z1 such that
CΦ̄(z; a,N) ≤ 1 for all z ≥ z1, obtaining the condition

C exp

(
− (Nz − a)2

2Nz

)
= 1, a = q + n,

and, taking logarithms, 2Nz lnC − (Nz − a)2 = 0, that
is

(Nz)2 − 2(lnC + a)Nz + a2 = 0,

which, under the condition Nz ≥ a, has a root at

Nz = a+ lnC +
√

ln2 C + 2a lnC,

and hence

z1 =
a

N
+

1

N

(
lnC +

√
ln2 C + 2a lnC

)
. (A.10)

The advantage here is that all terms in z1 scale as 1/N .
Now, we consider the integral (A.7), and integrate di-
rectly Φ̄:

EPN {V ∗} ≤
z1∫
0

dz + C

1∫
z1

Φ̄(z; a,N)dz (A.11)

= z1 + C

1∫
z1

a∑
j=0

(
N

j

)
zj(1− z)N−jdz

= z1 + C

a∑
j=0

(
N

j

) 1∫
z1

zj(1− z)N−jdz

= z1 + C

a∑
j=0

(
N

j

)
B(1− z1;N − j + 1, j + 1),

where B(x; a, b) is the incomplete beta function

B(x; a, b) =

x∫
0

za−1(1− z)b−1dz,

thus

1∫
x

za−1(1− z)b−1dz =

1−x∫
0

zb−1(1− z)a−1dz

= B(1− x; b, a).

Further, the regularized incomplete beta function

is I(x; a, b) = B(x;a,b)
B(a,b) , where B(a, b) is the beta

function which, for integer arguments, is such that

B(N − j + 1, j + 1) = 1
N+1

(
N

j

)−1
. Therefore, substi-

tuting in (A.11) we conclude the proof. 2

A.3 Proof of Corollary 1

Equation (12) comes directly from Corollary 5.1 in [5].
We next prove equation (13). To this end, we start from
equation (A.8) and impose that EPN {V ∗} ≤ zexp, that is

EPN {V ∗} ≤ a

N
+

1

2
√
N
p ≤ zexp,

where a = q + n, p = (ζ + 1/ζ), ζ =
√

2 ln(C/2). The
previous condition is equivalent to

N − 2
1

4

p

zexp

√
N − a

zexp
≥ 0 (A.12)

which is satisfied for
√
N ≥ 1

4
p

zexp
+

√(
1
4

p
zexp

)2
+ a

zexp
.

Since the right hand side of this equation is ≤

2

√(
1
4

p
zexp

)2
+ a

zexp
, we have that (A.12) is satisfied, if

N ≥ 1
4

p2

zexp2 + 4 q+nzexp
. Since p = (ζ + 1/ζ) is increasing in

ζ for ζ ≥ 1, using (A.9) we have that

ζ ≤ c ⇒ p ≤ (c+ 1/c), c
.
=

√
2n+ 2n ln

n+ q

q
− 2 ln 2,

from which the statement in (13) follows. Further, for
“large” q it holds that p = (ζ + 1/ζ) ' ζ, hence p2 '
2 ln(C/2) and, using (A.9), p2 ' 2 ln(C/2) ≤ c2, which
proves the last statement in the corollary. 2
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