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Radial Basis Functions Collocation for the

Bending and Free Vibration analysis of

Laminated Plates using the Reissner-Mixed

Variational Theorem

A. J. M. Ferreira a, E. Carrera c, M. Cinefra c, C. M. C. Roque b,

aDepartamento de Engenharia Mecânica, Faculdade de Engenharia da
Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

bINEGI, Faculdade de Engenharia da Universidade do Porto,Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal

cDepartament of Aeronautics and Aerospace Engineering, Politecnico di Torino,
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Abstract

In this paper, we combine the Carrera’s Unified Formulation CUF (E. Carrera.
Theories and Finite elements for multilayered plates and shells: A unified compact
formulation with numerical assessment and benchmarking. Arch. Comput. Meth.
Eng., 10:215-297, 2003) and a radial basis function (RBF) collocation technique
for predicting the static deformations and free vibrations behavior of thin and thick
cross-ply laminated plates. For the first time, the Reissner-Mixed Variational The-
orem is used together with the RBF collocation to achieve a highly accurate tech-
nique. The accuracy and efficiency of this collocation technique for static and vi-
bration problems are demonstrated through numerical examples.

1 Introduction

Multilayered structures are nowadays typical in airplanes, automobiles, aerospace
applications, and so on. Examples of multilayered, anisotropic plate and shell
structures are sandwich constructions, composite structures formed by stack-
ing orthotropic laminae, as well as smart structures embedding piezo-layers.

The analysis of multilayered plates is more difficult than that of isotropic
plates. Some three-dimensional analytical solutions have been presented [1–5].
Unfortunately these elasticity solutions are typically restricted to simple ge-
ometries, loadings and boundary conditions as well as material characteristics.
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Two-dimensional analysis of layered structures also presents some difficulties,
related to the discontinuity of the mechanical properties at each layer–interface
that may produce high shear and normal transverse strains. Recent theories
for the analysis of laminated plates are able to describe the so–called Zig-Zag
(ZZ) 1 form of displacement fields in the thickness z–direction, as well as the
inter-laminar continuous transverse shear and normal stresses (see [6–8] for
detailed discussion).

A recent development by Carrera has found that many theories can be devel-
oped and implemented by various techniques in an automatic way by defining
only the displacement expansion. This automatic technique was called Unified
Formulation [6–8], and can be implemented in weak-form methods, such as the
finite element method [9], or more recently in meshless methods based upon
collocation with radial basis functions [10–14]. The use of alternative methods
to the Finite Element Methods for the analysis of plates, such as the meshless
methods based on radial basis functions is atractive due to the absence of a
mesh and the ease of collocation methods. The use of radial basis function
for the analysis of structures and materials has been previously studied by
numerous authors [15–28]. Other alternative techniques based on weak-form
approaches have been recently proposed in [29–32]. The use of weak-form
based methods for the analysis with RMVT approach will be dealt in another
paper.The unsymmetrical collocation technique developed by Kansa [33] was
applied recently by the authors to the static deformations of composite beams
and plates [34–36]. In [14] the Unified Formulation has been combined with
radial basis functions to the analysis of thick laminated plates.

The Unified Formulation (here referred as CUF-Carrera’s Unified Formula-
tion) may consider both equivalent single layer theories (ESL), or layerwise
theories (LW), using the Principle of Virtual Displacements (PVD). How-
ever, a more interesting (at a higher computational cost) approach is to
use the layerwise formulation with the Reissner’s Variational Mixed Theo-
rem (RMVT). The RMVT considers two independent fields for displacement
and transverse stress variables. As a result, a priori interlaminar continuous
transverse shear and normal stress fields can be achieved, which is quite im-
portant for sandwich-like structures. Details on the RMVT can be found in
Carrera [37,8,7]. This approach intends to improve existing shear deformation
theories of first-order [38,39], or higher-order [40–44] to include Zig-zag effects
and Interlaminar Continuity 2 . The ZZ and IC requirements (denoted by Car-

1 Transverse discontinuous mechanical properties affect the displacement fields u

= (u1, u2, u3) in the thickness direction with rapid changes and different slopes in
correspondence to each layer interface. This is known as the Zig-Zag, (ZZ) form of
displacement fields in the thickness plate/shell direction.
2 Although in-plane stresses σp=(σ11, σ22, σ12) can in general be discontinuous,
equilibrium reasons i.e. the Cauchy theorem, demand continuous transverse stresses
σn=(σ13, σ23, σ33) at each layer interface. This is often referred to in literature as

2
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rera as the C0

z requirements ) are crucial in the two-dimenional modelling of
laminated plates and shells.

The majority of existing shear deformation theories do not describe adequately
the interlaminar continuous transverse stresses. Typically, a post-processing
procedure is required to recover σn stresses, but can be avoided if some stress
assumptions are made. In-plane and transverse stresses can be assumed in
the framework of mixed variational principles (see Reddy 1984a, and Atluri,
Tong and Murakawa 1983). The Reissner’s Mixed Variational Theorem can
be seen as a mixed principle for multilayered structures, by restricting the
stress assumptions to transverse components. Murakami (1984, 1985, 1986)
was the first to apply RMVT to multilayered structures by assuming two
independent fields for displacement and transverse stresses variables. Toledano
and Murakami (1987a, 1987b) showed that RMVT does not experience any
particular difficulties when including transverse normal stresses in a plate
theory. (Carrera 1998) showed that the RMVT leads to a quasi–3D description
of the in-plane and out-of plane response. In particular, transverse stresses
were determinate a priori with excellent accuracy. It can be concluded that
RMVT appears to be a natural tool to completely and a priori fulfill the
C0

z –Requirements in both LW and ESL cases.

The RMVT has been implemented successfully with finite elements, but never
with collocation with radial basis functions. Therefore, this paper serves to fill
the gap of knowledge in this research area.

2 The radial basis function method

In this section the global unsymmetrical collocation RBF-based method in
static and free vibration problems is discussed.

The radial basis function (φ) approximation of a function (u) is given by

ũ(x) =
N∑

i=1

αiφ (‖x − yi‖2) , x ∈ R
n (1)

where yi, i = 1, .., N is a finite set of distinct points (centers) in R
n. Some of

Interlaminar Continuity, (IC) of transverse shear and normal stresses.

3
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the most common RBFs are

Wendland functions: φ(r) = (1 − r)m
+p(r)

Gaussian: φ(r) = e−(cr)2

Multiquadrics: φ(r) =
√

c2 + r2

Inverse Multiquadrics: φ(r) = (c2 + r2)−1/2

where the Euclidian distance r is real and non-negative and c is a positive
shape parameter. Following Kansa [33] method, we consider N distinct points.
Taking u(xj), j = 1, 2, ..., N , we find αi by solving a N × N linear system

Aα = u (2)

where A = [φ (‖x − yi‖2)]N×N , α = [α1, α2, ..., αN ]T and u = [u(x1), u(x2), ..., u(xN)]T .

The solution of the static problem by radial basis functions considers NI nodes
in the domain and NB nodes on the boundary, with a total number of nodes
N = NI + NB. We denote the sampling points by xi ∈ Ω, i = 1, ..., NI and
xi ∈ ∂Ω, i = NI + 1, ..., N . At the points in the domain we solve the following
system of equations

N∑

i=1

αiLφ (‖x − yi‖2) = f(xj), j = 1, 2, ..., NI (3)

or

LI
α = F (4)

where

LI = [Lφ (‖x − yi‖2)]NI×N (5)

At the points on the boundary, we impose boundary conditions as

N∑

i=1

αiLBφ (‖x − yi‖2) = g(xj), j = NI + 1, ..., N (6)

or

Bα = G (7)

where

B = LBφ [(‖xNI +1 − yj‖2)]NB×N

Therefore, we can write a finite-dimensional static problem as




LI

B


α =




F

G


 (8)

4
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By inverting the system (8), we obtain the vector α. We then obtain the
solution u using the interpolation equation (1). We now compute

α =




LI

B




−1 


F

G


 (9)

This α vector is then used to obtain solution ũ, by using (1). If derivatives of
ũ are needed, such derivatives are computed as

∂ũ

∂x
=

N∑

j=1

αj
∂φj

∂x
(10)

∂2ũ

∂x2
=

N∑

j=1

αj
∂2φj

∂x2
, etc (11)

In the present collocation approach, we need to impose essential and natural
boundary conditions. Consider, for example, the condition w = 0, on a simply
supported or clamped edge. We enforce the conditions by interpolating as

w = 0 →
N∑

j=1

αW
j φj = 0 (12)

Other boundary conditions are interpolated in a similar way.

Taking into account the large number of degrees of freedom per node (30×N),
where N is the total number of discretization points, the solution of the static
problem follows a static condensation procedure as follows. Consider the global
system of equations (after imposing boundary conditions):




Kuu Kuσ

Kσu Kσσ







u

σ


 =




f

0


 (13)

The problem is reduced to

K*uuu = f (14)

where K*uu = Kuu − Kuσ[Kσσ]−1Kσu. After computation of the solution,
transverse stresses are readily computed at each interface by

σ = [Kσσ]−1 (−Kσuu) (15)

5
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For the solution of free vibrations, at the points in the domain, we define the
eigen-problem as

N∑

i=1

αiLφ (‖x − yi‖2) = λũ(xj), j = 1, 2, ..., NI (16)

or

LI
α = λũI (17)

where

LI = [Lφ (‖x − yi‖2)]NI×N (18)

At the points on the boundary, we enforce the boundary conditions as

N∑

i=1

αiLBφ (‖x − yi‖2) = 0, j = NI + 1, ..., N (19)

or

Bα = 0 (20)

Equations (17) and (20) can now be solved as a generalized eigenvalue problem




LI

B


α = λ




AI

0


α (21)

where

AI = φ [(‖xNI
− yj‖2)]NI ×N FtFsρ

k

For free vibration problems we set the external force to zero, and assume
harmonic solution in terms of displacements uk, vk, wk, for each layer, as

uk = Uk(w, y)eiωt; vk = V k(w, y)eiωt; wk = W k(w, y)eiωt (22)

where ω is the frequency of natural vibration. Substituting the harmonic ex-
pansion into equations (21) in terms of the amplitudes Uk, V k, W k, we may
obtain the natural frequencies and vibration modes for the plate problem, by
solving the eigenproblem

[
L − ω2G

]
X = 0 (23)

where L collects all stiffness terms and G collects all terms related to the
inertial terms. In (23) X are the modes of vibration associated with the natural
frequencies defined as ω.

6
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3 Governing equations by RMVT

The Reissner’s Mixed Variational Theorem is obtained via the addition of a
Lagrange’s Multiplier that permits to modelling the transverse shear/normal
stresses σn:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫ

k
pG

T
σ

k
pC + δǫ

k
nG

T
σ

k
nM + δσ

k
nM

T
(ǫk

nG − ǫ
k
nC)

}
dΩkdz =

Nl∑

k=1

δLk
e

(24)
As above, subscripts G and C indicate geometrical and constitutive equations
respectively, while M indicates that the variable is modelled because it is
assumed "a priori".

The expressions of the constitutive relations for a classical model, opportunely
separated in in-plane and out-plane components state:

σ
k
p =C

k
pp(z) ǫ

k
p + C

k
pn(z) ǫ

k
n

σ
k
n =C

k
np(z) ǫ

k
p + C

k
nn(z) ǫ

k
n (25)

In case of RMVT displacements u and transverse shear/normal stresses σn

are both a priori variables, so constitutive equations are rewritten as:

σ
k
p = C̃

k

pp(z) ǫ
k
p + C̃

k

pn(z) σ
k
n

ǫ
k
n = C̃

k

np(z) ǫ
k
p + C̃

k

nn(z) σ
k
n (26)

where the new coefficients are:

C̃
k

pp(z) = C
k
pp(z) − C

k
pn(z)Ck−1

nn (z)Ck
np(z) C̃

k

pn(z) = C
k
pn(z)Ck−1

nn (z)

C̃
k

np(z) = −C
k−1

nn (z)Cnp(z) C̃
k

nn(z) = C
k−1

nn (z) (27)

Layer Wise (LW) approach describes the layers as independent. This descrip-
tion can be applied to displacement components u and transverse shear/normal
stresses σn = (σxz, σyz , σzz). Stresses are always modelled via LW to ensure
the interlaminar continuity, the displacements instead can be modelled ESL
or LW. Layer Wise description is introduced according to the following expan-
sion:

σ
k
n = Ft σ

k
nt + Fb σ

k
nb + Fl σ

k
nl = Fτ σ

k
τ (28)

where
τ = t, b, l with l = 2, . . . , N

We are using linear functions in each layer, as follows:

Fb = 0.5− 1

hk

(
z − zb(k) + zt(k)

2

)
; Ft = 0.5+

1

hk

(
z − zb(k) + zt(k)

2

)
(29)

7



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
After substitution of the geometrical relations for the plate, the constitutive
equations Eqs.(26) and the CUF for both displacement components and trans-
verse stresses in Eq.(24) , and then performing the integration by parts, the
governing equations in case of RMVT are:

δu
k
s

T
: K

kτs
uu u

k
τ + K

kτs
uσ σ

k
nτ = P

k
uτ

δσ
k
ns

T
: K

kτs
σu u

k
τ + K

kτs
σσ σ

k
nτ = 0 (30)

with boundary conditions state:

Πkτs
u u

k
τ + Πkτs

σ σ
k
nτ = Πkτs

u ū
k
τ + Πkτs

σ σ̄
k
nτ (31)

Note that we don’t have boundary conditions for σn.

The expression of fundamental nuclei is:

K
kτs
uu =

∫

Ak

[
[−Dp]

T
Ĉ

k

σpǫp
Dp

]
FsFτ dz , (32)

K
kτs
uσ =

∫

Ak

[
− Dp]T Ĉ

k

σpσn
+ [−DnΩ + Dnz]

T
]
FsFτ dz , (33)

K
kτs
σu =

∫

Ak

[
[DnΩ + Dnz] − Ĉ

k

ǫnǫp
Dp

]
FsFτ dz , (34)

K
kτs
σσ =

∫

Ak

[
− Ĉ

k

ǫnσn

]
FsFτ dz , (35)

and the nuclei for the boundary conditions are:

Πkτs
u =

∫

Ak

[
I

T
p Ĉ

k

σpǫp
Dp

]
FsFτ dz , (36)

Πkτs
σ =

∫

Ak

[
I

T
p Ĉ

k

σpσn
+ I

T
nΩ

]
FsFτ dz , (37)

The nuclei in the explicit form are:

8



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Kkτs
uu11

=(−∂τ
x∂s

xC11 − ∂τ
x∂s

yC16 − ∂τ
y ∂s

xC16 + ∂τ
x∂s

x

C2
13

C33
+ ∂τ

x∂s
y

C13C36

C33
+

∂τ
y ∂s

x

C13C36

C33

+ ∂τ
y ∂s

y

C2
36

C33

− ∂τ
y ∂s

yC66)Fτ Fs

Kkτs
uu12

=(−∂τ
x∂s

yC12 − ∂τ
x∂s

xC16 − ∂τ
y ∂s

yC26 + ∂τ
x∂s

y

C13C23

C33
+ ∂τ

x∂s
x

C13C36

C33
+

∂τ
y ∂s

y

C23C36

C33

+ ∂τ
y ∂s

x

C2
36

C33

− ∂τ
y ∂s

xC66)Fτ Fs

Kkτs
uu13

=0

Kkτs
uu21

=(−∂τ
y ∂s

xC12 − ∂τ
x∂s

xC16 − ∂τ
y ∂s

yC26 + ∂τ
y ∂s

x

C13C23

C33

+ ∂τ
x∂s

x

C13C36

C33

+

∂τ
y ∂s

y

C23C36

C33
+ ∂τ

x∂s
y

C2
36

C33
− ∂τ

x∂s
yC66)Fτ Fs

Kkτs
uu22

=(−∂τ
y ∂s

yC22 − ∂τ
x∂s

yC26 − ∂τ
y ∂s

xC26 + ∂τ
y ∂s

y

C2
23

C33
+ ∂τ

x∂s
y

C23C36

C33
+

∂τ
y ∂s

x

C23C36

C33
+ ∂τ

x∂s
x

C2
36

C33
− ∂τ

x∂s
xC66)Fτ Fs

Kkτs
uu23

=Kkτs
uu31

= Kkτs
uu32

= Kkτs
uu33

= 0

(38)

Kkτs
uσ11

= ∂τ
z Fτ Fs, Kkτs

uσ12
= 0; Kkτs

uσ13
= (−∂τ

x

C13

C33
− ∂τ

y

C36

C33
)Fτ Fs

Kkτs
uσ21

= 0; Kkτs
uσ22

= ∂τ
z Fτ Fs; Kkτs

uσ23
= (−∂τ

y

C23

C33
− ∂τ

x

C36

C33
)Fτ Fs

Kkτs
uσ31

= −∂τ
xFτ Fs; Kkτs

uσ32
= −∂τ

y Fτ Fs; Kkτs
uσ33

= ∂τ
z Fτ Fs

(39)

Kkτs
σu11

=∂s
zFτ Fs; Kkτs

σu12
= 0; Kkτs

σu13
= ∂s

xFτ Fs

Kkτs
σu21

=0; Kkτs
σu22

= ∂s
zFτ Fs; Kkτs

σu23
= ∂s

yFτ Fs

Kkτs
σu31

=(∂s
x

C13

C33
+ ∂s

y

C36

C33
)Fτ Fs; Kkτs

σu32
= (∂s

y

C23

C33
+ ∂s

x

C36

C33
)Fτ Fs; Kkτs

σu33
= ∂s

zFτ Fs

(40)

9
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Kkτs
σσ11

=
C44

C2
45 − C44C55

Fτ Fs; Kkτs
σσ12

=
C45

−C2
45 + C44C55

Fτ Fs; Kkτs
σσ13

= 0

Kkτs
σσ21

=
C45

−C2
45 + C44C55

Fτ Fs; Kkτs
σσ22

=
C55

C2
45 − C44C55

Fτ Fs; Kkτs
σσ23

= 0

Kkτs
σσ31

= 0; Kkτs
σσ32

= 0; Kkτs
σσ33

= − 1

C33
Fτ Fs

(41)

Πkτs
u11

=(nx∂s
xC11 + nx∂s

yC16 + ny∂s
xC16 − nx∂s

x

C2
13

C33

− nx∂s
y

C13C36

C33

−

ny∂s
x

C13C36

C33
− ny∂s

y

C2
36

C33
+ ny∂s

yC66)Fτ Fs

Πkτs
u12

=(nx∂s
yC12 + nx∂s

xC16 + ny∂s
yC26 − nx∂s

y

C13C23

C33
− nx∂s

x

C13C36

C33
−

ny∂s
y

C23C36

C33
− ny∂s

x

C2
36

C33
+ ny∂s

xC66)Fτ Fs

Πkτs
u13

=0

Πkτs
u21

=(ny∂s
xC12 + nx∂s

xC16 + ny∂s
yC26 − ny∂s

x

C13C23

C33
− nx∂s

x

C13C36

C33
−

ny∂s
y

C23C36

C33
− nx∂s

y

C2
36

C33
+ nx∂s

yC66)Fτ Fs

Πkτs
u22

=(ny∂s
yC22 + nx∂s

yC26 + ny∂s
xC26 − ny∂s

y

C2
23

C33
− nx∂s

y

C23C36

C33
−

ny∂s
x

C23C36

C33
− nx∂s

x

C2
36

C33
+ nx∂s

xC66)Fτ Fs

Πkτs
u23

=Πkτs
u31

= Πkτs
u32

= Πkτs
u33

= 0

(42)

Πkτs
σ11

= 0; Πkτs
σ12

= 0; Πkτs
σ13

= (nx
C13

C33

+ ny
C36

C33

)Fτ Fs

Πkτs
σ21

= 0; Πkτs
σ22

= 0; Πkτs
σ23

= (ny
C23

C33

+ nx
C36

C33

)Fτ Fs

Πkτs
σ31

= nxFτ Fs; Πkτs
σ32

= nyFτ Fs; Πkτs
σ33

= 0

(43)
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The dynamic problem is expressed as:

Nl∑

k=1

∫

Ωk

∫

Ak

{
δǫk

pG

T
σk

pC + δǫk
nG

T
σk

nC

}
dΩkdz =

Nl∑

k=1

∫

Ωk

∫

Ak

ρkδukT ükdΩkdz +
Nl∑

k=1

δLk
e

(44)

where ρk is the mass density of the k-th layer and double dots denote accel-
eration.

By substituting the geometrical relations, the constitutive equations and the
Unified Formulation, we obtain the following governing equations:

δuk
s

T
: Kkτs

uu uk
τ = Mkτsük

τ + Pk
uτ (45)

In the case of free vibrations one has:

δuk
s

T
: Kkτs

uu uk
τ = Mkτsük

τ (46)

where Mkτs is the fundamental nucleus for the inertial term. The explicit form
of that is:

Mkτs
11 = ρkFτ Fs; Mkτs

12 = 0; Mkτs
13 = 0 (47)

Mkτs
21 = 0; Mkτs

22 = ρkFτ Fs; Mkτs
23 = 0 (48)

Mkτs
31 = 0; Mkτs

32 = 0; Mkτs
33 = ρkFτ Fs (49)

At this point, we would like to note that the same radial basis functions are
used for the interpolation of all the unknowns, displacements and stresses
alike.

4 Numerical examples

All numerical examples consider a Chebyshev grid and a Wendland function,
defined as

φ(r) = (1 − c r)8
+

(
32(c r)3 + 25(c r)2 + 8c r + 1

)
(50)

where the shape parameter (c) was obtained by an optimization procedure, as
in Ferreira and Fasshauer [45].
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4.1 Static problems-cross-ply laminated plates

A simply supported square laminated plate of side a and thickness h is com-
posed of four equally layers oriented at [0◦/90◦/90◦/0◦]. The plate is subjected
to a sinusoidal vertical pressure of the form

pz = P sin
(

πx

a

)
sin

(
πy

a

)

with the origin of the coordinate system located at the lower left corner on
the midplane and P the maximum load (note the load is applied on top of the
plate).

The orthotropic material properties for each layer are given by

E1 = 25.0E2 G12 = G13 = 0.5E2 G23 = 0.2E2 ν12 = 0.25

The degrees of freedom for a 4-layered laminate are ilustrated in figure 1. For
this case the total number of degrees of freedom are (30 × N), where N is the
total number of discretization points.

1

2

3

4

5

Degrees of freedom for Interface i
[
ui, vi, wi, σi

xz, σi
yz , σi

zz

]
z

1

2

3

4

Layer k

h4

h3

h2

h1

Fig. 1. A 4-layer laminate; definition of degrees of freedom at interfaces

The in-plane displacements, the transverse displacements, the normal stresses
and the in-plane and transverse shear stresses are presented in normalized
form as
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w =
102w(a/2,a/2,0)h

3E2

P a4
σxx =

σxx(a/2,a/2,h/2)h
2

P a2
σyy =

σyy(a/2,a/2,h/4)h
2

P a2

τxz =
τxz(0,a/2,0)h

P a

In table 1 we present results for the present RMVT approach, using 13 ×
13 up to 21 × 21 points. We compare results with higher-order solutions by
Reddy [46], FSDT solutions by Reddy and Chao [47], and an exact solution by
Pagano [1]. The present RMVT meshless approach produces excellent results,
when compared with the exact solutions, for all a/h ratios, for transverse
displacements, normal stresses and transverse shear stresses. It is clear that
the FSDT cannot be used for thick laminates. In figure 2 the σxx evolution
across the thickness direction is illustrated, for a/h = 4, using 21 × 21 points.
In figure 3 the τxz evolution across the thickness direction is illustrated, for
a/h = 4, using 21 × 21 points. Note that the transverse shear stresses are
obtained directly at each interface directly from the constitutive equations.
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−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Normal xx stress

z−
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or
di
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te

Fig. 2. Normalized normal σxx stress for a/h = 4, 21 × 21 points

4.2 Sandwich plate

In this example, we consider a simply-supported square sandwich plate loaded
by uniform transverse pressure p. The length and thickness of the plate are
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a
h Method w σxx σyy τzx

4 HSDT [46] 1.8937 0.6651 0.6322 0.2064

FSDT [47] 1.7100 0.4059 0.5765 0.1398

elasticity [1] 1.954 0.720 0.666 0.270

present (13 × 13 grid) 1.9784 0.6766 0.5872 0.2332

present (17 × 17 grid) 1.9783 0.6766 0.5872 0.2332

present (21 × 21 grid) 1.9783 0.6765 0.5872 0.2332

10 HSDT [46] 0.7147 0.5456 0.3888 0.2640

FSDT [47] 0.6628 0.4989 0.3615 0.1667

elasticity [1] 0.743 0.559 0.403 0.301

present (13 × 13 grid) 0.7326 0.5627 0.3909 0.3321

present (17 × 17 grid) 0.7325 0.5627 0.3908 0.3321

present (21 × 21 grid) 0.7325 0.5627 0.3908 0.3321

100 HSDT [46] 0.4343 0.5387 0.2708 0.2897

FSDT [47] 0.4337 0.5382 0.2705 0.1780

elasticity [1] 0.4347 0.539 0.271 0.339

present (13 × 13 grid) 0.4308 0.5432 0.2731 0.3774

present (17 × 17 grid) 0.4307 0.5431 0.2730 0.3771

present (21 × 21 grid) 0.4307 0.5431 0.2730 0.3768

Table 1
[0◦/90◦/90◦/0◦] square laminated plate under two higher-order Zig-Zag formulations

denoted by a, h, respectively. The plate ratio a/h is taken as 10. It consists of a
two skins with equal thickness (0.1h) with the following mechanical properties:

E1/E2 = 25; G12/E2 = G13/E2 = 0.5; G23/E2 = 0.2; ν12 = 0.25 (51)

while the inner layer, the weak core, has a thickness of 0.8h and the following
mechanical properties:

E1/E2 = 1; G13/E2 = G23/E2 = 0.06; G12/E2 = 0.016; ν12 = 0.25
(52)

In Table 2 the present RBF formulation is compared with closed-form results
by Carrera and Ciuffreda [48]. Depending on the used variational statement
(PVD or RMVT), the description of the variables (LWM or ESLM), the order
of the used expansion N , a number of two-dimensional theories can be con-
structed. In order to denote different theories in a concise manner, acronims
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Fig. 3. Normalized transverse τxz stress for a/h = 4, 21 × 21 points

could conveniently used. Transverse stress and displacement z-fields have the
assumptions for layer-wise mixed cases: LM1(Layer-wise Mixed, linear) and
LM4 (Layer-wise Mixed, fourth-order). Only displacement assumptions are
made for LD1 (Layer-wise Displacement, linear) and LD3 (Layer-wise Dis-
placement, cubic) cases. A parabolic transverse stress field in each-layer is as-
sociated to linear a zig-zag diplacement field for the EMZC1 case (Equivalent-
single-layer Mixed including Zig-zag and interlaminar-Continuity, linear) and
fourth-order transverse stress field in each-layer is associated to a cubic zig-zag
displacement field for the EMZC3 case (Equivalent-single-layer Mixed includ-
ing Zig-zag and interlaminar-Continuity, cubic). The EMZC3d approach is re-
lated with a theory that accounts for constant W across the thickness direction
(w = w0). The ED4 and ED1 are Equivalent-single-layer displacement-based
theories of the fourth-order and first-order types. .

Results are presented for transverse displacements Uz(a/2, b/2, 0), and in-plane
Sxx(a/2, b/2, h/2) and out-of-plane stress Sxz(0, b/2, 0). Figure 4 illustrate the
evolution of the normal stress Sxx across the thickness direction, for a/h = 4.
Figure 5 illustrate the evolution of the transverse shear stress Sxz across the
thickness direction, for a/h = 4.

4.3 Free vibration problems-cross-ply laminated plates

In this example, all layers of the laminate are assumed to be of the same
thickness, density and made of the same linearly elastic composite material.
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Uz Sxx Sxz

a/h 4 10 100 4 10 100 4 10 100

11 × 11 10.7186 3.1110 1.2671 1.9322 1.5389 1.5188 0.3981 0.5217 0.5476

13 × 13 10.6774 3.1013 1.2656 1.9024 1.5293 1.5184 0.3984 0.5243 0.5849

17 × 17 10.6708 3.0983 1.2650 1.8897 1.5191 1.5177 0.3994 0.5220 0.5984

LM4 10.682 3.083 1.262 1.902 1.509 1.505 0.4074 0.5276 0.5889

EMZC3 10.678 3.082 1.262 1.899 1.507 1.504 0.3949 0.5239 0.5886

EMZC3d 10.626 3.026 1.230 1.915 1.480 1.476 0.4031 0.5224 0.5865

ED4 9.909 2.923 1.260 1.929 1.519 1.506 0.3574 0.5104 0.5881

ED1 5.542 1.982 1.218 1.145 1.388 1.475 0.5249 0.5716 0.5876

FSDT 5.636 1.984 1.218 1.168 1.391 1.476 0.5249 0.5716 0.5876

CLT 1.2103 1.2103 1.2103 1.476 1.476 1.476 0.5878 0.5878 0.5878

Table 2
Load applied at z = h/2: square sandwich plates
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Fig. 4. Normalized normal Sxx stress for a/h = 4, 21 × 21 points, load at z = h/2

The following material parameters of a layer are used:

E1

E2

= 10, 20, 30 or 40; G12 = G13 = 0.6E2; G3 = 0.5E2; ν12 = 0.25

The subscripts 1 and 2 denote the directions normal and transverse to the

16



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Transverse xz stress

z−
co

or
di

na
te

Fig. 5. Normalized transverse Sxz stress for a/h = 4, 21×21 points, load at z = h/2

fiber direction in a lamina, which may be oriented at an angle to the plate
axes. The ply angle of each layer is measured from the global x-axis to the
fiber direction.

The example considered is a simply supported square plate of the cross-ply
lamination [0◦/90◦/90◦/0◦]. The thickness and length of the plate are denoted
by h and a, respectively. The thickness-to-span ratio h/a = 0.2 is employed in
the computation. Table 3 lists the fundamental frequency of the simply sup-
ported laminate made of various modulus ratios of E1/E2. Figure 6 illustrates
the modes of vibration for E1/E2 = 40, grid 13×13 points. It is found that the
present meshless results are in very close agreement with the values of [49] and
the meshfree results of Liew [50] based on the FSDT. The small differences
may be due to the consideration of the through-the-thickness deformations in
the present formulation.

5 Conclusions

In this paper, we combined the Carrera’s Unified Formulation and a radial
basis function (RBF) collocation technique for predicting the static deforma-
tions and free vibrations behavior of thin and thick cross-ply laminated plates.
For the first time, the Reissner-Mixed Variational Theorem was combined with
the RBF collocation to achieve excelent results in terms of transverse displace-
ments, direct transverse stresses at each layer interface, and free vibrations.
This combination of methods has not been done before and serves to fill the
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Fig. 6. First 4 modes of vibration of four-layer [0◦/90◦/90◦/0◦] simply supported
laminated plate (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2), E1/E2 = 40, grid 13 × 13 points

gap of knowledge in this area of research.
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Method Grid E1/E2

10 20 30 40

Liew [50] 8.2924 9.5613 10.320 10.849

Exact (Reddy, Khdeir)[49] 8.2982 9.5671 10.326 10.854

Present (ν23 = 0.49) 11 × 11 8.2866 9.5391 10.2676 10.7590

13 × 13 8.2863 9.5388 10.2673 10.8035

17 × 17 8.2862 9.5387 10.2672 10.8034

Table 3
The normalized fundamental frequency of the simply-supported cross-ply laminated
square plate [0◦/90◦/90◦/0◦] (w̄ = (wa2/h)

√
ρ/E2, h/a = 0.2)
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