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ABSTRACT 
The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain 
size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk 
material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In 
the present work, grain size changes induced during turning of AA 7075-T651 (160 HV) alloy are modeled using the Finite 
Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to 
simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the 
Zener-Hollomon and Hall-Petch equations is implemented in the user subroutine to predict the evolution of the material grain 
size and the surface hardness when varying the cutting speeds (180 - 720 m/min) and tool nose radii (0.4 - 1.2 mm). All 
simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE 
model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk 
material to machined surface. The model is validated by comparing the predicted results with those experimentally observed. 
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INTRODUCTION 
 

Nowadays, the market can be considered as a scenario 
where the cost reduction and product quality factors have 
become increasingly important when attempting to be 
competitive. In this context, surface integrity plays a key 
role because it dictates the functional performance and 
service-life of engineered components. 

Surface characteristics of machined products such as 
microstructure, roughness and residual stresses are some of 
the important constituents determining the reliability and 
functional performance of a product. The aircraft industry is 
one of the most relevant examples where all final products 

must be of uniformly high quality in order to ensure high 
safety standards for performance over the lifetime. 

Actually, expensive post-operations are used in order to 
correct and improve the final characteristics of the 
machined surface. Hence, knowledge about factors that 
cause microstructural improvements will contribute to a 
better fundamental understanding of the manufacturing 
process mechanics and improved knowledge-driven 
manufacturing process planning, as well as better prediction 
of the component’s lifetime [1]. 

Therefore, accurate models, capable of predicting the 
surface characteristics for machined components, are 
needed in order to obtain feedback information on how to 
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improve the process thereby meeting the desired surface 
and sub-surface property specifications. Consequently, it is 
useful to have a predictive model for the microstructural 
changes as a function of the machining conditions [2,3]. 

Microstructural changes in turning can be defined as a 
combination of “dynamic events”, produced by plastic 
deformation and “static events”, due to residual stress and 
residual strain. Among the dynamic events, work hardening 
and dynamic recovery occur during the deformation process 
on the workpiece. If the total local dislocation density 
exceeds a critical value, dynamic recrystallization (DRX) 
occurs in the corresponding region of the deforming 
workpiece and the microstructure drastically changes. 
When it occurs, this is one of the most important 
microstructure evolution processes because it is near the 
product surface, affecting the functional performance. 

The material considered in this work is the 7075 series 
of aluminum containing zinc, magnesium, and copper as 
alloying elements, and this provides the highest strength of 
any commercial series of aluminum alloys. This material is 
mainly employed for aerospace, automotive and defense 
applications. 

For this material, several mechanisms of dynamic 
recrystallization have been reported depending on the 
imposed deformation conditions as well as the chemical 
composition of the alloy [4-8]. 

Dynamic recrystallization in metals can occur mainly in 
two forms: continuous dynamic recrystallization (CDRX) 
and discontinuous dynamic recrystallization (DDRX). The 
dynamically recrystallized grains, during DDRX are formed 
by nucleation and grain growth and they are usually coarse 
and heterogeneously distributed throughout the deformation 
matrix. 

The mechanism of CDRX mainly originates small, and 
is with uniformly distributed grains within the original grain 
boundaries. It is predominantly activated by progressive 
accumulation of dislocations in low angle boundaries, an 
increase of their misorientation leading to the formation of 
high angle boundaries within the grains. For aluminum and 
its alloys contrasting mechanism for dynamic 
recrystallization and recovery have been proposed. 

The main theory related to microstructural alteration of 
aluminum alloy is the CDRX which occurs in high stacking 
fault energy metals where new grains are formed [7,9]. 

Basically, aluminum alloys, as well as beta titanium or 
ferritic steels, are considered metals having high efficiency 
of dynamic recovery, thus new grains are not formed by the 
classical nucleation mechanism, but the microstructure 
develops by progressive transformation of subgrains into 
new grains within the deformed original grains. Other 
researchers also address a more complex form of DRX in 
aluminum, as geometric dynamic recrystallization (GDRX) 
or multiple simultaneous phenomena depending on the 
value of the Zener-Hollomon parameter [6,10]. 

The objective of the proposed work is to model the 
effects of cutting speed and tool geometry on the grain size 

evolution induced by the deformation conditions that exist 
during the turning of AA 7075-T651 alloy bars.  

In particular, a detailed approach is presented in order to 
develop a FE model suitable for predicting different 
microstructural changes during the turning operation.  

In this analysis, an iterative procedure was utilized for 
calibrating the constants present in the Zener-Hollomon 
parameter - associated with grain refinement and the Hall-
Petch equation - for the hardness evolution in the selected 
material. Empirical models are in fact very useful in 
practical situations instead of physically-based models since 
they could be easily implemented in FE codes and, through 
their calibration the grain refinement and the hardness 
modification can be properly simulated [11]. 

Finally, to validate the proposed FE strategy, the 
numerical results were compared with those resulting from 
experiments. 
 
EXPERIMENTAL PROCEDURE 
 

The accuracy of the results obtained by using finite 
element methods strongly depends on the accuracy of the 
input values for the calibration. Thus, in order to obtain a 
correct prediction of the dynamic recrystallization 
phenomenon, an experimental program was developed and 
carried out. The experimental turning tests were performed 
under dry condition with no coolant. 
 
Table 1. Mechanical properties of the as received material. 
 

Mechanical properties of AA 7075-T651 
Ultimate Tensile Stress  612.9 MPa 
Yield Tensile Stress 552.9 MPa 
Elongation % 11 
Hardness  160 HV 
Average grain size 30 m 

 
The workpiece material is the AA 7075-T651 alloy and 

it is a very attractive material to be utilized in the 
automotive and aerospace industries. The main reason for 
this is the good combination of properties such as fracture 
toughness, high strength to density ratio and resistance to 
stress corrosion cracking [12,13]. 

The initial bars were obtained by extrusion, the 
mechanical properties and the standard chemical 
composition of the material are given in Tables 1 and 2.  
 
Table 2. Chemical composition of the as received material. 
 

Chemical composition of AA 7075-T651 WT% 
Si Fe Cu Mn Mg Cr Zn Ti 
0.08 0.17 1.40 0.03 2.70 0.19 6.10 0.20 

 
The T651 treatment process includes artificially aging 

of the material and then stress relieving it. More precisely, 
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it involves a 1.5% stretch prior to 24 hours at 121°C, 
followed by air cooling. 

The turning experimental set-up is shown in Figure 1. 
The machining tests were conducted on a stiff high speed 
Mazak QuickTurn 10 CNC lathe in an external turning 
operation using uncoated carbide tools (KENNAMETAL 
grade: K313 with a clearance angle of 11° inserts ANSI 
TPG-431-2-3 geometries) with a triangular shape mounted 
on a CTGPL164C tool holder providing a lead angle of 0°. 
 

 
 
Figure 1. Experimental setup of turning tests. 
 

Since the effective edge radius of the tool plays a very 
important role while turning, each cutting tool edge was 
measured using a Zygo®7300 optical interferometry-based 
surface profilometer and only the consistent tools were 
selected for the machining tests (Figure 2). The average tool 
edge radii were around 16 m. 

The tool holder was held in a Kistler 9121 three-
component piezoelectric dynamometer for measuring 
forces. 

 

 
 
Figure 2. Measured tool edge radius by means of Zygo 
profilomiter. 

The performed tests were carried out at a constant depth 
of cut of 0.5 mm and feed 0.1 mm/rev while the cutting 
speed and tool geometry were varied as follows: 

 Test 1: Vc = 180 m/min – nose radius, R = 0.8 mm 
 Test 2: Vc = 320 m/min – nose radius, R = 0.4 mm 
 Test 3: Vc = 320 m/min – nose radius, R = 0.8 mm 
 Test 4: Vc = 320 m/min – nose radius, R = 1.2 mm 
 Test 5: Vc = 720 m/min – nose radius, R = 0.8 mm 

After each test, the final surface microstructure and the 
hardness profile of the machined samples were measured. 

The average values of the three cutting force 
components (directions are shown in Figure 3), calculated 
on the acquired signals when mechanical steady-state 
condition was reached, are reported in Figures 4-6.  
 

 
 
Figure 3. Directions of the cutting forces acting during the 
machining process. 
 

 
 
Figure 4. Influence of the cutting speed and tool nose 
radius on the measured main cutting force, Fz (Depth of cut 
= 0.5 mm and Feed rate = 0.1 mm/rev). 

 
As expected, the forces components are influenced by 

the tool geometry and the cutting speed. More specifically, 
very small changes are detected for the main cutting force 
at varying of cutting speed and tool nose radii (Figure 4). 
The feed force, Fx, decreases when the cutting speed is 
increased; furthermore, it is strongly influenced by the tool 
nose radius: lower values of the radius generate the highest 
feed force (Figure 5). Similarly, the radial force is 
influenced by the tool geometry since it increases by 
increasing the nose radius, while it slightly decreases with 
the increase of the cutting speed (Figure 6). 
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Figure 5. Influence of the cutting speed and tool nose 
radius on the measured feed force, Fx (Depth of cut = 0.5 
mm and Feed rate = 0.1 mm/rev). 
 

 
 
Figure 6. Influence of the cutting speed and tool nose 
radius on the measured radial force, Fy (Depth of cut = 0.5 
mm and Feed rate = 0.1 mm/rev). 
 

The micro hardness, Vickers HV0.05, of each sample was 
also measured in order to verify the microstructural changes 
in the machined samples. The results shown in Figures 7 
and 8 demonstrate that the hardness increases on the surface 
and in the subsurface (within the affected layer) from that 
measured in the bulk material varying with both the cutting 
speed and tool nose radius. 

In particular, the cutting speed seems to have a smaller 
influence on the final surface hardness (Figure 7). On the 
contrary, it significantly affects the subsurface since a 
higher cutting speed produces higher hardness values at a 
given depth in the subsurface and causes deeper 
microstructural alteration. 

The nose radius also has an influence on the hardness 
modification of the AA 7075 finished product both on the 
surface and subsurface. In fact, a higher tool nose radius 

produces higher hardness values and deeper microstructural 
modification. 
 

 
 
Figure 7. Measured hardness near the machined samples at 
varying cutting speeds. 
 

 
 
Figure 8. Measured hardness on the machined samples 
when using varying tool nose radii. 
 

The grain size of each machined surface has also been 
measured, and it was found that the recrystallization occurs 
in all investigated cases. More precisely, all the examined 
samples presented a refinement of the mean grain diameter 
from the bulk to the surface as represented in Figure 9 
where the optical images for Test 5 are reported.  

The values for the measured grain size in each test are 
reported in Table 3, highlighting how the cutting 
parameters and the geometry of the tool can influence the 
final microstructure of the machined product. In fact, grain 
size becomes smaller when higher cutting speed and tool 
nose radii are utilized, although the cutting speed seems to 
have a higher influence on the microstructural changes than 
the tool nose radius reflecting a higher value of the Zener-
Hollomon parameter. 
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In contrast, a good agreement was found in the 
prediction of both grain size (Figure 19), and the surface 
hardness on the machined workpiece (Figure 20) for each 
validation test. This highlights the result that, once 
calibrated, the utilized FE model and the implemented user 
routines well predict the parameters that relate to the 
surface integrity and surface characteristics. 
 
CONCLUSIONS 
 

In this paper a FE model is proposed for studying the 
turning process of AA7075-T651 alloy in terms of grain size 
and hardness prediction. The Zener-Hollomon parameter 
was employed for relating the deformation conditions to the 
recrystallized grain size while the Hall-Petch equation was 
employed for the hardness; the simulation results were 
validated with experimental data from performed tests. 

The numerical results show a good prediction of the 
microstructural alteration occurring during machining of the 
workpiece (under certain conditions). 

Particularly it was found that both the cutting speed and 
the tool nose radius affect the machined surface and 
subsurface integrity since both dynamic recrystallization 
and higher hardness values were observed. 

In the near future, the FE model will be further 
developed to simulate the influence of liquid nitrogen-based 
cryogenic cooling by adjusting the thermal boundary 
conditions based on experimentally measured data during 
cryogenic machining. Finally, the proposed FE model to 
predict the dynamic recrystallization and the grain size 
distribution on the machined surface will be used to better 
understand and control the final performance of the product 
such as its fatigue life under service [19]. 
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