
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A routing-algorithm-aware design tool for indoor wireless sensor networks / Puggelli, A.; Mozumdar, M.; Sangiovanni
Vincentelli, A. L.; Lavagno, Luciano. - (2012), pp. 964-969. (Intervento presentato al convegno Computing, Networking
and Communications (ICNC), 2012 International Conference on) [10.1109/ICCNC.2012.6167569].

Original

A routing-algorithm-aware design tool for indoor wireless sensor networks

Publisher:

Published
DOI:10.1109/ICCNC.2012.6167569

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2501034 since:

IEEE / Institute of Electrical and Electronics Engineers

A Routing-Algorithm-Aware Design Tool for Indoor
Wireless Sensor Networks

A. Puggelli, M. Mozumdar, A. Sangiovanni-Vincentelli
Department of Electrical Engineering and Computer Science

University of California - Berkeley
Berkeley, CA - USA

{puggelli,mozumdar,alberto}@eecs.berkeley.edu

L. Lavagno
Department of Electronics

Politecnico di Torino
Torino, Italy

lavagno@polito.it

Abstract—We present a design tool to assist the rapid proto-
typing and deployment of wireless sensor networks for building
automation systems. We argue that it is possible to design net-
works that are more resilient to failures and have longer lifetime,
if the behavior of routing algorithms is taken into account
at design time. Resiliency can be increased by algorithmically
adding redundancy to the network at locations where it can
be maximally leveraged by routing algorithms during operation.
Lifetime can be increased by placing routers where they are most
needed according to the expected data traffic patterns, to improve
the quality of the transmission. The network synthesis problem
is formulated as an optimization problem: we propose a mixed-
integer linear program to solve it exactly, and a polynomial-time
heuristic that returns close-to-optimal results in a shorter time.

Index Terms—resiliency; power consumption; routing algo-
rithms; sensor network; graphical user interface.

I. INTRODUCTION

In the last decade, Wireless Sensor Network (WSN) ap-
plications have been extending rapidly in many fields such
as factory automation, environmental monitoring, security
systems and in a wide variety of commercial and military
areas. Recently, efforts have been made to enable a large scale
deployment of WSN technology also in the field of Building
Automation Systems (BAS). Applications in this domain range
from health-care monitoring to home automation, and, even
more importantly, to the automation of power management.
Recent studies show that building operations (such as lighting,
Heating, Ventilation and Air Conditioning (HVAC)) repre-
sent around 40% of the total energy consumption in the
United States [1]. It is widely believed that controlling these
operations effectively can reduce energy consumption from
30% up to 70%. Wireless technology is highly promising,
since its deployment costs are substantially lower than the
ones associated with a wired solution. Moreover, the large
number of existing facilities that could be the target of WSN-
based systems would guarantee high returns on investment.
On the down-side, the complexity of the design of WSNs will
most likely require multi-disciplinary teams to be involved in
specifying, designing, implementing, and maintaining WSN
solutions. These teams could involve architects as well as civil,
electronics and telecommunication engineers, all with a com-
mon need to share a unified representation of the WSN node
placement to optimize sensing, actuation and communication,
only to mention a few concerns.

In previous papers, we illustrated tools and methodologies
for the modeling, simulation and automatic code generation
of WSN applications [2]. Here, we extend our results by

proposing a tool for network synthesis. In particular, the first
contribution of the paper is the introduction of a tool that
optimizes network topology, i.e. the location of network nodes,
so that its resiliency to failures and lifetime are maximized.
The tool facilitates users by reducing design time and by
improving the quality of the network topology with respect to a
simulation-based approach, where designers have to simulate
several different topologies and select the most performing
one, with no guarantee of optimality. Users can interact with
the tool through a GUI, and add new information about the
network behavior and the deployment environment, according
to their fields of expertise. The tool takes this information
into account to incrementally adapt the node positions, and
it provides feedback to the designers by analyzing network
performance. Network simulators (e.g. NS-2 [3]) may then be
used on the optimized topology to verify functionality (e.g.
packet scheduling), and to finely tune the network behavior at
lower levels of abstraction.

The problem of network synthesis has already been ad-
dressed in the past. Contrarily to [4], which considers networks
only made of sensors, we consider heterogeneous networks,
made of end-devices (sensors and actuators) and routers. We
assume that end-device locations are predefined and fixed,
since in BAS applications end-device density is often stan-
dardized (e.g. fire alarm sensors), and full sensing coverage is
usually not required (e.g. HVAC systems) [5]. Our goal is to
determine optimal locations for the routers.

In [6, 7], the authors present design tools for the automated
synthesis of WSNs that satisfy connectivity and Quality of Ser-
vice (QoS) constraints. The very general synthesis algorithm
presented in [6] is based on a Mixed-Integer Linear Program
(MILP). COSI allows also the introduction of specific ad hoc
algorithms for particular domains. A possible strategy to make
the MILP approach scalable is to decompose the synthesis
problem into an optimal number of local subproblems [7].
The obtained results can be close to the globally optimal
solution (albeit it is not possible to guarantee it or to give
a tight bound of the distance to the optimal solution) because
most BAS networks indeed have a structure with mostly
local interconnections. Our framework treats QoS as a set
of constraints for the synthesis problem, and it implements
polynomial time heuristics to find a locally optimal solution.
We differentiate from previous work, because our proposed
algorithms can synthesize network structures that are much
more general than the ones analyzed in [7], and in a much
shorter time with respect to [6]. Moreover, we optimize the
synthesized network with the specific goal of increasing its

luciano
Typewritten Text
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

resiliency to faults and reducing its power consumption in
order to extend battery life.

Network resiliency is a fundamental property, both to in-
crease the effectiveness of the provided service and to lower
maintenance costs. In [8], network lifetime is extended by
maximizing the time before the first device exhausts its battery.
On the other hand, resiliency depends not only on device
lifetime but also on other factors, such as node failures
and the quality of the transmission links. Since it is very
difficult to thoroughly account for these factors at design time,
network resiliency can be increased by adding redundancy to
it [9]. From our perspective, we are interested in synthesizing
networks with redundant paths, along which packets can be
routed when the main path becomes faulty, at a minimal
penalty in terms of extra dissipated power.

The authors of [9] propose a set of polynomial time algo-
rithms for the synthesis of robust networks. While these algo-
rithms select redundant paths only based on connectivity, we
propose to synthesize redundant paths based on the predicted
behavior of the Routing Algorithms (RAs) that operate in the
WSN. RAs route packets based not only on connectivity but
also on the data traffic patterns, and they rank paths according
to metrics across the OSI layers. In particular, the second
contribution of the paper is the introduction of network-
synthesis algorithms that allow designers to model most traffic
patterns that are commonly supported by WSNs (e.g. unicast,
multicast, peer-to-peer, mobile nodes) [5]: the algorithms place
routers along the shortest paths from sources to destinations,
by ranking paths according to the same metrics used in WSN-
oriented RAs [10]. Since wireless transmission is the major
source of power consumption in a WSN [11], a synthesis
flow based on the emulation of the behavior of RAs also
reduces the network power consumption: it minimizes the total
number of hops of the wireless transmission, and it increases
the link quality along the paths, so that fewer transmissions
(and re-transmissions) are needed. Moreover, our algorithms
take QoS constraints into account, and we propose heuristics
whose complexity is lower than the one reported in [9]. Finally,
we point out that the proposed approach does not violate the
layering principle, since it only models the behavior of RAs
(path ranking and traffic patterns) without any assumption on
their specific implementation.

The rest of the paper is organized as follows. In Section
II, we give some background on WSN-oriented routing al-
gorithms; Section III describes the proposed tool and how it
supports the design flow of a WSN; in Section IV, we show
details on how to formulate the synthesis problem, and we
propose algorithms to solve it; some final conclusions are
drawn in Section V.

II. BACKGROUND

In order to motivate several choices that led to the final
implementation of our tool, we now briefly describe the
most commonly used traffic patterns that RAs for building
applications should support [5], and some of the guidelines
for setting path-ranking cost functions [10].

The large variety of BAS and the severe constraints on
power consumption suggest the use of heterogeneous traffic
patterns to route packets, so that each application can choose
the one that results in the best performance. The basic traffic
pattern to be supported is gateway/end-device unicast, since
each device needs to communicate with the gateway during
its lifetime. In principle, unicast is able to guarantee the

functionality of most applications. On the other hand, a large
amount of power and computation resources can be saved with
the use of multicast and Peer-to-Peer (P2P) communication.
Multicast allows a packet to be transmitted only once, while
reaching several destinations, thanks to the shared nature of
the wireless link. P2P communication is particularly suitable
for applications in which local control is enough to guarantee
the desired performance (e.g. HVAC, lighting control): P2P
relaxes requirements on network delay, and it usually results in
less power consumption, since fewer hops need to be traversed
to process the data. Finally, RAs should also support mobile
devices (e.g. remote controllers): this capability reduces the
number of required end-devices, and it might be required for
some applications (e.g. health monitoring).

Every RA ranks possible paths from source to destination
according to some predefined cost function. As suggested in
[10], RAs for WSNs should contemporaneously minimize the
number of hops from source to destination, at the network
layer of the OSI model, and maximize the quality of the links
along the path, at the MAC and PHY layer. In the following,
the link quality is evaluated in terms of the estimated Propa-
gation Loss (PL) between two devices: even it this metric is
subject to large variations in real scenarios, it is widely used
in RAs to rank paths because it can be easily computed on
the device (e.g. using the Received Signal Strength Indicator
(RSSI), and knowing the transmitted power) [12]. Finally,
nodes should be allowed to assert their willingness to route
traffic: battery-powered devices might refuse to route packets
if the traffic routed through them substantially reduces their
lifetime.

III. DESIGN FLOW

In this section, we present the developed Graphical User In-
terface (GUI), developed using the Matlab GUI Development
Environment [13]. To show how the tool can assist engineers
during the design of a WSN for building applications, we
study a concrete example, the design a WSN for the D.O.P
Center at Cory Hall, Berkeley. The network needs to fulfill two
tasks: 1) report temperature measurements from each room of
the Center to a base station for monitoring purposes; 2) send
actuating commands from a central panel to the lights located
in the two meeting rooms. Figure 1 shows the different phases
of the network design, commented in the following paragraphs.

Application Development. The application engineer is con-
cerned with placing sensors and actuators where they are
needed, and with defining the traffic patterns that regulate the
flow of data among the nodes. The tool allows the upload
of a 2D floor plan of the environment, where end-devices
(ovals) and routers (rectangles) can be placed simply by
clicking on the floor plan area. Entered nodes are indexed
with an increasing number. In our example, we place: 1)
one temperature sensor in each room, and a base station
(represented as a router) in the Machine Room, for the
temperature monitoring application, and; 2) for each meeting
room, one sensor to represent the control panels, and one
actuator for each light. Temperature sensors communicate
to the base station via unicast, which is the default traffic
pattern. Packets from the control panel to the light actuators
are sent via either P2P or multicast traffic, depending whether
the corresponding command activates one or multiple lights.
We thus assign these nodes to both communication patterns:
P2P communication can be set by entering the indices of
the source-destination pair nodes, while a set of end-devices

(a) Initial placement of end-devices and base station. (b) Synthesized topology at the end of the Application Development phase.

(c) Updated topology at the end of the Network Analysis phase. (d) Optimized network layout at the end of the design cycle.

Fig. 1. The figure shows how the topology of the network gets refined at each design step.

that communicate via multicast can be graphically selected by
highlighting the floor plan area surrounding them. In general,
nodes can be assigned to more than one traffic pattern. Even
if not present in the example, also mobile end-devices can be
taken into consideration in our tool, by selecting the area on
the floor plan in which they can be moved. The result of our
placement is shown in Figure 1(a). The tool is now able to
synthesize a tentative layout of the network with the desired
level of redundancy and QoS, based on the information entered
up to this point. At this step, errors are introduced because
the tool models the quality of the wireless link with Free-
Space (FS) and Multi-Wall (MW) propagation models [14],
and it assigns a default value of bit rate to nodes. Nevertheless,
the topology shown in Figure 1(b) represents a good starting
point for the subsequent refinement steps, which will require
more information from the designer. In order to meet the
specifications, the tool added 39 routers.

Network Analysis. The communication engineer can refine
the design of the network by adding information that guides
the synthesis flow towards a more accurate result.

First, the actual bit rate for each path can be added (includ-
ing header sizes down to the MAC layer, if this information
is available) to properly account for power dissipation in the
network. In our example, temperature sensors send data to the
base station every 5 minutes, so they transmit more packets
than the control panel, which is usually activated only for
short periods of time during business hours. A new network
synthesis can be run after adding this information. Based on
the result of the previous step, the synthesis algorithm first tries
to incrementally reroute only those paths whose bit rate has
increased: in this way, the optimized network is only perturbed
where it is needed, and results are produced in a short time;
if the incremental step does not work, all paths are rerouted

to obtain a valid network.
Second, all valid paths are processed to measure the power

consumption of the network devices. The results of the analy-
sis are shown graphically by changing the color of the nodes
according to a color scale (e.g. red for nodes with high power
consumption). The designer can mark some routers to be main-
power supplied (i.e. the algorithm disables the power check
for them), duplicate some routers to achieve a better power
balancing across the network, and change the location of some
routers: user-entered routers are marked to be the preferred
choices to route paths in the subsequent runs of the synthesis
algorithm.

Figure 1(c) shows the updated network in our example. The
updated bit rates caused four paths to be rerouted, since one
router was placed in a different position. Moreover, we moved
one of the routers, since it had been placed in a non-suitable
location (wall monitors had already been installed there).

Site Survey. A site survey is usually required to correctly
evaluate the characteristics of the network working environ-
ment. Our framework gives the capability of integrating data
collected during the site-survey, and to adjust the design of
the WSN, thus combining at synthesis time the flexibility of
propagation models to the accuracy of measurements [15].

At the network level, the field engineer can input in the
GUI accurate values for the parameters of the FS and MW
propagation models, determined through measurements. At
the single link level, the GUI can store measured values of
PL into a database (in the bottom-left corner). The database
becomes important because it is difficult to fit the model
parameters so that all the PL estimations are correct, due to
the heterogeneity of the environment. To support this claim,
we took measurements of the PL between two nodes, as a
function of the distance between them, using TelosB nodes by
Crossbow [16]. We considered both a corridor scenario and

Fig. 2. The figure shows the measured and estimated values of PL for the
two scenarios (top); the location in which we took the measurements (inset);
the absolute error in the model (bottom).

a multi-room scenario. For the FS and MW models, we used
the standard formulas [14]:

PLFS = L0 + 10 · n · log (d) + Ωshadowing

PLMW = LFS + #W · LW + LW,0 + Ωshadowing

Figure 2 shows the measured (markers) and
modeled (lines) values of PL, obtained from fitting
(L0 = 37.6dB, n = 2.2, LW = 3.2dB,LW,0 = 1.2dB,
Ω∼N (0, 2.25dB)), while keeping the transmission power
constant to PTX = 0dBm. The inset shows a zoom-in of the
floor plan in Figure 1. While most PL values are predicted
by the model with an error (ε) within ±2σΩ = ±3dB of the
shadowing noise, a few values are very far (|εmax| = 9dB).
Analyzing the data, we found that larger errors occur when
the environmental conditions present discontinuities (e.g. the
presence of the hall at the end of the corridor in the inset
of Figure 2). More accurate models (e.g. [17]) and a better
environment description might result in better predictions, at
the cost of increased computational and field data collection
complexity. We instead opted for using simple models in
the first steps of synthesis, and to refine the design when
on-field measurements are available. First, the PL for each
link synthesized in the previous steps should be measured
and stored in the database. Second, the synthesis is run again,
and the tool adjusts the network topology, by taking the new
information into account. A few measurement iterations might
be needed if the algorithm routes paths through different
routers with respect to the previous step, since the quality
of new links might need to be assessed. However, it will be
shown in Section IV that a number of measurements only
linear in the network size need to be taken, so data collection
is simplified, and the database can be efficiently processed.

Figure 1(d) shows the final layout of the network, obtained
after two iterations of measurements. The algorithm added
one more router (for a total of 40 routers), and it changed
the location of six routers after taking into consideration the
accurate measurement results of the link quality.

IV. NETWORK SYNTHESIS

We cast the synthesis problem for resilient and power
efficient WSNs into an optimization problem, formally defined

as follows:
Problem Statement. Given: 1) a set of end-devices D and
a set of fixed routers R, with their locations; 2) a set of
source-destination pairs Q = {q=(s, d) | s, d ∈ D} with the
associated bit rate rq , where Q is partitioned in Q = Quni ∪
Qmulti ∪Qmob ∪Qp2p to differentiate among traffic patterns,
and; 3) a desired number m of redundant replicas ∀q ∈ Q.
Compute the set AR of additional routers and corresponding
locations that minimizes network power consumption subject
to guaranteeing the connectivity and QoS of m redundant paths
∀q ∈ Q.

In our implementation, the set Q is partitioned manually
during the Application Development phase, as described in
Section III.

In this section, we propose two algorithms to solve the
above optimization problem. Both algorithms initially populate
the floor plan with virtual routers (VR), i.e. potential locations
for routers to be added to the network. In our implementation,
VRs are uniformly distributed over the floor plan at discrete
locations on a grid. Indeed, most non-pathological networks
can be synthesized if W = m ·

(
A
Ac

)
VRs are placed with

this pattern, where A is the total area of the facility, and Ac is
a conservative estimate of the router connectivity area. Other
approaches have been proposed in the literature (e.g. [7]) to
place VRs only in locations that are most promising for final
deployment (e.g. close to walls). These approaches could be
seamlessly integrated in our framework without changing the
overall flow, should experimentation suggest it. The synthesis
algorithms then selects the set AR ⊆ VRs to optimize for
power consumption, while satisfying all constraints.

The algorithms differentiate from one another because they
trade-off the optimality of the solution with running time. In
Section IV-A, we formulate the synthesis problem in terms of
a MILP, which returns the globally optimal network topology.
On the other hand, it is known that algorithms for the solution
of MILPs are not polynomially bounded in running time, so
solving them is not in general computationally efficient: high
running time has been reported also for the synthesis of small
networks (∼ 30 end-devices) [6]. During the network design
cycle (e.g. the Site Survey phase), a faster response time from
the tool could be desired because new data may be available
incrementally, and to try multiple different solutions (e.g.
different communication protocols, which result in different bit
rates). To address this problem, we propose in Section IV-B
a polynomial-time heuristic that synthesizes the network in
a shorter time, at the expense of returning a (possibly) sub-
optimal solution.

The user can select the synthesis algorithm that is most
suitable for the ongoing design stage. In the example presented
in Section III, we first run the MILP-based synthesis to get
a good starting point for the design (Figure 1(b)); we then
run fast heuristic-based syntheses to locally tune the topology
while adding information (Figure 1(c)). We concluded the
design by running again a MILP-based synthesis to further
improve performance (Figure 1(d)).

A. MILP-based Synthesis
The MILP representation is based on the one proposed in

[6], but we modify it to model the power consumption of
data traffic patterns, and to add redundancy to the network.
A preprocessing step computes the connectivity matrix C of
the network: nodes represent devices and the presence of an

edge between two nodes is established based on the FS and
the MW propagation models. The algorithm then enriches C
with a set of virtual routers VRs, positioned on an equally-
spaced grid. Each vr ∈ VR is assigned a Boolean variable xi,
whose value represents whether the router is installed or not
in the synthesized network. The network is now formed by
nodes n ∈ N = D ∪ R ∪ VR. Each edge of C is assigned
m · |Q| Boolean variables yq,kij for k = 1 to m, ∀q ∈ Q: yq,kij

is true if the edge (ni, nj) is along the kth replica of path
q ∈ Q. Finally, for all variables y, we assign a variable rq,kij ,
that models the bit rate of the transmission through the link
(ni, nj) along the kth replica of path q.

min
x,y

P = α
∑

i (pi · xi) + β
∑

q,k

∑
i,j

(
yq,kij · r

q,k
ij ·

(
eRX
ij + eTX

ij

))
s.t. (Topological)
1) Cyq,k = bq, ∀q ∈ Q, ∀k
2)

∑m
k=1

(
yq,kij

)
− 1 ≤ 0, ∀i, j ∈ C, ∀q ∈ Q

3) xi + xj − 2yq,kij ≥ 0, ∀i, j ∈ C, ∀q ∈ Q, ∀k

(Power Accounting)
4) rq,kij = rq , ∀i, j ∈ C,∀q ∈ Q \Qmulti, ∀k
5)

∑
q∈Qmulti

rq,kij = rq, ∀i, j ∈ C, ∀q ∈ Qmulti, ∀k

(QoS)
6)

∑
q,k y

q,k
ij · r

q,k
ij ≤ BWM , ∀i, j ∈ C

7)
∑

i eij ≤ OUTM , ∀j ∈ C
8)

∑
ij y

q,k
ij · lij ≤ L

q
M , ∀q ∈ Q,∀k

9)
∑

ij y
q,k
ij · log (1− bij) ≤ log (1−BERq

M), ∀q ∈ Q, ∀k
10) pj +

∑
q,k

∑
i y

q,k
ij · r

q,k
ij · e

RX
ij +

∑
q,k

∑
i y

q,k
ji · r

q,k
ij · e

TX
ij ≤ PCM , ∀vrj ∈ V R

11) xi, eij , y
q,k
ij ∈ [0, 1] ∀i, j ∈ C, ∀q ∈ Qmulti, ∀k

12) rq,kij ≥ 0 ∀i, j ∈ C, ∀q ∈ Qmulti, ∀k

A path (s, d) ∈ Q is connected if there exist a solution to the
equation Cy = b, where b [s] = −1,b [d] = 1,b [j 6= s, d] =
0. The Topological constraints enforce that m replicas ∀q ∈ Q
are connected (1); that the m replicas are all disjoint (2)
(an edge can be picked at most once, when routing the m
replicas of path q ∈ Q); and that routers are installed, if
they are used (3). Topological constraints route all paths as if
they were unicast paths. We add Power Accounting constraints
to correctly differentiate among data traffic patterns. In (4),
unicast, P2P and mobile paths are assigned an input bit rate:
for the mobile paths, this assignment corresponds to a worst
case scenario. Constraint (5) enforces the bit rate of a link
to be constant even though multiple paths belonging to the
same multicast group are routed through it: this models the
sharing of the wireless medium. In order to synthesize a
working WSN, we also need to guarantee some level of
QoS in the network. Constraint (6) limits the sum of the bit
rates to be transmitted across a link to the link bandwidth;
(7) limits the maximum fan-out of a node; (8− 9) limit the
maximum latency and the maximum Bit Error Rate (BER)
of a path, where bij is the BER across the edge (ni, nj).
Finally, constraint (10) limits the maximum average power
consumption of a node: p is the fixed power consumption
(standby and processing) of the router; eTX

ij and eRX
ij are the

energy consumed to transmit and receive a bit over the link
(ni, nj), respectively (eTX and eRX depend on the link quality
and they are computed ∀i, j in a preprocessing step). This
constraint can be interpreted as the willingness of a router to
route packets, and it sets a lower bound on the device lifetime.

The cost function is made of two components. The first one
represents the fixed power consumption of the routers; the
second one represents the total power dissipated in transmis-
sion. The two components of the cost function are weighted
by constants α and β (α+ β = 1), in order to explore dif-

ferent regions of the optimization space. While fixed power
consumption increases linearly with the number of routers,
this penalty might be balanced by savings in power consumed
in transmission, because more routers connect the network
more effectively. Finally, we note that minimizing for power
also enables the correct assignment of multicast paths, since
multicast transmission is more power efficient than the unicast
counterpart (constraint 9).

The algorithm returns the set AR = {vri ∈ V R | xi = 1}.

B. Heuristic-based Synthesis
In this section, we propose a polynomial time algorithm

whose output result satisfies the same constraints enforced
in the MILP. Moreover, the returned solution is close-to-
optimal, if the network has mostly local interconnections, as it
commonly happens in BAS applications [7]. The connectivity
matrix C allows us to represent the network as a graph:
paths among nodes can now be computed using shortest path
algorithms. In fact, RAs use shortest path algorithms to route
packets: we emulate their behavior, as if they were to be run
in a network populated also by VRs. Moreover, shortest paths
minimize the number of hops and maximize the quality of
the transmission, so less power is consumed in transmission.
After all paths are routed, all the VRs that appear along at
least one of the paths are collected in the set AR, and the
resulting network satisfies all constraints.

Matrix C is sparse due to the limited connectivity range of
wireless devices, so C has O (|N |) non-zero entries. This also
confirms that only O (|N |) measurements need to be taken
during the Site Survey to characterize it, as argued in Section
III. Edges are assigned a weight, in the range [1− 4], to
represent their Link Quality (LQ) (a low value represents high
LQ). The weights are computed by estimating the link path
loss using FS and MW models. We then use a modified version
of the Dijkstra algorithm to route paths. The cost function
C = f (#H,LQ) used in the algorithm ranks paths according
to the number of hops (#H) to the destination, and the LQ of
each hop, following the indications in Section II. Moreover,
edges entering user-defined routers (r ∈ R) are counted as a
half hop, so they are the preferred choice to route paths, with
respect to VRs.

Algorithm 1 shows how paths are calculated in our im-
plementation. As far as routing is concerned, unicast, P2P
and mobile traffic patterns are treated in the same way (lines
4 − 10). The area Am in which mobile nodes can be moved
(selected by the user on the floor plan) is divided into
s =

(
Am

Ac

)
sections, and a path is routed from the center

of each section to the destination. The algorithm distinguishes
among patterns only when evaluating the QoS of the network
(line 25). The algorithm processes one path at a time: first, it
disconnects from C all edges entering end-devices (apart from
the destination), since no paths can be routed through them;
second, it traverses the graph from source to destination. Since
we aim at routing m independent replicas ∀q ∈ Q, at each
iteration of the inner loop (line 7) the algorithm disconnects
from the graph the path that has just been computed (line 11).
The following iteration will thus find a path that is completely
independent from the previous ones. The complexity of this
part of the algorithm is O (m · |Q| · |N | · log (|N |)).

For multicast traffic, we assume that devices are clustered
in (possibly overlapping) Multicast Groups (MG), where a
local Base Station (BS) sends packets to several other nodes.

Algorithm 1. Synthesis of Power-optimized WSNs

1: Given Sets of end-devices D, routers R, virtual routers VR
2: Input Connectivity matrix C, set Q of pairs (s, d), redundancy m
3: Output Set of synthesized paths P
4: //Process paths with unicast/P2P/mobile traffic pattern.
5: for k = 1 to |Quni|+ |Qp2p|+ |Qmob| do
6: Ck ← disconnect end devices(C, qk)
7: for j = 1 to m do
8:

[
pj
k, conn

]
← Dijkstra(Ck, sk, dk)

9: if (!conn) return(∅)
10: P ← P ∪ pj

k

11: Ck ← disconnect path
(
Ck, p

j−1
k

)
12: //Process paths with multicast traffic pattern.
13: for l = 1 to #MG do
14: for j = 1 to m do
15:

[
P j

multi, conn
]
← Dijkstra(C,BSl,MGl)

16: if(!conn) return(∅)
17: P j

multi ← sort paths
(
P j

multi

)
18: for k = 2 to |MGl| do
19: C ← set path cost to 0

(
C,P j

multi [k − 1]
)

20: P j
multi [k]← Dijkstra(C, sk, BS)

21: P ← P ∪ P j
multi

22: C ← disconnect paths
(
C,P j

multi

)
23: [BW,PC,OUT]← path accounting(P)
24: P ← reroute shortest paths(C, P,BW,PC,OUT)
25: if(!incremental check constraints (P)) return(∅)
26: return(P)

The algorithm presented above would not generate acceptable
results when modeling multicast traffic, since it synthesizes a
set of unicast paths from the BS to all the nodes of the MG,
which results in a waste of power. Since in multicast several
nodes can be reached with a single packet transmission, no
more power is dissipated if we connect an end-node to a router
that has already been selected. We thus aim at determining
the smallest set of VRs that is capable of connecting the
MG to the BS: since each router only transmits once, the
overall power consumption is minimized. Lines 13 − 22
in Algorithm 1 present an O

(
#MG ·m · |N |2 · log (|N |)

)
approach to achieve this goal. MGs are processed one at a
time. Pmulti is the set of paths from the BS to each node
in the MG (line 15). At line 17, the elements of Pmulti are
sorted according to the cost to get to the BS. Paths are then
processed in increasing order of cost: the path from the BS to
the node with the least cost is taken, since that is the shortest
path to get to the MG. The key point of the algorithm is that
the cost of the first path can now be set to 0: if any other
node chooses that path, no more power is consumed due to
multicast propagation. The second least costly path of the set
is then rerouted, and the newly obtained path replaces the old
one in Pmulti, since its cost is less or equal (lines 19 − 20).
This process is then iterated for each path of the set. Finally,
the routine is iterated m times (line 14), in order to generate
the desired level of redundancy.

While computing paths, the algorithm also checks whether
the solution satisfies path-related QoS constraints, which are
a function of the path cost (maximum latency and BER are
passed to the Dijkstra routine as parameters). If any path does
not satisfy all constraints, the algorithm returns an empty set of
paths. When all paths are computed, the algorithm also checks
constraints on link maximum bandwidth, and device maximum
power consumption and out-degree (line 23). Even if some of
these constraints are not fulfilled, an acceptable solution may
still be obtained simply by ripping-up and rerouting some of
the paths in excess through other nodes in the graph [18]. In

particular, the algorithm selects the paths to be rerouted by
sorting them in terms of cost, and by rerouting the ones with
the lowest cost (line 24), since those are more likely to fulfill
all constraints also after rerouting. Constraints are checked
once again after rerouting: if the network still does not satisfy
them, the algorithm returns failure (line 25).

At the beginning of the section, we argued that the user
can use the two synthesis algorithms interchangeably, de-
pending on the ongoing design phase. However, the MILP-
based algorithm is more flexible, since it is able to explore
different regions of the design space by tuning parameters
α and β, while the heuristic, as it has been presented so
far, always returns the same network topology. Consequently,
when switching from one synthesis algorithm to the other,
the heuristic could return an unnecessarily perturbed network
topology, if it is not able to emulate the MILP parameter
tuning. To partially overcome these problems, we present in
the following paragraph four synthesis strategies that can be
pursued with the heuristic algorithm to emulate the tuning of
the MILP parameters α and β.

A synthesis strategy equivalent to β > α is obtained by pop-
ulating the network with all W VRs from the beginning: the
returned network has lower transmission power consumption,
since a tailored path is synthesized for each end-device, but
higher fixed power consumption, since there is less sharing of
VRs among different paths. In a second synthesis strategy, the
network is populated with few VRs at the beginning (lower
effective W , Weff<W), and the number of VRs (Weff) is
incrementally increased every time Algorithm 1 returns with
a failure. In order to limit the number of iterations, Weff is
increased exponentially, for a total of O (log (W)) iterations.
This strategy is equivalent to β < α, since the algorithm finds a
solution with fewer routers than the previous strategy, but more
power is spent in transmission, since paths are made of more
hops with worse link quality. Instead of adding fewer VRs
to C before synthesizing the network, the algorithm produces
results consistent to the ones obtained by setting β < α in the
MILP also by disconnecting as many VRs as possible after the
synthesis, and checking that all constraints are still satisfied.
In this third strategy, VRs are sorted in terms of transmission
power consumption after running Algorithm 1; the routine
then tries to disconnect them using a binary search, starting
with the least used. The binary search results in a logarithmic
number of iterations, so it makes the strategy computationally
practical. Finally, a fourth possible strategy combines the
incremental addition of VRs and the post-processing of the
synthesized network: this is equivalent to setting β << α. All
strategies have been implemented, and the designer can use
the above guidelines to choose among them, depending on the
desired result. In our example, we used α = 0.6 and the second
strategy: this choice minimizes the number of components and
installation dollar cost of the network, at the expense of higher
maintenance costs, since each device will work more often.

C. Experimental Results
To better benchmark the implemented algorithms, we syn-

thesized reduced and extended versions of the example pre-
sented in Section III, while varying the number of end-devices
(D). In all examples, we first run the MILP-based synthesis to
get a starting point for the design; after adding measurement
results, we run both the MILP-based and the heuristic-based
syntheses to compare their performance. We solved the MILP-

TABLE I
PERFORMANCE OF THE SYNTHESIS ALGORITHMS

Input MILP (α = 0) First Strategy MILP (α = 0.6) Second Strategy
|D| T[s] Final #H LQ T[s] Final #H LQ T[s] Final #H LQ T[s] Final Weff #H LQ
25 1980 28 2 2.47 6.8 29 2.16 2.75 1960 19 2.3 2.85 0.82 20 64 2.4 3.2
30 2590 37 1.9 2.43 9.4 37 2.1 2.65 2630 26 2.37 2.7 1.4 26 64 2.5 3
50 3582 53 2.23 2.38 20 55 2.38 2.7 3512 40 2.62 2.8 2.83 39 64 2.76 3.11
75 TO - - - 28 128 2.6 2.7 TO - - - 52 128 256 2.6 2.7
100 TO - - - 95 77 2.6 3 TO - - - 25 39 128 3 3.2

Average 2717 39 2.04 2.42 31.8 65 2.37 2.76 2700 28 2.43 2.8 16.4 50 115 2.65 3

based synthesis problems using the Matlab API functions
to LPsolve [19]. The values for p, eRX , eTX were taken
from measurements reported in [20]. We also synthesized
the network using all four strategies of the heuristic-based
algorithm. The first, second and third strategies returned
topologies similar to the ones obtained after solving the MILP
for α = 0/0.6/0.45, respectively. These values of parameter
α show that the strategies are tailored to the synthesis of
networks where transmission power is higher than standby and
computation power. The fourth strategy returns results similar
to the second one because the fewer added routers are all
necessary to guarantee connectivity, so it will not be further
considered in the following.

Table I summarizes the results in terms of computation time
(T) (on an Intel T7300 2GHz, 2GB of RAM), number of final
routers, average number of hops per path (H), and average link
quality in the synthesized network (LQ). The value of Weff

is also reported for the second strategy, which incrementally
increase it. The last row summarizes the average performance
in bold. We only report results obtained for α = 0 (α = 0.6)
to be compared with the first (second) strategy, due to space
limitations. The MILP-based synthesis outputs a network with
5% (8%) fewer hops and 11% (10%) better LQ, on average,
with respect to the first (second) strategy. On the other hand, it
is able to synthesize networks only up to 50 devices within the
Time Out (TO) that we set to one hour, while all polynomial
time synthesis strategies terminate within tens of seconds.

Overall, experimentation results show that the heuristic-
based approach is able to return close-to-optimal results in
a short time, thus enabling an interactive usage of the tool.
Enhanced performance can then be obtained by running a final
MILP-based synthesis.

While a rigorous comparison with other tools is not pos-
sible, since neither the code nor the used testbenches are
publicly available, we mention that the running time of the
heuristic-based algorithm is more than two orders of mag-
nitude faster than the one reported in [6] for networks of
comparable input size (30 end-devices); on the other hand, it is
slower than the algorithm in [9], even though its complexity is
lower. We think the reasons for poorer performance are: 1) the
algorithm in [9] does not take QoS constraints into account,
so it performs fewer checks and it finds more quickly what it
considers an acceptable solution, and; 2) Matlab code, which
is used in our implementation, is not compiled but interpreted.

V. CONCLUSION

In this paper, we presented a tool to assist the design
flow of WSNs for building applications. The tool optimizes
network resiliency and power consumption by emulating the
behavior of routing algorithms. We cast the synthesis problem
into an optimization problem, and we proposed a MILP-based
algorithm that returns an exact solution, and a polynomial-time
heuristic that returns close-to-optimal results in a shorter time.

Users can use the exact algorithm to generate a tentative initial
topology and to further improve network performance at the
end of the design; the heuristic is most suitable during inter-
mediate design steps when new information is incrementally
added by designers with different field of expertise.

As future work, we plan to validate the proposed framework
by deploying the network whose design was used as an
example in the paper. Collected measurements on network
resiliency and lifetime will allow us to further tune the
synthesis strategies.

REFERENCES

[1] ”Energy Future: Think Efficiency”, The American Physical Society,
September 2008.

[2] M. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and S. Olivieri, ”A
Framework for Modeling, Simulation and Automatic Code Generation
of Sensor Network Application”, Proc. of SECON ’08, pp. 515–522.

[3] http://nsnam.isi.edu/nsnam/index.php/Main Page
[4] Y. Wang, C. Hu, and Y. Tseng, ”Efficient Deployment Algorithms for

Ensuring Coverage and Connectivity of Wireless Sensor Networks”,
Proc. of WICON ’05, pp. 114–121.

[5] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen, ”Building Automa-
tion Routing Requirements in Low-Power and Lossy Networks”, June
2010.

[6] A. Pinto, M. D’Angelo, C. Fischione, E. Scholte, and A. Sangiovanni-
Vincentelli, ”Synthesis of Embedded Networks for Building Automation
and Control”, Proc. of ACC ’08, pp. 920–925.

[7] A. Guinard, A. Mc Gibney, and D. Pesch, ”A Wireless Sensor Net-
work Design Tool to Support Building Energy Management”, Proc. of
BuildSys ’09, pp. 25–30.

[8] H. Kim, T. Kwon, and P. Mah, ”Multiple Sink Positioning and Routing
to Maximize the Lifetime of Sensor Networks”, IEICE Trans. Commun.,
vol. E91-B, no. 11, November 2008.

[9] M. Ahlberg, V. Vlassov, and T. Yasui, ”Router Placement in Wireless
Sensor Networks”, Proc. of MASS ’06, pp. 538–541.

[10] P. Levis, A. Tavakoli, and S. Dawson-Haggerty, ”Overview of Existing
Routing Protocols for Low Power and Lossy Networks”, April 2009.

[11] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, ”Energy-
Aware Wireless Microsensor Networks”, IEEE Signal Processing Mag-
azine, no. 3, pp. 40–50, March 2002.

[12] M. Lu, P. Steenkiste, and T. Chen, ”Design, Implementation and
Evaluation of an Efficient Opportunistic Retransmission Protocol”, Proc.
of MobiCom ’09, pp. 73–84.

[13] The MathWorks - Matlab and Simulink for Technical Computing.
http://www.mathworks.com

[14] G. L. Stüber, ”Principles of Mobile Communication”, Kluwer Academic
Publishers, 1996.

[15] S. Zvanovec, P. Pechac, and M. Klepal, ”Wireless LAN Networks
Design: Site Survey or Propagation Modeling?”, Radioengineering,
vol. 12, no. 4, December ’03, pp. 42–49.

[16] http://www.willow.co.uk/TelosB Datasheet.pdf
[17] P. Pechac and M. Klepal, ”Effective Indoor Propagation Predictions”,

Proc. of VTC ’01, pp. 1247-1250.
[18] W. Dees and P. Karger, ”Automated Rip-Up and Reroute Techniques”,

Proc. of DAC ’82, pp. 432–439.
[19] http://lpsolve.sourceforge.net/5.5/
[20] G. de Meulenaer, F. Gosset, F. Standaert, and O. Pereira, ”On the

Energy Cost of Communication and Cryptography in Wireless Sensor
Networks”, Proc. of WIMOB ’08, pp. 580–585.

