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ABSTRACT 

 

The Refined Zigzag Theory (RZT) has been recently developed for the analysis of 

homogeneous, multilayer composite and sandwich plates. The theory has a number of 

practical and theoretical advantages over the widely used First-order Shear Deformation 

Theory (FSDT) and other types of higher-order and zigzag theories. Using FSDT as a 

baseline, RZT takes into account the stretching, bending, and transverse shear 

deformations. Unlike FSDT, this novel theory does not require shear correction factors 

to yield accurate results for a wide range of material systems including homogeneous, 

laminated composite, and sandwich laminates. The inplane zigzag kinematic 

assumptions, which compared to FSDT add two additional rotation-type kinematic 

variables, give rise to two types of transverse shear strain measures – the classical 

average shear strain (as in FSDT) and another one related to the cross-sectional 

distortions enabled by the zigzag kinematic terms. Consequently, with a fixed number 

of kinematic variables, the theory enables a highly accurate modeling of multilayer 

composite and sandwich plates even when the laminate stacking sequence exhibits a 

high degree of transverse heterogeneity. Unlike most zigzag formulations, this theory is 

not affected by such theoretical anomalies as the vanishing of transverse shear stresses 

and forces along clamped boundaries.  
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In this paper, six- and three-node, C
0
-continuous, RZT-based triangular plate 

finite elements are developed; they provide the best compromise between computational 

efficiency and accuracy. The element shape functions are based on anisoparametric (aka 

interdependent) interpolations that ensure proper element behavior even when very thin 

plates are modeled. Continuous edge constraints are imposed on the transverse shear 

strain measures to derive coupled-field deflection shape functions, resulting in a simple 

and efficient three-node element. The elements are implemented in ABAQUS – a 

widely used commercial finite element code – by way of a user-element subroutine. 

 The predictive capabilities of the new elements are assessed on several elasto-

static problems, which include simply supported and cantilevered laminated composite 

and sandwich plates. The numerical results demonstrate that the new RZT-based 

elements provide superior predictions for modeling a wide range of laminates including 

highly heterogeneous sandwich laminations. They also offer substantial improvements 

over the existing plate elements based on FSDT as well as other higher-order and 

zigzag-type elements. 

 

KEYWORDS 

 

Refined Zigzag Theory; First-order Shear Deformation Theory; Variational 

principle; Plate finite element; Shear locking; Transverse shear stresses; Composite 

plate; Sandwich plate. 

 

1. INTRODUCTION 

 

Laminated composite and sandwich plates and shells are widely used for military 

and civilian aircraft, aerospace vehicles, and naval and civil structures because of their 

high specific stiffness and strength and tailoring capabilities. Composite materials are 

increasingly adopted for primary load-bearing structures in the form of thick laminates 

with a large number of layers. Such laminated composite structures are inherently 

heterogeneous and anisotropic; they may exhibit design- and failure-critical deformation 

effects due to transverse shearing and transverse-normal stretching, with the 

consequential susceptibility to environmental and interlaminar-damage effects. Thus, 

accurate and computationally efficient models capable of incorporating these second-

order effects are required for the design and analysis of multilayer composites. 
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Two main modeling strategies for composite structures can be found in the open 

literature: (i) models that only have displacements as the primary unknowns [1] and (ii) 

mixed models with displacements and stresses (commonly, transverse stresses) as 

unknowns [2]. Moreover, depending on the assumed distribution along the thickness for 

the primary unknowns, there may be [3]: (a) Equivalent Single Layer (ESL) theories, in 

which through-the-thickness distributions of the unknowns are assumed a priori over the 

total laminate thickness, and (b) Layer-Wise (LW) theories, in which the distribution of 

the unknowns is assumed layer by layer. 

Among the ESL models that are based on displacements, classical lamination 

theories are often referred to: the Classical Lamination Plate Theory (CLPT) [4] and the 

First-order Shear Deformation Theory (FSDT) [5,6]. Their main merits are ease of 

implementation and adequate accuracy in terms of global response quantities such as  

displacements, natural frequencies, and buckling loads. These theories perform well for 

thin and moderately thick laminates that have a relatively low degree of transverse 

heterogeneity; however, their accuracy diminishes rapidly when highly heterogeneous 

and/or thick composite and sandwich laminates are modeled [1,7-9]. Improved 

predictions can be obtained using higher order through-the-thickness distributions of the 

displacements and/or stresses [10]. Computationally efficient analytical models for 

beams, plates and shells that account for transverse shear and thickness-stretch 

deformations have recently been advanced in [11-13]. The LW models [14-17] are 

generally very accurate but computationally costly; in these models the number of 

unknowns increases with the number of layers. This is especially relevant for nonlinear 

and/or progressive failure analyses of thick laminates made up of hundreds of layers, 

where the LW modeling is prohibitively expensive. 

A meaningful compromise between acceptable accuracy and low computational 

cost is offered by the so-called zigzag theories [18-31]. In these theories (as in ESL), the 

number of kinematic unknowns does not depend on the number of layers; the LW-based 

zigzag theories have also been explored in [17]. The in-plane displacements combine 

the polynomial functions defined across the entire laminate thickness (linear [18-25] or 

cubic [26-31]) with the piecewise linear (i.e., zigzag) distributions. The zigzag 

contributions enable a more realistic modeling of the inplane cross-sectional distortion 

in multilayer composites, giving rise to a computationally efficient theory for the 

modeling of relatively thick laminated composite and sandwich structures. The zigzag-
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theory predictions are often as accurate as those obtained by the computationally 

expensive LW and higher-order theories.  

Averill [25] pointed out that there remain at least two key impediments for the 

analytical and computational applications of the zigzag theories. The key issues are that: 

(1) the transverse shear stresses derived from the constitutive equations vanish 

erroneously along clamped boundaries, and that (2) C
1
-continuous finite element 

approximations are required for the transverse deflection variable  the type of 

approximation that is particularly undesirable for plate and shell elements. 

To resolve the aforementioned issues, Tessler et. al. developed the Refined Zigzag 

Theory (RZT) [32-39] that makes use of a set of novel zigzag functions and uses FSDT 

as a baseline. The transverse shear stresses are allowed to be discontinuous along the 

ply interfaces; this relaxation of stress continuity permits more accurate predictions of 

all response quantities including the transverse shear stresses that provide accurate 

average values of the ply-level stresses. The key drawbacks of the original zigzag 

theories are overcome: (1) transverse shear stresses and forces do not vanish 

erroneously along clamped edges, and (2) since the strains are defined in term of first 

derivatives of the kinematic variables, computationally efficient C
0
-continuous elements 

are readily formulated. The RZT has shown to be very accurate over a wide range of 

aspect ratios and material systems, including thick laminates with a high degree of 

transverse shear flexibility and heterogeneity [32-39]. 

Although computationally desirable and extensively used in commercial finite-

element codes, C
0
-continuous bending elements need to be designed to pass the shear 

locking barrier.  When exact integration is used to compute the transverse shear strain 

energy, FSDT plate elements formulated with linear isoparametric shape functions 

produce overly stiff solutions when modeling thin plates. The reduced integration of the 

transverse shear energy alleviates shear locking; however, when applied to plate 

elements [40], reduced integration elements commonly give rise to non-physical zero-

energy modes that must be eliminated with ad-hoc techniques. The use of higher-order 

polynomial shape functions generally improves thin-regime predictions. Several other 

successful approaches have been proposed to alleviate shear locking: penalty 

constraints, penalty-relaxation parameters, rotational bubble modes, and 

anisoparametric interpolations (the terms interdependent and linked interpolations have 

also been used [41,42].) The anisoparametric interpolation strategy, advanced by 

Tessler and co-workers for beam, plate, and shell elements [43-58], requires that the 
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transverse displacement is approximated with a complete polynomial one degree higher 

than the bending rotations (unconstrained anisoparametric element). Moreover, 

elements with isoparametric-like topologies can be readily obtained by condensing out 

the extra deflection degrees-of-freedom. This is achieved by using an appropriate 

constraint, e.g., for FSDT plate finite elements, the higher-order shear strain terms are 

set to zero (constrained anisoparametric element). The main advantage of 

anisoparametric elements is that all energy integrations are performed with the full 

Gaussian quadrature to guarantee variational consistency; furthermore, the resulting 

consistent load and mass matrices give rise to superior predictions over the comparable 

reduced integration elements [40,42]. Efficient beam elements based on RZT and 

anisoparametric interpolations have recently been examined [59,60]. 

In this paper, six- and three-node, C
0
-continuous, RZT-based triangular plate 

finite elements are developed for the analysis of multilayer composite and sandwich 

panels. The theory is reviewed first in order to establish a framework for the 

development of RZT-based finite elements, and to ascertain the predictive capability of 

the theory for composite and sandwich laminates. The choice of suitable 

anisoparametric shape functions is then addressed with the specific focus on the shear-

locking issues and their consistent resolution within the variational requirements. The 

unconstrained kinematic field yields a fully-integrated six-node element. To achieve a 

simple three-node configuration, two different edge-constraint strategies are 

implemented, giving rise to two distinct three-node triangular elements. Computational 

studies using thin composite plates are first carried out to verify the free of shear 

locking behavior for these anisoparametric elements. As a demonstration of shear 

locking behavior, the fully-integrated, three-node isoparametric (linear interpolation) 

element is examined. Furthermore, the new anisoparametric elements are examined on 

several elasto-static problems of moderately thick laminated composite and sandwich 

plates subjected to different loading and boundary conditions. Excellent convergence 

characteristics and through-the-thickness predictive capabilities are demonstrated. This 

paper is an enhanced version of the work presented in [61]. 

 

2. REFINED ZIGZAG THEORY FOR PLATES 

 

Herein the basic notation, definitions, and mathematical foundation of the Refined 

Zigzag Theory (RZT) for plates are reviewed to establish the framework for the 
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development of RZT-based plate finite elements. For a complete and detailed discussion 

on RZT for plates, refer to [35-39]. 

 

Figure 1. Plate notation. 

 

 

2.1 Displacements, zigzag kinematics, strains, and stresses 

 

A plate of thickness 2h  is made of N perfectly bonded orthotropic material layers 

(Figure 1); the ( )k  superscript denotes the k th  layer. The plate is referred to a 

Cartesian coordinate system 1 2( ,  ,  )x x z . The middle reference plane (or mid-plane) mS  

is denoted by the ordered pair 1 2( ,  ) mx x S ; z  is the through-the-thickness coordinate 

that ranges from h  to h  with 0z   identifying the mid-plane while the k th  layer 

thickness is defined in the range ( 1) ( )[ , ]k kz z , with the first layer beginning at 

(0)z h  , the last N th  layer ending at ( )Nz h  (see Figure 2a). S  denotes the total 

cylindrical edge-surface and is composed of uS S , where the displacement restraints 

are imposed, and of S S  , where external loads may be applied (in our case, a 

traction vector 1 2 z( T ,T ,T ) ). The following relations hold: uS S S    and 

uS S   . A normal-pressure loading, q, defined as positive in the positive z -

direction, is also applied to the mid-plane. The total perimeter surrounding mS  is 

defined by uC C C   with mC S S    and u u mC S S  . 
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The RZT displacement components corresponding to the Cartesian coordinate system 

1 2( ,  ,  )x x z  are defined as (refer to [35-37]) 

 

 

( ) ( )

1 1 2 1 2 1 1 2 1 1 1 2

( ) ( )

2 1 2 1 2 2 1 2 2 2 1 2

( )

1 2 1 2

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , ) ( , ) ( ) ( , )

( , , ) ( , )

k k

k k

k

z

u x x z u x x z x x z x x

u x x z v x x z x x z x x

u x x z w x x

  

  

  

  



 (1) 

 

   

(a) Layer notation. (b) Zigzag function 1 . (b) Zigzag function 2 . 

Figure 2. Layer notation and zigzag functions of the Refined Zigzag Theory for a three-layered laminate 

(a) Layer notation. (b) Zigzag function φ1. (c) Zigzag function φ2. 

 

where u , v , and w  are the uniform displacement components along the 1x , 2x , and z -

axis respectively ( u  and v  are the in-plane displacements while w  is the transverse 

deflection); 1  and 2  are the average rotations of the transverse normal around the 

positive 2x -axis and the negative 1x -axis, respectively; and  1,2    are the 

amplitudes of the zigzag contributions to the in-plane displacement in the x -directions 

(Figure 1). Thus, RZT has seven kinematic variables – two more than FSDT; in vector 

form they are defined as 1 2 1 2][ Tv wu    u . 

The zigzag terms  ( )

1 2( ) , 1,2( )k z x x     in Eq. (1) describe cross-sectional 

distortions in the form of 0C -continuous piecewise patterns that are typical of 

multilayer laminates. The zigzag functions, ( ) ( )k z , have units of length and are 

piecewise linear, 0C -continuous functions of the thickness coordinate z and, as will be 

shown subsequently, they are also lamination and material dependent.  
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 It is convenient to define )

1

( ( )k z  and )

2

( ( )k z  in terms of their layer-interface 

values, ( )iu  and ( ) ( 0,1,..., )iv i N , respectively, so that the homogeneous conditions 

on the top and bottom surfaces are identically satisfied (refer to Figures 2b and 2c which 

show the notation for a three-layered laminate), i.e., 

 

 

(1) ( )

(0) 1 ( ) 1

(1) ( )

(0) 2 ( ) 2

( ) 0, ( ) 0

( ) 0, ( ) 0

N

N

N

N

u h u h

v h v h

 

 

     

     
 (2) 

 

The interior interface values of the zigzag functions are defined as follows 

 

 

( ) ( )

( ) ( 1) 1

( ) ( )

( ) ( 1) 2

2
( 1,..., 1)

2

k k

k k

k k

k k

u u h
k N

v v h









  
 

  

 (3) 

 

with 

 

 ( ) ( )

, ( )
1 ( 1,2; 1,..., 1)k k

z k

G
k N

Q


 



         (4) 

 

where ,·) (·)( x     denotes partial differentiation and where 1G  and 2G  are 

weighted-average transverse-shear stiffness coefficients of their respective lamina-level 

coefficients, ( )
11

kQ  and ( )
22

kQ  (Eq. (8)) 

 

 

1
( )

( )
1

21
( 1,2)

2

kN

k
k

h
G

h Q










 
   
 

  (5a) 

 

Within the k th  material layer the zigzag functions are given as 

 

 
   

   

( ) ( ) ( )1 1
1 ( 1) ( )2 2

( ) ( ) ( )1 1
2 ( 1) ( )2 2

1 1

1 1

k k k
k k

k k k
k k

u u

v v

  

  





   

   

 (5b) 
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where ( )k  is a non-dimensional thickness coordinate defined for each layer 

 

      ( ) ( )
( 1) / 1 1,1 1,...,k k
kz z h k N 

      
 

 (5c) 

 

For further details on the derivation of Eqs. (3)–(5b) refer to [36,37].  

 In the case of homogeneous, single-layer plates, the zigzag functions ( )k

  vanish 

identically; consequently, the displacement field, Eq. (1), reduces to that of Reissner-

Mindlin theory [5,62]. Recently, Tessler et. al. [38,39] showed that within RZT, the 

homogeneous plates should be modeled as laminated plates with infinitesimally slight 

levels of heterogeneity. By introducing infinitesimally small differences in the 

transverse shear stiffnesses of the material layers, full advantage of the zigzag 

kinematics is invoked. This homogeneous limit strategy achieves a homogeneous cross-

section by forcing the kinematics into infinitesimally small heterogeneous behavior, 

thus producing highly accurate response predictions, including those for strains and 

stresses, without the use of shear correction factors.  

 

Using the linear strain-displacement relations, the in-plane and transverse strains 

become 

 

 ( ) ( )

11 ,1 1,1 1 1,1

k ku z      (6a) 

 ( ) ( )

22 ,2 2,2 2,22

k kv z      (6b) 

 
( ) ( ) ( )

12 ,2 ,1 1,2 2,1 1 1,2 2 2,1( )k k ku v z             (6c) 

 ( ) ( ) ( 1,2)k k

z           (6d) 

 

where the following notation defining the usual FSDT shear angles   is used 

 

 ,w      (7) 

 

The generalized Hooke’s law for the k th  orthotropic lamina, whose principal 

material directions are arbitrary with respect to the mid-plane reference coordinates, 

1 2, )( mx x S , is written as 
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22 26

26 66

22

( ) ( )( )

11 1111 12 16

22 2212

12 1216

122 2

12 111 1

0 0

0 0

0 0

0 0 0

0 0 0

k kk

z z

z z

C C C

C C C

C C C

Q Q

Q Q

 

 

 

 

 

    
    
       

    
    
    
        

 (8) 

 

where ( ) ( , 1,2,6)k

ij jC i   and ( ) ( , 1,2)k

pq pQ q   are the transformed elastic stiffness  

coefficients referring to the 1 2, , )( x zx  coordinate system and relative to the plane-stress 

condition that ignores the transverse-normal stress. The expression of these coefficients, 

in terms of the material engineering constants, can be found in [3]. 

 

2.2 Virtual work principle 

 

The Principle of Virtual Work (PVW) can be employed to derive the Euler-

Lagrange equations of equilibrium and the corresponding set of consistent boundary 

conditions.  

Considering the plate shown in Figure 1 and the applied loads, the virtual work 

principle may be written as follows [37] 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 22 22 12 12 1 1 2 2

( ) ( ) ( )
1 21 2

( )

[

0

]

m

m

h
k k k k k k k k k k

z z z z
S h

h
k k k

z z
S C h

dzdS

q wdS T u T u T u dzds


         

   





    

 



 

 

  
 (9) 

 

where   is the variational operator. Substituting Eqs. (1),(6)-(8) in (9) and integrating 

across the plate thickness, yields the two-dimensional statement of virtual work 

 

 

1 ,1 ,2 12 ,2 ,1

1 1,1 2 2,2 12 1,2 2,1 1 ,1 1 2 ,2 2

1 1,1 2 2,2 12 1,2 21 2,1 1 1 2 2

1 2 1 1 1

2

2 2 1 2

0

) )

( )

( ( ()

mS

n n zn n n n n

N u N v N u v

w Q w q w

M M M M Q

N u N v

M M M Q

Q dS

Q w M M M M

     

 

   

        

     

      

   

   



   

   

  



  

   



2
C

ds


  

 (10) 
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In Eq. (10), the membrane stress resultants and conjugate strain measures are [37] 

 

 ( ) ( ) ( )

1 2 12 11 22 12{ , , } { , , }
h

T k k k

m
h

N N N dz  


  N  (11a) 

 ,1 ,2 ,2 ,1{ , , }T

m u v u v e  (11b) 

 

The bending stress resultants and conjugate strain measures are [37] 

 

 
1 1 2 2 12 12 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 1 11 22 2 22 12 1 12 2 12

{ , , , , , , }

{ , , , , , , }

T

b

h
k k k k k k k k k k k

h

M M M M M M M

z z z dz

   

          




 

M
 (12a) 

 1,1 1,1 2,2 2,2 1,2 2,1 1,2 2,1{ , , , , , , }T

b         e  (12b) 

 

The transverse shear stress resultants and conjugate strain measures are [37] 

 

 ( ) ( ) ( ) ( ) ( ) ( )

2 2 1 1 2 2 2 1 1 1{ , , , } { , , , }
h

T k k k k k k

s z z z z
h

Q Q Q Q dz       


  Q  (13a) 

 ,2 2 2 ,1 1 1{ , , , }T

s w w     e  (13b) 

 

Zigzag bending moments, 1 2 12 21, , ,M M M M    , and transverse shear forces, 2 1,Q Q  , may 

be considered as higher-order stress resultants associated with the zigzag term of the in-

plane displacements, see Eqs. (1) and (6). The force and moment resultants, due to the 

prescribed tractions 1 2, , )( zT T T , have the form 

 

 
1 2 1 2 1 2

( ) ( )

1 2 1 2 1 1 2 2

{ , , , , , , }

{ , , , , , , }

n n zn n n n n

h
k k

z
h

N N Q M M M M

T T T zT zT T T dz

 

 


 
 (14) 

 

Integrals across the plate thickness defining resultant forces and moments, Eqs. 

(11a),(12a),(13a),(14), may be also expressed in terms of summations over the N layers 

 

    
( )

( 1)

( ) ( )

1

k

k

zNh

z

k k

h
k

f dz f dzz z




 
 





    
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The resulting constitutive relations of the RZT for plates are expressed in matrix form 

as 

 

 

    
         
        

m m

T

b b

s s

N eA B

M B D e

GQ e

0

0 Rω

0 0

 (15) 

 

where the stiffness matrices are defined as [37] 

 

 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h
k

h

h
k k

h

h
k T k k

h

h
k T k k

h

dz

dz

dz

dz



 

 

























A C

B C B

D B C B

G B Q B

 (16) 

 

with 

 

 

( )

( )11 12 16

22 12( ) ( )

12

12 11

16

( )

1 ( )

( ) ( ) ( )

22 26

26 66

2

2

( )

( ) ( )

1 2

1

,

0 0 0 0 0
1 0 0

0 0 0 0 0 ,
0 0 1

0 0 0 0

k

k

k k

k

k

k k k

k

k k

C C C
Q Q

C C C
Q Q

C C C

z

z

z

 







 

 



 
  
  
   

 
  
  
  







C Q

B B

 (17) 

 

Performing the integration by parts in Eq. (10) results in the Euler-Lagrange 

equilibrium equations 

 

1,1 12,2 12,1 2,2 1,1 2,2

1 1,1 12,2 1 2 12,1 2,2 2

1 1,1 12,2 1 2 21,1 2,2 2

: 0 : 0 : 0

: 0 : 0

: 0 : 0

u N N v N N w Q Q q

M M Q M M Q

M M Q M M Q     

  

 

 

      

     

     

(18) 

 

and the set of consistent geometric (kinematic-variable) and kinetic (stress-resultant) 

boundary conditions on the mid-plane perimeter C 
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1 1 12 2 1

12 1 2 2 2

1 1 2 2

1 1 1 1 12 2 1

2 2 12 1 2 2 2

1 1 1 1 12 2 1

2 2 21 1 2 2 2

u n

u n

u zn

u n

u n

u n

u n

u u on C or N n N n N on C

v v on C or N n N n N on C

w w on C or Q n Q n Q on C

on C or M n M n M on C

on C or M n M n M on C

on C or M n M n M on C

on C or M n M n M on











  



  

 

 

 

 

  

  

  

  

  

  

   C

 (19) 

 

where the unit outward normal vector to the mid-plane boundary is defined by the 

direction cosines 1 2 1 2[ , ] [cos( , ), cos( , )]n n x n x n n , see Figure 1. 

 The two-dimensional variational statement, Eq. (10), can now be used to derive 

suitable plate finite elements. Since the strain quantities in the variational statement do 

not exceed the first spatial derivatives of the kinematic variables, C
0
-continuous shape 

functions may be used to derive kinematically compatible elements. 

 

3. PLATE ELEMENT FORMULATION 

 

Once the kinematic variables are approximated using suitable shape functions, the 

virtual work principle, Eq. (10), can be used to derive the element-level equilibrium 

equations; they consist of the element stiffness matrix and load vector.   

Next, the choices of suitable shape functions for RZT-based triangular elements 

are discussed. In particular, the initial attention is on the shear-locking phenomenon and 

its consistent resolution within the use of anisoparametric shape functions and full-order 

integration of all strain energy terms. For a similar discussion pertaining to the RZT-

based beam bending elements, the reader is referred to [60].  

 

3.1 Shear locking and shape functions 

 

The RZT strain definitions, Eqs. (6), contain first derivatives of the kinematic 

unknowns u, v, w, 1, 2, 1, and 2. The implication is that C
0
-continuous shape 

functions can be used to approximate these unknowns over an element domain. 

Although highly desirable in terms of computational efficiency and ease of use, the 

elements based on C
0
-continuous approximations may exhibit excessive stiffening (i.e., 
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shear locking) when modeling very thin beams, plates or shells. This occurs, for 

example, in the Reissner-Mindlin plate finite elements based on linear, isoparametric 

shape functions [57].  

Although many different strategies have been proposed in the literature to 

alleviate the detrimental effects of shear locking (see the Introduction and references 

herein), the anisoparametric interpolations pioneered by Tessler and co-workers 

[43,45,57,58] provide the most consistent and effective way of formulating bending 

elements of higher accuracy for beam, plate and shell structures [42]. The 

anisoparametric interpolations use shape functions for the deflection variable that are 

one degree higher than those used for the bending rotations. Having the average shear 

angle of the same mathematical form, RZT-based elements are also inherently 

susceptible to shear locking [59,60,63,64]. The anisoparametric interpolation strategy 

also permits simple, isoparametric-like nodal patterns by invoking element-level 

constraint conditions on the transverse shear strain measures or forces [60]. 

 

3.2 Six-node unconstrained anisoparametric element 

 

A six-node triangular plate element based on RZT and anisoparametric 

interpolations is presented first. Using linear shape functions for the in-plane 

displacements, bending rotations, and zigzag amplitudes, and a quadratic shape function 

for the deflection, the element interpolations in terms of the linear area-parametric 

coordinates iL  [42] are stated as 

 

3 3

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1

3 3

1 1 2 1 1 2 2 1 2 2 1 2

1 1

3 3

1 1 2 1 1 2 2 1 2 2 1

6

2

1 1

, ) ( , ) ( , ) ( , ) ( , ) ( , )

, ) ( , ) ( , ) ( , )

(

(

, ) ( , ) ( , ) ( , )(

i i i i

i i k

i i i i

i i

i i i i

i i

k kx u L x x v x x v L x x w x x P x x

x L x x x x L x x

x L x x x

u x w

x

x L xx x

   

   

  

 

 

  

 

 

  

 

 

 (20) 

 

where 1,2,3i   is an index ranging over the three corner nodes; 12 23 311, ,2, ,3,k m m m  

ranges over the corner and mid-edge nodes; and kP  defines the quadratic shape 

functions that are also expressed in terms of iL  (see Figure 3.)  
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In compact matrix form, Eq. (20) can be stated as 

 

  e
u Nu  (21) 

 

where N  is a matrix containing the shape functions, and e
u  is the nodal dof vector; N  

and e
u  are defined as  

 

 

]

]

]

[

[

[

[

[

[

]

]

][

]

i

i

k

i

i

i

i

L

L

P

L

L

L

L

 
 
 
 
 
 
 
 
 

 





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N  (22) 

 

              1 2 1 2

T T T T
T

e

i i

T T T

k i i i iu v w      
 

u  (23) 

 

with 1,2,3i  , 12 23 311, ,2, ,3,k m m m , and where [ ]iL  is a 1x3 matrix of the area-

parametric coordinates iL , [ ]kP  is a 1x6 matrix of the kP  quadratic shape functions, and 

0 is a null row vector. The resulting finite element possesses three corner nodes (1,2,3) , 

each having seven dof’s, and three mid-edge nodes 12 23 31, ,( )m m m  at which only the 

deflection dof’s reside, for a total of twenty four dof’s (Figure 3). This unconstrained 

anisoparametric element is labeled 0 (refer to Table 1). 

 

Figure 3. RZT unconstrained anisoparametric plate element. 



16 

Table 1. Element designation, kinematic interpolation, and nodal configuration. 

Type of element 

Deflection 

interpolation 

Constraint 

imposed 

No. of     

nodes (dof’s) 

L : Linear isoparametric Eq. (30):  = 0 none 3 (21) 

0 : Unconstrained anisoparametric Eqs. (20) none 6 (24) 

 : Constrained anisoparametric Eq. (30):  =1, c=0 const.nz   3 (21) 

 : Constrained anisoparametric Eq. (30): =1, c= 1 const.nz   3 (21) 

 

 

3.3 Three-node constrained anisoparametric elements 

 

The six-node unconstrained anisoparametric element can be slightly reformulated 

by using continuous edge constraints, leading to a simpler topology and elimination of 

the mid-edge nodes (Figure 4).  

One constraining possibility is that used in FSDT and {1,2}-order anisoparametric 

elements ([45,57,58]), in which the transverse shear strain nz  along each element edge 

(evaluated normally to the edge) 

 

 ,nz s nw    (24) 

 

is forced to be constant with respect to the local edge coordinate, s  (Figure 5) 

 

 0nz

s





 (25) 

 

Yet a different constraining strategy may be undertaken (refer to [59-61,63,64]) by 

insisting that the second shear-strain measure, which is associated with the zigzag 

kinematics, 

 

 nz nz n     (26) 
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be constant along each element edge, i.e., 

 

 0nz

s





 (27) 

 

The rotation 
n  and zigzag amplitude 

n , oriented along the edge normal, are 

expressed in terms of the corresponding kinematic variables and angle ij , as (Figure 5) 

 

 
1 2

1 2

( ) ( )

( ) ( )

n ij ij

n ij ij

cos sin

cos sin

    

    

 

 
 (28) 

 

Thus, proceeding with the conditions (25) and (27), the mid-edge deflection 
ijmw is 

obtained in terms of the dof’s at nodes i and j 

 

  
   

 
   

2 2

1 1 1 1

1 1

2 2 2 2

2

8

8

ij

i j

m

j i

j j i i

j i

j j i i

w

x

x

w w

x
c c

x
c c

   

   



 





 








   
 

 (29) 

 

 

Figure 4. RZT constrained anisoparametric plate element. 
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Figure 5. Triangular-element edge definitions of n, n, Qn, s and α12. 

 

The transverse-displacement interpolation, Eq. (20), takes on a coupled form  

 

     
33

1 2 1 1 1 2 2 2

1 1

,( ) i i i i i i i i

i i

w x x L w c cL L    
 

       (30) 

 

with 

 

 
1 2

1 1 2 2

( ) ( )
2 2

i i
i k j j k i

i k j i j

k

k

j k j

L L
b L b L a LL a L

a x x x x

L

b

   

   

 (31) 

 

where the subscripts are given by the cyclic permutation of 1,2,3i  , 2,3,1j  , and 

3,1,2k  . In Eq. (30),   is a flag that permits switching between a linear (=0, the 

element is labeled L, see Table 1) and a parabolic (=1) approximation of the 

deflection, and where c  is either 0 or -1, depending on the constraining strategy used in 

the element formulation: 

 0c  : nz  is constant along the three element edges, Eq. (25); the element is 

labeled  (Table 1). 

 1c   : nz  is constant along the three element edges, Eq. (27); the  element. 
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Both the linear isoparametric and constrained anisoparametric elements have three 

nodes with seven dof’s, for a total of twenty one dof’s. Eq. (21) remains valid, but with 

the following definitions of N  and e
u  

 

 

1 2 1 2

]

]

[

[

[ [] ] ] ] ]

]

]

]

]

[ [ [

[

[

[

[

i

i

i i i i i

i

i

i

i

L

L

L L L L L

L

L

L

L

c c   

 
 
 
 
 
 
 
 



 






0 0 0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0 0

0 0 0

N

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 (32) 

 

              1 2 1 2

T T T T
T

e

i i

T T T

i i i i iu v w      
 

u  (33) 

 

with 1,2,3i  . 

 
Table 1. Element designation, kinematic interpolation, and nodal configuration. 

Type of element 

Deflection 

interpolation 

Constraint 

imposed 

No. of     

nodes (dof’s) 

L : Linear isoparametric Eq. (30):  = 0 none 3 (21) 

0 : Unconstrained anisoparametric Eqs. (20) none 6 (24) 

 : Constrained anisoparametric Eq. (30):  =1, c=0 const.nz   3 (21) 

 : Constrained anisoparametric Eq. (30): =1, c= 1 const.nz   3 (21) 

 

3.4 Element stiffness matrix and nodal load vector 

 

Substituting Eq. (21) in Eq. (15) and then in Eq. (10), and after some 

straightforward operations, the element-level equilibrium equations take on the form  

 

 e e e
K u f  (34) 

 

The stiffness matrix may be calculated as follows 
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mS

dS 
e eT e

K B R B  (35) 

 

where e
B  is the strain-displacement matrix of the element which contains the 

derivatives of the shape functions with respect to the in-plane coordinates x1 and x2, 

hence  e e
ω B u ; and R  is the matrix of constitutive properties defined in Eqs. (15)-

(17). The e
B  matrices corresponding to the six-node unconstrained anisoparametric 

and three-node constrained anisoparametric elements are summarized in the Appendix. 

For the case of the transversely distributed loading, q(x1,x2), the element 

consistent load vector, e
f , is defined as  

 

 
mS

qdS 
e T

f N
)

 (36) 

 

where N
)

 is composed of the third row of shape-function matrix N , Eqs. (22) or (32). 

 Finally, to take advantage of the ABAQUS code, the element formulations have 

been implemented via a user-element subroutine. This allows the user of ABAQUS to 

invoke a user-defined plate element and relegate the model assembly, application of 

loading and boundary condition, and problem execution to the ABAQUS code. 

Furthermore, pre- and post-processing is also carried out using ABAQUS/CAE. 

 

4. NUMERICAL RESULTS 

 

Several numerical results are presented for multilayer composite and sandwich 

plates, subjected to different loading and boundary conditions, to demonstrate the 

predictive capabilities of the Refined Zigzag Theory and RZT-based plate finite 

elements. The numerical results address the following issues: (i) predictive capabilities 

of RZT over a wide range of material properties and span-to-thickness ratios, (ii) shear 

locking effects related to the fully-integrated linear element, L, and the lack of shear 

locking in the anisoparametric elements, 0, , and , and (iii) performance 

comparisons between the anisoparametric constrained elements,  and . 
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4.1 Example problems  

 

Simply supported and cantilevered linear elastic square plates ( 20 20 cma a  ) 

of thickness 2h  are analyzed over a range of span-to-thickness ratios, 2a h  . The 

following three problems are investigated (refer to Figures 6):  

Problem (1): a simply supported plate subjected to the transverse sinusoidal pressure 

     0 21 12 sin, sinx a aq x q xx   . 

Problem (2): a cantilevered plate subjected to the uniform transverse pressure 

 1 2 0,q x x q .  

Problem (3): a cantilevered plate subjected to two opposite-direction vertical forces F  

at the free vertices.  

Tables  2 and 3 summarize the mechanical material properties and the laminate stacking 

sequences, respectively. Laminate A is a symmetric three-layer sandwich plate with 

orthotropic face-sheets and a PVC core. Laminate B is a non-symmetric three-layer 

sandwich plate having aluminum face-sheets and an isotropic core with a varying 

Young’s modulus; the core-to-face Young’s modulus ratio, /C Fr E E , ranges from 10
-

5 
to 1. 

The predictive capabilities of RZT and its finite elements (presented in Sections 3.2 and 

3.3) are examined next (refer to Table 1 for the designation of the four finite elements, 

L, 0, , and .)  Whenever available, the results are compared to the exact three-

dimensional elasticity or analytic solutions corresponding to the RZT and FSDT 

theories. The following abbreviations are used to facilitate the discussion of the 

numerical results:  

 “Pagano” refers to the exact elasticity solutions for a simply supported laminated 

plate subjected to a sinusoidal distributed loading (Problem (1), [65]).  
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(a) Problem (1) 

 

(b) Problem (2) 

 

(c) Problem (3) 

Figure 6. Simply supported and cantilevered square plates under transverse loading. 
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Table 2. Material mechanical properties. The Young’s Moduli E and shear moduli G are 

expressed in GPa. 

 

Orthotropic material Isotropic materials 

Lamina 

material 

C Lamina 

material 

P A 

Ar 

Carbon-Epoxy PVC Aluminum 

( )

1

kE  157.9 

( )kE  0.104 73 7.310
-4

  73
 ( )

2

kE  9.584 

( )

3

kE  9.584 

( )

12

k  0.32 

( )k  0.3 0.3 0.3 
( )

13

k  0.32 

( )

23

k  0.49 

( )

12

kG  5.930 

( )

13

kG  5.930 

( )

23

kG  3.227 

 

Table 3. Laminate stacking sequences (the layer sequence is along the positive z direction). 

Laminate 

designation 
Thicknesses  ( )2 2kh h  Materials 

A (0.10/0.80/0.10) (C/P/C) 

B (0.10/0.70/0.20) (A/Ar/A) 

 

 “RZT” refers to the analytic solutions based on RZT.  The solutions for Problem (1) 

are obtained using suitable trigonometric functions. The solutions for Problem (2) 

are based on the Rayleigh-Ritz method in which the kinematic variables are 

approximated using the Gram-Schmidt polynomials (seven functions along the x1 

axis and five along the x2 axis, [36]). 
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(a) 2x2 regular mesh (ne
=2). (b) 4x4 regular mesh (ne

=4). 

  

(c) 2x2 irregular mesh (ne
=2). (d) 4x4 irregular mesh (ne

=4). 

Figure 7. Finite element plate discretizations, regular and irregular. 

 

 “FSDT” refers to the analytic solutions for Problem (1) based on FSDT with 

trigonometric-function descriptions of the kinematic variables and the 

2 2

1 2 5 6k k   shear correction factors. 

 

 The finite element solutions are obtained using regular or irregular mesh patterns 

depicted in Figure 7. The discretizations have the same number of subdivisions along 

the four plate edges, en . Moreover, a node at the plate center, 
1 2( , ) ( / 2, / 2)x x a a , is 

always present. When irregular meshes are used, the notation for the finite elements is 

accompanied by the D superscript, for example D

  (see Figure 19). 
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Figure 8. Normalized center deflection, Paganow ww  , vs. span-to-thickness ratio (Problem (1), 

Laminate A). 

 

Figure 9. Through-the-thickness distribution of normalized in-plane displacement, 

( ) 4 4

1 1 11 0( 4, 2) (10 / )ku u a a D q a 
 (Problem (1), Laminate A, 2 10a h  ).  

 



26 

 Unless indicated otherwise, the regular meshes are used. 

 

 

4.2 Results and discussion 

 

 Figures 8-12 depict a set of results for Problem (1), for the stacking sequences  

A and B, that compare the RZT and FSDT predictive capabilities, where Pagano’s exact 

elasticity solutions are used as the reference solutions. In Figures 8 and 12, deflection 

results are presented, whereas in Figures 9-11, through-the-thickness distributions of the 

inplane displacement, inplane-normal stress and transverse-shear stress are shown, 

respectively. The results in Figure 8 demonstrate that, for thick sandwich-like laminates, 

FSDT underestimates the maximum deflection significantly, whereas the RZT 

predictions are excellent for the entire range of span-to-thickness ratios examined. The 

results in Figure 9 demonstrate the superior modeling capability of RZT which predicts 

accurately the zigzag through-the-thickness distribution of the inplane displacement, 

whereas FSDT is unable to describe this behavior.  

 
Figure 10. Through-the-thickness distribution of normalized in-plane normal stress, 

( )

1 1 0( 4, 2) (1/ )k

z z a a q     (Problem (1), Laminate A, 2 10a h  ). 
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Figure 11. Through-the-thickness distribution of normalized transverse shear stress, 

( )

1 1 0( 4, 2) (1/ )k

z z a a q     (Problem (1), Laminate A, 2 10a h  ). 

 

Consequently, as evidenced from Figure 10, application of RZT results in an accurate 

description of the inplane normal stress distribution, whereas the FSDT prediction 

underestimates the maximum stress by approximately 50%. It is shown in Figure 11 that 

both RZT and FSDT produce piecewise constant through-the-thickness distributions of 

the transverse shear stress.  For this stress component, RZT gives rise to an acceptable 

approximation of the average stress in each layer, whereas FSDT overestimates the 

face-sheet values and underestimates the stress in the core region. Additional 

conclusions can be made from Figure 12, where the normalized deflection of a 

sandwich plate with a varying core-to-face Young’s modulus ratio is shown: while RZT 

is accurate over the entire range of the examined transverse anisotropy, FSDT 

underestimates the maximum deflection significantly when the core layer is relatively 

compliant.  
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Figure 12. Normalized center deflection, Paganow ww  , vs. core-to-face Young’s modulus ratio 

(Problem (1), Laminate B, 2 5a h  ). 

 

 

Figure 13. Normalized center deflection, RZTw w w , vs. span-to-thickness ratio (Problem (1), 

Laminate A, 16en  ).  
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To ascertain if the RZT-based finite elements suffer from shear locking, the deflection 

predictions for Problem (1) (laminate A) are examined over a range of 2a h  ratio, where 

the analysis is carried out using the 16en   regular mesh. As shown in Figure 13, the 

fully-integrated linear element, L, exhibits severe shear locking - the deflection 

decreases significantly as the laminate becomes progressively thinner. On the other 

hand, the elements based on the anisoparametric interpolations (constrained or 

unconstrained) do not suffer from this shortcoming and are accurate for both thick and 

thin plates. 

The results in Figures 14-18 correspond to Problem (2) in which a thick laminate 

(a/2h=5) with the stacking sequence A is considered. Figures 14-16 depict convergence 

plots for the deflection, inplane normal and transverse-shear stresses, where only the 

regular meshes ranging from 2en    to 64en   are used (see Figures 7(a) and 7(b)).  As 

expected, the deflection (Figure 14) converges faster than the stresses (Figures 15 and 

16). 

 

Figure 14. Deflection percent error,       100 , 2 , 2 , 2RZT RZT

w we a a w a a w a a  , vs. 

number of elements along plate edge (Problem (2), Laminate A, 2 5a h  ). 
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Figure 15. In-plane normal stress percent error, 

      (3) (3) (3)

11 11 11100 4, 2, 4, 2, 4, 2,RZT RZTa a h a a h a ae h     , vs. number of elements 

along plate edge (Problem (2), Laminate A, 2 5a h  ).  

 

 These results also reveal that the 0  unconstrained element is the most accurate of all 

elements examined. The  constrained element ( .nz const  ) is slightly less accurate, 

whereas the  ( .nz const  ) constrained element exhibits somewhat inferior accuracy.  

In Figures 17 and 18, through-the-thickness distributions of the inplane normal and 

transverse-shear stresses are depicted, where the 0  element results for 8 and 16en   

are compared with the corresponding analytic solutions of RZT.  Herein, the finite 

element stresses were evaluated at a node located at 
1 2( , ) ( / 4, / 2)x x a a , by averaging 

the four stress values computed at the centroid of each of the four elements that share 

that node. It is seen from the figures that the 0  predictions are in excellent agreement 

with the RZT analytic solutions. Also note that the transverse shear stresses, computed 

by RZT using Hooke’s law, are constant within each layer. These stresses should be 

regarded as some average representations of their true distributions across the individual 

layers.  
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Figure 16. Transverse shear stress percent error, 

      (3) (3) (3)

1 1 1100 4, 2 4, 2 4, 2RZT RZT

z z za a a a a ae     , vs. number of elements along 

plate edge (Problem (2), Laminate A, 2 5a h  ). 

 

Figure 17. Through-the-thickness distribution of normalized in-plane normal stress, 

( ) 2

11 11 0( 4, 2) (1/ )k a a q   
, (Problem (2), Laminate A, 2 5a h  ). 
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Moreover, these average values often provide reasonable approximations for these 

stresses corresponding to the midplane position through a layer thickness. Therefore, 

reliable values of the transverse shear stresses at z h   cannot be inferred when 

Hooke’s law is used to compute these stresses, i.e., the stresses will not match exactly 

the prescribed transverse shear tractions along these boundaries. On the other hand, 

integration of the equilibrium equations of three-dimensional elasticity theory, 

involving derivatives of the inplane stresses, generally yields highly accurate results for 

the transverse shear stresses across the laminate thickness, including those at the 

bounding surfaces z h  . This is because the through-the-thickness distributions of the 

inplane stresses obtained with RZT are highly accurate (e.g., refer to [36, 37]).   

In Figure 19, convergence plots for the deflection are depicted for all element types, 

including the results for the irregular (distorted) meshes ( D

  and D

 , Figures 7(c) and 

7(d)), where the results correspond to Problem (1) using a thick laminate (a/2h=5) with 

the stacking  

 

Figure 18. Through-the-thickness distribution of normalized transverse shear stress, 

( )

1 1 0( 4, 2) (1/ )k

z z a a q     (Problem (2), Laminate A, 2 5a h  ). 
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Figure 19. Center deflection percent error, 
 100 RZT RZT

w w w we  
, vs. number of elements 

along plate edge (Problem (1), Laminate A, 2 5a h  ). 
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Figure 20. Normalized center deflection, 0w w w


 , vs. core-to-face Young’s modulus ratio 

(Problem (1), Laminate B, 2 5a h  , 16en  ). 

 

sequence A. It is noted that even the distorted meshes produce highly accurate results 

using these elements, with the   element exhibiting superior performance over the   

element. 

 To assess the effect of transverse heterogeneity on the performance of the   and 

 constrained elements, problems (1), (2), and (3) for thick plates ( 2 5a h  ) with the 

stacking sequence B are solved using a relatively fine regular mesh of 16en  . In 

Figures 20-22, the center deflection is plotted versus the /C Fr E E  ratio, where the 

deflection is normalized with respect to the corresponding 0 element predictions. Note 

that the material ratio /C Fr E E  signifies a range of laminates, from highly 

heterogeneous (small r) to nearly homogeneous (r close to 1). As shown in these 

figures, the  element predictions are superior for the highly heterogeneous laminates. 

Conversely, the quasi-homogeneous laminates are modeled somewhat more accurately 

using the   element. Overall, however, the  element produces superior performance 

over the range of the r ratio examined. 
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Figure 21. Normalized deflection,    0, 2 , 2w a a w a aw


 , vs. core-to-face Young’s 

modulus ratio (Problem (2), Laminate B, 2 5a h  , 16en  ). 

 

 

Figure 22. Normalized deflection,    0, ,w a a w aw a


 , vs. core-to-face Young’s modulus 

ratio (Problem (3), Laminate B, 2 5a h  , 16en  ). 

 

5. CONCLUSIONS 

 

 The Refined Zigzag Theory (RZT) for homogeneous, multilayer composite and 

sandwich plates has been adopted to develop a set of computationally efficient 

triangular plate elements that use six- and three-node configurations. To guarantee 

proper element behavior when thin plates are modeled, anisoparametric C
0
-continuous 

shape functions have been adopted to interpolate the element kinematic fields. Full-

quadrature integration has been used on all stiffness and load-vector terms to ensure 

variational consistency and correct stiffness-matrix rank. Starting from the 

unconstrained anisoparametric interpolations, which give rise to seven kinematic 

degrees-of-freedom associated with the corner nodes and deflection degrees-of-freedom 

at the mid-edge nodes, and by imposing continuous constraint conditions on the shear 
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strain measures along element edges, two distinct three-node constrained 

anisoparametric elements have been derived.  

The elements have been implemented in the ABAQUS commercial finite element 

code via a user-element subroutine. The three-node elements, based on the constrained 

deflection interpolations, have shown to provide the best compromise between 

computational efficiency and accuracy. The numerical studies for simply supported and 

cantilevered plates undergoing elasto-static deformations have demonstrated that the 

new RZT-based anisoparametric elements have excellent convergence characteristics 

over a wide range of the span-to-thickness ratio. Furthermore, they provide superior 

through-the-thickness predictions when modeling laminated composite plates, including 

the highly heterogeneous sandwich laminations. This novel element technology offers 

substantial improvements over the current state-of-the-art plate modeling which is either 

based on FSDT or higher-order plate and continuum solid elements. 

 

APPENDIX 

 

The strain-displacement e
B  matrix for the six-node, twenty-four-dof 

unconstrained anisoparametric element, 0, is given by 
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The e
B  matrix which corresponds to the three-node, twenty-one-dof constrained 

anisoparametric elements,  and ,  is given by 
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where 1,2,3i  , 12 23 311, ,2, ,3,k m m m , and where 0 is a null row vector. 
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