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Abstract  

 

One of the key purposes of bone tissue engineering is the development of new biomaterials that can 

stimulate the body’s own regenerative mechanism for patient’s anatomical and functional recovery. 

Bioactive glasses, due to their versatile properties, are excellent candidates to fabricate porous 3-D 

architectures for bone replacement. In this work, morphological and structural investigations are 

carried out on Bioglass
®
- and CEL2-derived scaffolds produced by sponge replication (CEL2 is an 

experimental glass developed at Politecnico di Torino). Synchrotron radiation X-ray 

microtomography is used to study the samples 3-D architecture, pores size, shape, distribution and 

interconnectivity, as well as the growth kinetics on scaffolds struts of a newly formed apatitic phase 

during in vitro treatment in simulated body fluid, in order to describe from a quantitative viewpoint 

the bioactive potential of the analyzed biomaterials. An accurate comparison between architectural 

features and bioactive behaviour of Bioglass
®

- and CEL2-derived scaffolds is presented and 

discussed.  

 

Keywords: X-ray microtomography; Glass-ceramic scaffold; Sponge replication; In vitro 

bioactivity; Bone tissue engineering. 
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1. Introduction  

 

Tissue engineering has emerged as a promising approach for the repair and regeneration of tissues 

and organs that are lost, damaged or in general functionally compromised as a results of trauma, 

injury, disease or aging [1,2].  

A key component of tissue engineering approach to bone regeneration is represented by natural or 

man-made scaffold that acts as a template for cells interactions and formation of bone extracellular 

matrix providing structural support to the newly formed tissue [3]. An ideal scaffold should fulfil a 

complex set of characteristics; in summary, it should (i) be three-dimensional (3-D) and highly 

porous with an interconnected pore network for allowing cells migration and growth as well as flow 

transport of nutrients and metabolic waste; (ii) be biocompatible and preferably bioresorbable with 

a controllable resorption rate matching that of bone repair; (iii) exhibit a surface chemistry suitable 

for cells attachment, proliferation and differentiation; (iv) have mechanical properties comparable to 

those of the tissues at the site of implantation; (v) have the potential to be commercially produced 

and safely sterilized without any alteration of its properties [3-5].  

Bioactive glasses and glass-ceramics are attractive scaffold materials for bone repair because of 

their unique abilities to enhance bone formation and to bond to surrounding tissue [6,7]: upon 

implantation, bioactive glasses, on their surface layers, gradually convert to hydroxyapatite (HA) 

[8], the main mineral phase of bone, and exhibit osteoconductive as well as osteoinductive 

properties. Since the discovery of Bioglass
®
 in 1969 [8], bioactive glasses have represented an 

increasingly great potential for tissue engineering applications, mainly related (but not limited to) 

the field of bone regeneration. The study of the effects induced by the ions released from bioactive 

glasses on cells metabolism and genetic response [9], as well as on angiogenesis [10], is one of the 

research topics attracting utmost interest of researchers.  

The increasing attention of the scientific community towards the design and processing of bioactive 

glass-based scaffolds for tissue regeneration and in-growth is demonstrated by the publication, in 
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the last three years, of four comprehensive review articles on this topic [11-14]. Several methods 

have been used to produce inorganic 3-D glass-based scaffolds, including polymer foam replication 

[15-17], organic pore former burning-out [18,19], selective laser sintering [20] and sol-gel foaming 

[21]. In particular the polymer foam replication method, first proposed in the 1960s to produce 

macroporous ceramics of industrial interest [22], has been more recently and very successfully 

adopted to create porous glass-derived scaffolds closely mimicking the 3-D architecture of dry 

human trabecular bone [12,15-17].  

X-ray computed microtomography (micro-CT) is a powerful tool for scaffold characterisation. 

Unlike many other techniques for pores shape, size and distribution assessment, such as scanning 

electron microscopy (SEM) and mercury intrusion porosimetry, micro-CT can non-destructively 

obtain a 3-D image of a scaffold [23-25]. When combined with 3-D image analysis techniques, 

micro-CT can therefore provide not only qualitative but also quantitative information on the 

scaffold structure [26,27]; tissue in-growth can be also imaged, monitored and related to pores 

morphology after scaffold implantation in vivo [28]. 

The ability of micro-CT to image 3-D structures in a non-destructive way has made its use and 

application extremely popular across several disciplines including physics, materials science, 

medicine, mineral processing and powder technology. In addition, the availability of synchrotron 

radiation X-ray sources has further stimulated the application of micro-CT due to its numerous 

advantages with respect to conventional X-ray sources, including higher beam intensity, higher 

spatial coherence and monochromaticity. This work exploits mainly the monochromaticity property 

of synchrotron radiation because it reduces significantly the beam hardening effects, thus allowing 

easing the segmentation step of the whole image analysis process. 

In the present study, synchrotron radiation X-ray micro-CT was used to analyze the 3-D porous 

architecture and microstructure of Bioglass
®

- and CEL2-derived scaffolds before and after in vitro 

tests; Bioglass
®

 is the commercial name of Hench’s 45S5 glass, whereas CEL2 is an experimental 

silica-based bioactive glass originally developed by the authors at Politecnico di Torino [29,30]. 
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CEL2 composition was tailored with the goal of avoiding large pH changes after contact with 

biological fluids by giving the glass a lower monovalent oxide content (below 20 mol.%) and 

slightly higher P2O5 content (6 mol.%) compared to commercial 45S5 Bioglass
®

 [30]. Although 

micro-CT studies on bioactive porous glasses have been reported in the last years in the literature 

[31-34], to the best of the authors’ knowledge no micro-CT investigation on Bioglass
®
-derived 

scaffolds obtained by sponge replication has been documented up to now. In this research work 

micro-CT was used to analyze in detail the scaffold original 3-D structure in terms of pores size, 

struts thickness and degree of pore interconnectivity, as well as the 3-D distribution of the newly 

formed apatitic phase on scaffold walls and its evolution as a function of the soaking time in 

simulated body fluid (SBF). Furthermore, a comparison between architectural features and 

bioactive behaviour of Bioglass
®

- and CEL2-derived scaffolds is presented and discussed, in order 

to confirm and extend the promising results of previous studies [17,29,30,35-39] about the 

suitability of CEL2 as effective biomaterial for scaffolding.  

 

2. Materials and methods 

 

2.1. Scaffolds preparation   

 

Two melt-derived glasses of different composition were used as starting materials for producing 3-

D scaffolds by sponge replication method.  

The molar compositions of glasses are reported in Table 1 and correspond to Hench’s 45S5 

bioactive glass (designated in this work as BG), well known in the biomedical field since the early 

1970s and currently sold worldwide under the commercial name of Bioglass
®
 [8], and CEL2, an 

experimental silicate glass that has been originally developed and studied by Vitale-Brovarone and 

co-workers at Politecnico di Torino since the mid 2000s [17,29,30]. The glasses were prepared by 

melting the required quantities of raw products (high-purity reagents purchased from Sigma-



 6 

Aldrich) in a platinum crucible in air (melting conditions are reported in Table 1). The melt was 

then quenched into cold water to obtain a “frit” that was ground by using a 6-ball zirconia mill, and 

the glass powders were eventually sieved through stainless steel sieves to obtain particles with size 

below 32 μm to be used for scaffolds fabrication. 

Sponge replication was chosen for making scaffolds due to its excellent suitability to obtain porous 

bioceramics with trabecular architecture closely mimicking that of cancellous bone [12]. The 

processing schedule adopted in this work was extensively described elsewhere [17]. Briefly, cubic 

blocks (15.0 × 15.0 × 15.0 mm
3
) of commercial polyurethane (PU) sponge were coated with glass 

powder by impregnating them in a water-based glass slurry (weight composition: 30% glass, 64% 

distilled water, 6% poly(vinyl alcohol) (PVA)); after PVA dissolution under continuous magnetic 

stirring at 80 °C, the glass powder was added to the solution. The water evaporated during PVA 

dissolution was re-added to the slurry and, after further stirring for 0.5 h at room temperature to 

ensure homogeneity of the slurry, the sponge blocks were immersed for 60 s in the slurry. The 

slurry infiltrated the porous network of the polymeric templates, which were extracted from the 

slurry and eventually compressed (20 kPa for 1 s) up to 60% in thickness along the three spatial 

directions in order to homogeneously remove the exceeding slurry. This infiltration/compression 

cycle was repeated for three times; after that, a final cycle of impregnation alone without 

compression was performed. The samples were dried (first at room temperature for 3 h and then in 

an oven at 70 °C for 3 h) and afterwards thermally treated in order to remove the polymeric 

template and to sinter the inorganic one; specifically, BG- and CEL2-derived scaffolds were 

obtained by sintering for 3 h at 1180 and 1000 °C, respectively (heating rate from room temperature 

to the sintering one: 5 °C min
-1

 in both cases).  

 

2.2. Scaffolds characterization 
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The scaffolds, ground in powders by means of a 1-ball milling machine, underwent wide-angle X-

ray diffraction (WA-XRD; 2θ in the 10-70° range) to assess the presence of crystalline phases 

nucleated during the thermal treatment of sintering. The analysis was performed by using a X’Pert 

diffractometer (Philips) operating at 40 kV and 30 mA with Bragg-Brentano camera geometry, Cu 

K incident radiation, incident wavelength λ = 1.5405 Å, step size Δ(2θ) = 0.02° and fixed counting 

time of 1 s per step. Crystalline phases were identified by using X’Pert HighScore program 

equipped with PCPDFWIN database. 

Scaffolds in vitro bioactivity was assessed by soaking 10 × 10 × 10 mm
3
 samples in acellular 

simulated body fluid (SBF) prepared according to the recipe proposed by Kokubo and Takadama 

[40]. The scaffolds were immersed in 30 ml of SBF contained in clean polyethylene bottles, that 

were then placed in an incubator at a controlled temperature of 37 °C (human body temperature); 

experimental time points were fixed at 14 days and 28 days of treatment in SBF. As commonly 

done in this kind of experiments [15,17], SBF was replaced every 48 h to simulate fluid circulation 

in the human body as the cations concentration in the solution progressively decreased during the 

course of the experiment as a result of changes in the samples surface chemistry. At the end of the 

experiments, the samples of each scaffolds batch were extracted from SBF, gently rinsed in distilled 

water and left to dry at room temperature.   

Before and after in vitro tests in SBF, the scaffolds were silver-coated and their morphology and 

porous architecture was investigated by scanning electron microscopy (SEM, Philips 525 M; 

accelerating voltage 15 kV). Energy dispersive spectroscopy (EDS; Philips Edax 9100) was used to 

investigate the compositional modification occurred on scaffolds surface after soaking in SBF. 

 

2.3. Microstructural analysis by X-ray micro-CT  

 

BG- and CEL2-derived scaffolds underwent advanced microstructural characterization before and 

after in vitro tests to investigate any morphological and architectural changes due to soaking in 
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SBF. Measurements were carried out on the samples for each time point, i.e. scaffolds as-such, 

scaffolds soaked in SBF for 14 days (2 weeks) and scaffolds treated in SBF for 28 days (4 weeks).     

 

2.3.1. Experimental set-up 

Micro-CT experiments were performed at the SYRMEP beamline of the ELETTRA Synchrotron 

Radiation Facility (Trieste, Italy). The experimental conditions were selected, according to the 

properties of the samples. For this experiment, three cubic samples with a side of 5 mm were 

prepared with the two selected glasses. Due to the sample composition, the energy of the 

monochromatic beam was set to 27 keV with a sample-to-detector distance of 5 cm; the resulting 

voxel size was 9 × 9 × 9 μm
3
 (i.e., the best resolution obtainable with the adopted setup). The 

reconstruction of the tomographic slices was carried out using a custom-developed software [41] 

applying the standard filtered back-projection algorithm [42]. The exposure time was set to 14 s per 

projection. A total of 900 radiographic images were recorded for each sample, yielding a total scan 

duration about 215 min. 

 

2.3.2. Image segmentation and extraction of quantitative parameters  

The volume data obtained in absorption configuration was analyzed by using the software VG 

Studio MAX 1.2 and the Pore3D software [43]. Quantitative parameters were calculated directly 

from 3-D images to characterize the scaffold before and after soaking in SBF. This quantification 

first required segmenting the different phases to separate them from the background; a 3-D median 

smoothing filter (kernel width = 3) was applied in order to facilitate segmentation. In the samples 

before immersion in SBF, such segmentation was easily performed by simple thresholding because 

the gray level histogram was clearly bimodal with a first peak corresponding to background (air) 

and a second peak corresponding to scaffold; after in vitro tests, however, an intermediated peak 

related to a newly formed phase appeared (as discussed in the section 3.2., this new phase formed 

on scaffolds struts will be identified as apatite). The thresholds of segmentation of the gray levels 
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distribution (0-255 range) were selected according to a method described elsewhere by the authors 

[35]; representative threshold values were manually set to 85 (apatite) and 128 (scaffold) for the 

BG-derived sample, and to 94 (apatite) and 149 (scaffold) for the CEL2-derived sample. 

Representative volumes of interest (VOIs) of 2.7 × 2.7 × 2.7 mm
3
 containing the scaffolds were 

chosen far away from sample edges. The obtained VOIs were then analyzed, based on the structural 

indices usually measured for bone samples [44]. The sample volume (SV) is computed by 

multiplying the number of voxels corresponding to the scaffold material by the voxel size. The total 

volume (TV) is the VOI, i.e. the number of voxels (normalized taking into account the voxel size) 

of the sub-volume considered for the analysis. Sample porosity PoreV (vol.%) can therefore be 

calculated as (1 – SV/TV). The ratio between sample surface (SS) and sample volume (SV), namely 

SS/SV, is approximated using the Cauchy-Crofton theorem from differential geometry [45].  

The apatite volume was also directly measured from the 3-D image stacks. The apatite mean 

thickness was then calculated using a plate-model assumption in the 3-D analysis software 

VGStudio Max (v1.2, Volume Graphics, Heidelberg, Germany). 

The whole struts thickness distribution was measured using a module of VG Studio MAX 1.2, 

namely the “Wall thickness analysis” module [46]; the same method was applied to the inverted 

histogram of the grey levels to quantify the pore thickness distribution. 

Anisotropic measurements of the scaffolds, i.e. the presence of preferential orientations, were 

performed using the mean intercept length (MIL) method. The basic principle of the MIL method is 

to count the number of intersections between a linear grid and the pore/material interface as a 

function of the grid orientation ω [47]. The mean intercept length (an intercept is the line between 

two intersections) is calculated as the ratio between the total length L of the line grid and the 

number of intersections. MIL measurements in 3-D may be fitted to an ellipsoid which can be 

expressed as the quadratic form of a second rank tensor M [48]. A fabric tensor H is the defined as 

the inverse square root of M [49,50]. Since the eigenvectors (u1, u2, u3) of the fabric tensor H give 

information about the direction of the axes of the ellipsoid, and the eigenvalues (t1, t2, t3) express the 
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radii of the ellipsoid, the latter can be used to define the degree of anisotropy, which denotes the 

ratio between the maximal and minimal radii of the MIL. In this article, the eigenvalues are 

summarized using the isotropy index I = t3/t1 and the elongation index E = 1 – t2/t1 [51]. The 

isotropy index I measures the similarity of a fabric to a uniform distribution and varies between 0 

(all observation confined to a single plane or axis) and 1 (perfect isotropy). The elongation index 

measures the preferred orientation of a fabric in the [u1,u2] plane and varies between 0 (no preferred 

orientation) and 1 (a perfect preferred orientation with only parallel observations). 

Provided that the scaffold is a connected structure with no closed void cavities, a simple indicator of 

the connectedness of the 3-D complex pore space is the Euler number χV. For an open network 

structure, the Euler number may be calculated from the number of nodes n and the number of 

branches b after skeletonization of the pore space as χV = n – b [47]. It provides a measure of 

connectivity indicating the number of redundant connections: the breaking of a single connection 

will leave the network less connected increasing the value of χV, while the addition of a redundant 

connection will decrease it [52]. In order to normalize the Euler number with respect to the size of 

the considered volume V, the parameter “connectivity density” β computed as β = (1 – χV)/V is 

commonly adopted [52]. The connectivity density does not carry information about positions or size 

of connections but it is a simple global measure of connectivity, which gives higher values for 

better-connected structures, and lower values for poorly connected structures. In the present work, 

interconnectivity was measured using an algorithm implemented in Pore3D, namely gradient vector 

flow (GVF) [53], which performs the connectivity analysis in 3-D [54,55]. 

 

3. Results and discussion 

 

3.1. Analysis of the scaffolds before treatment in SBF 

 

3.1.1. Scaffolds materials 
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WA-XRD performed on as-poured BG and CEL2 powders (Figs. 1a,c) revealed that both starting 

materials are amorphous since only a broad halo in the 25-38° 2θ-range is visible in the diffraction 

patterns, as shown by similar analyses reported elsewhere [17,56]. Sintered scaffolds ground in 

powders also underwent WA-XRD; the resulting diffraction spectra are reported in Figs. 1b,d. As 

demonstrated from the well-distinguishable peaks visible in the plots, BG- and CEL2-derived 

scaffolds are both constituted by glass-ceramic materials, hereafter designed as GC-BG and GC-

CEL2, respectively.  

Na2CaSi2O6 and Na2Ca4(PO4)2SiO4 were identified, respectively, as the major and the secondary 

crystalline phase of GC-BG (Fig 1b), in good accordance with previous observations by the authors 

[56] as well as with the results by other research groups [57,58]. It is interesting to mention that 

Na2Ca2Si3O9 is often suggested in the literature for an alternative identification of the main 

crystalline phase in sintered Bioglass
®
 [15,59,60]; in the attempt at solving such a controversy, 

coexistence of Na2CaSi2O6 and Na2Ca2Si3O9 has been recently proposed [61] also in the light of the 

marked overlapping of the XRD peaks corresponding to these two phases. 

Fig. 1d reveals the presence of two crystalline phases, Na4Ca4(Si6O18) and Ca2Mg(Si2O7), in GC-

CEL2 scaffolds, as assessed elsewhere by the authors [17]. 

 

3.1.2. Architecture and morphology 

Fig. 2 shows the typical surface and cross-sectional appearance of the analyzed scaffolds. As 

evident from Figs. 2a,b, the sintered scaffolds closely mimic the peculiar pores/struts architecture of 

the starting open-cell polymeric template, that is very similar to the trabecular porous organization 

of cancellous bone, characterized by relevant pores interconnectivity. Figs. 2c,d shows that the size 

of the large macropores of scaffolds is well above 100 μm, which is strongly recommended for 

bone tissue engineering scaffolds in order to allow bone cells migration and colonization into the 

porous implant as well as its vascularisation [3]. 
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A 3-D volume rendering and 2-D axial slices from the 3-D micro-CT images of GC-BG and GC-

CEL2 scaffolds were illustrated in Fig. 3. The images allow appreciating the bone-like structure of 

both types of scaffolds. The pores are interconnected and characterized by a quite irregular shape, 

which makes them more similar to those of cancellous bone in comparison with, for instance, the 

perfectly spherical pores of bioactive glass scaffolds obtained by sol-gel foaming [31,32]. In both 

type of scaffolds, however, the struts are generally thicker than those typical of natural spongy 

bone, in which the pores are so open that it is difficult to distinguish what can be considered a pore 

from what is actually a pore window [25].  

The total porosity and the SS/SV ratio are summarized in Table 2. It is interesting to notice that GC-

BG scaffolds were found to be more porous (~63 vol.%) than the GC-CEL2 ones (~40 vol.%) 

although they were obtained from an identical polymeric sponge. This finding can be explained by 

taking into account the different sinterability of the two glasses, which ensues in different 

densification of the struts as well as mechanical strength [56]. 

Especially for CEL2-derived scaffolds, the total pores content assessed by micro-CT analysis is 

lower than that evaluated by weight-volume measurements performed elsewhere [17]; this 

difference can be explained considering that the nanopores as well as the smallest micrometric 

pores are not detected by micro-CT due to the resolution limit of the instrument. This 

underestimation of porosity was already observed by the authors in the case of other batches of 

CEL2-derived foam-like scaffolds described elsewhere [29,35].   

Being the morphology of GC-BG and GC-CEL2 scaffolds very heterogeneous, as shown in Fig. 3, 

mean morphometric parameters do not correctly represent the strut thickness and the pore size 

distribution of the whole samples: therefore, the 3-D images were also quantified by using 

computational techniques. Fig. 4 shows 3-D maps of the wall thickness distribution (Figs. 4a,b) and 

of the pore size distribution (Figs. 4c,d) of the analysed GC-BG and GC-CEL2 scaffolds, where 

different strut thicknesses/pore size are plotted with different colours. The distributions of wall 

thickness and pore size of the 3-D microstructures were also quantitatively assessed: the histograms 
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of dimensional distribution computed for these two parameters are plotted in Figs. 4e,f. Fig. 4f 

quantitatively confirms that most of pores of both scaffolds is in the 100-700 μm range, as 

preliminarily shown in Fig. 2 and Fig. 3, which is a fundamental feature in view of in vivo 

osteointegration of the implant [3]. 

It is interesting to make a comparison between the architectural features of the GC-CEL2 scaffolds 

analyzed in the present work and those of the CEL2-derived scaffolds produced by sponge 

replication method with different processing parameters [29] and investigated by micro-CT in a 

previous work [35]. The former GC-CEL2 scaffolds exhibited higher pores content (54 vol.%), [35] 

in comparison to the GC-CEL2 scaffolds described in the present research (Table 2). These 

different characteristics can be explained considering that the method for scaffolding was purposely 

optimized and standardised, as described in detail elsewhere [17], in order to produce high-strength 

GC-CEL2 scaffolds (compressive strength above 5 MPa [17] versus ~1 MPa [29,35]) with thicker 

struts and lower pores content in comparison with those fabricated previously. From a mechanical 

viewpoint, GC-CEL2 scaffolds with compressive strength of 5 MPa are very promising candidates  

for bone grafting, also taking in account that the compressive strength of a scaffold can significantly 

increase in vivo due to tissue in-growth. The cells adherent on scaffold, the newly formed tissue and 

the scaffold itself create a biocomposite construct in situ, thereby increasing the time-dependent 

scaffold strength. 

Porosity and pore size of biomaterial scaffolds play indeed a critical role in bone formation in vitro 

and in vivo. In general, large pores typically within 100-700 µm favour direct osteogenesis, since 

they allow vascularisation and high oxygenation, while smaller pores are useful for osteochondral 

ossification [3]; however, bone in-growth also depends on the type of used biomaterial as well as on 

the geometry of the pores. The proposed scaffolds have shown to present a pore diameter 

distribution in the range of the optimal pore sizes (Fig. 4f) and the pore morphologies (Figs. 3b,d) 

resemble those of cancellous bone, where trabeculae are irregular in shape and size. 
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3.2. Analysis of the scaffolds after treatment in SBF 

 

GC-BG and GC-CEL2 scaffolds were soaked in SBF for different time intervals (14 days and 28 

days) to investigate their bioactive potential by monitoring the modifications that occurred on their 

struts during immersion. After the experiments, some samples were embedded in epoxy resin 

(Struers Epofix), cut by a diamond wheel (Struers Accutom 5), polished by using #600 to #4000 

SiC grit papers and finally investigated by SEM; two examples of resulting cross-sections are 

reported in Figs. 5a,b. The back-scattering mode adopted for SEM analysis emphasizes the presence 

of a newly formed phase grown on scaffolds walls, as indicated in the picture. Compositional 

analysis by EDS revealed that this layer is rich in calcium and phosphorus, with a Ca/P molar ratio 

that increased from 1.5-1.6 after 2 weeks of treatment in SBF to 1.62-1.67 after 4 weeks. These 

findings are consistent with the reaction stages proposed by Hench and co-workers for describing in 

vitro bioactivity of biomedical SiO2-based glasses [8], involving the formation of a layer of 

amorphous calcium phosphate, that progressively evolves into Ca-deficient HA and finally 

crystallizes in stoichiometric HA (Ca/P = 1.67 mol.). From a microstructural viewpoint, the HA 

formed on GC-BG and GC-CEL2 scaffolds is constituted by globular agglomerates imparting a 

“cauliflower” appearance to the layer (Fig. 5c), which is typical of the apatite grown on bioactive 

glasses. 

The presence of an apatitic layer on scaffold struts plays a key role in promoting the graft 

colonization by bone cells, as it was widely demonstrated that osteoblasts attach preferably on 

crystals of apatite due to its chemical and crystallographic similarity to bone mineral [6-8,11-

14,17,29,30]. By using an evocative image, the apatite layer can be viewed as a “biomimetic skin” 

making scaffold surface, struts and pores walls a highly biocompatible substrate apt for cells 

adhesion. The presence of this “apatite coating” on the scaffold is also highly related to the bond-

bonding ability of biomaterials in vivo [8]. 
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At a preliminary look, the apatite layer formed on GC-CEL2 scaffolds (Fig. 5b) seems to be thicker 

than that grown on the GC-BG ones (Fig. 5a), which could suggest a higher bioactivity of GC-

CEL2 samples. The average thickness of the apatite layer was quantitatively derived by micro-CT 

image stacks and reported as a function of the immersion time in Fig. 6. As can be seen, in the GC-

CEL2 scaffolds with increasing immersion time there was a significant increment in the apatite 

layer thickness with respect to GC-BG samples. In particular, after 4 weeks the average apatite 

thickness increased to a value of almost 29 µm for GC-CEL2 scaffolds, whereas the apatite layer 

thickness of GC-BG samples increased to a value of almost 16 µm after 2 weeks and then remained 

almost constant without further increment. This effect can be at least partially attributed to the 

features of the crystalline phases nucleated in sintered Bioglass
®
, as their influence on bioactivity 

has been documented in the literature. In the early 1990s Li et al. [62] reported that significant 

crystallization of Bioglass
®
 turns the bioactive glass into a inert-like material. More recently, this 

crucial issue was investigated in detail by LaTorre and co-workers [63,64] who showed that the 

major crystalline phase of sintered Bioglass
®
 decreases the kinetics of formation of apatite on the 

Bioglass
®
-derived glass-ceramic, but does not totally suppress the growth of this bioactive layer.  

The relationship between glass composition and bioactive behaviour is generally a complex issue, 

as many factors have to be taken in account. For instance, it was suggested by Watts et al. [65] that 

MgO would act to decrease the bioactivity of biomedical glasses belonging to the SiO2-P2O5-CaO-

MgO-Na2O system in comparison with 45S5 Bioglass
®

. In the case of CEL2, however, also K2O 

was introduced in the glass formulation; therefore, the first stage of bioactivity of bioactive glass, 

characterized by monovalent cations exchange [8], would involve not only H
+
/Na

+ 
but also H

+
/K

+
 

exchange phenomena. K
+
 has a quite large ionic radius (0.133 nm) in comparison with Na

+
 (0.095 

nm); therefore, K
+
 release would have a high disrupting effect on glass network thereby enhancing 

CEL2/GC-CEL2 specific surface area and reactivity. Furthermore, Mg is at least partially confined 

in one of the two crystalline phases of GC-CEL2, i.e. Ca2Mg(Si2O7) [17,56], and therefore only a 

fraction of it is contained in the residual amorphous phase involved in the bioactivity mechanism; 
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this gives also an explanation of the higher bioactivity of GC-CEL2 with respect to the parent glass 

CEL2 observed by Miola et al. [66].   

The mean thickness of the newly formed apatite layer (Fig. 6), assessed by micro-CT on the whole 

samples volume, could be therefore assumed, at least ideally, as a first index to quantify and 

compare the in vitro bioactivity of the scaffolds. The bioactivity of GC-CEL2 scaffolds was then 

found to be significantly higher than that of GC-BG samples, as evident from the difference of 

thickness of the apatite layer formed on the scaffolds struts at the last time point (4 weeks). 

Although the use of micro-CT to obtain quantitative assessments of the bioactivity of biomaterials 

is fascinating, this approach is often unfeasible in the majority of research contexts, as micro-CT 

still remains an expensive and not easily accessible technique, and it also takes a long time to carry 

out a scan as well as to reconstruct and to analyze the images. Considering its great potential, 

micro-CT should be strongly recommended – if accessible – as a useful complementary technique 

to conventional bioactivity testing, especially in the case of porous biomaterials. 

3-D spatial distribution of the new phase into the analysed scaffolds at 2 and 4 weeks after the 

immersion in SBF are illustrated in Fig. 7 and Fig. 8. Micro-CT can also give qualitative 

information on the density of materials; in this case, the newly formed apatitic phase was 

characterized by lower density than that of the scaffold material [56], as HA is not fully dense due 

to its “cauliflower” morphology (Fig. 5c). After 4 weeks of treatment in SBF, the newly formed 

apatite layer is well evident also in the inner regions of the scaffolds (Fig. 7c and Fig. 8c), which 

demonstrates that the biological fluid can flow between the pores of the scaffold.  

Table 2 also shows the measured 3-D morphometric parameters at 2 and 4 weeks of immersion 

time; the pores size distributions and the struts thickness distribution of the scaffolds before and 

after treatment in SBF are compared in Fig. 9 and Fig. 10, respectively. After treatment in SBF, all 

analyzed scaffolds exhibited a pores content ranging from 42 to 49 vol.%; after immersion in SBF 

for 14 days, the total porosity of GC-BG scaffolds highly decreased while the pores content of GC-

CEL2 samples showed an increment (Table 2). Moreover, significant pores enlargement (Fig. 9b) 
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and strut thickening (Fig. 10b) can be noticed in GC-CEL2 scaffolds after immersion; on the 

contrary, the GC-BG samples showed an important and progressive decrement in pore size (Fig. 

9a). Such results suggest that GC-CEL2 scaffolds are more prone to dissolution in SBF (dissolution 

of the thinnest struts occurs, as demonstrated in Fig. 10b, with subsequent “merging” of small pores 

in larger ones, as shown in Fig. 9b) than GC-BG samples, which is related to the different 

bioactivity of the two biomaterials. 

Table 3 reports the results of the anisotropy analysis of the scaffolds, with isotropy index values 

close to 1 (perfect isotropy) and elongation index values close to 0 (no preferred orientation), which 

confirms that both BG- and CEL2-derived scaffolds are highly isotropic with no preferred 

orientations before and after immersion in SBF for 14 and 28 days. A small increase in isotropy can 

also be seen for GC-BG scaffolds when comparing the isotropy index values before and after 

immersion in SBF for 28 days, whereas the isotropy index for GC-CEL2 scaffolds remains almost 

unchanged before and after the treatment in SBF for 14 and 28 days. Also the elongation index for 

both GC-BG and GC-CEL2 scaffolds remains rather unchanged, before and after immersion in SBF 

for 14 and 28 days. 

Table 4 shows the connectivity properties of the two different scaffolds. GC-BG scaffold has a 

higher connectivity density with respect to the GC-CEL2 one before immersion in SBF. After 

soaking for 14 days in SBF, GC-BG scaffold connectivity decreases significantly, probably due to 

the in-growth of the new apatitic phase that fills and “closes” small pores. This hypothesis seems to 

be also supported by the histogram reported in Fig. 9a: the reduction of the amount of pores below 

150 μm in GC-BG scaffolds soaked for 14 days in SBF might be due to pores “clotting” by apatite. 

After 28 days of immersion in SBF the connectivity density increases again, due to the continuous 

and progressive dissolution of scaffold material accompanied to the formation of new small pores in 

the pre-existing scaffold struts (Fig. 9a).  

On the basis of the reported analyses, the pores/struts modification occurring in GC-BG scaffolds 

during immersion in SBF can be therefore resumed as follows. During the early 14 days of soaking 



 18 

in SBF, GC-BG scaffold struts are progressively coated by an apatite layer, which ensues in a 

decrement of total pores content, as shown in Table 2. Afterwards, between 14 and 28 days of 

soaking, scaffold dissolution kinetics become predominant with respect to those of apatite 

formation: formation of networks of new small pores on and in scaffold struts, according to a sort of 

“pitting mechanism”, involves increase of total pores content (Table 2) due to neo-formation of 

very small pores (Fig. 9a) separated by very thin trabeculae.       

As far as GC-CEL2 samples, we can suppose that the kinetics of apatite formation and scaffold 

material dissolution are both relevant during the early 14 days of soaking in SBF. In fact, we assist 

both to increment of total pores content (Table 2), which can be due to GC-CEL2 dissolution in 

SBF, and to increase of struts thickness, due to dissolution of the thinnest trabeculae (progressive 

disappearance of the smallest pores, see Fig. 9b) as well as to apatite formation on scaffold struts. 

GC-CEL2 scaffolds seem to exhibit a higher reactivity in SBF with respect to GC-BG samples, as 

especially demonstrated by the relevant increase of total porosity (PoreV) after 14 days (Table 2) 

due to scaffold material dissolution and already observed elsewhere [35]; relevant tendency to 

dissolution might also be responsible for the increase of connectivity density at 14 days (Table 4). 

By increasing the soaking time in SBF, apatite formation becomes progressively predominant with 

respect to scaffold material dissolution, as confirmed by further decrease of total porosity (Table 2) 

due to continuous apatite formation (see also Fig. 6). A “pore-clotting” effect of the apatite filling 

small pores might be also present, as suggested by the histograms reported in Fig. 9b showing a 

progressive reduction of the amount of the pores below 150 μm over immersion time. This effect 

could also justify the decrease of the connectivity density noticed at 28 days (Table 4): “pore-

clotting” might be effective even on pores with dimension up to 300 μm (Fig. 9b), thereby 

contributing to the increase of mean struts thickness and ensuing in the reduction of the connectivity 

nodes.  

 

4. Conclusions 
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In this work, Bioglass
®
- and CEL2-derived glass-ceramic scaffolds were fabricated through the 

sponge replication method with the same processing schedule followed by an appropriate sintering 

treatment. Micro-CT analysis revealed that the 3-D porous architecture of both types of scaffolds 

closely mimicked that of cancellous bone, with distribution of macropores diameter in the range of 

the optimal pores size (100-800 µm) recommended for bone tissue engineering scaffolds. The high 

interconnectivity of scaffolds open macropores is a valuable property expected to allow bone cells 

migration into the scaffold, bone in-growth and implant vascularisation in vivo. 

Micro-CT investigations showed that a HA layer progressively grew on samples struts during in 

vitro tests in SBF, which put in evidence the high bioactive properties of the prepared scaffolds. 

Bioactivity of CEL2-derived scaffolds was found superior to that of Bioglass
®
-derived ones, as 

evaluated by the different thickness of the HA layer formed on their struts after 4 weeks in SBF 

(~29 µm versus ~16 µm); in addition, the apatite layer formed on Bioglass
®
-based scaffolds showed 

no further increment in thickness when the soaking time in SBF was increased from 2 to 4 weeks.  

CEL2-derived scaffolds, as expected from their higher bioactivity, were also found more prone to 

dissolution is SBF, which ensued in marked pores enlargement during in vitro treatment. 

This work confirms that micro-CT technique can play a fundamental role in the advanced 

characterization of porous biomaterials because it allows, in a non-invasive and non-destructive 

way, a complete, precise and high-resolution analysis in 3-D of scaffold microstructural parameters. 

Specifically, micro-CT proved to be a powerful tool to investigate, from a quantitative viewpoint, 

the bioactive potential of foam-like glass-derived scaffolds, which is a crucial issue in view of their 

possible clinical use in the future. 
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Figure  

 

Fig. 1. XRD patterns of (a) as-poured BG, (b) BG-derived scaffold (sintering conditions: 1180 

°C/3h) after grinding in powder, (c) as-poured CEL2, (d) CEL2-derived scaffold (sintering 

conditions: 1000 °C/3h) after grinding in powder. 
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Fig. 2. Morphology of the samples investigated by SEM: surface of (a) GC-BG and (b) GC-CEL2 

cubic scaffolds (magnification 50× in both cases); cross-section of (c) GC-BG and (d) GC-CEL2 

scaffolds (magnification 80× in both cases). In (c) the pores of GC-BG scaffold, analyzed in back-

scattering mode, are filled by the epoxy resin in which the sample was embedded before cutting.  
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Fig. 3. Micro-CT analyses of the scaffolds as-such (before SBF): 3-D reconstructions of cubic 

subvolumes (VOI: 2.7 × 2.7 × 2.7 mm
3
) of (a) GC-BG and (c) GC-CEL2 scaffolds; 2-D slices of 

the same VOIs of (b) GC-BG and (d) GC-CEL2 scaffolds. 

 

 

 

 

 

Fig. 4. Quantitative evaluation of struts thickness and pores size of the scaffolds before soaking in 

SBF: colour maps of the wall thickness distribution in the GC-BG scaffold (a) and in the GC-CEL2 

scaffold (b); colour maps of the pore thickness distribution in the GC-BG scaffold (c) and in the 

GC-CEL2 scaffold (d); histograms of the wall thickness distribution (e) and of the pore thickness 

distribution (f) in the GC-BG and GC-CEL2 scaffolds, respectively (for sale of clearness, the 

distributions are reported as percentages upon the total struts/pores amount).  
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Fig. 5. SEM analysis after soaking for 28 days in SBF: HA formation on the struts of (a) GC-BG 

and (b) GC-CEL2 scaffold (magnification 400× in both cases); (c) typical “cauliflower” 

morphology of the HA grown on the scaffolds (magnification 7000×). 

 

 

Fig. 6. Evolution of the mean thickness of the newly formed apatite layer as a function of soaking 

time. 
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Fig. 7. Volume rendering of a GC-BG scaffold subvolume before treatment (a) and after treatment 

in SBF for 2 weeks (b) and 4 weeks (c). The images show the scaffold material (gray) and the 

newly formed apatitic phase (red). 

 

 

 

 

Fig. 8. Volume rendering of a GC-CEL2 scaffold subvolume before treatment (a) and after 

treatment in SBF for 2 weeks (b) and 4 weeks (b). The images show the scaffold material (gray) and 

the newly formed apatitic phase (red). 
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Fig. 9. Histograms of the pore size distribution, before and after treatment in SBF, for GC-BG 

scaffolds (a) and GC-CEL2 scaffolds (b) (for sake of clearness, the pores size distributions are 

reported as percentages upon the total pores amount). 
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Fig. 10. Histograms of the struts thickness distribution, before and after treatment in SBF, for GC-

BG scaffolds (a) and GC-CEL2 scaffolds (b) (for sake of clearness, the struts thickness distributions 

are reported as percentages upon the total struts amount). 
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Tables 

 

Table 1. Compositions and synthesis conditions of the starting glasses. 

Glass 

Composition (mol.%) 

Raw products Melting conditions 

SiO2 P2O5 CaO Na2O MgO K2O 

BG 46.1 2.6 26.9 24.4 - - SiO2, Ca3(PO4)2, CaCO3, Na2CO3 

1,500 °C for 1 h 

(heating rate: 10 °C min
-1

) 

CEL2 45.0 3.0 26.0 15.0 7.0 4.0 

SiO2, Ca3(PO4)2, CaCO3, Na2CO3, 

(MgCO3)4·Mg(OH)2·5H2O, K2CO3 

1,400 °C for 1 h 

(heating rate: 10 °C min
-1

) 
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Table 2. 3-D quantitative analysis of the studied scaffolds before and after the treatments in SBF.  

Samples 

Soaking time 

in SBF (days) 

PoreV (vol.%) SS/SV (µm
-1

) 

GC-BG 

scaffold 

- 63.1 0.023 

14 43.1 0.015 

28 47.2 0.020 

GC-CEL2 

scaffold 

- 40.2 0.015 

14 49.3 0.014 

28 42.6 0.011 
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Table 3. 3-D anisotropy analysis of the studied scaffolds before and after the treatments in SBF.  

Samples Soaking time in SBF (days) Isotropy index, I (-) Elongation index, E (-) 

GC-BG scaffold 

- 0.82 0.07 

14 0.89 0.06 

28 0.84 0.09 

GC-CEL2 scaffold 

- 0.86 0.09 

14 0.88 0.07 

28 0.86 0.09 
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Table 4. 3-D connectivity analysis of the studied scaffolds before and after the treatments in SBF.  

Samples Soaking time in SBF (days) Connectivity index,  (mm
-3

) 

GC-BG scaffold 

- 3.97 

14 0.30 

28 0.91 

GC-CEL2 scaffold 

- 0.35 

14 1.31 

28 0.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


