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Abstract

Minimum spanning tree is a classical polynomial problem very well known in operational
research and in theoretical computer science. In this paper, we settle the reoptimization
versions of this problem, which can be formulated as follows: given an instance of the problem
for which we already know some optimal solution, and given some “small” perturbations on
this initial instance, is it possible to compute a new (optimal or at least near-optimal)
solution for the modified instance without ex nihilo computation? We focus on two kinds
of modifications: node-insertions and node-deletions. For the former type of modifications,
where k new nodes are inserted together with their incident edges, we first propose a fast
strategy with complexity O(kn) which provides a max{2, 3 − (2/(k − 1))}-approximation
ratio, in complete metric graphs. We then devise a more elaborated strategy that computes
optimal solutions in any graph with complexity O(kn log n). When k nodes are deleted, we
devise a strategy which in O(n) achieves approximation ratio bounded above by 2⌈|Lmax|/2⌉
in complete metric graphs, where Lmax is the longest deleted path and |Lmax| is the number
of its edges. For any of the approximation strategies, we also provide lower bounds on their
approximation ratios.

1 Introduction

The minimum spanning tree problem (min spanning tree) is a celebrated problem, very useful
to model any kind of networks in transports, communications, energy, logistics, etc. It consists,
given a graph G(V,E) with weights on its edges, of determining a tree of minimum total edge-
weight spanning V . min spanning tree is polynomial. One of the algorithms solving it is
the seminal Kruskal’s algorithm ([10]) which consists of sorting edges in non increasing order
with respect to their weights, and of inserting them in the current solution on the condition that
they do not create cycles with those that have been inserted previously. The complexity of this
algorithm O(m log n).

In this paper, we settle reoptimization versions for min spanning tree. The reoptimization
setting can be generally described as follows: given an instance I of an optimization problem Π
for which we already know an optimal solution S∗, if we slightly modify I into a new instance Ix,
is it possible to compute a new solution Sx for Ix that is either optimal or at least a good
approximation of the optimal solution with complexity better than that needed to solve Π ex
nihilo in Ix? The most common modifications considered in the literature are insertions or
deletions of a few vertices.

Reoptimization issue is already used for studying several optimization problems such as
scheduling problems ([11, 3], or [4] for practical applications), min tsp ([1, 2, 5]), max tsp ([2, 5]),
Steiner tree problem ([8, 6]), as well as for classical polynomial problems where the goal is to
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recompute the optimum solution as fast as possible ([7, 9]). In particular, in [9], min spanning

tree is tackled but in a different setting from the ours. More precisely, reoptimization strategies
are devised there by using not only the solution on the initial instance itself but also the sorted
lists that were used to compute this solution, while our approach consists of using only the op-
timal solution as available information. Using these lists enables the authors of [9] to formulate
an optimal reoptimization strategy that computes the optimal solution in O(

√
n) for any edge’s

insertion, deletion, or modification.
Consider an initial instance I = G(V,E, ~wm) of min spanning tree, i.e., a graph G on a

set V of n vertices, a set E of m edges and a vector ~w of edge-weights. The problems settled in
the sequel are the following:

1. min spanning treek+ where the instance Ix, consists of a graph Gx(Vx, Ex), where Vx =
V ∪ X, with X a vector of k nodes (x1, x2, . . . , xk) and Ex = E ∪ E(X), where E(X) is
the set of edges adjacent to the nodes of X;

2. min spanning treek−, k < n, where the instance Ix, consists of a graph Gx(Vx, Ex),
where Vx = V \ X, with X ⊂ V a vector of k nodes (x1, x2, . . . , xk) and Ex = E \ E(X),
where E(X) is the set of edges adjacent to the nodes of X.

2 Node insertions

In this section, we study two reoptimization strategies for min spanning treek+, namely
REOPT1+ and REOPT2+.

2.1 Algorithm REOPT1+

We first propose an easy algorithm (called REOPT1+) that extends T ∗ into a tree spanning the
whole Vx. It works as follows:

1. for each xi in X, let e∗i = (xi, v
∗
i ) be the lightest edge linking xi to a node of V ; set

E∗ = {e∗1, . . . , e∗k}, V ∗ = {v∗1 , . . . , v∗k} (note that |E∗| = k and |V ∗| 6 k);

2. build an artificial node v′ as the contraction of all nodes in V ∗, so that, ∀i, e′i = (v′, xi),
and w(e′i) = w(e∗i ); set E′ = {e′1, . . . , e′k};

3. run Kruskal’s algorithm on the graph H = (X ∪{v′}, (X ×X)∪E′); let Ψ′ be the resulting
tree;

4. replace each edge e′i in Ψ′ with the corresponding edge e∗i and denote by Ψ∗ the resulting
set;

5. output Treopt = T ∗ ∪ Ψ∗.

It is easy to see that, due to steps 1 and 3 the running time of Algorithm REOPT1+ is O(kn +
k log k).

We now prove that the solution Treopt computed in step 5 of REOPT1+ is indeed a spanning
tree. For this we show the following three claims:

Claim 1. Treopt spans Vx;

Claim 2. Treopt is connected;

Claim 3. Treopt is acyclic.

2



In order to prove Claim 1, just observe that T ∗ spans all nodes of V and each node of X is
spanned by Ψ∗.

In order to prove Claim 2, we need to show that the three following items hold:

Item 1. ∀y, z ∈ V , there exists a path P (y, z) from y to z in Treopt;

Item 2. ∀xi, xj ∈ X, there exists a path P (xi, xj) from xi to xj in Treopt;

Item 3. ∃y ∈ V, x ∈ X, such that (y, z) ∈ Treopt.

For Item 1, just remark that Treopt includes T ∗ that is a tree spanning V .
Let us now prove Item 2. Denote by P ′(xi, xj) the path from xi to xj in Ψ′. If node v′

built at step 2 is not on P ′(xi, xj), then this path exists also in Ψ∗ and thus in Treopt. If, on the
contrary, v′ is on P ′(xi, xj), then this path can be written as:

P ′ (xi, xj) = P ′ (xi, xs) ∪
(

xs, v
′
)

∪
(

v′, xt

)

∪ P ′ (xt, xj)

so that, in Ψ∗, P ′(xi, xj) corresponds to the union of two distinct and potentially disconnected
paths P (xi, v

∗
s) and P (v∗t , xj). Since both v∗s and v∗t are nodes of the initial graph, according to

Item 1, there exists a path P (v∗s , v
∗
t ) in Treopt. So, there exists a path from xi to xj in Treopt,

and this path is:
P (xi, xj) = P (xi, v

∗
s) ∪ P (v∗s , v

∗
t ) ∪ P (v∗t , xj)

completing the proof of Item 2
For Item 3, since the node v′ is spanned by Ψ′, then there exists an edge e ∈ E′ such that

e ∈ Ψ′ and also there exists an edge e ∈ E∗ such that e ∈ Ψ∗. So, there exists at least an edge
in Treopt which connects the two sets T ∗ and Ψ∗ completing so the proof of Item 3.

Items 1, 2 and 3 put together, derive connectivity of Treopt.
Let us now show Claim 3. Since both T ∗ and Ψ∗ are trees, a cycle C in Treopt should

necessarily be the union of two paths P (y, z), and P ′(y, z), where P (y, z) is the unique path
from y to z in T ∗, and P ′(y, z) is the unique path from y to z in Ψ∗. Nodes y and z are
necessarily nodes of the initial graph, since they are spanned by T ∗. They are also nodes of the
set V ∗, defined at step 1 of REOPT1+, since they are spanned by Ψ∗. But since nodes of V ∗ are
contracted in a single node in Ψ′, a path from y to z in Ψ∗ is equivalent to a path from v′ to v′

in Ψ′, a contradiction since Ψ′ is acyclic.
Putting together Claims 1, 2 and 3, derives that Treopt returned by REOPT1+ is a tree span-

ning Vx.

Proposition 1. There exist arbitrarily large instances of min spanning treek+ where the
approximation ratio of REOPT1+ is at least n (the order of G).

Proof. More precisely we will show that proposition’s statement holds even for minimum span-

ning tree1+. Consider a complete graph G on n vertices with all edge weights equal to n + 1.
Here, any spanning tree T has the same weight w(T ) = (n − 1)(n + 1) = n2 − 1. Assume that
a new node x is inserted so that the new graph Gx remains complete. Assume also that the
weights in E({x}) are all equal to 1.

The new optimal spanning tree is obviously E(x) (a star rooted at x), and its weight
is w(T ∗

x ) = n. It is easy to see that REOPT1+ will compute a spanning tree Treopt of Gx with
w(Treopt) = n2 so that the ratio between its value and that of T ∗

x equals n.
We now restrict ourselves to a particular but natural classe of graphs, namely to complete

metric graphs. We prove that in such graphs REOPT1+, although non optimal, behaves much
better. More precisely, we prove the following result.
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Proposition 2. In complete metric graphs, REOPT1+ achieves approximation ratio bounded above
by max{2, 3 − (2/(k − 1))}.

The proof of Proposition 2 requires the following Lemmata 1, 2 and 3.

Lemma 1. REOPT1+ computes a smallest spanning tree on Gx that includes T ∗.

Proof. First, we will show that Ψ′, the solution computed by step 3 of REOPT1+ is the same as
the tree computed by the following algorithm OTHER: contract all the nodes of V into a single
node v′ (this contraction results in a multigraph H) and run Kruskal’s Algorithm on H.

The main difference between REOPT1+ and OTHER relies upon the set of candidate edges: in
OTHER, this set is the whole set E(X), whereas in REOPT1+ this set is (X ×X) ∪ E∗, but the set
of edges that are taken as candidates by OTHER but not by REOPT1+ will never be included in the
solution by OTHER. Indeed, when Kruskal’s Algorithm runs on a multigraph, it will never pick a
non-minimum weight edge between two nodes, so that in OTHER, only edges of (X ×X)∪E∗ are
“real” candidates since E∗ is the set of minimum weight edges for each pair of nodes (v′, xi).

Assume that Treopt is not one of the minimum spanning trees on Gx that includes T ∗. This
straightforwardly implies that there exists a tree T̃ including T ∗ “lighter” than Treopt. The
existence of T̃ induces the existence of a set Ψ̃ resulting from the contraction of T ∗ in T̃ , so that
w(Ψ̃) < w(Ψ′), a contradiction since, as we showed, Ψ′ coincides with a spanning tree computed
by Kruskal’s algorithm on H, hence Ψ′ is a minimum spanning tree of H.

Lemma 2. Given an rooted tree T spanning the vertices of a complete and metric graph G,
denoting by ϕ the path that links the leaves of T in their order of appearance in a depth-first-
search (dfs) of T and by P the path inside T connecting the first visited leaf with the last one,
w(ϕ) 6 2w(T ) − w(P ).

Proof. Let l be the number of leaves in T , and xi be the ith leaf to be visited in a dfs of T .
Thus, x1 is the first visited leaf, and xl is the last one.
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Figure 1: Building the path ϕ in T .

The tree T is clearly an outerplanar graph (it can be drawn in the plane so that no edges cross,
and each node of T lies in the outer face). Then, we can easily find a non elementary path ϕ′

between x1 and xl spanning all nodes of T . This path consists of the outer face of T between x1

and xl (Figure 1). Another way to represent ϕ′ is to see it as the union of paths P (x1, x2),
P (x2, x3), . . . , P (xl−1, xl), where P (xi, xj) is the unique path between xi and xj in T . So,
w(ϕ′) = 2w(T ) − w(P ), where P is the unique path between x1 and xl in T . Indeed, each edge
of T appears exactly twice on the path, except for the edges of P which appear only once.

This path goes through each leaf exactly once. So, if we delete each series of internal nodes
in ϕ′ and replace them with corresponding shortcuts, we get a path ϕ going through all leaves.
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Given the metric property of the graph, each shortcut is lighter than the subpath that it replaces,
so that w(ϕ) 6 w(ϕ′) = 2w(T ) − w(P ), qed.

Lemma 3. Given a rooted tree T with at most k > 2 nodes, the heaviest path of T has weight
at least 2w(T )/(k − 1).

Proof. Let us first notice that inside a tree, the heaviest path necessarily connects two leaves.
Denote by P the heaviest path in T . The set P ∪ ϕ′ (where ϕ′ is as in Lemma 2), can be
partitioned into at most k−1 sub-paths (recall that as we noticed above, ϕ′ is the disjoint union
of l − 1 subpaths connecting two consecutive leaves). The first element of this partition is the
path in T connecting the first leaf with the second one, the second element is the path connecting
the second leaf with the third one, and so on. Finally, the last element is the path connecting
the last leaf with the first one, i.e., the path P itself. With respect to Figure 1, the partition of
P ∪ ϕ′ is: {(1, 2), (3, 4, 5), (6, 7, 8), (9, 10, 11), (12, 13, 14), P}.

Since P is the heaviest element of the partition, it is necessarily heavier than the average
weight of the partition, i.e., w(P ) > w(P ∪ ϕ′)/|P ∪ ϕ′|.

Finally, let us notice that w(P ∪ ϕ′) = 2w(T ) and that if T has l leaves, then |P ∪ ϕ′| = l.
Considering that l 6 k − 1 (one of the k nodes of T is the root), we get:

w (P ) >
2

l
w (T ) >

2

k − 1
w (T )

as claimed.
We are well-prepared now to continue the proof of Proposition 2. For this, we first try to

analyze the structure of an optimal solution T ∗
x . The edges of this tree can be split into the

following three distinct subsets:

1. E0 = T ∗
x ∩ V × V , i.e., the subset of edges of T ∗

x with no endpoints in X;

2. E1 = T ∗
x ∩V ×X, i.e., the subset of edges of T ∗

x with one endpoint in X one endpoint in V ;

3. E2 = T ∗
x ∩ X × X, i.e., the subset of edges of T ∗

x with two endpoints in X.

In general, all of these subsets are forests. In particular, E2 can be considered as the union of
its distinct maximal connected components (trees). Each of these components will be defined
as E2

j ∪ Lj, where Lj is the set of edges such that there is no path in T ∗
x connecting two nodes

of V that contains them (in other words, Lj is the set of edges that do not belong to any path
of T ∗

x connecting two nodes of V ). For each tree E2
j ∪ Lj, we will denote by E1

j the set of edges

of E1 incident to nodes of this tree.
For example, consider the tree of Figure 2. There are five different maximal connected

components E2
j ∪ Lj; the cuts associated to each of these components define the sets E1

j . Inside
each component, edges of Lj are shown boldfaced. To identify them, one must check for each
edge e of E2 if its removal disconnects in T ∗

x some pair of nodes of V ×V . If not, then e belongs
to some set Lj, else it belongs to some set E2

j . In other words, sets Lj can be seen as the “last”

edges of the paths of T ∗
x leading to its leaves and belonging to E2.

Fix some j. Inside tree E2
j , denote by Pmax

j the heaviest path connecting two leaves (of E2
j ),

denoted by xsj and xtj. Since E2
j and Lj are disjoint, both xsj and xtj have at least one

neighbor in V . Pick at random a node vsj among the neighbors of xsj in V , a node vtj among
the neighbors of xtj and build a path ϕj from vsj to vtj which links all leaves of the tree E2

j ∪E1
j

as shown in Figure 3. Path ϕj meets the hypothesis of Lemma 2. So:

w (ϕj) 6 2
(

w
(

E2
j

)

+ w
(

E1
j

))

−
(

w (vsj , xsj) + w
(

Pmax
j

)

+ w (vtj , xtj)
)

⇓ (1)

w (ϕj) 6 2
(

w
(

E2
j

)

+ w
(

E1
j

))

− w
(

e∗j
)

− w
(

Pmax
j

)

(2)
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Figure 2: Structure of T ∗
x .

sx j
tx j

vtj

vsj L

P

φj

j

j

max

Figure 3: A tree E2
j ∪ E1

j and the corresponding path ϕj .

where, in order to simplify equations, we denote by e∗j the lightest among edges (vsj , xsj)
and (vtj , xtj); this notation will be also adopted for the sequel.

Since Pmax
j is assumed to be the heaviest path connecting terminal nodes of the tree E2

j , we
get by Lemma 3:

w
(

Pmax
j

)

>

2w
(

E2
j

)

k − 1
(3)

where, if k = 1, then w(E2
j ) = w(Pmax

j ) = 0. Combining (3) and (2), some algebra leads to the
following:

w (ϕj) + w
(

e∗j
)

+ w
(

E2
j

)

6

(

3 − 2

k − 1

)

w
(

E2
j

)

+ 2w
(

E1
j

)

w (ϕj) + w
(

e∗j
)

+ w
(

E2
j ∪ Lj

)

6

(

3 − 2

k − 1

)

w
(

E2
j ∪ Lj

)

+ 2w
(

E1
j

)

(4)

Considering that the different trees E2
j ∪Lj ∪E1

j are distinct, we sum (4) for each j and get the
following:

w (Φ) + w (E∗) + w
(

E2
)

6

(

3 − 2

k − 1

)

w
(

E2
)

+ 2w
(

E1
)

⇓

w
(

E0
)

+ w (Φ) + w (E∗) + w
(

E2
)

6

(

3 − 2

k − 1

)

w
(

E2
)

+ 2w
(

E1
)

+ w
(

E0
)
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Let us now take a closer look at the set E0 ∪ Φ. Remark that the set E0 is a forest spanning
nodes of the initial graph G. In T ∗

x , each node u of V is connected to any other node v of V by
a path P (u, v). This path may include several nodes of X, thus it might not exist in E0. We
will show that set Φ reconnects each component of E0.

Fix such a path P (u, v) and denote by X ′
j = {xj1 , xj2, . . . , xjl

}, the consecutive nodes of X
encountered in P (u, v). Then:

P (u, v) = P (u, uj) ∪ (uj , xj1) ∪ P (xj1, xjl
) ∪ (xjl

, vj) ∪ P (vj , v)

where paths P (u, uj) and P (vj , v) can contain vertices of both V and X, while path P (xj1 , xjl
)

only contains vertices from X. Also, edges (uj , xj), (xjl
, vj) ∈ E1 and path P (xj1 , xjl

) ∈ E2.
Obviously, this last path is surrounded by two nodes of V , here uj and vj . Path (uj , xj1) ∪
P (xj1 , xjl

) ∪ (xjl
, vj) is then included in a tree E2

j ∪ E1
j in which nodes ui and vi are leaves. By

construction, the path ϕj (which is included in Φ) goes through all the leaves of a given tree
E2

j ∪E1
j ; so there exists a path between ui and vi in Φ. The above argument holds for any path

of consecutive vertices of X encountered in P (u, v). Hence, there exists a path between any pair
of nodes u and v of V in E0 ∪ Φ.

In all, what we have shown is that E0 ∪Φ is a connected spanning set of V , for which we can
directly derive that it is heavier than the minimum spanning tree of V , namely T ∗:

w
(

E0
)

+ w (Φ) > w (T ∗)

⇓

w (T ∗) + w (E∗) + w
(

E2
)

6

(

3 − 2

k − 1

)

w
(

E2
)

+ 2w
(

E1
)

+ w
(

E0
)

We now focus ourselves on set T ∗∪E∗∪E2. Remark that set E2 is a forest spanning nodes of X.
For each connected component E2

j of E2, we have identified a single edge e∗j which connects this
component to a node vsj of V , so that for each node x inside any of these components, there
exists a path in E∗ ∪ E2 connecting x to a node of V . From this we can easily conclude that
T ∗ ∪ E∗ ∪ E2 is a connected spanning set of V ∪ X.

Recall that, by Lemma 1, Treopt is one of the minimum spanning trees of Gx that includes T ∗.
So, T ∗ ∪ E∗ ∪ E2 being a spanning set of Gx that includes T ∗, is heavier than Treopt:

w (Treopt) 6 w (T ∗) + w (E∗) + w
(

E2
)

⇓

w (Treopt) 6

(

3 − 2

k − 1

)

w
(

E2
)

+ 2w
(

E1
)

+ w
(

E0
)

Using the fact that w(T ∗
x ) = w(E2)+w(E1)+w(E0), it is immediate to yield the approximation

ratio claimed:
w (Treopt)

w (T ∗
x )

6 max

{

2, 3 − 2

k − 1

}

that completes the proof of Proposition 2
Remark that for k 6 3, the approximation ratio is 2. This ratio is asymptotically tight.

Consider the instance of Proposition 1. To make it metric, we just set all weights of the initial
graph G to 2 instead of n + 1. The approximation ratio becomes then 2 − (1/n).

For k > 4 we prove a lower bound of 3− 3/
√

k − 1− 1/(k− 1). This bound is attained in the
following instance: consider two groups of nodes; inside each group all the edges have weight 0
while, between the two groups, all the edges have weight 4. Hence, the optimum takes only one
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edge with weight 4 to connect the subtrees spanning each of the two groups, both of these trees
having weight 0; thus, w(T ∗) = 4.

Five nodes are inserted which form a path between the two groups as shown in Figure 4 where,
all edges that are not drawn are as heavy as the metric hypothesis allows. A new optimum is
thus given by the union of the initial groups and of this path; so, w(T ∗

x ) = 4.
REOPT1+ gathers T ∗ and adds two edges with weight 0 (edges of E1), and three edges with

weight 1 to span the recently inserted nodes; thus, w(T ∗
x ) = 7.

1 1 1

1 1 1 1

E
0

Group 1

*Tx

E
0

E
0

E
0O O

4

O O

Group 1 Group 2

Group 2Treopt

Figure 4: Lower bound for the approximation ratio of REOPT1+ for k = 5.

The lower bound for the approximation ratio with k = 5 is then 7/4, and the upper bound
is 10/4.
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1

1

1

1

1

1

1

E 0

E 0

E 0

E 0

O

O

O

O

Group 2

Group 1

....

Group

√

k − 1-1

Group

√

k − 1

Figure 5: Lower bound for the approximation ratio of REOPT1+ for k > 5.

The construction given just above can be generalized for any k > 5 as shown in Figure 5. The
initial graph is composed of

√
k − 1 groups of nodes; inside each group, all edges have weight 0 and

between any pair of groups edges have weight 2
√

k − 1. The initial optimum includes
√

k − 1−1
edges with weight 2

√
k − 1 to connect the several trees spanning the several groups whose weights

are equal to 0. Then k nodes are inserted as shown in Figure 5. Each of the
√

k − 1 groups of
initial nodes is connected to the central inserted node by a path with

√
k − 1 new nodes. All

edges not drawn in the figure are as heavy as the metric hypothesis allows. On this instance, the
following result holds and concludes the section.

Proposition 3. The approximation ratio of REOPT1+ is bounded below by 3 − (3/
√

k − 1) +
(1/(k − 1)).
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2.2 Algorithm REOPT2+

We now propose the following reoptimization algorithm denoted by REOPT2+ that determines
an optimal solution on Gx: build the sub-graph H(V ∪ X,T ∗ ∪k

i=1 E(xi)) of Gx and run the
Kruskal’s Algorithm on it. Note that H does not contain edges of G that do not belong to T ∗.

The complexity of REOPT2+ is O((k2 + nk) log(n + k), that is better than the complexity of
Kruskal’s algorithm run on the entire graph Gx, O((n + k)2 log(n + k)).

Proposition 4. REOPT2+ computes an optimal solution for min spanning treek+ on Gx.

In order to prove optimality of the solution computed by REOPT2+, we need the following
Lemma 4.

Lemma 4. A tree T is a minimum spanning tree of a graph G(V,E) iff for any (a, b) ∈ E/T
and for any (x, y) ∈ P (a, b) (the unique path from a to b in T , w(x, y) 6 w(a, b).

Proof. ⇒ If there exists an edge (x, y) on some P (a, b) for which w(a, b) 6 w(x, y), then by
deleting (x, y) from T and replacing it by (a, b) to reconnect the tree, we are able to compute a
spanning tree T ′ lighter than T , a contradiction.

⇐ Let T be a spanning tree of G that verifies the property stated by the lemma, and assume
that it is not a minimum spanning tree of G. Fix a minimum spanning tree T ∗ of G. Since T
is different from T ∗, the set T ∗/T is non-empty. Let (a, b) be an element of this set. Assume
that T ∗ is computed by Kruskal’s Algorithm. When (a, b) has been inserted in the solution it
did not create any cycle with the edges already inserted, so at least one edge (xi, yi) of P (a, b)
(the path from a to b in T ) was not inserted yet and, moreover, at least one of these edges was
still a candidate edge. Indeed, if none of these edges is candidate, then insertion of any of these
edges should create a cycle, so ∀(xi, yi) ∈ P (a, b), there exists a path from xi to yi in the current
solution of Kruskal’s Algorithm, so that there should exist a path from a to b in this solution,
and (a, b) should not be a candidate edge.

Furthermore, when (a, b) has been inserted in the solution, it was the lightest candidate edge,
a fortiori it was lighter than at least one edge of P (a, b), that contradicts the hypothesis made
on the tree T .

So if a spanning tree T verifies the property of the lemma, then T is a minimum spanning
tree and the proof of the lemma is completed.

Based upon Lemma 4, one can claim that any edge that does not belong to T ∗ is a heaviest
edge on at least one cycle of G and, consequently, also on at least one cycle in Gx, so that it cannot
no more be part of T ∗

x . REOPT2+ simply removes all these edges from the set of candidate edges,
and runs Kruskal’s Algorithm, on the surviving graph (that is smaller than Gx). Henceforth it
is optimal for min spanning treek+, qed.

3 Node deletions

We now settle a complementary problem, where modification of the instance consists of deletion
of k nodes. The deleted nodes form the vector X = {x1, . . . , xk}. Notations are basically the
same as those used in Section 2.

In this section, we propose and evaluate two reoptimization strategies, denoted by REOPT1-

and REOPT2-, respectively.
Let us first fix some notations used in the sequel. The initial minimum spanning tree T ∗ can

be split into the following three distinct subsets:

1. E0 = T ∗
x ∩ V × V , the subset of edges of T ∗ with no endpoint in X;
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2. E1 = T ∗
x ∩ V × X, the subset of edges of T ∗ with exactly one endpoint in X and one

endpoint in V ;

3. E2 = T ∗
x ∩ X × X, the subset of edges of T ∗ which with both endpoints in X.

All these subsets are included in T ∗, thus they are forests. As before, we will consider the
partition {E2

1 , E2
2 , . . . , E2

j , ...} of the set E2, where each subset E2
j is a maximal tree of the

forest E2. The set of edges of E1 which are connected to the tree E2
j will be denoted by E1

j ,

so that {E1
1 , E1

2 , . . . , E1
j , . . .} defines a partition of the set E1. Finally, the subtrees induced

by E2 contain possibly non-empty sets Lj , which, as in Section 2, are the sets of edges that do
not belong on any path connecting two non deleted nodes. Our proofs will always exclude the
sets Lj, so our notations E2

j and Ej will always mean respectively E2
j \ Lj and E2 \ L.

As previously, we will denote by Xj the set of deleted nodes spanned by the tree E2
j , and

by Vj the set of non deleted nodes spanned by the set E1
j .

3.1 Algorithm REOPT1-

REOPT1- is an easy reoptimization strategy, which computes a solution in O(n + k) and works as
follows:

1. for each connected component E2
j ∪E1

j , build a path reoptj connecting all the non deleted

nodes spanned by E1
j as follows:

• build a cycle connecting all nodes of Vj in the order of their occurrence in a breadth-
first-search (bfs) on the tree E2

j ∪ E1
j ;

• delete the heaviest edge of this cycle in order to get the path reoptj;

2. output Treopt = E0 ∪j reoptj .

We first show that the computed solution Treopt is a spanning tree. For this we prove the following
three points:

Point 1. Treopt is a spanning set of V \ X;

Point 2. Treopt is connected;

Point 3. Treopt is acyclic.

In order to prove Point 1, observe that only nodes of V \ X need to be spanned, so that E0

(which is included in Treopt) is already a spanning forest.
For Point 2, let us consider two nodes v1 and v2 of V \ X. These two nodes may be in the

same connected component of E0, and thus there may exist a path inside Treopt connecting v1

and v2 (since E0 ⊆ Treopt). If not (v1 and v2 are not in the same connected component of E0),
then at least one sequence of consecutive vertices xi of X were found on the unique path from v1

to v2 in T ∗. Each of these sequences is part of a set X2
j and thus, it is necessarily surrounded by

two surviving nodes spanned by E1
j , which are connected by the path reoptj ; hence, there exists

a path from v1 to v2 in Treopt.
Let us now prove Point 3. By construction, the existence of a path spanning a given set of

nodes in Treopt implies the existence of a path spanning the same set of nodes (plus potentially
some deleted nodes) in T ∗. A cycle in Treopt can be seen as two distinct paths between a given
pair of nodes. According to how REOPT1- works, the existence of such a cycle would imply the
existence of a cycle in T ∗, impossible.

10



Proposition 5. The approximation ratio of REOPT1- is unbounded.

Proof. We build an instance of min spanning tree1− where the approximation ratio of
REOPT1- is Θ(n). Let G be an instance of min spanning tree, such that in T ∗, node x has
d = n/2 neighbors. Thus, deletion of x splits T ∗ into d trees Fi, each of them having exactly 2
nodes: vi, the neighbor of x, and zi a leaf of T ∗. Weights are set as follows:















w (x, vi) = 1 i ∈ {1, . . . , d}
w (vi, vj) = n i ∈ {1, . . . , d}, j ∈ {1, . . . , d}, i 6= j
w (vi, zi) = 1 i ∈ {1, . . . , d}
w (zi, zj) = 2 i ∈ {1, . . . , d}, j ∈ {1, . . . , d}, i 6= j

Figure 6 illustrates such an instance where w(T ∗) = n + (n/2) = 3n/2, w(T ∗
x ) = 2n − 2 < 2n

and w(Treopt) = n + n((n/2) − 1) = n2/2.

z
1

v
1

x

z

v

z

v

z z z

vvv

2

2

3

3

d−2

d−2

d−1

d−1

d

d

x x xT TT **
x reopt

Figure 6: The construction of Proposition 5.

Thus, the approximation ratio of REOPT1- on this instance is equal to n/4, which concludes
the proof.

As in Section 2 we restrict, in what follows, ourselves in metric and complete graphs. We
will prove the following result.

Proposition 6. In metric and complete graphs, REOPT1- achieves approximation ration bounded
above by 2⌈|Lmax|/2⌉, where Lmax is the longest deleted path (measured in terms of edges). This
bound is tight.

Based once more upon Lemma 2, for each connected component E0
j ∪ E1

j that is deleted, it
is possible to bound the weight of the path reoptj , by means of which REOPT1- reconnects the
tree. According to Lemma 2, for any j:

w
(

reoptj

)

6 2



1 − 1
∣

∣

∣E1
j

∣

∣

∣



 w
(

E2
j ∪ E1

j

)

(5)

Now, let us take a look at the optimal solution T ∗
x . This tree is the union of edges that were

not deleted, which form the set E0, and of sets of edges ϕ∗
i that have been inserted to the new

optimum T ∗
x , while they did not belong to the initial one T ∗.

To prove that set E0 belongs to the new optimum, let us just see that according to Lemma 4,
all these edges are of non-maximum weight on any cycle of E to which they belong. Since the
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new graph is included to the initial one, all these edges remain non-maximal on any cycle to
which they belong. Once again, according to Lemma 4, these edges are part of the new optimum.

Each of the edges ϕ∗
i forms a cycle if added to T ∗ and, since they were not part of the initial

optimum, they are necessarily heaviest edges on these cycles. In particular, they are heavier
than all the edges of E2 ∪ E1 on the cycle.

φ*φ*

φ*

c

d

e

g h

f

a

b

    P = {a,b,c}
P = {d,e,g}

1 2 3

1

2

P = {f,h}3

P = {P ,P ,P }

E
0

E
0

E
0

3
2

E
0

1

Figure 7: An example of a partition P satisfying Properties 1 to 4.

We now define a partition P = {P1, P2, . . . , P|Φ∗|} of the set E2∪E1 that verifies the following
properties (an example of such a partition is given in Figure 7):

Property 1. ∪jPj = E2 ∪ E1;

Property 2. ∀i, j, Pj ∩ Pi = ∅;

Property 3. ∀i, all edges of Pi belong to the cycle induced by ϕ∗
i in T ∗;

Property 4. ∀i, all edges of Pi belong to the same connected component E2
j ∪ E1

j of the forest

E2 ∪ E1.

Let us note that if we can define a set P verifying all the other properties except Property 2, we
just have to arbitrarily assign edges appearing to more than one Pi’s to one of them. So, we will
first prove that a partition verifying Properties 1, 3 and 4 exists.

Combination of Properties 3 and 4 enables us to give a specific form for each set Pi. Property 3
forces all edges of Pi to be on the same path in T ∗, while Property 4 forces all edges of Pi to
be in the same connected component of the forest E2 ∪ E1. Thus, a given Pi can always be
defined as a path between two non-deleted nodes spanning only deleted ones of the same deleted
component. Notice finally that any path Pi can be defined by the pair (ϕ∗

i , E
2
j ). Indeed, once

one knows in which path of T ∗ (namely the cycle induced by adding ϕ∗
i ) and in which connected

component (namely E2
j ∪E1

j ) the path is located, the intersection of these two sets gives exactly
the path Pi.

Revisit the example of Figure 7 and set: E2
left = {b}, E1

left = {a, c}, E2
right = {e, f} and

E1
right = {d, g, h}. Then, we could say that the set P1 is defined by the pair (ϕ∗

1, E
2
left), thus, it

is the intersection of the cycle induced by ϕ∗
1 in T ∗ with the set E2

left ∪ E1
left. Similarly, P2 is

defined by the pair (ϕ∗
2, E

2
right) and P3 by (ϕ∗

3, E
2
right).

So a way to define partition P can be to assign each edge ϕ∗
i to a unique connected compo-

nent E2
j . For instance, in Figure 7, ϕ∗

1 is assigned to the left deleted connected component, and
both ϕ∗

2 and ϕ∗
3 are assigned to the right deleted connected component. This partition verifies

Properties 1 to 4.
We now propose a method to assign edges ϕ∗

i to a component E2
j . Observe first that a given

edge ϕ∗
i cannot be assigned to any component E2

j but only to some component that contains
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edges of the cycle that ϕ∗
i induces when added to T ∗. In the example of Figure 7, ϕ∗

3 cannot
be attributed to the left component, since its induced cycle only contains edges d, f and h as
deleted edges, none of which are in the left component {a, b, c}. The method works as follows:

• identify, for each deleted component, the list of candidate edges ϕ∗
i ;

• for each deleted component, identify the set E1
j that contains all edges of T ∗ adjacent

to one deleted node of E2
j and to one non-deleted node (in Figure 7, E1

left = {a, b} and

E1
right = {d, g, h});

• if for a given deleted component E2
j ∪ E1

j , the list L of candidate edges contains exactly

|E1
j | − 1 elements, then delete these elements from the other lists of candidate edges; the

edges of L are definitely attributed to the component E2
j ∪ E1

j ;

• if no component verifies the above condition (so, if each component E2
j ∪E1

j has at least |E1
j |

edges in its candidate set), then delete randomly a redundant edge from one of the lists;

• repeat the two previous steps until the list of candidate edges contains exactly |E1
j | − 1

elements for each deleted component.
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Figure 8: An application of the assignment method.

Figure 8, where edges ϕ∗
i removed from candidate sets are written in grey, provides an example

of the above method:

Step 1: all candidate edges are listed for each deleted tree; we recall that a given edge ϕ∗
i is a

candidate edge for a given deleted component, if and only if the cycle induced by ϕ∗
i

contains edges of the component; sets E1
j (which are the cuts associated to sets E2

j )

are identified, so we get |E1
a| = 2, |E1

b | = 3 and |E1
c | = 2;

Step 2: since no candidate list contains exactly |E1
j | − 1 edges j = a, b, c, one redundant edge

is randomly chosen for deletion in one list, for instance, ϕ∗
2 (which becomes grey in

the list of E2
b in Figure 8); now this list contains exactly |E1

b |−1 = 2 elements (recall
that, at the beginning, |E1

b | = 3); so, the edges of the candidate set are definitely
attributed to the component: the fixed candidate set is then displayed in a circle in
Figure 8;
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Step 3: all the edges of the fixed list (namely, ϕ∗
3 and ϕ∗

4) are then removed from all the
other lists in which they appear and are also displayed in grey; now the list of E2

c

contains exactly |E1
c |−1 = 1 elements, so the edges of the candidate set are definitely

attributed to the component displayed as mentioned in Step 2 above;
Step 4: the only edge of the fixed list (namely, ϕ∗

1) is removed from all the other lists in
which it appears, and is also displayed in grey; now the list of E2

a contains exactly
|E1

a| − 1 = 1 elements; the edges of the candidate set are definitely attributed to the
component once more displayed as above; now all candidate sets contain |E1

j | − 1
edges.

Let us recall that the aim of the assignment that we are describing is to define a partition of the
deleted edges, so that each edge of ϕ∗

i is heavier than all the deleted edges of its corresponding
set in the partition. To do so, we consider the cycle Ci induced by adding ϕ∗

i in the initial tree,
so that all the edges of Ci are lighter than ϕ∗

i (or else ϕ∗
i would have been an element of the

initial optimal tree). Then, if the edge ϕ∗
i is attributed to the deleted component E2

j ∪ E1
j , the

set of the partition corresponding to ϕ∗
i will be Ci ∩ (E2

j ∪ E1
j ).

We must now prove that all the edges of E2
j ∪ E1

j will be part of at least one set of the
partition (redundant elements can be deleted later to define a real partition).

Let us first prove that the assignment method attributes all the edges of ϕ∗
i to a deleted

component. To understand this, we must first remark that it attributes |E1
j | − 1 edges to each

deleted component E2
j ∪ E1

j . Let |CC2| be the number of deleted components. Summing the
number of attributed edges for each deleted component we get:

CC2

∑

j=1

(∣

∣E1
j

∣

∣ − 1
)

=

CC2

∑

j=1

(∣

∣E1
j

∣

∣

)

−
∣

∣CC2
∣

∣ =
∣

∣E1
∣

∣ −
∣

∣CC2
∣

∣

As it can be seen in Figure 8, the edges of E1 form an arborescence spanning connected com-
ponents of both E2 and E0. Since there exist |CC2| and |CC0| connected components in E2

and E0, respectively, we can derive that E1 = |CC2|+ |CC0|−1. So, at the end of the procedure,
the total number of attributed edges is:

∣

∣E1
∣

∣ −
∣

∣CC2
∣

∣ =
∣

∣CC2
∣

∣ +
∣

∣CC0
∣

∣ − 1 −
∣

∣CC2
∣

∣ =
∣

∣CC0
∣

∣ − 1

We now count the number of edges of ϕ∗
i . There exist |CC0| non-deleted components that need

to be reconnected. As before, we can thus affirm that there exist |CC0| − 1 edges ϕ∗
i . So, the

number of attributed edges is the same as the number of edges ϕ∗
i . Taking into account that no

edge can be attributed to more than one deleted component, leads us to the following fact.

Fact 1. All edges ϕ∗
i are attributed by the assignment method.

Furthermore, this method will never attribute two edges inducing the same path to a given
component. It is very likely that two edges ϕ∗

i and ϕ∗
l induce two cycles Ci and Cl, so that for a

given deleted component E2
j ∪ E1

j , the induced sets for the partition are exactly the same, i.e.,

Ci ∩ (E2
j ∪ E1

j ) = Cl ∩ (E2
j ∪ E1

j ). For instance, in the example of Figure 8, ϕ∗
1, ϕ∗

2, ϕ∗
3 and ϕ∗

4

induce the same path in E2
a ∪ E1

a.
But really, if two or more edges induce the same path in a given component, this means that

in the first step of the assignment method, the initial candidate set is bigger than the set which
will be finally defined by the method.

Revisit once more the example of Figure 8. The final set attributed to E2
a ∪ E1

a will contain
only one edge, for |E1

a| = 2 (recall that the cardinality of a set finally attributed to a given
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component E2
j ∪ E1

j is |E1
j | − 1), and there exist 4 candidate edges, which all induce the same

path in E2
a ∪ E1

a . Thus, 3 out of these 4 candidate edges will be deleted from the list.
Assume that two edges ϕ∗

i and ϕ∗
l induce the same path for a given component E2

j ∪ E1
j .

Then:

• the candidate list of E2
j ∪ E1

j will have at least one element deleted, before the end of the
assignment procedure;

• either ϕ∗
i , or ϕ∗

l appears in at least one other list.

This is shown in the gadget of Figure 9.

E0 E0

E0

E2
j

φ*
l

*φ
i

Figure 9: Edges ϕ∗
i and ϕ∗

l inducing the same path in E2
j ∪ E1

j .

Since the initial tree is connected, there exists at least one other deleted component for
which either ϕ∗

i , or ϕ∗
l is a candidate edge at the beginning of the assignment procedure. So,

any deleted component has at least a redundant edge in its candidate set and in order that it
has a list with exactly |E1

j | − 1 elements, at least one edge must be removed from its initial
list. In the assignment procedure, edges are progressively removed from the lists in two ways:
either randomly, or when a set attains its appropriate number of edges. So, according to our
hypothesis, either ϕ∗

i , or ϕ∗
l will be removed. Discussion just above induces the following fact.

Fact 2. Two edges inducing the same path in a given component will never be both attributed
to this component.

Following the discussion above, the set of edges assigned to a given deleted component, can be
seen as a “pseudo”-spanning tree on the non deleted nodes incident to this component. Indeed, a
given deleted component E2

j ∪E1
j has exactly |E1

j | incident non deleted nodes. Each edge assigned

to this component induces a cycle crossing two non-deleted nodes spanned by E1
j . According to

Fact 1, exactly |E1
j |−1 edges are assigned to this component, and according to Fact 2, each edge

induces a distinct pair of non deleted nodes. Since the possibility of a cycle is clearly excluded,
the set of edges assigned to a given deleted component can be seen as a pseudo spanning tree on
the non deleted nodes incident this component. But, in fact, edges of ϕ∗

i are not incident to the
nodes that they span in the pseudo-spanning tree (this is why we call it “pseudo”-spanning). This
idea is illustrated in Figure 10, where ϕ∗

1 “spans” v1 and v2, ϕ∗
2 “spans” v1 and v3, ϕ∗

3 “spans” v1

and v5 and, finally, ϕ∗
4 spans v4 and v5. This enables us to claim that each edge of E2

j ∪ E1
j lies

on a cycle induced by one ϕ∗
i assigned to this component. Thus, the partition P so-obtained,

that already verifies Properties 3 and 4, will cover all edges of E2 ∪ E1, verifying so Property 1
also.

Indeed, let e be an edge of E2∪E1. If it is deleted from the component, then this component
is obviously split into two parts. Let V1 and V2 be the set of leaves of the two trees resulting from
this splitting. If e does not lie on any cycle induced by any edge ϕ∗

i attributed to the component,
then there exists no edge ϕ∗

i of the pseudo spanning tree between the set V1 and V2, impossible
since this tree is a (pseudo) spanning tree.
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Figure 10: A covering P j.

In all, we have proved that a partition P verifying Properties 1 to 4 always exists, since it
can be generated by the assignment method on any instance.

Using Property 3 and taking into account that each of the edges ϕ∗
i was not part of the initial

optimum, thus each of them is necessarily a heaviest edge on the cycles they induce in T ∗, we
derive that, for any i, w(ϕ∗

i ) > w(Pi)/|Pi|.
Using Properties 1 and 2, we can derive that, for a given deleted component E2

j ∪E1
j , the set

of edges ϕ∗
i attributed to it, verifies:

∑

w (ϕ∗
i ) >

w
(

E2
j ∪ E1

j

)

|Pmax|
(6)

where Pmax is the set with the biggest cardinality in partition P .
Finally, using Property 4, we can affirm that |Pmax| is bounded by the length of the longest

path Lmax inside a deleted component (for instance, |Lmax| = 2 if all deleted nodes are not
adjacent in T ∗).

With Properties 1, 3, 4, P is not a partition but rather a covering. But, as we have already
mentioned, such a covering can be easily transformed into a partition by simply removing multiple
occurrences of elements within all but one set of P . But there exists, in fact, a better way to
perform this transformation in order to get the upper bound claimed in proposition’s statement.

For a given deleted component E1
j ∪ E2

j , denote by P j the projection of P on E1
j ∪ E2

j

(obviously, P = ∪jP
j); P j is of the form: P j = (P j

1 , P j
2 , . . . , P j

i , . . . , P j

|E1

j |−1
). Recall that each

set P j
i is a path of deleted edges between two non-deleted nodes. Observe also that ∪iP

j
i =

E1
j ∪ E2

j is a (non-rooted) tree. For instance, consider Figure 10. There, E2
j = {a, b}, E1

j =

{c, d, e, f, g} and |E1
j | − 1 = 4 edges ϕ∗

i have been assigned to the component E2
j ∪ E1

j , each
of them inducing a cycle going through the component and encounters some path composed of
removed edges between two non-removed vertices (i.e., the non-endpoints of the path are all
removed vertices). These paths correspond to the sets P j

i of P j .
Transformation of P j into a partition consists of turning the deleted component into a rooted

tree, by considering as root the median node of a longest path in the tree (one of the two “medians”
if the length of the longest path is odd). For instance, x2, or x3 in Figure 10, that are the two
medians on the longest path P (v1, v5). Note that in this rooted tree, the longest oriented path
encounters at most ⌈|Lmax|/2⌉ edges. Indeed, if it encounters more edges, then there exists a
path between two nodes with more than |Lmax| edges, impossible by definition of Lmax.
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This rooted tree forms a new covering Rj = (Rj
1, R

j
2, . . . , R

j

|E1

j |
) of the deleted component

where the set Rj
m corresponds to the oriented path between the root and the leaf vj

m, the length
of which is at most ⌈|Lmax|/2⌉. Each leaf vj

m is an endpoint of at least one path P j
i of P j . The

set of paths that have vj
m as endpoint will be referred to as the “candidate set” of vj

m. Then, we
can match Rj and P j as follows:

1. pick a leaf vj
m whose candidate set has one only path, say, P j

i ;

2. replace the set Rj
m by P j

i ∩ Rj
m;

3. remove all edges of Rj
m from the other sets of Rj;

4. remove P j
i from P j , and update the candidate sets;

5. if P j 6= ∅, then go back to step 1, else exit.

Note that what procedure above gets is a partition Rj with |E1
j | sets, corresponding each to

at least one of the |E1
j | − 1 edges ϕ∗

i attributed to the partition. This partition preserves all

properties of the former partition P j , since all of its elements are subsets of sets in P j. For the
partition Rj, let Rj

min be the lightest set (in terms of weight). Then:

w
(

Rj
min

)

6
w

(

Rj
)

∣

∣

∣
E1

j

∣

∣

∣

Consequently, and taking into account that Rj is a partition on the deleted tree E1
j ∪ E2

j :

w
(

Rj \ Rj
min

)

>



1 − 1
∣

∣

∣E1
j

∣

∣

∣



 w
(

E1
j ∪ E2

j

)

Consider partition Rj \Rj
min; it contains now |E1

j |−1 sets. Each set there is a subset of the cycle
induced by an edge ϕ∗

i in the initial optimal solution. Using Property 3 and taking into account
that each of the edges ϕ∗

i was not part of the initial optimum (thus are necessarily heaviest edges
on the cycles created when added to this optimum), we get that, for any i, w(ϕ∗

i ) > w(Ri)/|Ri|.
Since the cardinality of any set Ri is bounded above by ⌈|Lmax|/2⌉, summing for all ϕ∗

i

attributed to a given component, we get:

∑

i

w (ϕ∗
i ) >

w
(

Rj \ Rj
min

)

⌈

|Lmax|
2

⌉ =



1 − 1
∣

∣

∣E1
j

∣

∣

∣





w
(

E1
j ∪ E2

j

)

⌈

|Lmax|
2

⌉ (7)

Combining (5) and (7), we are able to formulate a bound between the optimal reconnecting set,
and that generated by REOPT1- for each deleted component E2

j ∪ E1
j :

w
(

reoptj

)

∑

i

w (ϕ∗
i )

6 2

⌈ |Lmax|
2

⌉

(8)

where in (8) we only take into account edges ϕ∗
i assigned to E2

j ∪ E1
j .

Finally, the approximation ratio of the algorithm REOPT1- is:

w (Treopt)

w (T ∗
x )

=

w
(

E0
)

+
∑

j

w
(

reoptj

)

w (E0) +
∑

i

w (ϕ∗
i )

6

∑

j

w
(

reoptj

)

∑

i

w (ϕ∗
i )

(8)

6 2

⌈ |Lmax|
2

⌉

17



as claimed. This bound is equal either to |Lmax|, or to |Lmax| + 1.
We now show tightness of the bound given in (8). Let I be an instance of min spanning

tree. The k nodes that are deleted form a unique connected component, that is a star of paths.
The terminal node of each branch of the star is a non-deleted node. The star has 2(k − 1)/

√
k − 2

branches, each one having (
√

k − 2)/2 nodes. So, the total number of nodes on all branches is:

2
k − 1√
k − 2

√
k − 2

2
= k − 1

Adding the central node of the star, we finally find the k deleted nodes in the connected compo-
nent.

Since each branch has (
√

k − 2)/2 nodes, it has
√

k/2 edges, and thus, the longest deleted
path between two non-deleted nodes has

√
k edges (in other words, |Lmax| =

√
k). All these

edges have weight 1; thus, each branch of the star has weight
√

k/2.
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Figure 11: Lower Bound for the approximation ratio of REOPT1-.

Figure 11 shows a simplified version of the instance. In Figure 11(a), the deleted paths, each
of them having

√
k/2 edges are represented (these are the paths between the central black node

and the – non-deleted – white nodes wi and xi). White nodes are non-deleted nodes incident
to deleted ones. Figure 11(b) represents the solution computed by algorithm REOPT1-. Each
edge there has weight exactly

√
k, so that the metric hypothesis is verified (with respect to the

edges of Figure 11(a)). Recall that REOPT1- computes a path connecting the non deleted nodes
incident to each deleted component, in the order of their occurrence in a bfs applied on the
deleted component. So in this instance, any path connecting all the non-deleted white nodes
is a possible solution for REOPT1-; thus, so is the path of Figure 11(b). Finally, Figure 11(c)
represents the optimal solution on the modified instance. Any edge there has weight 1. Each of
them is as heavy as any deleted edge, thus they do not belong to the initial optimum.

The metric hypothesis is also verified between the edges of Figures 11(b) and (c). Indeed,
in the latter figure, there exist exactly 2(k − 1)/

√
k − 2 non-deleted connected components (in

white), half of them laying in the upper part of the figure and the other half in the lower part.
Pick any edge (w, z) of Figure 11(b); we have to show that this edge is at least as light as the
unique path connecting w to z in Figure 11(c), so that the graph verifies the metric hypothesis.
Given the structure of the optimal tree T ∗

x , any path connecting two nodes w and z (these two
nodes being neighbors in Treopt) will encounter at least (k − 1)/(

√
k − 2)−1 edges. For instance,
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the path between w1 and z1 in Figure 11(c) includes all the edges in the upper part (namely,
(k − 1)/(

√
k − 2) − 1 edges), plus the transversal edge, in all (k − 1)/(

√
k − 2) edges. The path

between w2 and z1 has one less edge (namely, the edge (w1, w2)), thus exactly (k − 1)/(
√

k − 2)−1
edges. Then, between w2 and z2, the number of edges turns into (k − 1)/(

√
k − 2)−1, and so on.

Since each edge has weight 1 in T ∗
x , any path connecting two nodes w and z there will have weight

at least (k − 1)/(
√

k − 2) + 1. Finally, taking into account that
√

k 6 (k − 1)/(
√

k − 2)− 1, one
immediately derives that the instance handled is metric.

Now, let us assume that the edges within any non-deleted components have weight equal
to 0. Then the tree T ∗

x encounters 2(k − 1)/(
√

k − 2) − 1 edges of weight 1, and the tree Treopt

encounters 2(k − 1)/(
√

k − 2) − 1 edges of weight
√

k. So, the approximation ratio on this
instance is

√
k = |Lmax|. The proof of Proposition 6 is now completed.

Algorithm REOPT2-

In this section we devise an optimal reoptimization strategy for min spanning treek−. It is
denoted by REOPT2- and works as follows:

• contract each non deleted connected component E0
i of T ∗ into a single node yi, link nodes yi

and yj with one of the lightest edges linking a node of E0
i to a node of E0

j and run Kruskal’s
Algorithm on the resulting graph; let ϕreopt the solution obtained;

• output Treopt = E0 ∪ ϕreopt.

The complexity of this algorithm is O((m − |E0|) log(n − k − |E0|)). Obviously, when |E0| = 0,
REOPT2- is exactly the same as an application of Kruskal’s Algorithm on the modified instance.
However, as soon as |E0| 6= 0, REOPT2- provides a better complexity than Kruskal’s Algorithm.

Proposition 7. REOPT2+ computes an optimal solution for min spanning treek−.

Proof. According to Lemma 4, every edge of E0 belongs to Tx. Now let us show that any edge
of ϕreopt also belongs to Tx.

Suppose that an edge e of Treopt is heaviest on one cycle C of Gx. This edge is necessarily
an edge of ϕreopt since all edges of E0 belong to Tx and therefore, they cannot be heaviest on
any cycle of Gx. The existence of C induces the existence of a cycle C ′ in the graph resulting
from the contractions of all connected components of E0, and e is also heaviest on C ′. But, from
Lemma 4, such an edge would not be included in ϕreopt.

4 Conclusion

In this paper we have established approximation results for min spanning tree under reop-
timization setting. We have proposed simple and fast reoptimization strategies tackling light
modifications of the input graph that is some vertex insertions and deletions. What is of inter-
est here is that an asymmetry is observed between these two types of modifications, the latter
seeming “harder” than the former. Proposing new more efficient algorithms at least for vertex
deletions is a subject of ongoing research.

Study of min spanning tree in metric and complete graphs exhibit, for both types of
modifications, gaps between upper and lower approximation bounds. Another interest subject
to be studied is bridging this gap either by reducing upper bounds, or by strengthening lower
ones.

Finally, following our approach, an interesting generalization would be to consider min span-

ning tree in a fully dynamic situation. Starting from a given optimal solution on an initial
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graph, the graph evolves in booth senses (nodes are added and deleted), and the goal is to main-
tain efficiently, along this process, an approximate solution as good as possible. This is also an
interesting subject of forthcoming research.
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